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A proficient approach to forecast 
COVID‑19 spread via optimized 
dynamic machine learning models
Yasminah Alali1,2, Fouzi Harrou1,2* & Ying Sun1,2

This study aims to develop an assumption-free data-driven model to accurately forecast COVID-19 
spread. Towards this end, we firstly employed Bayesian optimization to tune the Gaussian process 
regression (GPR) hyperparameters to develop an efficient GPR-based model for forecasting the 
recovered and confirmed COVID-19 cases in two highly impacted countries, India and Brazil. However, 
machine learning models do not consider the time dependency in the COVID-19 data series. Here, 
dynamic information has been taken into account to alleviate this limitation by introducing lagged 
measurements in constructing the investigated machine learning models. Additionally, we assessed 
the contribution of the incorporated features to the COVID-19 prediction using the Random Forest 
algorithm. Results reveal that significant improvement can be obtained using the proposed dynamic 
machine learning models. In addition, the results highlighted the superior performance of the dynamic 
GPR compared to the other models (i.e., Support vector regression, Boosted trees, Bagged trees, 
Decision tree, Random Forest, and XGBoost) by achieving an averaged mean absolute percentage 
error of around 0.1%. Finally, we provided the confidence level of the predicted results based on the 
dynamic GPR model and showed that the predictions are within the 95% confidence interval. This 
study presents a promising shallow and simple approach for predicting COVID-19 spread.

In December 2019, the world was waiting to welcome 2020; Wuhan hospital note unusual Severe Acute Respira-
tory by a new virus, and it was spread swiftly. They identify it later SARS-CoV-2 because of its similarity to the 
previous SARS CoV in 20021. Sooner World Health Organization (WHO) calls this virus a novel coronavirus 
(nCOV-19) known as COVID-19. This virus can stay in the person for around 14 days without showing any 
symptoms that lead to transforms from the local epidemic of Wuhan to the global pandemic of the whole world. 
Because the early forecasting of the number of COVID-19 cases will help to control the incubation and non-
spreading of the virus, the researchers and governments depend on machine learning (ML) which is part of 
artificial intelligence (AI) that can learn from the previous data to decide a solution in the real-world problem. 
In the COVID-19 pandemic problem, ML can predict the outbreak of COVID-19 for evaluating the riskiness of 
the virus and therefore raising the level of the procedures applied. The fact, the spread of the virus has receded 
in many countries when they use ML to detect COVID-192.

In recent years, the effectiveness and benefit of the application of Artificial Intelligence (AI) have been proved 
in numerous sectors, such as healthcare, where it showed good performance as a decision support system to help 
identify diseases and make medical diagnoses3–6. During this pandemic, AI showed to be useful in predicting 
outbreaks and aid assemble quickly evolving data to support general health specialists in complex decision-
making7. In addition, various AI-based tools were designed in the healthcare field3,6,8. For instance, a team at 
Boston Children’s Hospital developed an automated electronic information system called Health Map9. Notably, 
the Health Map employs real-time surveillance of emerging public health threats and unofficial online sources 
for observing disease outbreaks. Another example of an AI-based company specializing in infectious disease 
epidemiology is Blue Dot, which has flagged an alarm to its clients regarding the COVID-19 outbreak on Decem-
ber 313. In addition, this company offered suitable predictions achievement for Zika virus in Brazil10. Also, we 
can find Google Flu, which employed search engine queries for enhancing the flu epidemic track. In11, authors 
introduced an intelligent framework for the COVID-19 telemedicine diagnostic via extended reality technology 
and deep learning networks. Specifically, an innovative Auxiliary Classifier Generative Adversarial Networks 
(ACGAN) is designed for COVID-19 prediction. This intelligent-based strategy can be viewed as a promising 
tool for supporting COVID-19 therapy and remote surgical plan cues. More improvement can be obtained by 
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enhancing hardware design and deep learning models used in this Internet of Medical Things (IoMT) system. 
The authors in12 introduced a deep learning-driven approach for semi-supervised few-shot segmentation (FSS) 
of COVID-19 infection via radiographic images. The challenge addressed in this study is designing an effective 
and accurate segmentation of 2019-nCov infection based on small-sized annotated lung computed tomography 
(CT) scans. Essentially, the model was built semi-supervised using unlabeled CT slices and labeling one dur-
ing training. Results based on publicly available COVID-19 CT scans revealed the superior performance of the 
FSS-2019-nCov compared to conventional models. However, the segmentation performance has not been tested 
on a large dataset. In13, a combined CNN-LSTM deep learning approach is introduced to detect COVID-19 
cases based on X-ray images. More specifically, CNN has been employed as a feature extractor, and the LSTM 
is applied to CNN’s features to discriminate healthy people from the contaminated patients with COVID-19. 
They concluded that this approach outperformed the competitive CNN architectures by reaching an accuracy 
of 99.4%. However, the performance of this approach has been tested only on a relatively small-sized dataset; 
the generalizability of this approach needs to be verified using a large dataset. In addition, this approach cannot 
efficiently discriminate COVID-19 images containing different disease symptoms. Recently, the study in14 sug-
gested an unsupervised detector combing a Variational Autoencoder(VAE) model with one-class SVM (1SVM) 
to detect COVID-19 infection using blood tests and reported accuracy of around 99%. Here, the VAE is used 
as a features extractor, and the 1SVM discriminates healthy patients from contaminated ones. Results showed 
the superior detection accuracy of this approach compared to Generative adversarial networks (GAN), Deep 
Belief Network (DBN), and restricted Boltzmann machine (RBM)-based 1SVM methods. However, this detec-
tor is verified using routine blood tests samples from two hospitals in Brazil and Italy; a large dataset is needed 
to verify the generalization of this approach. In15, an intelligent framework based on deep learning and cloud 
computing is presented to identify potential violations of COVID norms in workplaces. To this end, this approach 
employs Closed Circuit Television (CCTV) cameras and webcams installed in workplaces. This approach can 
detect two types of violations: mask-wearing and physical distancing between employees. Results based on a 
video of almost eight hours demonstrated that this framework achieved 98% accuracy. However, this approach 
can be improved by including other COVID norms and tracking the location of employees’ movement after 
office hours. Essentially, AI presents relevant support to predict pandemics and take early measures to mitigate 
the negative consequences. Much research has been done recently on developing data-driven techniques to 
combat the COVID-19 pandemic. For example, see some relevant review articles on detection and forecasting 
of COVID-1916–19.

