
A Program Construction and Verification Tool for

Separation Logic

Brijesh Dongol1, Victor B. F. Gomes2, and Georg Struth2

1 Department of Computer Science, Brunel University

Brijesh.Dongol@brunel.ac.uk
2 Department of Computer Science, University of Sheffield

{v.gomes,g.struth}@sheffield.ac.uk

Abstract. An algebraic approach to the design of program construction and ver-

ification tools is applied to separation logic. The control-flow level is modelled

by power series with convolution as separating conjunction. A generic construc-

tion lifts resource monoids to assertion and predicate transformer quantales. The

data domain is captured by concrete store-heap models. These are linked to the

separation algebra by soundness proofs. Verification conditions and transforma-

tion or refinement laws are derived by equational reasoning within the predicate

transformer quantale. This separation of concerns makes an implementation in

the Isabelle/HOL proof assistant simple and highly automatic. The resulting tool

is itself correct by construction; it is explained on three simple examples.

1 Introduction

Separation logic is an approach to program verification that has received considerable

attention over the last decade. It is designed for local reasoning about a system’s states

or resources, by isolating the part of a system that is affected by an action from the

remainder. This capability is provided by its separating conjunction operator together

with the frame inference rule, which makes local reasoning modular. A key application

is the verification of programs with pointers [35, 32]; but the method has also been used

for modular concurrency verification [30, 38, 6].

Separation logic is currently supported by a large number of tools, some of which

are discussed in Section 9. Implementations in higher-order interactive proof assis-

tants [40, 37, 8, 23] are particularly relevant to this article. In comparison to automated

tools or tools for decidable fragments, they can express more program properties, but

are less effective for proof search. Ultimately, an integration of these different proof

methods is desirable.

This article adds to this tool chain (and presents another implementation in the Is-

abelle/HOL theorem-proving environment [29]). However, our approach is different in

several respects. It focusses almost entirely on making the control-flow layer as simple

as possible and on separating it cleanly from the data layer. This supports the integration

of various data models and modular reasoning about these two layers, with assignment

laws providing an interface. To achieve this separation of concerns, we develop an alge-

braic approach to separation logic which aims to combine the simplicity of the original

2 Brijesh Dongol, Victor B. F. Gomes, and Georg Struth

logical approaches [32] with the abstractness and elegance of O’Hearn and Pym’s cate-

gorical logic of bunched implications [31] in a way suitable for formalisation in Isabelle.

Our approach is based on power series [15], which have found applications in formal

language and automata theory [5, 16]. Their use in the context of separation logic is a

contribution in itself.

In a nutshell, a power series is a function f : M → Q from a partial monoid M
into a quantale Q. Defining addition of power series by lifting addition pointwise from

the quantale, and multiplication as convolution

(f ⊗ g) x =
∑

x=y◦z

f y ⊙ g z,

where · acts on M , ⊙ on Q and ⊗ on QM , it turns out that the function space QM of

power series itself forms a quantale [15]. If M is commutative (a resource monoid [7])

and Q formed by the booleans B (with ⊙ as meet), one can interpret power series as

assertions or predicates over M . Separating conjunction then arises as a special case of

convolution, and, in fact, as a language product over resources. The function space BM

is the assertion quantale of separation logic. The approach generalises to power series

over program states modelled by store-heap pairs, which is needed for programming

applications.

Using lifting results for power series again, we construct the quantale-like algebraic

semantics of predicate transformers over assertion quantales in the style of boolean

algebras with operators, following a previous approach by O’Hearn and Yang [41].

We characterise the monotone predicate transformers and derive the inference rules of

Hoare logic for partial correctness (without assignment) within this subalgebra. We also

derive the frame rule of separation logic on the subalgebra of local monotone predicate

transformers. We use these rules for automated verification condition generation. For-

malising Morgan’s specification statement [27] on the transformer quantale yields tools

for program construction and refinement with a frame refinement law with minimal ef-

fort. The predicate transformer approach, instead of the more common state transformer

one [7], fits well into the power series approach and simplifies the development.

