
A Product Derivation Tool Based on                                  
Model-Driven Techniques and Annotations 

 
 

Elder Cirilo 
(Pontifical Catholic University of Rio de Janeiro, Brazil 

ecirilo@inf.puc-rio.br) 
 

Uirá Kulesza 
(CITI/DI/FCT - New University of Lisbon – Portugal 

Recife Center for Advanced Studies and Systems – Brazil 
uira@di.fct.unl.pt, uira@cesar.org.br) 

 
Carlos José Pereira de Lucena 

(Pontifical Catholic University of Rio de Janeiro, Brazil 
lucena@inf.puc-rio.br) 

 
 
 
Abstract: In this paper, we present a model-based tool for product derivation. Our tool is 
centered on the definition of three models (feature, architecture and configuration models) 
which enable the automatic instantiation of software product lines (SPLs) or frameworks. The 
Eclipse platform and EMF technology are used as the base for the implementation of our tool. 
A set of specific Java annotations are also defined to allow generating automatically many of 
our models based on existing implementations of SPL architectures. We illustrated the use and 
validation of our tool in the preparation of the automatic derivation of the JUnit framework and 
a J2ME games product line. 
 
Key Words: Software Product Lines, Product Derivation Tools, Generative Programming, 
Model-Driven Development 
Categories: D.2.3, D.2.13 

1 Introduction  

Over the last years, many approaches for the development of system families and 
software product lines have been proposed [Weiss and Lai, 1999] [Clements and 
Northrop, 2001] [Czarnecki and Eisenecker, 2000] [Greenfield and Short, 2005]. A 
system family [Parnas, 1976] is a set of programs that shares common functionalities 
and maintain specific functionalities that vary according to specific systems being 
considered. A software product line (SPL) [Clements and Northrop, 2001] can be 
seen as a system family that addresses a specific market segment. Software product 
lines and system families are typically specified, modeled and implemented in terms 
of common and variable features. A feature [Czarnecki et al., 2006] is a system 
property or functionality that is relevant to some stakeholder and is used to capture 
commonalities or discriminate among systems in SPLs.  

Most of the existing SPL approaches [Weiss and Lai, 1999] [Clements and 
Northrop, 2001] [Czarnecki and Eisenecker, 2000] [Greenfield and Short, 2005] 
motivate the definition of a flexible and adaptable architecture that addresses the 

Journal of Universal Computer Science, vol. 14, no. 8 (2008), 1344-1367
submitted: 15/11/07, accepted: 25/3/08, appeared: 28/4/08 © J.UCS



common and variable features of the SPL. These SPL architectures are implemented 
by defining or reusing a set of different artifacts, such as object-oriented frameworks 
and software libraries. Recently, new programming techniques have been explored to 
modularize the SPL features, such as, aspect-oriented programming [Alves et al., 
2005] [Kulesza, 2007], feature-oriented programming [Smaragdakis and Batory, 
2002] and code generation [Czarnecki and Eisenecker, 2000] [Stahl and Voelter, 
2006]. Typical implementations of SPL architectures are composed of a set of 
different assets (such as, code artifacts), each of them addressing a small set of 
common and/or variable features.  

Product derivation [Deelstra et al., 2005] refers to the process of constructing a 
product from the set of assets specified or implemented for a SPL.  Ideally the product 
derivation process would be accomplished with the help of instantiation tools to 
facilitate the selection, composition and configuration of SPL code assets and their 
respective variabilities. Over the last years, some product derivation tools have been 
proposed. Gears [Gears, 2008] and Pure::variants [pure::variants, 2008] are two 
examples of modern industrial tools developed in this context. Although these tools 
offer a set of useful functionalities for the product derivation, they are in general 
complex and heavyweight to be used by the mainstream developer community, 
because they incorporate a lot of new concepts from the SPL development area. As a 
result, they suffer from the following deficiencies: (i) difficult to prepare existing SPL 
architecture implementations to be automatically instantiated; (ii) definition of many 
complex models and/or functionalities; and (iii) they are in general more adequate to 
work with proactive approaches [Krueger, 2003].  

In this context, this paper proposes a model-driven product derivation tool, called 
GenArch, centered on the definition of three models (feature, architecture and 
configuration). Initial versions of these three models can be automatically generated 
based on a set of code annotations that indicate the implementation of features and 
variabilities in the code of artifacts from the SPL. After that, a domain engineer can 
refine or adapt these initial model versions to enable the automatic product derivation 
of a SPL. The Eclipse [Shavor et al., 2003] platform and other model-driven 
development toolkits available, such as EMF and oAW, were used as a base for the 
definition of our tool. We illustrated the use of GenArch tool in the instantiation of 
two case studies: (i) the JUnit testing framework; and (ii) a J2ME games product line.  

The remainder of this paper is organized as follows. Section 2 presents 
background of generative programming and existing product derivation tools. Section 
3 gives an overview of our product derivation approach based on the combined use of 
models and code annotations. Section 4 details the GenArch tool by describing its 
architecture, annotations, models and derivation process. The JUnit framework is used 
to illustrate the main functionalities of GenArch along the Section 4. Section 5 
describes the use of the tool in a J2ME games product line. Section 6 presents a set of 
lessons learned from the implementation and use of the GenArch tool in the case 
studies. Finally, Section 7 concludes the paper and provides directions for future 
work. 

1345Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



2 Background 

This section briefly revisits the generative programming approach (Section 2.1). Our 
SPL derivative approach is defined based on its original concepts and ideas. We also 
give an overview of existing product derivation tools (Section 2.2). 

2.1 Generative Programming  

Generative Programming (GP) [Czarnecki and Eisenecker, 2000] addresses the study 
and definition of methods and tools that enable the automatic generation of software 
from a given high-level specification language. It has been proposed as an approach 
based on domain engineering [Arrango, 1994]. GP promotes the separation of 
problem and solution spaces, giving flexibility to evolve both independently. To 
provide this separation, Czarnecki & Eisenecker [Czarnecki and Eisenecker, 2000] 
propose the concept of a generative domain model. A generative domain model is 
composed of three basic elements: (i) problem space – represents the concepts and 
features existent in a specific domain; (ii) solution space – consists of the software 
architecture and components used to build members of a software family; and (iii) 
configuration knowledge – defines how specific feature combinations in the problem 
space are mapped to a set of software components in the solution space. GP advocates 
the implementation of the configuration knowledge by means of code generators. 

The fact that GP is based on domain engineering enables us to use domain 
engineering methods [Arrango, 1994] [Czarnecki and Eisenecker, 2000] in the 
definition of a generative domain model. Common activities encountered in domain 
engineering methods are: (i) domain analysis – is concerned with the definition of a 
domain for a specific software family and the identification of common and variable 
features within this domain; (ii) domain design – concentrates on the definition of a 
common architecture and components for this domain; and (iii) domain 
implementation – involves the implementation of architecture and components 
previously specified during domain design. 