Efforts devoted to mitigating the effects of COVID-19 transmission have been conducted since its appearance 
in December 2019. Recently, there have been many studies conducted to understand and manage the COVID-19 
pandemic by developing several techniques for different applications, such as wearing mask detection20, COVID-
19 spread forecasting21, and chest X-rays diagnosis22. Wearable technologies have been recently demonstrated 
promising solutions to aid in mitigating infectious diseases, such as COVID-19. In23, the authors presented an 
overview of different wearable monitoring devices and respiratory support systems that are used for assisting 
patients infected with COVID-19. Even with the promising potential of wearable technologies for slow downing 
the spread of COVID-19, however, their utilization is still limited due to several restrictions, such as data privacy 
and cyber-attacks. AI-enabled systems have also been designed to detect people that are not wearing any facial 
masks to mitigate the propagation of COVID-19 spread. For instance, in24, a vision-based deep learning approach 
has been proposed for facial mask detection in a smart city network. Results revealed that this approach achieved 
98.7% accuracy in discriminating people with facial masks from people without masks. However, to guarantee 
sufficient monitoring, a large number of cameras is needed to cover the whole monitored city, which is not easy 
to get and also has an economic burden. Accurate forecasting of COVID-19 cases is essential to help mitigate 
and slowdown COVID-19 transmission25–27. In4, the authors present a comparative study between eight machine 
learning models to forecast COVID-19, such as logistic regression, Restricted Boltzmann Machine, convolutional 
neural networks, and support vector regression(SVR). They used time-series data for confirmed and recovered 
COVID-19 cases from seven countries, including Brazil, India, and Saudi Arabia, recorded from January 22, 
2020, to September 06, 2020. It has been shown that machine learning models can track the future COVID-19 
trend even in the presence of a relatively small-sized dataset. The convolutional neural networks-Long short-term 
memory LSTM-CNN showed high performances with an averaged mean absolute percentage error (MAPE) of 
around 3.718%, because of its ability to learn higher-level features. The study in28 used machine learning to 
predict weekly cumulative COVID-19 cases recorded in the USA and Germany. The first 18 weeks are employed 
for models construction, and 17 weeks after 18/09/2020 are used for testing. Results showed that the SVR delivers 
the best prediction accuracy compared to Random Forest (RF), Linear Regression (LR), and Multilayer percep-
tron (MLP) in terms of Root Mean Square Error (RMSE) and MAPE metrics. Specifically, the SVR model 
achieved an averaged MAPE of 0.1162%. However, in this study, only weekly predictions are considered, and 
daily COVID-19 cases predictions, which are important to short-term decision making, are ignored. In29, authors 
focused on forecasting the future number of COVID-19 in the next 60 days for the confirmed, recovered, and 
death cases in the 16 high impacted countries. To this end, they considered a Seasonal Auto-Regressive Integrated 
Moving Average (SARIMA) and Auto-Regressive Integrated Moving Average (ARIMA). The result reveals that 
the SARIMA model is more realistic than the ARIMA model in this study. The study in30 employed an autore-
gression model utilizing Poisson distribution called Poisson Autoregression(PAR) to predict the confirmed and 
recovered cases of COVID-19 in Jakarta. Results showed that this approach provides acceptable forecasting 
accuracy with an MPAE value lesser than 20%. This approach showed better performance compared to conven-
tional methods, including ARIMA, Exponential Smoothing, BATS, and Prophet. However, the Poisson Autore-
gression approach’s prediction quality still requires more improvement to reach a satisfactory prediction perfor-
mance. Similarly, in31 the ARIMA model has been employed for daily prediction of COVID-19 spread in Italy, 
Spain, and France based on data collected between 21/02/2020-15/04/2020. This approach showed satisfactory 
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prediction performance by achieving an average MAPE of 5.59%. Although ARIMA models can provide suited 
prediction accuracy of data with regular trends, they are limited in extracting only linear relationships within 
the time series data. The study in32 investigated linear regression and Polynomial regression for forecasting the 
spread of COVID-19 cases in India using data from March 12 to October 31, 2020. Forecasting results showed 
that the Polynomial model with 2 degrees outperformed the linear regression model by achieving an averaged 
MAPE of 13.3%. However, the forecasting accuracy can be improved by using a large dataset and fine-tuning 
the model parameters. The work in33 considered SVM and Multilayer Perceptron (MLP) methods to predict 
confirmed COVID-19 cases using data recorded in Brazil, Chile, Colombia, Mexico, Peru, and the US from 
1/22/2020 to 5/25/2020. This study reported that the MLP model outperformed the SVM by providing an aver-
aged MAPE of 17%. The hyperparameters were optimized via a tabu list algorithm. Another study34 presented 
a comparison of four methods, ARIMA, ANN, LSTM, and CNN, to predict the COVID-19 spread based on data 
available from March 12 to October 31, 2020. The CNN model outperformed the other models by achieving an 
averaged MAPE of 3.13%. However, the models were trained using small-sized data, making it difficult to get 
accurate models for forecasting the future trends of COVID-19 spread. In35, the paper focuses on predicting 
future COVID-19 confirmed and death cases in nine high affected countries from January 22, 2020, till December 
13, 2020. Four factors are used as input variables, including vaccination, weather conditions, malarial treatments, 
and average age, to predict COVID-19 spread. This study reported that the Multilayer perceptron (MLP) model 
provided satisfactory forecasting accuracy. Authors in36 proposed a cloud-based short-term forecasting model 
to predict the number of COVID-19 confirmed cases for the next seven days. Results indicate the importance 
of the cloud-based short-term forecasting model in decision-making to prepare the needed medical resources. 
In37, a modified version of LSTM (M-LSTM) has been introduced to forecast the COVID-19 outbreak in nine 
countries from three continents. Specifically, the authors used data from January 22 till July 30, 2020, for the 
train set and last month, August, for the test. It has been shown that the M-LSTM is the winner model among 
other investigated models. In38, LSTM and gated recurrent unit (GRU) deep learning models have been applied 
to forecast COVID-19 confirmed cases and deaths in Saudi Arabia, Egypt, and Kuwait from 1/5/2020 to 
6/12/2020. In this study, LSTM with a single layer exhibited the best forecasting of confirmed cases with an aver-
age MAPE of 0.6203%. The authors in39 implemented an approach for forecasting COVID-19 by combining 
Graph Neural Networks (GNNs) within the gates of an LSTM to enable exploiting temporal and spatial informa-
tion in data. Results based on data of 37 European nations show better performance compared to state-of-the-art 
methods by reaching a mean absolute scaled error (MASE) value around 0.27. However, this approach can be 
improved by considering other pertinent factors like poverty rates, hospital capacity, and age demographics. 
Further, authors in40 considered four machine learning models (i.e., Linear Regression (LR), Least Absolute 
Shrinkage, and Selection Operator (LASSO), Random Forest (RF), and Ridge Regression (RR)) to forecast future 
COVID-19 cases. The result shows that the RF outperformed the other models. Two machine learning models, 
namely Neural Network Time Series (NAR-NNTS) and Nonlinear Autoregressive (NAR), were evaluated by41 
to forecast COVID-19 cases. Results indicate the outperformance of the NAR-NNTS model compared to the 
NAR model. In42, four regression models, ARIMA, MLP, LSTM, and feedforward neural network (FNN), are 
considered to predict COVID-19 spread. It has been shown that the LSTM model reached the best forecast 
accuracy in this study. In43, the aim is to predict confirmed and deaths cases recorded in Iran and Australia by 
considering one, three, and seven past-day ahead in the next 100 days. This study applied sixmodels: LSTM, 
GRU, and Convolutional LSTM with their bidirectional extension. The results showed that the bidirectional 
models achieve better performance than non-bidirectional most of the time. This could be attributed to forward 
and backward data processing in bidirectional models, which allow better learning temporal-dependencies in 
COVID-19 data. In44, six models, including Susceptible-Infected-Recovered, Linear Regression, Polynomial 
Regression, and SVR and LSTM, are compared in forecasting COVID-19 cases in Saudi Arabia and Bahrain. 
Results reveal that SVR provides the best forecasting when using confirmed COVID-19 cases data from Saudi 
Arabia, and LR outperforms the other models when using Bahrain confirmed cases data.

