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a b s t r a c t

Prognostics and systems health management (PHM) is an enabling discipline of technologies and

methods with the potential of solving reliability problems that have been manifested due to complexities

in design, manufacturing, environmental and operational use conditions, and maintenance. Over the past

decade, research has been conducted in PHM of information and electronics-rich systems as a means to

provide advance warnings of failure, enable forecasted maintenance, improve system qualification,

extend system life, and diagnose intermittent failures that can lead to field failure returns exhibiting

no-fault-found symptoms.

This paper presents an assessment of the state of practice in prognostics and health management of

information and electronics-rich systems. While there are two general methods of performing PHM—

model-based and data-driven methods—these methods by themselves have some key disadvantages. This

paper presents a fusion prognostics approach, which combines or ‘‘fuses together” the model-based and

data-driven approaches, to enable markedly better prognosis of remaining useful life. A case study of a

printed circuit card assembly is given in order to illustrate the implementation of the fusion approach

to prognostics.

Published by Elsevier Ltd.

1. Introduction

Two subway trains crash in Washington, DC killing nine. An Air-

bus A330 airliner crashes into the Atlantic Ocean with no survivors.

The suspected causes of both accidents are failures of information

and electronics-rich systems. While these failures dominated the

front pages of newspapers in early summer 2009, other informa-

tion system failures have occurred in aerospace [1], telecom net-

works [2], computers [3], and data servers [4,5], as well as

electrical power grids [6], energy generation equipment [7], and

healthcare systems [8]. The costs of catastrophic accidents are

enormous in terms of human lives. They also have severe economic

implications. For example, the failure of a point-of-sale informa-

tion verification system can result in the loss of $5 million/min [9].

Extremely high operational availability of information systems

has been historically difficult to achieve because of the lack of

understanding of the interactions of performance parameters and

application environments and their effect on system degradation

and failure. The fact that most failures in information systems are

intermittent makes many predictive methods unacceptable [10].

Combining this complexity with the 40–85% no-fault-found (NFF)

failure rate seen in system failure analysis suggests that current

reliability practices need improvement. In particular, traditional

approaches to failure mitigation have failed because of the reliance

on averaged accumulated historical field data (e.g., Mil-Hdbk-217

[11], Telcordia SR-332 (formerly Bellcore) [12], and CNET/RDF

(FIDES) (European) [13,14]), rather than relying on in situ data from

a particular system. In fact, studies [15,16] have reported that these

methods are inaccurate and misleading (i.e., they provide and

inconsistent results for any given system subject to given condi-

tions). This is amajor reasonwhy the US Army has abandoned these

approaches. In addition, the IEEE notes that information system

failures are in some sense inevitable, because the current methods

of assessing information systems have fundamental flaws [17].

Consequently, there is a pressing need to develop new

technologies and methods that utilize in situ system operational

and environmental conditions to detect performance degradation

and faults and avoid and manage system failures. Furthermore,

these new technologies and methods must account for soft faults1
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1 Soft faults are those faults that manifest themselves at the system level without

any components in the system being damaged or failing. Typical causes of soft faults

include transient failures due to particle radiation and electromagnetic emission;

power supply fluctuations; and intermittent faults due to lose connections.
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and intermittent2 failures, which are some of the most common fail-

ure modes in today’s information systems [18]. The most promising

discipline of technologies and methods with the potential of solving

reliability, availability, and maintainability problems is called prog-

nostics and systems health management (PHM).

Over the past decade, research has been conducted in PHM of

information and electronics-rich systems as a means of providing

advance warnings of failure, enabling forecasted maintenance,

improving system qualification, extending system life, and diag-

nosing intermittent failures, which can lead to field failure returns

exhibiting no-fault-found symptoms. However, at this time, there

is no roadmap for guiding R&D activities and allocating resources.

The purpose of this paper is to present an assessment of the

state of practice in PHM of information and electronics-rich sys-

tems and some of the R&D opportunities and challenges. We dis-

cuss an R&D approach to PHM that fuses two of the current

approaches, model-based and data-driven approaches, to over-

come their individual limitations while retaining the advantages

of both. Then we present an example of implementation of the fu-

sion approach to electronics-rich systems.