The formalisation of the algebraic hierarchy from resource monoids to predicate

transformer algebras benefits from the functional programming approach imposed by

Isabelle and its integration of automated theorem provers and SMT-solvers via the

Sledgehammer tool. These are optimised for equational reasoning, which makes the

entire development highly automatic. In addition, Isabelle’s reconstruction of proof out-

puts provided by the external tools makes our tools correct by construction.

At the data-domain level, we currently use Isabelle’s extant infrastructure for the

store, the heap and pointer-based data structures. An interface to the control-flow al-

gebra is provided by the standard assignment laws of separation logic and their refine-

ment counterparts. Isabelle’s concrete data domain models are linked formally with our

abstract separation algebra by soundness proofs. Algebraic facts are then picked up au-

tomatically by Isabelle for reasoning in the concrete model. Our verification examples

show that, at the concrete layer, proofs may require some user interaction, but an inte-

gration of domain-specific provers and solvers for the data domain is an avenue of future

work. The entire technical development has been formalised in Isabelle; all proofs have

A Program Construction and Verification Tool for Separation Logic 3

been formally verified. We therefore show only some example proofs which demon-

strate the simplicity of algebraic reasoning. The complete executable Isabelle theories

can be found online3.

2 Partial Monoids, Quantales and Power Series

This section presents the algebraic structures that underlie our approach to separation

logic. Further details on power series and lifting constructions can be found in [15].

A partial semigroup is defined as a set S with a composition · : D → S for some

D ⊆ S × S that satisfies the usual associativity law in the sense that if either side

is defined then so is the other side and both are equal [4]. A partial monoid M is an

obvious extension by an unit 1 such that x · 1 = x for all (x, 1) ∈ D and 1 · x = x for

all (1, x) ∈ D. A partial monoid M is commutative if x · y = y · x for all (x, y) ∈ D.

Henceforth · is used for a general and ∗ for a commutative multiplication.

A quantale (or standard Kleene algebra) is a structure (Q,≤, ·, 1) such that (Q,≤)
is a complete lattice, (Q, ·, 1) is a monoid and the distributivity axioms

(
∑

i∈I

xi) · y =
∑

i∈I

xi · y, x · (
∑

i∈I

yi) =
∑

i∈I

(x · yi)

hold, where
∑

X denotes the supremum of a set X ⊆ Q. Similarly, we write
d
X for

the infimum of X , and 0 for the least and U for the greatest element of the lattice. The

monotonicity laws

x ≤ y ⇒ z · x ≤ z · y, x ≤ y ⇒ x · z ≤ y · z

follow from distributivity. The two annihilation laws x · 0 = 0 = 0 · x follow from
∑

i∈∅
xi =

∑

∅ = 0. A quantale is commutative and partial if the underlying monoid

is. It is distributive if

x ⊓ (
∑

i∈I

yi) =
∑

i∈I

(x ⊓ yi), x+ (
l

i∈I

yi) =
l

i∈I

(x+ yi).

A boolean quantale is a complemented distributive quantale. The boolean quantale B

of the booleans, where multiplication coincides with join, is an important example.

We call a power series a function f : M → Q, from a partial monoid M into a

quantale Q. For f, g : M → Q and a family of functions fi : M → Q, i ∈ I we define

(f · g) x =
∑

x=y·z

f y · g z, (
∑

i∈I

fi) x =
∑

i∈I

fi x,

where y, z ∈ M . The composition f ·g is called convolution; the multiplication symbol

is often overloaded to be used on M , Q and the function space QM .

The idea behind convolution is simple: element x is split into y and z, the functions

f and g are applied in parallel to y and z to calculate the values f y and g z, and their

3 https://github.com/vborgesfer/sep-logic

4 Brijesh Dongol, Victor B. F. Gomes, and Georg Struth

results are composed to form a value for the summation with respect to all possible

splits of x.

Because x ranges over M , the constant ⊥ /∈ M is excluded as a value; undefined

splittings of x do not contribute to convolutions. In addition, (f+g) x = f x+g x arises

as a special case of the supremum. Finally, we define the power series O : M → Q and

1 : M → Q as

O = λx. 0, 1 = λx.

{

1, if x = 1,

0, otherwise.

The quantale structure lifts from Q to the function space QM of power series.