Two new activities [Czarnecki and Eisenecker, 2000] need to be introduced to 
domain engineering methods in order to address the goals of GP, such as: (i) 
development of a proper means to specify individual members of the software family 
through the specification of domain-specific languages (DSLs); and (ii) modeling of 
the configuration knowledge in detail in order to automate it by means of a code 
generator. 

In a particular and common instantiation of the generative model, the feature 
model is used as a domain-specific language of a software family or product line. It 
works as a configuration DSL. A configuration DSL allows to specify a concrete 
instance of a concept [Czarnecki and Eisenecker, 2000]. Several existing tools adopt 
this strategy to enable automatic product derivation (Section 2.2) in SPL 
development. In this work, we present an approach and a tool centered on the ideas of 
the generative model. The feature model is also adopted by our tool as a configuration 
DSL which expresses the SPL variabilities. 

1346 Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



2.2 Existing Product Derivation Tools 

There are many tools available in industry to automatically derive SPL members. The 
main available tools based on feature models are Pure::variants and Gears. 
Pure::variants [pure::variants, 2008] is a SPL model-based product derivation tool. Its 
modeling approach comprises mainly two models: the feature and the family model. 
The feature model contains the product variabilities (features). The family model 
describes the internal structure of the individual components and their dependencies 
on the features. The family model is structured in several levels. The highest level is 
formed by the components. Each component represents one or more functional 
features of the solutions and consists of logical parts of the software (classes, objects, 
functions, variables, documentation). The physical elements can be files that already 
exist, files that will be created and actions that will be performed based on the variant 
knowledge. The feature model can be viewed graphically in different formats such as 
trees, tables and diagrams. Constraints among features and architecture elements are 
expressed using first order logic in Prolog using expression syntax closely related to 
Object Constraint Language (OCL) notation. This tool permits the use of an arbitrary 
number of feature models, and hierarchical connection of the different models. 
Product derivation is done by selecting the desired feature in a variant model. 
Pure::variants checks the selection interactively, and solves problems or reports them 
if they cannot be solved automatically. A product line specification in this tool can 
consist of any number of models, a “configuration space” is used to manage this 
information and captures variants. This space provides an overview over variabilities 
and commonalities between product variants. The Pure::variants does not require any 
specific implementation technique and provides powerful integration interfaces, 
through XML-based exchange format, with other tools, e.g. for requirements 
engineering, test management and code generation. 

Gears [Gears, 2008] provides the infrastructure and a development environment 
for creating a product line, allowing the definition of a generative model focused on 
automatic product derivation. It is based on an incremental approach that allows start 
small – with or two products, subsystems or assets, teams or individual - enabling an 
ease transition, into manageable increments, to product line engineering,  This 
approach comprises three key abstractions: Software Assets, Product Feature Profiles 
and Gears Configurator. The Software Assets are configurable software artifacts 
(source code, requirements, and test cases) engineered to be reused across the product 
line. Each product in the portfolio is modeled in the Product Feature Profiles. The 
Product Feature Profiles has three major elements: feature declarations, product 
definitions, and variation points. Feature declarations are parameters that express the 
variations. It enables the product line modeling in terms of optional and varying 
feature. The language for expressing constraints at feature models is propositional 
logic instead of full first-order logic. Product definitions are used to select and assign 
values to the feature declaration parameters for the purpose of instantiating a product. 
Variation points encapsulate the variations in the SPL and map the feature 
declarations to choices at these variation points. Guided by the Product Feature 
Profiles, the Gears Configurator automatically assembles and configures the software 
assets to produce the products. 

1347Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



3 Approach Overview 

In this section, we present an overview of our product derivation approach based on 
the use of GenArch tool. Next section details the tool by showing its architecture, 
adopted models and supporting technologies. Our approach aims to provide a product 
derivation tool that enables the mainstream software developer community to use the 
concepts and foundations of the SPL approach, without the need to understand 
complex concepts or models from existing product derivation tools. 

Figure 1 gives an overview of our approach. Initially (step 1), the domain 
engineers are responsible to annotate the existing code of SPL architectures (e.g. an 
object-oriented framework). We have defined a set of Java annotations to be inserted 
in the implementation elements (classes, interfaces and aspects) of SPL architectures. 
Although the current version of GenArch tool has been developed to work with Java 
technologies, our approach is neutral with respect to the technology used. It only 
requires that the adopted technologies provide support to the definition of GenArch 
annotations and models. The purpose of our annotations is twofold: (i) they are used 
to specify which SPL implementation elements correspond to specific SPL features; 
and (ii) they also indicate that SPL code artifacts, such as an abstract class or aspect, 
represent an extension point (hot-spot) of the architecture.  

After that, the GenArch tool processes these annotations and generates initial 
versions of the derivation models (step 2). Three models must be specified in our 
approach to enable the automatic derivation of SPL members: (i) an architecture 
model; (ii) a feature model; and (iii) a configuration model. The architecture model 
defines a visual representation of the SPL implementation elements (classes, aspects, 
templates, configuration and extra files) in order to relate them to feature models. It 
can be automatically created by parsing an existing directory containing the 
implementation elements (step 2). Code templates can also be created in the 
architecture model to specify implementation elements that have variabilities to be 
solved during application engineering. Initial versions of code templates are also 
automatically created in the architecture models based on GenArch annotations (see 
details in Section 4.2). 

Feature models [Kang et al., 1990] are used in our approach to represent the 
variable features (variabilities) from SPL architectures (step 3). During application 
engineering, application engineers create a feature model instance (also called a 
configuration [Czarnecki et al., 2004]) in order to decide which variabilities are going 
to be part of the final application generated (step 4). Finally, our configuration model 
is responsible to define the mapping between features and implementation elements. 
It represents the configuration knowledge from a generative approach [Czarnecki and 
Eisenecker, 2000], being fundamental to link the problem space (features) to the 
solution space (implementation elements). Each annotation embedded in an 
implementation element is used to create in the configuration model, a mapping 
relationship between an implementation element and a feature. 

The initial versions of the derivation models, generated automatically by 
GenArch tool, must be refined by domain engineers (step 3). During this refinement 
process, new features can be introduced in the feature model or the existing ones can 
be reorganized. In the architecture model, new implementation elements can also be 
introduced or they can be reorganized. Template implementations can include 

1348 Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



additional common or variable code. Finally, the configuration model can also be 
modified to specify new relationships between features and implementations 
elements. In the context of SPL evolution, the derivation models can be revisited to 
incorporate new changes or modifications according to the requirements or changes 
required by the evolution scenarios. 