Accurate forecasting of COVID-19 spread is a key factor in mitigating this pandemic’s transmission by 
providing relevant information to help hospital managers in decision-making and appropriately managing the 
available resources and staff. In the presence of small-sized COVID-19 data, our objective is to present shal-
low and efficient machine learning methods to forecast future trends of COVID-19 spread. The most common 
machine learning approaches for COVID-19 time series forecasting rely only on the actual data point in the 
forecasting process and ignores the information from past data. Thus, The overarching goal of this study is to 
take into account information from the actual and past data in developing efficient machine learning models to 
accurately forecast COVID-19 spread. Specifically, this study investigates the forecasting ability of the optimized 
GPR, a kernel-based machine learning method, in forecasting the COVID-19 time series. This choice is motivated 
by the desirables features of the GPR model, including its simple and flexible construction using the mean and 
covariance functions, its ability and superior nonlinear approximation, and the possibility to explicitly provide 
a probabilistic representation of forecasting outputs8,45. The contributions of this paper are summarized in the 
following key points.

•	 Firstly, we employed Bayesian optimization (BO) to tune the Gaussian process regression (GPR) hyperpa-
rameters to develop an efficient GPR-based model for forecasting the recovered and confirmed COVID-19 
cases in two highly impacted countries, India and Brazil. We compared the performance of the Optimized 
GPR with 16 models, including Support vector regression with different kernels, GPR with different kernels, 
Boosted trees, Bagged trees, Random Forest, and eXtreme Gradient Boosting (XGBoost). The daily records 
of confirmed and recovered cases from Brazil and India are adopted in this study. The k-fold cross-validation 
technique has been considered in constructing these models based on the training data. Three statistical 
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criteria are used for the comparison. The results showed that the optimized GPR model exhibited a superior 
prediction capability over the other models.

•	 However, machine learning models do not consider the time dependency in the COVID-19 data series. 
The time dependency in COVID-19 data can be captured by incorporating lagged data in designing the 
considered ML models. Meanwhile, considering information from past data is expected to improve the ML 
models’ capabilities to effectively follow the trend of future COVID-19 data. Here, we evaluated the potential 
of incorporating dynamic information to further enhance the forecasting performance of the investigated 
ML models. The results clearly reveal that the lagged data contribute significantly to improved prediction 
quality of the ML models and highlight the superior performance of the dynamic OGPR.

•	 Additionally, after showing the necessity of including information from past data to enhance the investi-
gated machine learning models, we assessed the importance or contribution of the included features to the 
COVID-19 prediction quality. Importantly, we applied the RF algorithm to identify variable contribution 
or importance for predictive ML models. Generally speaking, this step is essential to design parsimonious 
models by ignoring unimportant features.

•	 Finally, we provided the confidence level of the predicted results based on the dynamic OGPR model and 
showed that the predictions are within the 95% confidence interval.

Of course, we conclude that the dynamic OGPR model is an efficient forecasting approach and can predict 
confirmed and recovered COVID-19 times series data with high accuracy.

The remaining of this study is structured as follows. The second Section presents the used COVID-19 datasets, 
provides a brief description of the GPR model and the BO algorithm. The results and discussions were given 
in the third section to show model performances and comparisons. The conclusions are outlined in the fourth 
Section.

Methodology
The overarching goal of this study is to provide accurate forecasting of the recovered and confirmed COVID-19 
cases in two highly impacted countries, India and Brazil. In total, eighteen machine learning models have been 
investigated and compared against each other for COVID-19 time-series forecasting. The general framework 
adopted in this study is depicted in Fig. 1. At first, We feed the model with training data to find the parameters 
that minimize the loss functions in training. Specifically, we used the Bayesian Optimization algorithm, a pow-
erful tool for the joint optimization of design choices, to hyperparameters tuning. After that, the constructed 
models are used to forecast the future trend of COVID-19 spread. The model’s accuracy will be checked by 
comparing measured data to forecasted data via the score indicators.

Data description.  Here, daily confirmed and recovered COVID-19 data from two highly impacted coun-
tries, India and Brazil, are utilized to evaluate the forecasting capacity of the 14 investigated data-based methods. 
The daily record of cumulative confirmed and recovered cases of COVID-19 from the first case, in India and 
Brazil on the 30th of January and 26th of February 2020, are available in (https://github.com/CSSEGISand-
Data/COVID-19). The dataset automated update for delayed data in the website without any missing value. 
Figure 2a–b displays the confirmed and recovered COVID-19 cases dataset used in this study. We observe that 
India has the highest number of confirmed cases. Considering the population in each country, India is receiving 
the most considerable impact from COVID-19. On the other hand, India shows rapid growth in recovered cases, 
indicating their prompt and effective response to this public health event.

Table 1 list the descriptive statistics of the used COVID-19 time-series dataset. We can conclude from Table 1 
that these datasets are non-Gaussian distributed.

Figure 3 illustrates boxplots of the confirmed and recovered COVID-19 cases recorded in India and Brazil. 
We observe that the distributions of the recorded confirmed and recovered cases are heavily right-skewed.

For the COVID-19 time series data in Fig. 2a–b, the the autocorrelation function (ACF) are shown in Fig. 4. 
The ACF measures the similarity between yt and yt+k , where k = 0, . . . , l and yt is the investigated COVID-19 

Figure 1.   Schematic presentation pf the used machine learning-based forecasting framework.
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times series data46. In other words, ACF quantifies the self-similarity of the univariate time-series data over dif-
ferent delay times. Mathematically, the ACF of a signal yt is defined as46,

The ACF of the data in Fig. 2a–b provides some relevant information about the time-dependence and process 
structure in COVID-19 data points. From Fig. 4, we first observe that there is short-term autocorrelation in these 
COVID-19 datasets. Also, we observe the similarity between the ACFs of confirmed and recovered time-series 
in each country. The third observation is that the fluctuation of India’s data recorded is relatively different from 
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)
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Figure 2.   The number of (a) confirmed and (b) recovered COVID-19 cases from January 22, 2020, through 
June 12, 2021, in Brazil and India.

Table 1.   Summary of the used COVID-19 time-series dataset.