Theorem 2.1 ([15]). Let M be a partial monoid. If Q is a boolean quantale, then so is

(QM ,≤, ·, 1). If M and Q are commutative, then so is QM .

The power series approach generalises from one to n dimensions [15]. For separa-

tion logic, the two-dimensional case with power series f : S ×M → Q from set S and

partial commutative monoid M into the commutative quantale Q is needed. Now

(f ∗ g) (x, y) =
∑

y=y1∗y2

f (x, y1) ∗ g (x, y2), (
∑

i∈I

fi) (x, y) =
∑

i∈I

fi (x, y).

The convolution f ∗ g acts solely on the second coordinate. Finally, we define two-

dimensional units as

O = λx, y. 0, 1 = λx, y.

{

1, if y = 1,

0, otherwise.

Theorem 2.2 ([15]). Let S be a set and M a partial commutative monoid. If Q is a

commutative boolean quantale, then so is QS×M .

We have implemented partial monoids and quantales by using Isabelle’s type class and

locale infrastructure, building on existing libraries for monoids, quantales and complete

lattices. The implementation of power series uses Isabelle’s well developed libraries for

functions. This makes proofs in this setting simple and highly automatic.

3 Assertion Quantales

In language theory, power series have been introduced for modelling formal languages.

Here, M is the free monoid X∗ and Q can be taken as a semiring (Q,+, ·, 0, 1), be-

cause there are only finitely many ways of splitting words into prefix/suffix pairs in

convolutions. Infinite suprema in the definition of convolution are therefore not needed.

In the particular case of the boolean semiring B, where composition · is meet ⊓, power

series f : X∗ → B are interpreted as characteristic functions (i.e., predicates) that indi-

cate whether a word is in a set. In this case, sets are languages, and hence, convolution

specialises to

(f · g) x =
∑

x=yz

f x ⊓ g y,

A Program Construction and Verification Tool for Separation Logic 5

identifying predicates with their extensions to the language product

p · q = {yz | y ∈ p ∧ z ∈ q}.

More generally, we consider power series S → B from a partial monoid S into

the boolean quantale B and set up a connection with separation logic. There, one is in-

terested in modelling assertions or predicates over the memory heap. The heap can be

represented abstractly by a so-called resource monoid [7], which is a partial commu-

tative monoid. By analogy to the language case, an assertion p of separation logic is a

boolean-valued function from a resource monoid M , hence a power series p : M → B.

Thus Theorem 2.1 applies.

Corollary 3.1. The assertions BM over resource monoid M form a commutative boo-

lean quantale with convolution as separating conjunction.

The logical structure of the assertion quantale BM is as follows. The predicate O is a

contradiction whereas 1 holds of the empty resource 1 and is false otherwise. The oper-

ations
∑

and
d

correspond to existential and universal quantification; their finite cases

yield conjunctions and disjunctions. The order ≤ is implication. Convolution becomes

(p ∗ q) x =
∑

x=y∗z

p y ⊓ q z,

and it gives a simple algebraic account of separating conjunction. By x = y∗z, resource

x is separated into resources y and z. By p y ⊓ q z, the value of predicate p on y is

conjoined with that of q on z. Finally, the supremum is true if one of the conjunctions

holds for some splitting of x.

As for languages, one can again identify predicates with their extensions. Then

p ∗ q = {y ∗ z ∈ M | y ∈ p ∧ z ∈ q},

and separating conjunction becomes a language product over resources (cf. [21]). The

analogy to language theory is even more striking when considering the paradigmatic

kind of resource: multisets or Parikh vectors over a finite set X . These form the free

commutative monoids over X .

Applications of separation logic, however, require program states which are store-

heap pairs. Now Theorem 2.2 applies.

Corollary 3.2. The assertions BS×M over set S (the store) and resource monoid M
form a commutative boolean quantale with convolution as separating conjunction. For

all p, q : S ×M → B, s ∈ S and h ∈ M ,

(p ∗ q) (s, h) =
∑

h=h1∗h2

p (s, h1) ⊓ q (s, h2).

Written in language-product style, therefore,

p ∗ q = {(s, h1 ∗ h2) ∈ S ×M | (s, h1) ∈ p ∧ (s, h2) ∈ q}.