 

Figure 1: Approach Overview 

After all models are refined to represent the implementation and variabilities of a 
SPL architecture, the GenArch tool uses them to automatically derive an 
instance/product of the SPL (step 4). The tool processes the architecture model by 
verifying if each implementation element depends on any feature from the feature 
model. This information is provided by the configuration model. If an implementation 
element does not depend on a feature, it is automatically instantiated since it can be 
seen as a mandatory feature. If an implementation element depends on a feature, it is 
only instantiated if there is an occurrence of that specific feature in the feature model 
instance created by the application engineer. Every template element from the 
architecture model, for example, must always depend on a specific feature. The 
information collected by that feature is then used in the customization of the template. 
The GenArch tool produces, as result of the derivation process, an Eclipse/Java 
project containing only the implementation elements corresponding to the specific 

1349Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



configuration expressed by the feature model instance, that was specified by the 
application engineers. 

4 GenArch – Generative Architecture Tool 

In this section, we present the architecture, adopted models and technologies used in 
the development of GenArch tool. Following subsections detail progressively the 
functionalities of the tool by illustrating its use in the instantiation of the JUnit 
framework. 

4.1 Architecture Overview 

The GenArch tool has been developed as an Eclipse plug-in [Shavor et al., 2003] 
using different technologies available at this platform. New model-driven 
development toolkits, such as Eclipse Modeling Framework (EMF) [Budinsky et al., 
2004] and openArchitectureWare (oAW) [openArchitectureWare, 2008] were used to 
specify its models and templates, respectively. Figure 2 shows the general structure of 
GenArch architecture based on Eclipse platform technologies. Our tool uses the JDT 
(Java Development Tooling) API [Shavor et al., 2003] to browse the Abstract Syntax 
Tree (AST) of Java classes in order to: (i) parse the Java elements to create the 
architecture model; and (ii) to process the GenArch annotations.  

 

Figure 2: Genarch Architecture 

The feature, configuration and architecture models of GenArch tool were 
specified using EMF. EMF is a Java/XML framework that enables the building of 
Model Driven Development tools based on structured data models. It allows 
generating a set of Java classes to manipulate and specify visually models. These 
classes are generated based on a given meta-model, which can be specified using 
XML Schema, annotated Java classes or UML modeling tools (such as Rational 

1350 Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



Rose). The feature model used in our tool is specified by a separate plug-in, called 
FMP (Feature Modeling Plug-in) [Antkiewicz and Czarnecki, 2006]. It allows 
modeling the feature model proposed by Czarnecki and Eisenecker [Czarnecki and 
Eisenecker, 2000], which supports modeling mandatory, optional, and alternative 
features, and their respective cardinality. The FMP is also based on the EMF 
technology. 

The openArchitectureWare (OAW) plug-in [openArchitectureWare, 2008] 
proposes to provide a complete toolkit for model-driven development. It offers a 
number of prebuilt workflow components that can be used for reading and 
instantiating models, checking them for constraint violations, transforming them into 
other models and then, finally, for generating code. oAW is also based on EMF 
technology. Currently, the GenArch plug-in has only adopted the XPand language of 
oAW to specify its respective code templates (see details in Section 4.4). 

4.2 JUnit Framework 

Along the next sections, we use the JUnit testing framework to illustrate the GenAch 
functionalities. The main purpose of JUnit framework is to allow the design, 
implementation and execution of unit tests in Java applications. In particular, we are 
considering the following components of this framework:  

(I) Framework – defines the framework classes responsible for specifying the 
basic behavior to execute test cases and suites. The main hot-spot classes available in 
this component are TestCase and TestSuite. The framework users need to extend 
these classes in order to create specific test cases to their applications;  

(II) Runner – is responsible for offering an interface to start and track the 
execution of test cases and suites. JUnit provides three alternative implementations of 
test runners, as follows: a command-line based user interface (UI), an AWT based UI, 
and a Java Swing based UI; and, finally,  

(III) Extensions – responsible for defining functionality extending the basic 
behavior of JUnit framework. We are using the implementation of the JUnit that was 
refactored using the AspectJ language. Aspects were used in this implementation to 
provide a better modularization of some of the JUnit optional features. Two 
functionalities of the extensions component were implemented as aspects in this 
version: (i) the repetition – allows repeating the execution of specific test cases; and 
(ii) the active execution – addresses the concurrent execution of test suites. Additional 
details about it can be found in [Kiczales et al., 2001] [Kulesza et al., 2007]. 

 
@Feature 
Attributes 
Name Name of feature 
Parent The parent of the feature 
Type alternative, optional or mandatory 
@Variability 
Attributes 
Type hotspot or hotspotAspect 
Feature Contains the feature associated with the variability 

Table 1: GenArch Annotations and their Attributes 

1351Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



4.3 Annotating Java Code with Features and Variabilities 

Following the steps of our approach described in Section 3, the domain engineer 
initially creates a set of Java annotations in the code of implementation elements 
(classes, aspects and interfaces) from the SPL architecture. The annotations are in 
general embedded in the code of implementation elements representing the SPL 
variabilities. Table 1 shows the two kinds of annotations supported by our approach: 
(i) @Feature – this annotation is used to indicate that a particular implementation 
element addresses a specific feature. It also allows specifying the kind of feature 
(mandatory, alternative, or optional) being implemented and its respective feature 
parent if exists; and (ii) @Variability – it indicates that the implementation element 
annotated represents an extension point (e.g. a hotspot framework class) in the SPL 
architecture. In the current version of GenArch, there are three kinds of 
implementation elements that can be marked with this annotation: abstract classes, 
abstract aspects, and interfaces. Each of them has a specific type (hotspot or hotspot-
aspect) defined in the annotation. 
 

@Feature(name="TestCase",parent="TestSuite", 
     type=FeatureType.mandatory) 
@Variability(type=VariabilityType.hotSpot, 
     feature="TestCase") 
public abstract class TestCase extends Assert implements 
Test { 
 private String fName; 
 
 public TestCase() { 
   fName= null; 
 }  
 public TestCase(String name) { 
  fName= name; 
 } 
 ... 
} 

Figure 3: TestCase class annotated 

Figure 3 shows the TestCase abstract class from the JUnit framework marked 
with two GenArch annotations. The @Feature annotation indicates that the 
TestCase class is implementing the TestCase feature, which has the TestSuite as 
feature parent. It also shows that this feature is mandatory. This means that every 
instance of the JUnit framework requires the implementation of this class. The 
@Variability annotation specifies that the TestCase class is an extension point of 
the JUnit framework. It represents a hot-spot class that needs to be specialized when 
creating test cases (a JUnit framework instantiation) for a Java application. Next 
section shows how GenArch annotations are processed to generate the initial version 
of the derivation models. 