Series Q1 Median Mean Q3 Std skewness kurtosis

Confirm India 161736 6433806 7146174.35 10820333.5 7549037.149 1.169865194 3.997238807

Confirm Brazil 425029.5 4847092 5690061.496 9447165 5246461.833 0.61590352 2.19566924

Recovered India 69334.5 5389892 6454191.404 10516698.5 6870596.966 1.117660039 3.972183915

Recovered Brazil 172125.5 4299659 4965903.071 8412570 4689476.608 0.604219818 2.150912456

Figure 3.   Boxplots of the daily number of confirmed and covered COVID-19 time-series datasets in India and 
Brazil.
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Brazil’s data. This could be attributed to the high spread of COVID-19 in INDIA compared to India. Regarding 
the population in every country, India is getting the most significant impact from COVID-19.

GPR model.  The GPR, a supervised nonparametric (Bayesian) machine learning method, can flexibly 
model complex nonlinear relationships between input and output variables47. GPR is an effective kernel-driven 
approach to learn implicit correlations among various variables in the training set, making GPR especially 
suitable for challenging nonlinear prediction48. Importantly, GPR, a probabilistic-based nonlinear regression 
approach, owns desirables characteristics, including the capability for handling large dimensionality, small-sized 
data, and complex regression problems47.

For a prediction problem, the output y of a function f  at the input x in GPR is expressed as,

where ε ∼ N (0, σ 2
ε ) . In GPR, the term, f(x), is assumed to be a random variable that is distributed according 

to a particular distribution. Indeed, observing the output of the function at various input points could reduce 
the uncertainty regarding f. The observations are always tainted with a noise term ε that reflects their inherent 
randomness.

Assume D = {(xi , yi)}
n
i=1 is the input-output measurements and f (·) to be approximated and assumed fol-

lowing a Gaussian process. For the sake of simplicity, let assume that xi ’s and yi ’s are scalar observations while 
εi ’s are independent and identically distributed random noises following the normal distribution with mean 
value ε̄i = 0 and variance σ 2.

Let’s consider the measured yi values [y1, y2, . . . yn]⊤ are finite values of the function f (·) contaminated with 
noises. Thus, yi ’s follow a joint Gaussian distribution:

where m(x) = [m(x1),m(x2), . . .m(xn)]
⊤ represents the mean vector m(·) , I refers to the identity matrix, and 

K denotes the n× n covariance matrix with (i, j)th element Kij = k(xi , xj) . For a GPR model, k(xi , xj) is usually 
termed a kernel function49.

The optimized kernel parameters are achieved by maximization of the following likelihood.

where θ = [θ1, θ2, . . . ] refers to kernel parameters, the mean values m(.) are chosen to be zero, and

In this study, Bayesian optimization will be applied to determine the optimal GPR hyper-parameters via the 
maximization of the marginal likelihood in (4) with respect to θ50.

Let x∗ is a new input, then the predictive mean and variance associated with ŷ∗ = f (x∗) = f∗ are respectively 
expressed as follows:

•	 the mean value 

(2)yi = f (xi)+ εi .

(3)y = [y1, y2, . . . yn]
⊤ ∼ N (m(x),K + σ 2I),

(4)θopt = arg max
θ

L(θ)

(5)L(θ) =
1

√

(2π)n|K + σ 2I|
exp

(

−
1

2
(y⊤(K + σ 2I)y)

)

.

Figure 4.   Sample Autocorrelation functio of confirmed and covered COVID-19 time-series datasets in India 
and Brazil.
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•	 and variance 

•	 and y∗ follows a conditional distribution: 

where K = k(x, x) refers to the covariance matrix of training data; K∗∗ = k(x∗, x∗) represents the covariance of 
testing data, and K∗ = k(x, x∗) represents the covariance matrix obtained using the training and test dataset.

The GPR predicted output value for a given test input x is f∗ . In addition to the predicted output, GPR can 
provide a confidence interval (CI) to assess the reliability of the prediction, which can be computed using the 
variance cov(f∗) . For example, the 95% CI is computed as51,

For more details about GPR model, see52,53.

Bayesian optimization of model parameters.  Various machine learning methods, including GPR 
and ensemble models, include many hyperparameters to be chosen (e.g., kernel types in GPR and parameters). 
Essentially, the selected values of hyperparameters highly impact the performance of machine learning models54. 
Accordingly, several optimization methods to search for the best hyperparameter, including grid search, random 
search, and Bayesian Optimization (BO), are reported in the litterature55. The Grid search essentially made a 
grid of the search space and then evaluated each hyperparameter setting at the points we introduced for as many 
dimensions as necessary56. On the other hand, Random search uses a random combination of a range of values 
and compares the result in each iteration, but this method will not guarantee to get the best hyperparameter 
combination56. This study employed the BO procedure, which is frequently applied in machine learning to find 
the optimal values of hyperparameters. This study applied the Bayesian optimization algorithm to find the opti-
mal hyperparameters of four investigated methods: SVR, GPR, Boosted trees, and Bagged trees. Notably, the BO 
algorithm is an efficient and effective global optimization approach that is designed based on Gaussian processes 
and Bayesian inference50. Crucially, Bayesian Optimization can bring down the time spent to get to the optimal 
set of parameters by considering the past evaluations when choosing the hyperparameters set to evaluate next57.
It could be employed to optimize functions with unknown closed-form58. Although, unlike grid search, BO can 
find the optimal hyperparameters with fewer iterations.

The essence of the BO algorithm is to construct a probabilistic proxy model for the cost function based on 
outcomes of historical experiments as training data. Essentially, the proxy model, such as the Gaussian process, 
is more inexpensive to compute, and it gives sufficient information on where we should assess the true objective 
function to obtain relevant results. Let’s consider m hyperparameters P = p1, . . . , pm to be tuned. The aim is to 
determine

where g is a cost function. The whole optimization procedure is controlled via a suitable acquisition function 
(AF) that defines the following set of hyperparameters to be assessed. Crucially, any acquisition function requires 
adjusting within exploration and exploitation. Generally speaking, exploration is an area search with high uncer-
tainty, where we expect to discover a new set of parameters that enhance the model’s prediction accuracy. At the 
same time, exploitation refers to an area search nearby to already computed high estimated values59.

In this study, the BO algorithm is employed to find the hyperparameters of the GPR model, the SVR, and 
ensemble learning models. The optimization procedure is performed during the training stage based on the 
training data, as shown in Fig. 5. At each iteration, the mean squared error (MSE) between the actual COVID-19 
data and the estimated GPR data using the values of the hyperparameters determined by BO. This procedure is 
repeated until the MSE converges to a small value, close to zero.

Alternative models for Comparison.  In this study, we investigated the performance of the OGPR and 
compared its forecasting accuracy with the set of machine learning-based forecasting models listed in Table 1. 
In short, a total of seventeen forecasting methods are applied to predict COVID-19 time-series data: 6 SVR 
methods48,60, 4 GPR methods, 2 ensemble learning techniques (i.e., BT, BS, RF and XGBoost)61–63 and six SVR 
models47, and 3 optimized methods.