2. State of practice in PHM for information and electronics-rich

systems

Traditionally, PHM has been implemented using approaches

that are either model-based or data-driven. The model-based ap-

proaches takes into account the physical processes and interac-

tions between components in the system [20]. The data-driven

approaches use statistical pattern recognition and machine-learn-

ing to detect changes in parameter data, thereby enabling diagnos-

tic and prognostic measures to be calculated [21]. This section

provides the state of practice in PHM for each of the approaches

for information and electronics-rich systems.

2.1. Model-based approaches

The model-based approaches to PHM use mathematical repre-

sentations to incorporate a physical understanding of the system,

and include both system modeling and physics-of-failure (PoF)

modeling. Prognosis of remaining useful life (RUL) is carried out

based on knowledge of the processes causing degradation and

leading to failure of the system.

In the system modeling approach, mathematical functions or

mappings, such as differential equations, are used to represent

the system. Statistical estimation techniques based on residuals

and parity relations (the difference between the model predictions

and system observations) are then used to detect, isolate and pre-

dict degradation [20,22]. Estimation techniques such as Kalman fil-

ters, particle filters, and parity relations are commonly used to

calculate the residuals. For example, this approach to prognostics

was demonstrated for lithium ion batteries [23] where a lumped

parameter model was used along with extended Kalman filter

and particle filter algorithms to estimate remaining useful life

(RUL). Model-based prognostics methods are currently being

developed for power semiconductors [24,25], digital electronics

components and systems such as microprocessors in avionics

[26], switched-mode power supplies [27], and diagnostics of soft-

ware health [28].

The PoF approach utilizes knowledge of a system’s life-cycle

loading conditions, geometry, and material properties to identify

potential failure mechanisms and estimate RUL [21]. This approach

is based on the understanding that failures occur due to fundamen-

tal mechanical, chemical, electrical, thermal, and radiation pro-

cesses [29].

The PoF approach involves a number of steps, which generally

include some form of failure modes, mechanisms and effects anal-

ysis (FMMEA), feature extraction, and RUL estimation [29]. To

implement this approach, the potential failure modes, mecha-

nisms, and sites of the system based on the life-cycle loading con-

ditions must be identified. The stress at each failure site is obtained

as a function of loading conditions, geometry and material proper-

ties of the system. Damage models are then used to determine fault

progression and RUL. The failure models require input, such as

material properties, geometry, and environmental and operating

loads. The loads are typically monitored in situ, and features (e.g.,

cyclic range, mean, and ramp rates) of the data are extracted and

used in relevant PoF models to provide estimates of damage and

RUL.

PoF-based prognostic methodologies have been applied to esti-

mate RUL in electronic assemblies and components such as power

supply chips on a DC/DC voltage converter printed circuit board

(PCB) assembly [30]; PCBs subjected to loads under an automobile

hood [31,32]; electronics subjected to thermo-mechanical loads

[33]; and for monitoring, recording, and analyzing the life cycle

vibration loads for estimation of the RUL of PCBs using cumulative

damage laws [34]. A PoF-based tool has been developed for real

time prediction of RUL of PCBs exposed to thermal cycling environ-

ments [35]. The tool integrates information from sensors, PoF mod-

els, and data fusion algorithms to enable prognostics.

Using the models developed, it is possible to calculate the dam-

age accumulation and RUL for known failure mechanisms. This is

one of the advantages of model-based approaches. As the model-

based approaches take into account degradation caused by envi-

ronmental conditions such as thermal loads, humidity, vibrations,

and shock, they can be used to estimate damage in situations

where systems are in a non-operating state such as during storage

and transportation. Knowledge of failure mechanisms, along with

the monitored loads and system parameter data may allow for

identification of the nature and extent of the fault. For example,

power cycling of insulated gate bipolar transistor (IGBT) modules

leads to wire-bond and die attach fatigue that causes a change in

the collector–emitter voltage. The magnitude of change in the volt-

age is an indicator of the extent of the degradation in the compo-

nent [24,36].