1352 Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



4.4 Generating and Refining the Approach Models 

In the second step of our approach, an initial version of each GenArch model is 
produced. The architecture model is created by parsing the Java project or directory 
that contains the implementation elements of the SPL architecture. The Eclipse Java 
Development Tooling (JDT) API [Shavor et al., 2003] is used by our plug-in to parse 
the existing Java code. During this parsing process, every Java package is converted 
to a component with the same name in the architecture model. Each type of 
implementation element (classes, interfaces, aspects or files) has a corresponding 
representation in the architecture model. Figure 4(a) shows, for example, the initial 
version of the JUnit architecture model. Every package was converted to a component 
and every implementation element was converted to its respective abstraction in the 
architecture model. As we mentioned before, architecture models are created only to 
allow the visual representation of the SPL implementation elements in order to relate 
them to a feature model. 

The GenArch annotations are used to generate specific elements in the feature, 
configuration and architecture models. These elements are also processed by the tool 
using the Eclipse Java Development Tooling (JDT) API [Shavor et al., 2003]. The 
JDT API allows browsing the Abstract Syntax Tree (AST) of Java classes to read 
their respective annotations. The @Feature annotation is used to create different 
features with their respective type in the feature model. Every @Feature annotation 
demands the creation of a new feature in the feature model. If the @Feature 
annotation has a parent attribute, a parent feature is created to aggregate the new 
feature. Figure 4(c) shows the partial feature model generated for the JUnit 
framework. It aggregates, for example, the TestSuite and TestCase features, which 
were generated based on the @Feature annotation presented in Figure 3.  

On the other hand, each @Variability annotation demands the creation of a 
code template that represents concrete instances of the extension implementation 
element that is annotated. The architecture model is also updated to include the new 
template element created. Consider, for example, the annotated TestCase class 
presented in Figure 3. The @Variability annotation of this class demands the 
creation of a code template (TestCaseTemplate) which represents TestCase 
subclasses, as we can see in Figure 4(a). This template will be used in the derivation 
process of the JUnit framework to generate TestCase subclasses for a specific Java 
application under testing. Only the structure of each template is generated based on 
the respective implementation element (abstract class, interface or abstract aspect) 
annotated. Empty implementations of the abstract methods or pointcuts from these 
elements are automatically created in the template structure. Next section shows how 
the code of every template can be improved using information collected by a feature 
model instance. 
 

1353Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



 

 

(a) Architecture Model (b) Configuration Model 

  

(c) Feature Model 

Figure 4: The JUnit GenArch Models – Initial Versions 

The GenArch configuration model defines a set of mapping relationships. Each 
mapping relationship links a specific implementation element from the architecture 
model to one or more features from the feature model. An initial version of the 
configuration model is created based on the @Feature annotations with attribute 
type equals to optional or alternative. When processing these annotations, the 
GenArch tool adds a mapping relationship between the feature created and the 

1354 Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



respective implementation element annotated.  The current visualization of our 
configuration model shows the implementation elements in a tree (similar to the 
architecture model), but with the explicit indication of the feature(s) that each of them 
depends on. Figure 4(b) shows the initial configuration model of the JUnit framework 
based on the processed annotations. As we can see, the RepeatedTestAspect 
aspect depends explicitly on the Repeated feature. It represents a mapping 
relationship between these elements (implementation and feature), created because 
the RepeatTestAspect is marked with the @Feature annotation and its attributes 
have the following values: (i) name equals to Repeated; and (ii) type equals to 
optional. 

In GenArch tool, every template must depend at least on a feature. The 
@Variability annotation specifies explicitly this feature. This information is used 
by the tool to update the configuration model by defining that the template generated 
depends explicitly on a feature. Figure 4(b) shows that the TestCaseTemplate 
depends explicitly on the TestCase feature. It means that during the 
derivation/instantiation of the JUnit framework, this template will be processed to 
every TestCase feature created in the feature model instance.  

 

 
 

 
(a) Configuration Model (b) Feature Model 

Figure 5: The JUnit GenArch Models – Final Versions 

After the generation of the initial versions of GenArch models, the domain 
engineer can refine them by including, modifying or removing any feature, 
implementation element or mapping relationship. Figure 5 shows a partial view of the 
final versions of the JUnit framework models. As we can see, they were refined to 
completely address the features and variabilities of JUnit. The runner component that 

1355Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



implements the execution interface of JUnit, were not configured automatically by 
GenArch. This happened because in the current version of GenArch, it is not possible 
to create any kind of feature annotatation in Java packages. Thus, in the feature 
model, shown in Figure 5(b), the Runner feature and its respective child alternative 
features (TXT, AWT and Swing) were created manually. Each one of alternative 
features represents a type of execution interface of the JUnit. In the configuration 
model, illustrated in Figure 5(a), mappings between components (Java packages), that 
implements the execution interface, and their respective features (TXT, AWT and 
Swing) also were created manually. Besides of these, an attribute of the type String 
was created in the features TestSuite, TestCase and Repeated. These attributes are 
used to provide information to templates during the derivation process. Cardinalities 
have been also associated to some features, such as TestSuite, TestCase and 
Repeated. It enables specifying several instances of these features during application 
engineering. 

4.5 Implementing Variabilities with Templates 

The GenArch tool adopts the XPand language from the oAW plug-in 
[openArchitectureWare, 2008] to specify the code templates. XPand is a very simple 
and expressive template language. In our approach, templates are used to codify 
implementation elements (classes, interfaces, aspects and configuration files) which 
need to be customized during the product derivation. Examples of implementation 
elements that can be implemented using templates are: concrete instances of hot-spots 
(classes or aspects) and parameterized configuration files. Every GenArch template 
can use information collected by the feature model to customize its respective 
variable parts of code. 
 

 

Figure 6: The TestCaseTemplate 

Figure 6 shows the code of the TestSuite template using the XPand language. 
It is used to generate the code of specific JUnit test suites for Java applications. The 
IMPORT statement allows using all the types and template files from a specific 

01 «IMPORT br::pucrio::inf::les::genarch::models::feature» 
02 «DEFINE TestSuiteTemplate FOR Feature» 
03 «FILE attribute + ".java"» 
04  package junit.framework; 
05  public class «attribute»  { 
06   public static Test suite() { 
07   TestSuite suite = new TestSuite(); 
08   «FOREACH features AS child» 
09   suite.addTestSuite(«child.attribute».class); 
10   «ENDFOREACH» 
11   return suite; 
12  } 
13 } 
14   «ENDFILE» 
15 «ENDDEFINE» 

1356 Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



namespace (line 1). It is equivalent to a Java import statement. GenArch templates 
import the br::pucrio::inf::les::genarch::models::feature namespace, 
because it contains the classes representing the feature model. The DEFINE statement 
determines the template body (line 2). It defines the name of the template as well as 
the meta-model class whose instances will be used in its customization. The 
TestSuiteTemplate template, for example, has the name TestSuiteTemplate 
and uses the Feature meta-model class to enable its customization. The specific 
feature to be used in the customization of each template is defined by the mapping 
relationship in the configuration model. Thus, the TestSuiteTemplate, for 
example, will be customized using each TestSuite feature specified in a feature 
model instance by the application engineer (see configuration model in Figure 5(b)).  