SVR models.  Support Vector regression is another efficient assumption-free approach that possesses good 
learning ability through kernel tricks. The essence of SVR is to map the train data to a higher dimension then lin-
ear regression is performed in this feature space. In short, SVR can efficiently deal with nonlinear regression via 
the so-called kernel trick by mapping the input features into high-dimensional feature spaces64,65. It is designed 
using the concept of structural risk minimization. Moreover, SVR models proved to be efficient in the presence 
of limited samples66. Additionally, SVR has been broadly applied in various applications, including wind power 

(6)ŷ∗ = k⊤∗ (K + σ 2I)−1y
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forecasting67, fault detection8, and solar irradiance prediction48. This study built six SVR models using different 
kernels and an optimized SVR using Bayesian optimization (Table 2).

Boosted tree model.  Boosted is an ensemble machine learning model built based on the statistical learning 
theory. The essence of the boosted tree is to optimize the prediction quality of conventional regression methods 
by using an adaptive combination of weak prediction models68. Moreover, it employs an aggregate model to 
obtain a smaller error than those obtained by individual models. Compared to other ensemble models, like bag-
ging and averaging models, boosting is matchless because of the sequentiality63,68,69.

Bagged tree model.  The bagged tree (BT) is an ensemble machine learning model; also, it is called bootstrap 
aggregating. Essentially, BT merges the bagging procedure and decision trees to improve prediction efficiency61. 
Specifically, The bagged model generates multiple samples via bootstrap sampling from the original dataset, 
builds multiple distinct decision trees, then aggregates their prediction outputs together70. Accordingly, the pre-

Figure 5.   BO-based optimized GPR procedure.

Table 2.   Forecasting methods investigated in this study. (1)r =
√

(xi − xj)1(xi − xj) in the GPR-based kernel 
function.

Model approach Model name Model description Kernel function(1)

Support Vector Regression (SVR)

SV_L SVR with the Linear kernel xTi xj

SVR_Q SVR with the Quadratic kernel (1+ xTi xj)
2

SVR_C SVR with the Cubic Kernel (1+ xTi xj)
3

SVR_FG SVR with the Fine Gaussian kernel e(−
√
p
4
||xi−xj ||

2)

SVR_MG SVR with the Medium Gaussian kernel e(−
√
p||xi−xj ||

2)

SVR_CG SVR with the Cubic Gaussian kernel e(−4
√
p||xi−xj ||

2)

Gaussian Process Regression (GPR)

GP_RQ GPR with the Rational Quadratic kernel σ 2

f (1+
r2

2ασ 2

l

)−α

GP_SE GPR with the Squared Exponential kernel σ 2

f e
( r2

2σ2
l

)

GP_M52 GPR with the Matern 5/2 kernel σ 2

f (1+
√
5r
σ l + 5r2

3σ 2

l

)e(
√
5r
σ l )

GP_Exp GPR with the Exponential kernel σ 2

f e
( r
σ l )

Ensemble Learning (EL)

BST Boosted Trees

BT Bagged Trees

RF Random Forest

XGBoost eXtreme Gradient Boosting

Optimised models

OSVR Optimized SVR

OGPR Optimized GPR

OEL Optimized EL
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diction error of the decision trees will be reduced, and substantially the overfitting problem in a single tree is 
bypassed71,72.

Random forest.  RF is also within the ensemble learning family that uses several weak learners to build a more 
efficient joint model73. In the RF model, decision trees are used as a base learner. The RF repeatedly builds regres-
sion trees based on the training data. In boosting, each new training set is sampled with replacement from the 
original training set by using the bootstrap technique. However, the strategy for node selection in RF is different 
by randomly selecting a subset from the current feature set and then selecting one optimized feature in the sub-
feature set. It has been widely exploited in different applications related to classification and regression problems.

XGBoost model.  Extreme Gradient Boosting algorithm (XGBoost) is an efficient ensemble learning algorithm 
that can handle missing values and combine a set of weak predictors for building a more effective one74. It can 
be used for classification and prediction problems. XGBoost can reduce the loss function by employ the gradient 
descent method to determine the objective function optimization. Especially, XGBoost will avoid the overfitting 
in the model by relying on a set of learners to build a robust model that also helps minimize the running time. 
XGBoost is flexible and efficient and is adopted in many winning data mining competitions75.

Evaluation metrics.  In this study, we assess the accuracy of the forecasting models using three metrics: root 
mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).

where yt is the number of COVID cases, ŷt is its corresponding forecasted COVID cases, and n is the number of 
records. Lower RMSE, MAE, and MAPE values would imply better precision and forecasting quality.

Forecasting framework.  The general procedure performed in this study to forecast COVID-19 cases is 
represented in Fig. 6. Firstly the daily recovered and confirmed time-series data are split into training subsets. 
All models are trained using the training set and evaluated using the testing set. The best forecasting model is 
indicated by three statistical criteria, namely RMSE, MAE, and MAPE.

Results and discussion
Static prediction models.  The COVID-19 time series used in this study is free from missing values. We 
first split these data into training sub-data and testing sub-data. The training data used to construct each model 
includes confirmed and recovered cases from January 22, 2020, to June 5, 2021. We used seven days for the 
testing period from June 6, 2021, to June 12, 2021. Here, we mean by static prediction models, the models that 
predict COVID-19 spread a given time point without considering information from past data.

Firstly, we need to transform the time-series forecasting problem into a supervised learning problem to 
apply the investigated machine learning models. In other words, univariate COVID-19 time-series data will 
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Figure 6.   Illustration of the used forecasting framework.
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be preprocessed to get pairs of input and output data points. In supervised learning, the models first learn the 
mapping between the input and output variables based on training data, and then they can be used to predict 
the output from the input test data. We can structure the data to look like input-output data. This can be done by 
utilizing previous data points as input variables and use the next data point as the response variable (see Fig. 7). 
We can see from Fig. 7 that shifting the series forward one step allows us to use the previous observations to 
predict the value at the next time step.

The k-fold cross-validation technique has been considered in constructing these models based on the training 
data as recommended in76,77. Specifically, we applied a 5-fold cross-validation technique in training the inves-
tigated models. This permits assessing the models’ robustness, exploiting the whole training dataset, and helps 
avoid overfitting. In the training stage, the considered models are constructed by finding the appropriate values 
of hyperparametrs that produce high prediction accuracy. In the BT model, we used 30 trees with a minimum 
leaf size of 8. Similarly, in BST, 30 trees are used as based learners with a minimum leaf size of 8 and a learning 
rate of 0.1. We used the SVR model with Kernel scale: 0.25, box constraint: 6.534, and Epsilon: 1.3156. Here, 
GPR models with four different kernels are considered. The values of Sigma and kernel scales of GPRSE , GPRRQ , 
GPRM25 , and GPRExp are respectively (5102.98, 508349.66), (51029.88, 5083496.65), (51029.87, 5083496.65), 
and (51029.92, 5083496.65). For the RF model, 1000 trees are used in the forest, and ’max_features=1’ is chosen 
to consider only one feature to find the best split, and ’random_state=1’ is selected for controlling both the ran-
domness of the bootstrapping of the samples used when building trees. For the XGBoost model, the values of 
the used hyperparameters are: ’num_feature=1’, ’max_depth= 10’, and ’booster=gblinear’.