Development of the models requires detailed knowledge of the

underlying physical processes that lead to system failure [20], and

in complex systems, it is difficult to create dynamic models repre-

senting the multiple physical processes occurring in the system

[22]. This is one of the limitations of model-based approaches. A

requirement of the PoF model-based approach is that system-spe-

cific knowledge, such as geometry and material composition, is

necessary but may not always be available. Further, failure models

or graph-based models are not suitable for detection of intermit-

tent system behavior as they are modeled for specific degradation

mechanisms or for the diagnosis of specific faults respectively.

Sudden changes in system parameters that characterize intermit-

tent faults are not accounted for in these models.

2.2. Data-driven prognostics approach

Data-driven techniques are used to learn from the data and

intelligently provide valuable decision-making information. They

are based on the assumption that the statistical characteristics of

the system data remain relatively unchanged until a fault occurs

in the system. Anomalies and trends or patterns are detected in

data collected by in situmonitoring to determine the state of health

2 An intermittent failure is the loss of function for a limited period of time and

subsequent recovery of the function. This ‘‘failure” may not be easily predicted.

However, an intermittent failure can be, and often is, recurrent [19]. It can lead to

diagnostic conclusions of ‘‘re-test OK” or ‘‘no-fault-found.”

318 M. Pecht, R. Jaai /Microelectronics Reliability 50 (2010) 317–323



of a system. The trends are then used to estimate the time to failure

of the system.

In this approach, in situ monitoring of environmental and oper-

ational loads and system parameters is carried out. The data col-

lected is analyzed using a variety of techniques depending on the

type of data available. For example, if data representing the healthy

and faulty states of the system are available, a supervised learning

approach is used. When data for only one class, such as the healthy

state of the system, are available, then the semi-supervised

approach is used. A third approach is the unsupervised learning

approach, which is used when no labeled data are available. Deci-

sions about the system health are typically made using assump-

tions regarding the system data. It should be noted that

employing both the supervised and semi-supervised learning tech-

niques requires reliable training data. This is important, as the clas-

sification of incoming data is dependent on the training data, and

unreliable training data will lead to errors in detection.

In addition to detection, an important aspect of data-driven ap-

proaches for PHM is prognostics. Although not as fully developed

as detection, prediction of failure has been accomplished using a

variety of techniques. The most important techniques are Markov

chains, stochastic processes and time series analysis. These tech-

niques use past history to infer the future, continually update the

prediction of RUL, and provide an estimate of the associated pre-

diction uncertainty. For example, a methodology has been devel-

oped using Markov state models of features extracted from

notebook computers to predict state transition probabilities and

times [37]. Symbolic time series analysis and Mahalanobis distance

were used for feature extraction by Kumar and Pecht [37]. Pattern

recognition algorithms and statistical techniques for early fault

detection have also been developed for computer servers [38],

[39]. Trending methods to predict the RUL of electronics have been

suggested using continuously monitored data [39]. Other applica-

tions in electronics where data-driven approaches have been used

for RUL estimation include global positioning systems [40]; avion-

ics [41]; power electronics devices (IGBTs) used in avionics [42];

and aircraft electrical power systems [43,44].

One of the advantages of data-driven approaches is that they

can be used as black-box models as they learn the behavior of

the system based on monitored data and hence do not require sys-

tem-specific knowledge. Further, data-driven approaches can be

applied to complex systems, such as computer servers and note-

books where a large number of parameters are monitored. This is

because data-driven approaches can be used to model the correla-

tion between parameters and interactions between subsystems as

well as effects of environmental parameters using in situ data from

the system. It is also possible to reduce the dimensionality of the

problem by restricting the analyses to parameters that are contrib-

uting to anomalous behavior in the system. These parameters can

be detected using methods such as principal components analysis.

Pattern recognition and statistical techniques employed in detect-

ing changes in system behavior have shown data-driven ap-

proaches to be suitable for diagnostic purposes. This attribute

makes it possible to detect sudden changes in system parameters

allowing for detection and analysis of intermittent faults.