Inside the DEFINE tags (lines 3 to 14) are defined the sequence of statements 
responsible for the template customization. The FILE statement specifies the output 
file to be written the information resulting from the template processing. Figure 6 
indicates that the file name resulting from the template processing will have the name 
of the feature being manipulated (attribute) plus the Java extension (.java). The 
following actions are accomplished in order to customize the TestSuiteTemplate: 
(i) the name of the resulting test case class is obtained based on the feature name 
(attribute); and (ii) the test cases to be included at this test suite are specified 
based on the feature names (child.attribute) of the feature child (child). The 
FOREACH statement allows the processing of the child features of the TestSuite 
feature being processed for this template. 

4.6 Synchronization between Code, Annotation and Models 

The synchronization between code, annotation and models is fundamental to 
guarantee the compatibility of the SPL artifacts and to avoid inconsistencies during 
the product derivation process. Besides, it is also important to allow that specific 
changes in the code, models or annotations will be reflected on the related artifacts. 
The current version of GenArch addresses synchronization functionality by trying to 
solve automatically inconsistencies between models, code and annotations. The 
following inconsistencies are automatic resolved by our tool: (i) removing of features 
from the feature model that are not longer used by the configuration model or some 
annotation in the code; (ii) removing of mapping relationships in the configuration 
model elements that refer to non-existing features or implementation elements; (iii) 
removing of implementation elements from the architecture model which do not exist 
anymore; (iv) automatic creation of @Feature annotations in implementation 
elements based on the existence of dependency relationships between a feature and an 
implementation element in the configuration model; (v) changes in the original 
implementation element path (because it was moved to another directory, for 
example) implies in the same changes in the architecture model related element. 

The functionality of synchronization is implemented in GenArch tool by the 
Synchronizer module. Four listeners are responsible to reporting the changes that 
occur in the Eclipse workspace. One of them is responsible for observing changes in 
the project resources, and the other ones observe changes in the architecture, 
configuration and feature models editors. The Synchronization component receives 

1357Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



the change reports and based on that, it performs the verification of inconsistencies 
and updates the models. 

4.7 Generating SPL Instances 

In the fourth and last step of our approach (Section 3), called product derivation, a 
product or member of the SPL is created. The product derivation is organized in the 
following steps: (i) choice of variabilities in a feature model instance – initially the 
application engineer specifies a feature model instance (also called a configuration) 
using the FMP plug-in that determines the final product to be instantiated; (ii) next, 
the application engineer provides to GenArch tool, the architecture and configuration 
model of the SPL and also the feature model instance specified in step (i); and (iii) 
finally, the GenArch tool processes all these models to decide which implementation 
elements need to be instantiated to constitute the final application requested.  

During the process of product generation (step iii), the GenArch traverses the 
architecture model and processes each implemented element encountered verifying in 
the configuration model if it depends on any special feature or a logical feature 
expression. In such case, the GenArch only instantiates that element (and processes 
respective sub-elements in the component element case), if there is an occurrence of 
that specific feature in the feature model instance, or if the logical feature expression 
evaluates to true. The evaluation of logical feature expression is doing as follow: (i) 
for each feature in the expression, its occurrence in the feature model instance is 
checked, if the feature occurs in the feature model instance its value is “true”, if not 
its value is “false”; and (ii) then, the logical expression is evaluated.  

In our tool, the implementation elements, which represent the product under 
instantiation, are created in a new Eclipse project. The components are instantiated by 
creating a correspondent Java package. For the other implementation elements 
(classes, interfaces, aspects, files), one copy is created in the respective related 
package. The template elements are processed for every occurrence of their associated 
features. During the template processing, the information about the feature (and 
respective sub-features), which the template depends, is used to support the template 
customization.  

5 J2ME Games Product Line 

In this section, we describe the adoption of the GenArch tool in the preparation and 
instantiation of a J2ME Games Product Line. Next subsections present the case study 
description and respective GenArch models produced to enable its instantiation.  

5.1 Case Study Description 

J2ME games are mainstream mobile applications of considerable complexity [Alves 
et al., 2005]. Many of the J2ME games can be seen as a product line because they 
need to be adapted and ported to different devices in order to address new market 
segments. Since the devices vary in terms of the resources available, such as 
processor and memory, it is necessary to adapt the games according to the specific 
properties of each device. However, the mandatory functionalities of each game still 

1358 Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



remains, it is defined by a game engine. It basically defines a state machine whose 
state change is driven by elapsed time and user input through the device keypad. State 
change impacts the game objects (such as actors and environment) and how they 
interact. Game object redrawing typically occurs after every state change.  

The game involved in our case study, the Rain of Fire, is a commercial project 
developed by Meantime Mobile Creations1. It offers the following variabilities to be 
addressed: (i) optional images – some images of the game (e.g. clouds rolling in the 
background) can be made optional because they are not essential to play the game. It 
allows optimizing the performance of the game for resource-constrained devices; (ii) 
proprietary drawing images API – the game images are drawn at various locations and 
are transformed (rotated, flipped) in specific situations using device proprietary 
drawing API; (iii) image loading – the games images can be loaded using the 
following two policies: loading on demand when there is a screen changing and 
loading of all images at once during game startup; (iv) language used (English, 
Portuguese) in the game; (v) cell model being considered; and (vi) key mapping of the 
device (such as, Motorola or Nokia).  

Most of the variabilities of the Rain of Fire game were originally implemented 
using conditional compilation. In order to improve the modularization and 
management of these variabilities, they were refactored to be implemented using 
aspect-oriented programming [Alves et al., 2006]. The implementation of the game 
variabilities with aspects brought many benefits such as: (i) the simplification of the 
game core with the extraction of a lot of intricate pieces of code resulting from the use 
of conditional compilation; and (ii) the capacity to plug/unplug the aspects from the 
SPL core implementation. Next section details how the game code was annotated to 
derive automatically its GenArch models.   

 
@Feature(name="On Demand",parent="Image Loading", 
    type=FeatureType.alternative) 
public privileged aspect LoadImgOnDemand { 
 after() : ResourcesEvents.loadingImages() { 
  Resources.loadGameImages(); 
 } 
 ... 
} 

@Feature(name="On Init",parent="ImageLoading", 
    type=FeatureType.alternative) 
public privileged aspect LoadImgOnInit { 
 after() : ResourcesEvents.loadingImages() { 
  Resources.loadGameImages(); 
 } 
 ... 
} 

Figure 7: LoadImgOnDemand and LoadImgOnInit aspects with GenArch 
annotations. 