Here, we applied the BO procedure for the OGPR, OSVR, and OEL models to get the optimal parameters 
maximizing the forecasting precision based on training data. The hyperparameter search ranges for each model, 
and the computed values of the hyperparameters of each model using the BO algorithm are summarized in 
Table 3. Specifically, the values of the hyperparameters are obtained by the MSE between the actual COVID-19 
data and the predicted data during the training stage.

In this study, seventeen machine learning models (Table 2) are used to predict COVID-19 spread. We imple-
mented these methods using Matlab R2021b. These models are first built based on training data and then used 
for forecasting confirmed and recovered COVID-19 cases for a forteen-day forecast horizon from May 30, 2021. 
We applied a 5-fold cross-validation technique in training the investigated models. Figures 8 and 9 display the 
recorded test set together with model forecasts of confirmed and recovered cases in India and Brazil, respec-
tively. From Fig. 8, we observe that the forecasted values of the confirmed and recovered cases in India from 
the considered models are closer to the actual data, indicating good forecast performance. For the confirmed 
and recovered cases in Brazil, Fig. 9, shows broader bands around the actual cases, indicating wider variations 
among model predictions. In this scenario, models showed relatively better forecasts for India confirmed and 
recovered cases series.

Tables 4 and 5 quantifies the performances of each model in terms of RMSE, MAE, and MAPE, for COVID-19 
data recorded in India and Brazil, respectively. In terms of all metrics calculated, the GPR models showed the best 
performance in RMSE and MAE. It could be attributed to their capacity to capture dynamics in time-series data.

Figure 10 displays the heatmap of the MAPE values achieved by the investigated model for the confirmed and 
recovered COVID-19 data from Indian and Brazil. We observe that GPR models achieved the best forecasting 
performance with the lowest MAPE values. This could be attributed to the extended capacity of the GPR mod-
els to learn dynamics in COVID-19 time-series data. Furthermore, this study shows the capability of machine 
learning models to forecast the future trends of COVID-19.

Figure 10 indicates that there is not a unique approach that is uniformly superior to others. For instance, 
the GPRM2.5 achieved the best results for confirmed cases in India and recovered cases in Brazil, and OGPR 
obtained the best accuracy for recovered cases in India and confirmed cases in Brazil. Thus, averaged MAPE 

Figure 7.   Procedure to restructure univariate COVID-19 time-series data to look like input-output data.
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Table 3.   Hyperparameters search range and Optimized Hyperparameters using the BO algorithm.

Model Hyperparameter Search Range Optimized Hyperparameters

SVRO

-Box constraint: 0.001-1000 -Box constraint: 1.7128

-Kernel scale: 0.001-1000 -Kernel scale: 1

-Epsilon: 0.18495-18495.1816 -Epsilon: 1.3156

-Kernel function: Gaussian, Linear, Quadratic, Cubic -Kernel function: Cubic

-Standardize data: true, false -Standardize data: true

GPRO

-Sigma: 0.0001-1441.9316 -Sigma: 1217.1288

-Basis function: Constant, Zero, Linear - Basis function: Linear

-Kernel function: Exponential, Matern 5/2, Rational Quadratic, Squared Exponential -Kernel function: Matern 5/2

-Kernel scale: 0.498-498 -Kernel scale: 493.0376

-Standardize: true, false -Standardize: false

ELO

-Ensemble method: Bag, LSBoost Ensemble method: LSBoost

-Number of learners: 10-500 -Number of learners: 11

-Learning rate: 0.001-1 -Learning rate: 0.98438

-Minimum leaf size: 1-249 -Minimum leaf size: 2

-Number of predictors to sample: 1-2 -Number of predictors to sample: 2

Figure 8.   Records and forecasts of (a) confirmed and (b) recovered COVID-19 cases in India for testing period, 
using the fifteen machine learning methods.

Figure 9.   Records and forecasts of (a) confirmed and (b) recovered COVID-19 cases in Brazil for testing 
period, using the fifteen machine learning methods.
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values per model are provided for comparison to find the best model. Figure 11 depicts the averaged MAPE per 
model. The lowest average MAPE value characterizes the best model. The average MAPE of the OGPR mode is 
0.185%. For SVR models, the best prediction is obtained by using the SVRQ with an average MAPE of 2.376%. 
The average MAPE of XGBoost, RF, and OEL models are 3.347%, 3.524%, and 4.696%, respectively. Importantly, 
results in Fig. 11 highlight that a satisfactory forecasting COVID-19 spread can be obtained using shallow and 
simple machine learning approaches. In addition, it is easy to see that the GPR with optimized parameters using 
Bayesian optimization exhibited superior performance.

Dynamic model.  Note that the abovementioned results are based on static models that ignore informa-
tion from the past data. In this section, we investigate the performance of the machine learning models when 
incorporating information from the past data in model construction. In other words, to capture the dynamic and 
evolving nature of the COVID-19 time series, we introduce lagged data when building the prediction models. 
Here, we apply a dynamic fifteen models on India and Brazil dataset by considering the past days’ interval. As in 
the static model, we used the last fourteen days from May 30, 2021, to June 12, 2021, for the testing. Figure 12 
shows how the past data can be incorporated into the input data; here is an example of adding the informa-
tion from the past three days in the input data. In this case study, we evaluate the impact of introducing past 
information (i.e., one day, two days, three days, four days, five days, six days, and seven days) on the prediction 
performance of the investigated models.

Figures 13 and 14 show the MAPE performances values of each model when applied to forecast COVID-19 
data recorded in India and Brazil from 1 to 7 days, respectively. It can be seen that incorporating information 
from past data improves the forecasting performance compared to the static model, and the MAPE values 
decrease, which means that prediction performance has been improved. Prediction results in Figs. 13 and 14 

Table 4.   Th obtaine statistical criteria for confirmed and recovered COVID-19 cases forecasts in India.