One of the limitations of data-driven approaches lies in the

requirement of training data. Data-driven approaches depend on

historical (e.g., training) system data to determine correlations,

establish patterns, and evaluate data trends leading to failure. In

many cases, there will be insufficient historical or operational data

to obtain health estimates and determine trend thresholds for fail-

ure prognostics. This is true for example in stored, standby, and

non-operating systems, which are nevertheless subject to environ-

mental stress conditions, and in systems where failures are infre-

quent. A solution to this problem is to incorporate (or fuse)

systemmodels, such as (PoF) models, with the data-driven models.

3. R&D opportunities

This section provides a description of opportunities in PHM for

research and development that aim to integrate the model-based

and data-driven approaches to take advantage of the strengths of

each approach while overcoming their limitations. The need for

methodologies to quantify and manage uncertainty in the progno-

sis of RUL for information and electronics-rich systems is also

addressed.

3.1. A fusion prognostics approach

Fusion prognostic methodologies combine the strengths of the

model-based and data-driven approaches, in order to estimate

RUL under both operating and non-operating life cycle conditions,

detect anomalous behavior or intermittent faults, identify precur-

sors to failure for effective maintenance planning, and identify

the potential processes causing system failure and the nature and

extent of the fault for effective maintenance strategies. A fusion ap-

proach to PHM is illustrated in Fig. 1.

The first step in the process is to identify parameters that can be

monitored in situ to aid in determining the real time state of health

of the system. Environmental and system parameter data are

required to be monitored for the diagnosis and prognosis of a sys-

tem’s health in real time. The process of identifying the parameters

for monitoring can be aided by an understanding of the physical

processes that lead to system failure. FMMEA, virtual simulations,

information from maintenance records and qualification tests, or

expert knowledge can be used for identifying parameters and for

determining the relevant models for estimation of RUL. Under-

standing the physical processes occurring in the system helps in

identifying critical components, possible failure sites, failure mech-

anisms, and their effects on the system. Appropriate sensing tech-

nology is then selected for the monitoring of the chosen

parameters. The sensor data are analyzed in real time in order to

assess the current state of the system and determine its RUL using

information from data-driven techniques and physics-based

models.

Assessment of a system’s health is carried out in real time using

the in situ data and anomaly detection techniques. Knowledge of

the physical processes in the system can help in choosing the

appropriate data-driven techniques for diagnosis and prognosis.

One of the ways to implement anomaly detection is the application

of a machine-learning approach, in which the monitored data are

compared in real time against a healthy baseline to check for

anomalies. This is the semi-supervised learning approach wherein

data representing all the possible healthy states of the system are

assumed to be available a priori.

The healthy baseline consists of a collection of parameter data

that represent all the possible variations of the healthy operating

states of a system. The baseline data is collected during various

combinations of operating states and loading conditions when

the system is known to be functioning normally. The baseline

can also consist of threshold values based on specifications and

standards. It is important that the baseline data should not contain

any operational anomalies. The presence of anomalies in the base-

line affects the definition of healthy system behavior and hence

causes the misclassification of data. Misclassification leads to prob-

lems such as false indications of anomalies (false alarms) or failure

to detect anomalous behavior of the system (missed alarms).

Although healthy baseline data sets are important for machine-

learning approaches to detection, other statistical and probabilistic

approaches that rely on parametric and distributional assumptions

can also be used. In the machine-learning context, for example, dis-

tance-based similarity measures and other features can be ex-
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tracted from multidimensional data. In addition projections and

filtering of the data can also be used to extract features from the

data. Detection in the machine-learning approach is largely based

on these features. These techniques are particularly useful when

no a priori data is available to create a baseline of healthy states.

After the anomaly detection step, the parameters that contrib-

ute significantly to the anomaly are isolated. It is important to pin-

point which parameters reflect or cause changes in system

performance: they are critical in identifying and detecting system

failure. Parameter isolation can be carried out using a variety of

techniques, such as principal components analysis (PCA), least

squares (LS) estimation, expectation maximization (EM), and max-

imum likelihood estimation (MLE). Based on the information from

the parameter isolation step, the critical parameters are used to se-

lect appropriate models from the database. The parameter isola-

tion step helps determine the models most relevant to the type

of failure or degradation the system is undergoing. Physics-based

models, which use the isolated parameters as the primary inputs,

are selected in this step.