                                                           
1 http://www.meantime.com.br/en/ 

1359Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



5.2 Annotating Features in the J2ME Games Product Line  

The first step to prepare the Rain of Fire game product line to be automatically 
instantiated was to annotate its respective variabilities. We inserted the @Feature 
annotation inside all the aspects and classes that modularizes the game variabilities. 
The annotation was created according to the type of variability (optional or 
alternative) being addressed. Figure 7 shows, for example, the code of the 
LoadImgOnDemand and LoadImgOnInit aspects aggregating the @Feature 
annotations. As we can see in the annotations, these aspects represent alternative 
implementations (On Demand and On Init features) for the Image Loading feature. 
Most of the aspects were annotated in a similar way, because they represent 
alternative implementations of the Rain of Fire variable features. Some of the aspects 
also represent optional features. This was the case, for example, of the Cloud aspect, 
which implements the clouds images rolling in the background of the game.  

5.3 Generating the Rain of Fire Models 

After the insertion of annotations in the source code, the GenArch tool generates the 
initial versions of the feature, architecture and configuration models representing the 
product line. Figures 8, 9 and 10 show each of these models generated for the Rain of 
Fire. The feature model includes each of the variabilities with their respective type 
(Figure 10). The Cloud optional feature represents optional images to be or not 
included in the game screens. Several alternative features were codified to address the 
variety of devices that can execute the game, such as: Cell Model, Flip, Key 
Mapping and Image Loading. The Image Loading feature, for example, defines the 
two alternative loading policies (On Demand, On Init) of the device based on the 
memory available. 

Figure 8 illustrates the architecture model of the Rain of Fire game. All 
classes/interfaces codified in Java and aspects codified in AspectJ were imported to 
the architecture model to facilitate the creation of dependency relationships with the 
feature model. The rain component aggregates all the classes that implement the 
mandatory features of the game. These classes represent the game engine. Each of the 
variabilities was codified through a set of aspects and was organized in separate 
components/packages. Examples of such components are: bright, cell, croma, 
flip, keymapping and loadimg. The only exception, it was the language 
component which was implemented as classes (one class per language). In this case 
study, it was not required to create code templates because most of the variabilities 
are already modularized as alternative or optional aspects, thus there is no need to 
customize such variabilities during application engineering.  

Finally, the configuration model of the Rain of Fire was also generated by the 
GenArch tool. It is depicted in Figure 9. It shows the dependency relationships 
between the implementation elements and features for the case study. Only the 
implementation elements that have any dependency with any feature are shown. The 
LoadImgOnDemand and LoadImgOnInit aspects, for example, modularize the 
alternative implementations for the image loading policy. Because of that, each of 
them has a dependency relationship with the On Demand and On Init subfeatures, 
respectively, of the Image Loading feature. It means each of the aspects will be 
instantiated during application engineering only if those features are selected. 

1360 Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



 

  

Figure 8: Rain of Fire -             
Architecture Model 

Figure 9: Rain of Fire -           
Configuration Model 

  
In the Rain of Fire case study, it was not necessary to create additional features, 

implementation elements or dependency relationships in the feature, architecture and 
configuration models generated by GenArch tool. It happened because all the 
implementation choices for the variabilities of the game are already codified and 
available, similar to a black box framework [Roberts et al., 1998]. Thus, the simple 
use of GenArch annotations over the implementation elements that modularize the 
variabilities was enough to create automatically complete versions of the models. It 
shows how efficient the GenArch tool can be when working in the context of software 
product lines which have most of their variabilities already implemented.  

 

1361Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



 
 

 
 

Figure 10: Rain of Fire - 
Feature Model 

 

6 Lessons Learned and Discussions 

This section provides some discussions and lessons learned based on the initial 
experience of use the GenArch tool to automatically instantiate the JUnit framework 
and a J2ME game SPL [Kulesza et al., 2007]. Although these examples are not so 
complex, they allow illustrating and exercise all the tool functionalities. Additional 
details about the models and code generated for these case studies will be available at 
[GenArch, 2008]. 
 

Integration with Refactoring Tools. Application of refactoring techniques 
[Fowler, 1999] [Opdyke, 1992] is common nowadays in the development of software 
systems. In the development of SPLs, refactoring is also relevant, but it assumes a 
different perspective. In the context of SPL development, refactoring technique needs 
to consider [Alves et al., 2006], for example: (i) if changes applied to the structure of 
existing SPL implementation elements do not decrease the set of all possible 
configurations (products) addressed by the SPL; and (ii) complex scenarios of 
merging existing programs into a SPL. Although many existing proposed refactorings 
introduce extension points or variabilities [Alves et al., 2006], the refactoring tools 
available are not strongly integrated with existing SPL modeling or derivation tools. It 

1362 Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



can bring difficulties or inconsistencies when using both tools together in the 
development of a SPL. The integration of GenArch with existing refactoring tools 
involves several challenges, such as, for example: (i) to allow the creation of 
@Feature annotations to every refactoring that exposes or creates a new variable 
feature in order to present it in the SPL feature model to enable its automatic 
instantiation; and (ii) refactorings that introduce new extension points (such as, 
abstract classes or aspects or an interface) must be integrated with GenAch to allow 
the automatic insertion of @Variability annotations. Also the functionality of 
synchronization of models, code and annotations (discussed in Section 5.1) is 
fundamental in the context of integration of GenArch with existing refactoring tools, 
because it guarantees that every refactoring applied to existing SPL implementation 
elements, which eventually cause the creation of new or modification of existing 
annotations, will be synchronized with the derivation models. 

 
SPL Adoption Strategies. Different adoption strategies [Krueger, 2003] can be 

used to develop software product lines (SPLs). The proactive approach motivates the 
development of product lines considering all the products in the foreseeable horizon. 
A complete set of artifacts to address the product line is developed from scratch. In 
the extractive approach, a SPL is developed starting from existing software systems. 
Common and variable features are extracted from these systems to derive an initial 
version of the SPL. The reactive approach advocates the incremental development of 
SPLs. Initially, the SPL artifacts address only a few products. When there is a demand 
to incorporate new requirements or products, the common and variable artifacts are 
incrementally extended in reaction to them. Independent from the SPL adoption 
strategy adopted, a derivation tool is always needed to reduce the cost of instantiation 
of complex architectures implemented to SPLs.  