Series Model RMSE MAE MAPE

Confirm India SVRO 22337053.113 22334295.732 38.960

Confirm India SVRC 1012357.846 1008215.980 3.365

Confirm India SVRCG 1382637.913 1369677.347 4.967

Confirm India SVRFG 6967701.735 6507706.629 30.360

Confirm India SVRL 759414.577 759392.528 2.697

Confirm India SVRMG 2356188.304 2280681.541 8.581

Confirm India SVRQ 1024262.932 1019713.136 3.401

Confirm India GPRRQ 37398.517 32479.864 0.112

Confirm India GPRSE 36208.928 30442.130 0.105

Confirm India GPRM52 14350.001 12258.416 0.072

Confirm India GPRExp 972208.519 905902.811 3.233

Confirm India GPRO 111506.899 108951.780 0.374

Confirm India BT 2005011.686 1974055.703 7.325

Confirm India BS 2779609.635 2757363.556 10.538

Confirm India ELO 1625388.219 1587044.713 5.806

Confirm India RF 956649.730 853385.714 3.053

Confirm India XGBoost 874210.275 759823.714 2.709

Recoved India SVRO 21100097.634 21087507.583 11.320

Recoved India SVRC 1125965.648 1107063.877 3.919

Recoved India SVRCG 1771552.327 1718529.593 6.779

Recoved India SVRFG 10306345.167 9339278.915 59.969

Recoved India SVRL 754472.349 754424.474 2.877

Recoved India SVRMG 3670129.936 3373505.792 14.480

Recoved India SVRQ 1179022.579 1155346.231 4.080

Recoved India GPRRQ 167795.963 143454.775 0.527

Recoved India GPRSE 30214.921 23379.830 0.085

Recoved India GPRM52 54374.745 48482.147 0.178

Recoved India GPRExp 1524148.063 1336405.700 5.208

Recoved India GPRO 58832.766 46691.520 0.052

Recoved India BT 3078226.027 2990707.504 11.681

Recoved India BS 3467540.137 3390087.093 14.359

Recoved India ELO 1871290.946 1723538.715 6.127

Recoved India RF 1688270.003 1522862.929 5.977

Recoved India XGBoost 1496590.266 1307148.929 5.088
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Table 5.   Th obtaine statistical criteria for confirmed and recovered COVID-19 cases forecasts in Brazil.

Series Model RMSE MAE MAPE

Confirm Brazil SVRO 178495.629 176859.741 1.055

Confirm Brazil SVRC 859664.899 846897.020 4.749

Confirm Brazil SVRCG 856493.084 849454.839 5.279

Confirm Brazil SVRFG 2681791.796 2400829.100 17.153

Confirm Brazil SVRL 658423.358 657587.460 4.041

Confirm Brazil SVRMG 1201574.167 1157539.469 7.350

Confirm Brazil SVRQ 100175.382 92240.318 0.552

Confirm Brazil GPRRQ 22347.367 20542.504 0.122

Confirm Brazil GPRSE 36548.399 29617.766 0.175

Confirm Brazil GPRM52 25452.517 22951.994 0.136

Confirm Brazil GPRExp 499989.497 426469.985 2.585

Confirm Brazil GPRO 22821.043 21485.641 0.127

Confirm Brazil BT 819117.717 776873.997 4.811

Confirm Brazil BS 1414426.255 1390388.795 8.951

Confirm Brazil ELO 1471998.737 1448916.717 3.363

Confirm Brazil RF 503458.241 431334.642 2.615

Confirm Brazil XGBoost 484044.544 408507.642 2.474

Recoved Brazil SVRO 30627.182 30583.310 7.618

Recoved Brazil SVRC 167774.226 167591.124 4.806

Recoved Brazil SVRCG 151929.129 151847.006 5.351

Recoved Brazil SVRFG 259341.166 254940.374 18.745

Recoved Brazil SVRL 129890.658 129878.098 3.400

Recoved Brazil SVRMG 181760.427 181092.640 7.876

Recoved Brazil SVRQ 30362.953 30188.755 1.473

Recoved Brazil GPRRQ 1719.567 1558.378 0.241

Recoved Brazil GPRSE 1656.806 1525.704 0.247

Recoved Brazil GPRM52 1667.333 1508.890 0.188

Recoved Brazil GPRExp 40549.196 37897.498 2.935

Recoved Brazil GPRO 1667.329 1508.883 0.188

Recoved Brazil BT 84573.683 83349.510 4.581

Recoved Brazil BS 247302.171 246886.202 9.251

Recoved Brazil ELO 36794.352 33885.945 3.489

Recoved Brazil RF 26978.983 18038.854 2.452

Recoved Brazil XGBoost 57643.591 36789.043 3.117

Figure 10.   Heatmap of MAPE values obtained using the seventeen models.
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confirm that incorporating information from past data improves forecasting quality compared to the static 
models. Figure 15 illustrates the averaged MAPE values per model and shows that GPR models exhibited the 
highest forecasting accuracy among all other models by reaching the lowest MAPE values. Also, we can see that 
GPRM52 and GPRO reached relatively similar performance and outperformed the other models. In short, this 
demonstrates the ability of GPR models to learn dynamics in COVID-19 time-series data.

Figure 11.   Averaged MAPE per model.

Figure 12.   Process of dataset preparation for dynamic models.

Figure 13.   HeatMap of MAPE values by methods for (a) Confirmed and (b) recovered COVID-19 times series 
in India.
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As shown above, considering information from past data is constructing prediction models leads to improved 
prediction performance. Now, it is crucial to identify the most important features for prediction. Indeed, this 
will enables removing unnecessary features and constructing parsimonious models. Here, Random forest (RF) 
will be applied to evaluate the impact of each variable on the prediction of COVID19 spread. It used the Recur-
sive feature elimination algorithm to identify the weights of the features and rank the features according to the 
importance weights78,79. Figure 16 shows the variable importance score when applying RF to COVID-19 India 
and Brazil dataset. Importantly, the seven past days (features) are relatively impacting the prediction at a similar 

Figure 14.   HeatMap of MAPE values by methods for (a) Confirmed and (b) recovered COVID-19 times series 
in Brazil.

Figure 15.   Averaged MAPE values per model.

Figure 16.   Feature importance identification based on RF by time-series.
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level. Moreover, from Fig. 16, reduced dynamic models that incorporate information from the past six days will 
be able to sufficiently capture the future tend of COVID-19 time-series data.

Figure 17 displays the one-step-ahead prediction results of the dynamic OGPR model of the confirmed cases 
and recovered cases in India based on testing data. It can be seen that the OGPR predicted values are in agree-
ment with the recorded COVID-19 values. In addition, the predicted values are very close to the observed values, 
and both of them are inside the 95% confidence intervals. It should be noted that this information cannot be 
obtained using ensemble models and SVR models, which makes dynamic SVR models very helpful. Results are 
very promising and confirm that the predicted COVID-19 cases closely follow the recorded COVID-19 trends. 
Also, these results reveal the importance of optimizing the GPR model with BO and incorporating information 
from past data to achieve the best prediction performance.

In summary, in this study, both static and dynamic machine learning models have been investigated for 
predicting COVID-19 spread in two highly impacted countries, India and Brazil. It was concluded that both 
dynamic and static model prediction models considered in this work could predict COVID-19 spread with a 
satisfactory degree of accuracy. Importantly, results revealed that the dynamic models that incorporate past data 
information result in lower prediction errors than the static models. Specifically, the dynamic optimized GPR 
model outperformed all the other considered static and dynamic prediction models in predicting COVID-19 
spread in India and Brazil.