Physics-based models are used to calculate the RUL of the sys-

tem based on the environmental and parameter data along with

information such as material properties and system specifications.

Knowledge from failure mechanisms and models is also used to ex-

tract information such as failure thresholds for the measured sys-

tem parameters, failure modes, stages of degradation, and labels of

healthy and unhealthy conditions. Failure definitions can also be

obtained by referring to other sources, such as standards and

established failure criteria for the system. This input of failure def-

initions and labeling of healthy and unhealthy states from the

model-based approach is critical in the selection of appropriate

data-driven prediction methodologies for estimation of RUL. For

example, a Markov model of the failure or degradation process of

a system depends on modeling the transition of the system in

and out of various ‘‘states”. These states can, for example, be used

to model the various failure mechanisms or violations of failure

thresholds as defined by the model-based approach. In other

words, the model-based approach can identify precursors to failure

that can be used for early annunciation and prediction of system

failure.

Using the failure thresholds, methods such as time series anal-

ysis or particle filtering techniques can be applied to predict the

critical parameter values over time. The time until the parameter

crosses the failure threshold is estimated as the time to failure of

the system. Therefore, an estimate of the RUL for the system based

on the combination of information from anomaly detection,

parameter isolation, physics-based models, and data-driven tech-

niques can be calculated.

Alarms can be set off to warn the system operator of impending

failure based on the value of the RUL reported. This can provide

adequate time for repair or replacement of the system depending

on the criticality of the application.

3.2. Quantifying and managing uncertainty

While a variety of methods are being developed using both

model-based and data-driven approaches for the estimation of

RUL, one of the major challenges is dealing with prediction uncer-

tainties. Long-term prediction of RUL or time to failure increases

the uncertainty bounds due to various sources, such as measure-

ment or sensor errors, future load and usage uncertainty, model

assumptions and inaccuracies, loss of information due to data

reduction, prediction under conditions that are different from the

training data, and so on [21,22]. Decisions regarding the system

state (maintenance activities such as repair and replacement)

should therefore take into account these uncertainties. Hence,

development of methods that can be used to describe the uncer-

tainty bounds (lower and upper limits) and confidence levels for

the values falling within the confidence bounds is required. An-

other research area is uncertainty management, in which methods

to reduce the uncertainty bounds by using system data as more

data becomes available are being investigated.

There is ongoing research on both model-based approaches and

data-driven approaches to quantify and manage uncertainty. The

use of a Bayesian framework in the particle filter algorithm has

been studied to provide estimates of RUL in the form of probability

distribution functions [23]. This method is suitable when state

models of the system can be developed. A methodology for uncer-

tainty analysis in the PoF approach was developed and demon-

strated for PCBs subjected to vibration loading [45]. This method

takes into account sources such as measurement uncertainty,

parameter uncertainty, failure criteria uncertainty, and future

usage uncertainty. Other methodologies that use neural networks,

Dempster–Shafer theory, Bayesian approaches and fuzzy logic

have been suggested as a solution to the problem of uncertainty

[46,47].

4. Application of a fusion approach to electronics-rich systems

The fusion prognostics approach was implemented on an elec-

tronics system consisting of a printed circuit card assembly sub-

Fig. 1. Fusion prognostics approach.
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jected to temperature cycling conditions. The assembly consisted

of representative components such as ball grid array (BGA) pack-

ages, quad flat packages and surface mount resistors that can be

found in circuit cards of electronics systems such as computers,

avionics systems and so on.

In this case study, an FMMEA analysis determined the critical

modes and mechanisms affecting the assembly to be interconnect

fatigue due to thermal cycling resulting in open circuit. Tempera-

ture and resistance parameters therefore were critical to detect

system failure for the given loading conditions and hence were

chosen to be monitored. The BGAs were identified as the weakest

components in the system and hence, in situ monitoring of the

BGAs’ resistances and the board temperature was carried out.