We believe that GenArch tool can be used in conjunction with proactive, 
extractive or incremental adoption approaches. In the proactive approach, our tool can 
be used to annotate the implementation elements produced during domain engineering 
in order to prepare those elements to be automatically instantiated during application 
engineering. Also, the extractive approach can demand the introduction of GenArch 
annotations in classes, interfaces or aspects, whenever new extension points are 
exposed in order to gradually transform the existing product in a SPL. Finally, the 
reactive approach requires the implementation of the synchronization functionality 
(Section 4.5) in GenArch tool, because it can involve complex scenarios of merging 
products. Both extractive and reactive approaches require the use of refactoring tools 
to help the extraction and merging of features [Alves et al., 2006], because of that the 
integration of GenArch with refactoring tools is fundamental to address these SPL 
adoption strategies.  

 
Architecture Model Specialization. The architecture model supported currently 

by GenArch tool allows representing SPL architectures implemented in the Java and 
AspectJ programming languages. However, our architecture model is not dependent 
of Java technologies, only the GenArch functionalities responsible to manipulate the 
implementation elements were codified to only work with Java and AspectJ 
implementation elements. Examples of such functionalities are: (i) the parser that 
imports and processes the implementation elements and annotations; and (ii) the 

1363Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



derivation component that creates a SPL instance/product as a Java project. In this 
way, the GenArch approach, as presented in Section 3, is independent of specific 
technologies. Currently, we are working on the definition of specializations of the 
architecture model. These specializations have the purpose to support other 
abstractions and mechanisms of specific technologies. In particular, we are modifying 
the tool to work with a new architecture model that supports the abstractions provided 
by the Spring  [Johnson et al., 2005]  and OSGi frameworks. This new model [Cirilo 
et al., 2008] is a specialization of our current architecture model. It will allow working 
not only with Java and AspectJ elements, but also with Spring beans, OSGi bundles 
and their respective configuration files. 

 
Aspect-Oriented Variatilities Instantiation. Aspect-oriented software 

development has been recently investigated as a prominent technique to improve the 
modularization and management of features in software product lines [Zhang and 
Jacobsen, 2004] [Kulesza et al., 2006] [Kulesza, Coelho et al., 2006] [Alves et al., 
2006] [Apel and Batory, 2006] [Mezini and Ostermann, 2004]. Aspects contribute to 
better modularize crosscutting optional and integration features in software family 
architectures. As a result, it also allows plugging and unplugging these features from 
the core of the product line architecture. Additionally, it can simplify the complexity 
of the implementation of the SPL architecture.  Aspects can also define specific 
variabilities through the definition of extension behavior or specific joinpoints to 
affect. Several mechanisms are available in current languages/platforms to implement 
these variabilities, such as, the definition of abstract aspects, pointcuts and methods 
using AspectJ [Kiczales et al., 2001]; and specification of pointcuts directly in 
configuration files in Spring [Johnson et al., 2005]. We are currently incorporating 
mechanisms in GenArch tool to provide support to manage and instantiate 
automatically these kinds of variabilities [Kulesza, 2007] [Kulesza et al., 2006]. It 
basically involves: (i) the definition of crosscutting and joinpoint features in the 
feature model; and (ii) the specification of mapping of the crosscutting relationships 
in problem space (features) to the respective ones in solution space (pointcuts in 
aspects) in the configuration model.  

 
Documentation and Tracing of Variabilities. The feature and configuration 

models generated by GenArch can be seen, respectively, as a useful documentation of 
the existing variabilities of the SPL and of the mapping of those variabilities to 
implementation elements. The new functionality of model synchronization of 
GenArch guarantees that these documentations are always kept updated and 
synchronized. The model synchronization is also a first step to address the tracing of 
mandatory and variable features in product lines, from feature models to the 
architecture model and code artifacts. The tracing of features in SPL development can 
help engineers with the following activities: analysis of feature covering; impact 
analysis of changing features or requirements; and improved and consistent variability 
management. As part of the traceability functionality, we are planning to develop new 
views for GenArch that process and use information provided by the feature, 
architecture and configuration models. Finally, we also plan to integrate the GenArch 
models with the traceability mechanisms between feature and use case models 
provided by another approach under development [Alferez et al., 2008].  

1364 Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



7 Conclusions and Future Work 

In this paper, we presented GenArch, a model-based product derivation tool. Our tool 
combines the use of models and code annotations in order to enable the automatic 
product derivation of existing SPLs. We illustrated the use of our tool using the JUnit 
framework and a J2ME games product line. As a future work, we plan to evolve the 
GenArch functionalities to address the following functionalities: (i) to extend the 
GenArch parsing functionality to allow the generation of template structure based on 
existing AspectJ abstract aspects; (ii) to allow the customization of aspect variabilities 
and libraries considering the AspectJ and Spring technologies; (iii) to integrate our 
tool with existing refactoring tools available ; (iv) to offer an specialization of the 
architecture model [Cirilo et al., 2008] that supports the Spring  [Johnson et al., 2005] 
and OSGi technologies; and (v) to allow the composition of other DSLs (activity and 
state models) with the feature model in order to enable the complete generation of 
more complex variabilities.  

Acknowledgments 

We would like to thank Meantime Mobile Creations company for making the Rain of 
Fire implementation available. The authors are supported by ESSMA/CNPq project 
under grant 552068/2002-0 and LatinAOSD/CNPq-Prosul project. Uirá is also 
partially supported by European Commission Grant IST-33710: Aspect-Oriented, 
Model-Driven Product Line Engineering (AMPLE). 

References 

[Alferez et al., 2008] Alferez, M., Kulesza, U., Moreira, A., Araújo, J., Amaral, V..: “A Model-
Driven Approach for Software Product Lines Requirements Engineering”.  In Proceedings of 
the 20th International Conference on Software Engineering and Knowledge (SEKE´2008), San 
Francisco, July 2008.  

[Alves et al., 2005] Alves, V., Matos, P., Cole, L., Borba, P., Ramalho, G.: “Extracting and 
Evolving Mobile Games Product Lines”. In Proceedings of the 9th International Software 
Product Line Conference (SPLC'05), LNCS 3714, Springer-Verlag, 70-81, September 2005. 

[Alves et al., 2006] Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena, C.: 
“Refactoring Product Lines”. In Proceedings of the 5th ACM International Conference on 
Generative Programming and Component Engineering (GPCE'06). ACM Press, October 2006. 

[Antkiewicz and Czarnecki, 2006] Antkiewicz, M., Czarnecki, K.: “FeaturePlugin: Feature 
modeling plug-in for Eclipse”. In Proceeding of the OOPSLA’04, Eclipse Technology 
eXchange (ETX) Workshop, 2004. 

[Apel and Batory, 2006] Apel, S., Batory, D.: “When to Use Features and Aspects? A Case 
Study”. In Proceedings of the 5th International Conference on Generative Programming and 
Component Engineering (GPCE'06), Portland, Oregon, October 2006. 

[Arrango, 1994] Arrango, G.: “Domain Analysis Methods” In Software Reusability, 17-49, 
New York, 1994. 