As discussed above, various methods have been developed to improve the forecasting of COVID-19 spread 
using machine learning and time-series models4,28,30–34. Table 6 summarized different studies on COVID-19 time 
series forecasting. Table 6 compares the achieved average MAPE of the proposed dynamic OGPR model with 
those of the state-of-the-art methods. It should be noted that the average MAPE of the SOTA methods listed in 
Table 6 are computed from the provided MAPE values in the original papers. Note that as the used COVID-19 
training and testing data are not the same, it is not easy to compare the performance of the proposed approach 
with the SOTA methods. However, the summary in Table 6 is helpful to get a big picture about the forecast-
ing performance of the existing methods when applied to small-sized datasets. Table 6 shows that time-series 
models in30,32,34, such as ARIMA, SES, HW, BATS, PAR, and polynomial, obtained lower accuracy in range 
13.3%-47.415%. On the other hand, an ARIMA model in31 showed moderately high prediction with a MAPE of 
5.59%. These results could be due to different factors, including parameters setting and the size of data used for 
model training. The amount of data employed in these studies is relatively small. From Table 6, it is interesting 
to see in28 that a linear regression model reached high prediction performance (i.e., MAPE of 0.2228%) since 
the COVID-19 outbreak is often considered as having exponential dynamics. The shallow machine learning 
methods employed in28 (i.e., RF, MLP, and SVM) showed good performance by obtaining an averaged MAPE 
in the range of 0.1162-1.0042. However, it can be seen that SVM and MLP obtained relatively low prediction 
performance with MAPE values 23.5 and 17, respectively. As data-driven approaches, the quality and amount 
of data are essential to construct a good predictive model. In addition, tuning the hyperparameters in training is 
crucial to obtain an efficient model that captures the most variability in training data and can predict future trends 
of COVID-19 spread. Results in4,37,38 show that RNN-based models, including LSTM, GRU, and GAN-GRU, 
LSTM-CNN, have sufficient ability in solving this limited size univariate time series forecasting problem with 
high efficiency and satisfying precision (i.e., MAPE values within 0.6203–5.254%). However, it is worth noting 
that deep learning methods, such as LSTM and GRU, are designed to capture long-term dependencies in time 
series data; they could provide enhanced prediction when implemented using a large amount of data. Overall, 
the proposed OGPR approach achieved high forecasting accuracy with an average MAPE of 0.1025%. Overall, 
the proposed OGPR approach achieved high forecasting accuracy with an average MAPE of 0.1025%. It could 
be attributed to different factors: i) the GPR as a distribution-free learning model can be applied to handle not 

Figure 17.   One-step-ahead prediction boundaries for (a) confirmed cases and (b) recovered cases in India with 
the GPR model.
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necessarily normally distributed data, ii) it has good capacity to address difficult nonlinear regression problems 
via kernel trick, iii) it considers dynamic information by incorporating lagged data as input, and iv) provide 
better prediction when the hyperparameters are optimized using Bayesian optimization algorithm. Thus, it can 
be deduced that the proposed approach presents a promising system to forecast COVID-19 spread.

Conclusion
Accurate forecasting of COVID-19 spread is a key factor in slowing down this pandemic’s transmission by 
providing relevant information to help hospital managers make decisions and appropriately manage the avail-
able resources and staff. This work aimed to develop an effective data-driven approach to predict the number of 
COVID-19 confirmed and recovered cases in India and Brazil, ranked as the second and third countries with 
the highest number of confirmed cases behind the United States. This paper introduces a dynamic GPR model 
with optimized hyperparameters via Bayesian optimization into COVID-19 spread forecasting. Other promising 
prediction models, such as SVM, GPR, Boosted trees, Bagged trees, RF, and XGBoost, were also considered based 
on the same data. Here, the considered machine learning models are distribution-free learning methods that 
can be employed with no prior assumption on the data distribution. The SVR and GPR are within kernel-based 
prediction methods, while Boosted, Bagged trees, RF, and XGBoost are within ensemble learning methods. The 
SVR modeling is based on solving a nonlinear optimization problem; on the other hand, the GPR model uses 
Bayesian learning. This study investigates two types of prediction models, static and dynamic models, to improve 
COVID-19 forecasting accuracy. The static model ignores the information from past data, whereas dynamic 
models consider information from lagged data in forecasting COVID-19 spread. The results showed that the 
dynamic GPR models outperformed the other static and dynamic models in all cases. In short, the forecasting 
result shows that the optimizable GPR model is the winner model that achieved the best performance among 
the other models in terms of RMSE, MAE, and MAPE. In addition, the dynamic OGPR-based prediction models 
enable generating predictions with confidence intervals. This information is relevant and enables evaluating the 
reliability of the COVID-19 spread predictions and for making better use of the forecasted data. The overall 
prediction accuracy of the suggested dynamic OGPR model has been satisfying.

Despite the satisfactory COVID-19 spread forecasting results using the dynamic machine learning models, 
there is still plenty of room for improvement. At first, the suggested OGPR approach needs to be employed 

Table 6.   Summary of different studies on COVID-19 spread prediction.

Refs Country Model Average MAPE (%)

Ceylan31 Italy, Spain, and France ARIMA 5.59%

Ballı Serkan28 Germany and USA

Random forest 1.0042

Linear Regression 0.2228

MLP 0.5153

SVM 0.1162

Nasution et al.30 Jakarta

ARIMA 20.51

SES 20.435

HW 47.415

BATS 33.945

Prophet 42.27

PAR 18.435

Istaiteh et al.34 China, Eritrea

ARIMA 14.14

ANN 3.23

LSTM 4.14

CNN 3.13

Shaikh et al.32 India
Linear regression 27.9

Polynomial with 2 degrees 13.3

Acosta et al.33 Brazil, Chile, Colombia, Mexico, Peru and the United States
SVM 23.5

MLP 17

Dairi et al.4 Brazil, France, India, Mexico, Russia, Saudi Arabia, and the US

RBM 18.452

CNN 20.763

LSTM 20.394

GAN-DNN 11.105

GAN-GRU​ 5.254

LSTM-CNN 3.718

Omran et al.38 Egypt, Saudi Arabia, Kuwait
a single-layer GRU​ 3.0419

a single-layer LSTM 0.6203

Kafieh et al.37 Nine countries, including China, Spain, Italy, and the US M-LSTM 0.509

Proposed India and Brazil OGPR 0.1025
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in more countries to confirm its superior performance. Moreover, accurate modeling of temporal and spatial 
dynamics of the COVID-19 spread is necessary to understand its spread in space-time for improved risk man-
agement. As the developed methods ignore the spatial spatio-temporal correlation in the COVID-19 spread, we 
plan to develop a more flexible forecasting approach that considers spatio-temporal correlations and mobility 
information in constructing machine learning methods to improve the forecasting quality of COVID-19 spread. 
Another direction of improvement is to incorporate external factors that affect the number of COVID-19 cases, 
such as the number of administered vaccines, the country’s population, medical resource availability, and gov-
ernment policies.
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