The measurements were recorded once every minute.

The anomaly detection was then carried out using a data-driven

residual analysis technique. The required training data (baseline)

to model the healthy states of the system was created using ten cy-

cles of in situ data. The training data was assumed to represent the

healthy operating states of the BGA components. Using five out of

the ten cycles from the training data, a regression model was cre-

ated to capture the variation of resistance with temperature. The

model was used to estimate component resistance using observed

board temperature. The differences between the regression model

estimates and the observations of resistance were used to obtain

the residual signal. The residuals were statistically tested using

the sequential probability ratio test (SPRT) algorithm to detect

anomalies. SPRT, a statistical likelihood ratio test for anomaly

detection [38,48,49] signals alarms when it detects that the system

is statistically deviating from its normal state. The remaining five

cycles of training data were used in the regression model to calcu-

late healthy residuals to train SPRT. Following this, every test

observation was input into the model for estimation and then ana-

lyzed statistically for anomalies using SPRT. The SPRT alarms were

set off when the mean of the residuals of the resistance shifts to a

value equal to or greater than the threshold value of 0.3. Fig. 2

shows the residuals of resistance from the regression and the onset

of alarms from SPRT from the 580th cycle as the mean of the resid-

uals increased. Fig. 3 shows a blow-up of the residuals around the

582nd to 585th cycle along with the SPRT alarms. It can be seen

that the SPRT alarms are set off when the value of the residuals in-

crease thereby increasing the mean of the dataset.

Next, the parameters causing or contributing to the anomaly

need to be identified for assessment by the appropriate physics-

based model from the database. In this case study, the anomalous

behavior due to an increase in resistance was identified. But the

change in resistance was a result of cyclic temperature loads on

the system leading to thermal fatigue. Therefore, the modified Cof-

finMansonmodel for leadless components to determine the fatigue

life relationship for temperature loading [50] was selected to calcu-

late the RUL. The damage to the components and time to failure due

to the thermal cycling on the components were calculated. The

mean cycle to failure for the 256 I/O BGAs was calculated to be

1038 cycles (2750.7 h). The estimate for 10% cycles to failure was

obtained as 817 cycles using Monte-Carlo analysis. The RUL can

be calculated dynamically using the PoF model by updating the

temperature cycle profile as it ismonitored in situ. This was not nec-

essary in this case study, as the temperature profile was constant.

To calculate an estimate of RUL dynamically using data-driven

techniques, a failure threshold of 300X for the resistance parame-

ter was obtained from the IPC-SM785 standard [51]. The resistance

from the time of anomaly detection was trended to calculate the

cycles to failure based on the failure criterion for the resistance.

The value was updated with every observation of resistance col-

lected from the system. The cycles to failure was calculated at

the 601st cycle to be 620 cycles. The RUL was calculated based

on the trend from the anomaly to the defined failure threshold.

The estimates of RUL from the PoF model and the data-driven tech-

nique were then used to obtain a revised conservative RUL esti-

mate for the component. The actual failure of the component

was observed after 693 cycles.

This case study showed a step-by-step implementation of the

fusion approach to PHM. The cycles to failure estimate of 620 cy-

cles (at the 601st cycle) showed an error of 10% from the actual

time to failure of the component. The approach provided a number

of advantages such as one) determination of the parameters (resis-

tance and temperature) for in situ monitoring using FMMEA anal-

ysis, two) determination of threshold value for component failure

(resistance value of 300X) from the PoF approach to enable esti-

mation of RUL using the data-trending technique, and three) deter-

mination of the failure mechanism and possible failure site

information that can be useful in understanding the root cause of

failure. Therefore, the fusion approach enabled the determination

of RUL using data-driven techniques and provided essential infor-

mation that can be used in the root cause analysis.

5. Roadmap

The failures observed in information and electronics-rich sys-

tems such as aerospace, data servers, electrical power grids, energy

Fig. 2. SPRT alarms at 580th cycle due to increase in the mean of the residuals of

resistance. The red crosses indicate that SPRT has detected anomalies at the 580th

cycle.