[Budinsky et al., 2004] Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: 
“Eclipse Modeling Framework”. Addison-Wesley, 2004. 

1365Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



[Cirilo et al., 2008] Cirilo, E., Kulesza, U., Coelho, R., Lucena, C., Staa, A.: “Integrating 
Component and Product Line Technologies”. In Proceedings of the 10th International 
Conference on Software Reuse (ICSR’2008), China, May 2008. 

[Clements and Northrop, 2001] Clements, P., Northrop, L.: “Software Product Lines: Practices 
and Patterns”, Addison-Wesley Professional, 2001. 

[Czarnecki and Eisenecker, 2000] Czarnecki, K., Eisenecker, U.: “Generative Programming: 
Methods, Tools, and Applications”, Addison-Wesley, 2000. 

[Czarnecki et al., 2004] Czarnecki, K., Helsen, S., Eisenecker, U.: “Staged Configuration Using 
Feature Models”. In Proceedings of the 3rd Software Product-Line Conference (SPLC’04), 
September 2004. 

[Czarnecki et al., 2006] Czarnecki, K., Helsen, S.: “Feature-Based Survey of Model 
Transformation Approaches”, IBM Systems Journal, 45, 3, 621-64, 2006. 

[Deelstra et al., 2005] Deelstra, S., Sinnema, M., Bosch, J.: “Product derivation in software 
product families: a case study”. Journal of Systems and Software, 74, 2, 173-194, 2005. 

[Fowler, 1999] Fowler, M.: “Refactoring: Improving the Design of Existing Code”, Addison, 
1999. 

[Gears, 2008] Gears/BigLever, retrieved at http://www.biglever.com/, January 2008. 

[GenArch, 2008] GenArch – Generative Architectures Plugin, retrieved at  
http://www.teccomm.les.inf.puc-rio.br/genarch/, January 2008. 

[Greenfield and Short, 2005] Greenfield, J., Short, K.: “Software Factories: Assembling 
Applications with Patterns, Frameworks, Models and Tools”, John Wiley and Sons, 2005. 

[Johnson et al., 2005] Johnson, R., Hoeller, J., Arendsen, A., Risberg, T., Sampaleanu, C.: 
“Professional Java Development with the Spring Framework”, Wrox, 2005. 

[Kang et al., 1990] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: “Feature-oriented 
domain analysis (FODA) feasibility study”, Technical Report CMU/SEI-90-TR-021, SEI, 
Pittsburgh, PA, November 1990. 

[Kiczales et al., 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, 
W.: "Getting Started with AspectJ", Communication ACM, 44, 59-65, 2001. 

[Krueger, 2003] Krueger, C.: “Easing the Transition to Software Mass Customization”. In 
Revised Papers From the 4th international Workshop on Software Product-Family Engineering, 
October 2003. Linden, F., Ed. Lecture Notes In Computer Science, 2290. Springer-Verlag, 
London, 282-293. 

[Kulesza et al., 2007] Kulesza, U., Alves, V., Garcia, A., Neto, A., Cirilo, E., Lucena, C., 
Borba, P.: “Mapping Features to Aspects: A Model-Based Generative Approach”. Early 
Aspects@AOSD´2007 Post-Workshop Proceedings, LNCS 4765, Springer-Verlag 2007. 

[Kulesza, 2007] Kulesza, U.: “An Aspect-Oriented Approach to Framework Development”, 
PhD thesis, Computer Science Department, PUC-Rio, April 2007 (in Portuguese). 

[Kulesza et al., 2006] Kulesza, U., Lucena, C., Alencar, P., Garcia, A.: “Customizing Aspect-
Oriented Variabilites Using Generative Techniques” In Proceedings of 18th International 
Conference on Software Engineering and Knowledge Engineering (SEKE'06), San Francisco, 
Skokie, IL, Knowledge Systems Institute, 17-22, July 2006. 

[Kulesza, Coelho et al., 2006] Kulesza, U., Coelho, R., Alves, V., Neto, A., Garcia, A., Lucena, 
C., Staa, A., Borba, P.: “Implementing Framework Crosscutting Extensions with EJPs and 

1366 Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...



AspectJ”. In Proceedings of the 20th Brazilian Symposium on Software Engineering 
(SBES’2006), 177-192, October 2006. 

[Mezini and Ostermann, 2004] Mezini, M., Ostermann, K.: “Variability Management with 
Feature-Oriented Programming and Aspects”. In Proceedings of the Foundations of Software 
Engineering (FSE-12), ACM SIGSOFT, pp. 127-136, November 2004.  

[Opdyke, 1992] Opdyke, W.: “Refactoring Object-Oriented Frameworks” University of Illinois 
at Urbana-Champaign, 1992. 

[openArchitectureWare, 2008] openArchitectureWare, retrieved at  
http://www.eclipse.org/gmt/oaw/, January 2008. 

[Parnas, 1976] Parnas, D.: “On the Design and Development of Program Families”, IEEE 
Transactions on Software Engineering (TSE), 2, 1, 1-9, 1976. 

[pure::variants, 2008] Pure::Variants, retrieved at http://www.pure-systems.com/, January 2008.  

[Roberts et al., 1998] Roberts, D., Johnson, R.: “Evolving Frameworks: A Pattern Language for 
Developing Object-Oriented Frameworks” In Martin, R., Riehle, D., Buschmann, F.: “Pattern 
Languages of Program Design", Addison-Wesley, 3, 471-486, 1998. 

[Shavor et al., 2003] Shavor, S., D’Anjou, J., Fairbrother, S., Kehn D., Kellerman, K., 
McCarthy, P.: “The Java Developer’s Guide to Eclipse” Addison-Wesley, 2003. 

[Smaragdakis and Batory, 2002] Smaragdakis, Y., Batory, D.: “Mixin Layers: An Object-
Oriented Implementation Technique for Refinements and Collaboration-Based Designs”. ACM 
Transaction on Software Engineering and Methodology. 11, 2, 215-255, April 2002. 

[Stahl and Voelter, 2006] Stahl, T., Voelter, M.: “Model-Driven Software Development: 
Technology, Engineering, Management”, Wiley, 2006. 

[Weiss and Lai, 1999] Weiss, D., Lai, C..: “Software Product-Line Engineering: A Family-
Based Software Development Process”, Addison-Wesley Professional, 1999. 

[Zhang and Jacobsen, 2004] Zhang, C., Jacobsen, H.: “Resolving Feature Convolution in 
Middleware Systems”. In Proceedings of ACM SIGPLAN Object Oriented Programming 
Systems and Applications Conference 2004 (OOPSLA’2004), 188-205, 24-28, 2004, 
Vancouver, BC, Canada, October 2004. 

 

1367Cirilo E., Kulesza U., Pereira de Lucena C.J.: A Product Derivation Tool ...