6 Brijesh Dongol, Victor B. F. Gomes, and Georg Struth

The definition of convolution and the associated lifting is obviously flexible enough to

encompass situations where pairs are extended to tuples or where the store as well as the

heap are split by convolution. Isabelle also supports uncurried representations of such

tuples and translations between them. The constructive functional approach of power

series is very convenient for the functional programming style of Isabelle.

Quantales carry a rich algebraic structure. Their distributivity laws give rise to conti-

nuity or co-continuity properties. Therefore, many functions constructed from the quan-

tale operations have adjoints as well as fixpoints, which can be iterated to the first limit

ordinal. This is well known in denotational semantics and important for our approach

to program verification. In particular, separating conjunction ∗ distributes over arbitrary

suprema in BM and BS×M and therefore has an upper adjoint: the magic wand opera-

tion −∗ , which is widely used in separation logic. In the quantale setting, the adjunction

gives us theorems for the magic wand for free. This and other residuals that arise on the

assertion quantale of separation logic have been studied, for instance, in [9].

One can think of the power series approach to separation logic as a simpler ac-

count of the category-theoretical approach in O’Hearn and Pym’s logic of bunched

implication [31] in which convolution generalises to coends and the quantale lifting

is embodied by Day’s construction [12]. For the design of verification tools and our

implementation in Isabelle, the simplicity of the power series approach is certainly an

advantage.

4 Predicate Transformer Quantales

Our algebraic approach to separation logic is based on predicate transformers (cf. [3]).

This is in contrast to most previous state-transformer-based approaches and implemen-

tations [7, 23, 37], with [41, 20] being exceptions. First of all, predicate transformers are

more amenable to algebraic reasoning [3]—simply because their source and target types

are both at powerset level. Second, the approach is coherent and easily implementable

within our framework. Predicate transformers can be seen once more as power series

and instances of Theorem 2.1 describe their algebras.

A state transformer fR : A → 2B is often associated with a relation R ⊆ A × B
from set A to set B by defining

fR a = {b | (a, b) ∈ R}.

It can be lifted to a function 〈R〉 : 2A → 2B defined by

〈R〉X =
⋃

a∈X

fR a

for all X ⊆ A. More importantly, state transformers are lifted to predicate transformers

[R] : 2B → 2A by defining

[R] Y = {x | fR x ⊆ Y }

for all Y ⊆ B. The modal box and diamond notation is justified by the correspondence

between diamond operators and Hoare triples as well as box operators and weakest

A Program Construction and Verification Tool for Separation Logic 7

liberal precondition operators in the context of modal semirings and modal Kleene al-

gebras [26]. In fact we obtain the adjunction

〈R〉X ⊆ Y ⇔ X ⊆ [R]Y

from the above definitions.

Predicate transformers in (2A)2
B

form complete distributive lattices [3]. In the

power series setting, this follows from Theorem 2.1 in two steps, ignoring the monoidal

structure. Since B forms a complete distributive lattice, so do 2B ∼= BB and 2A ∼= BA

in the first step, and so does (2A)2
B

in the second one.

In addition, predicate transformers in (2A)2
A

form a monoid under function com-

position with the identity function as the unit. Such predicate transformers form a

distributive near-quantale, which is a quantale such that the left distributivity law,

x · (
∑

i∈I yi) =
∑

i∈I(x · yi), need not hold. The monotone predicate transformers

in (2A)2
A

, which satisfy p ≤ q ⇒ f p ≤ f q, form a distributive pre-quantale [3],

which is a near-quantale in which the left monotonicity law, x ≤ y ⇒ z · x ≤ z · y,

holds. In these cases, the monoidal parts of the lifting are not obtained with the power

series technique. The monoidal operation on predicate transformers is function compo-

sition and not convolution. Of course it is associative and the identity function is a unit

of composition.

Adapting these results to separation logic requires the consideration of assertion

quantales BM or BS×M with store S and resource monoid M instead of the power-

set algebra over a set A. Instead of lifting these quantales, we only lift their boolean

algebra reduct, disregarding separation conjuction by not lifting it to a convolution on

predicate transformers, which is not needed for separation logic. The quantale structure

of predicate transformers is again obtained by considering function composition as the

monoidal operation. This yields the following result.