Fig. 3. Zoomed in view of Fig. 2 from cycle 581 to 585 to show residuals of

resistance and SPRT alarms.
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generation equipment, and healthcare systems has led to increased

research efforts in PHM for electronics systems. Today, model-

based approaches are being developed to enable estimation of

RUL for electronic systems such as batteries, digital electronics,

navigation systems, switched-mode power supplies and printed

circuit boards subject to a variety of environmental conditions.

Similarly, data-driven approaches are also being developed for

diagnostics and prognostics of enterprise servers, navigation sys-

tems, and power systems used in avionics and hybrid vehicles.

The model-based and data-driven approaches that are currently

used in PHM have certain advantages and limitations. The model-

based approaches take into account the physical processes and fail-

ure mechanisms that occur in systems, enabling prognosis of RUL.

A limitation of this approach is that it cannot detect intermittent

failures. The data-driven approach is useful when system-specific

information is not available. The strength of this approach is diag-

nostics. This approach is capable of detecting intermittent failures,

thereby reducing no-fault-founds. The limitations of this approach

are that it is difficult to determine RUL without historical data, as

well as the lack of a standard way of establishing failure thresholds

that can be used in RUL determination. The current focus in

research, therefore, is to find a means to effectively use available

system-specific information, model-based approaches, and data-

driven diagnostic and prognostic techniques which are known as

fusion approaches to PHM.

A fusion approach enables effective use of information from

both the model-based and data-driven approaches to achieve dy-

namic prognosis of RUL. Analytical techniques such as FMMEA, vir-

tual simulations, and knowledge from maintenance records and

experts can help identify the proper parameters for in situmonitor-

ing. Understanding the physical processes and system behavior can

help in choosing the data-driven techniques for diagnosis and

prognosis. The fusion approach is capable of detecting operational

anomalies and intermittent behavior allowing analysis of the root

causes of no-fault-found errors as it uses appropriate diagnostic

(data-driven) techniques. Isolation of the parameters that contrib-

ute to the anomalous behavior is carried out using data-driven

techniques and system knowledge and leads to the identification

of the critical failure mechanisms. Based on the identification of

the critical failure mechanisms, identifying the nature and extent

of faults and failure modes is possible. RUL estimations can then

be calculated using the failure models for the critical failure mech-

anisms. System understanding can help determine failure thresh-

olds for the parameters that can be used in data-driven

techniques for RUL estimation. The fusion approach therefore pro-

vides recognition of degraded, but still functional, systems. The ap-

proach implemented in our case study on electronic assemblies

shows that the fusion of the data-driven and model-based prog-

nostic techniques can be used to effectively detect faulty behavior,

determine the critical parameters and nature of a failure and esti-

mate the RUL of the PCB assemblies. This paper uses the conserva-

tive RUL estimate from amongst the PoF model and the data-driven

technique.

Current R&D challenges in PHM for electronics-rich systems

that need to be addressed include uncertainty analysis and inves-

tigating techniques to fuse or combine estimates of RUL from var-

ious sources to provide single fused RUL values. It is important to

understand and quantify uncertainty in predictions from PHM sys-

tems for realistic decision-making. Predictions in the form of prob-

ability density functions (PDFs) will be more informative in making

maintenance and logistics decisions rather than using point esti-

mates. Challenges in uncertainty analysis lie in determining and

quantifying all the sources that contribute to prediction uncertain-

ties such as measurement noise, model uncertainties, and missing

or unavailable training data. Further, it is also necessary to investi-

gate and develop models and data-driven approaches that take

into account uncertainty in making predictions thereby providing

estimates in the form of PDFs.

In order to address the challenge in combining estimates of RUL

from model-based and data-driven approaches, it is necessary to

investigate techniques that can help in information fusion. These

techniques while providing a single output of RUL using predic-

tions from the model-based and data-driven should also take into

account uncertainty estimates from each approach. Some tech-

niques that have been suggested for fusing information based on

Dempster–Shafer regression, fuzzy set operations, and model-

based information fusion techniques. Addressing these challenges

in research will help build more robust PHM systems that can be

implemented for information and electronics-rich systems.
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