Theorem 4.1. Let S be a set, M a resource monoid and BS×M an assertion quantale.

The monotone predicate transformers over BS×M form a distributive pre-quantale.

The proof consists of showing that the predicate transformers over BS×M form a near

quantale and checking that the monotone predicate transformers form a subalgebra of

this near-quantale. In fact, the unit predicate transformer has to be monotone—which

is the case—and the quantale operations of suprema, infima and composition have to

preserve monotonicity. This is implied by properties such as

[R ∪ S] = [R] ⊓ [S], [R;S] = [R] · [S] = λx. [R] ([S] x).

Monotone predicate transformers can be used to derive the standard inference rules

of Hoare logic as verification conditions (Section 5) and the usual rules of Morgan’s re-

finement calculus (Section 6). Derivation of the frame rule of separation logic, however,

requires a smaller class of predicate transformers defined as follows.

A state transformer f is local [7] if

f (x ∗ y) ≤ (f x) ∗ {y}

8 Brijesh Dongol, Victor B. F. Gomes, and Georg Struth

whenever x ∗ y is defined. Intuitively, this means that the effect of such a state trans-

former is restricted to a part of the heap; see [7] for further discussion. Analogously,

and similarly to [20], we call a predicate transformer F local if

(F p) ∗ q ≤ F (p ∗ q).

It is easy to show that the two definitions are compatible.

Lemma 4.2. State transformer fR is local iff predicate transformer [R] is local.

The final theorem in this section establishes the local monotone predicate trans-

formers as a suitable algebraic framework for separation logic.

Theorem 4.3. Let S be a set and M a resource monoid. The local monotone predicate

transformers over the assertion quantale BS×M form a distributive pre-quantale.

The fact that the local monotone predicate transformers form a complete lattice has been

observed previously [41]. Once again it must be checked that the zero predicate trans-

former is local—which is the case—and that the quantale operations preserve locality

and monotonicity.

We have implemented the whole approach in Isabelle; all theorems have been for-

mally verified, mainly using Theorem 2.1 for the lifting to predicate transformers. Apart

from the local case, ours is not the first Isabelle formalisation of predicate transformers;

it is based on previous work by Preoteasa [34].

5 Verification Conditions

The pre-quantale of local monotone predicate transformers supports the derivation of

verification conditions by equational reasoning. A standard set of such conditions are

the inference rules of Hoare logic. For sequential programs, Hoare logic provides one

inference rule per program construct, and these can be applied by and large in non-

deterministic fashion to simple while-programs. This suffices to eliminate the control

structure of a program and generate verification conditions at the data level.

The quantale setting also guarantees that the finite iteration F ∗ of a predicate trans-

former is well defined. Writing skip for the quantale unit (the identity function) we

obtain the greatest fixpoint laws

skip ⊓ F · F ∗ = F ∗, G ≤ H ⊓ F ·G ⇒ G ≤ F ∗ ·H,

skip ⊓ F ∗ · F = F ∗, G ≤ H ⊓G · F ⇒ G ≤ H · F ∗,

from the explicit definition

F ∗ =
l

i∈N

F i

by iteration to the first infinite ordinal where F 0 = skip and Fn+1 = F · Fn, as

usual. This supports a shallow algebraic embedding of a simple while language with

the standard intermediate language for the verification of while-programs.

A Program Construction and Verification Tool for Separation Logic 9

First we lift predicates to predicate transformers [3]:

[p] = λq. p+ q,

where p denotes the boolean complement of p. With predicates modelled as relational

subidentities, this definition is justified by the lifting from the previous section: (s, s) ∈
[p] q iff (s, s) ∈ p ⇒ (s, s) ∈ q.

Second, we change notation to use descriptive while program syntax for predicate

transformers. We now write ; for function composition, and we encode the algebraic

semantics of conditionals and while loops as

if p then F else G fi = [p] · F ⊓ [p] ·G,

while p do F od = ([p] · F)∗ · [p].

Third, we provide the usual assertions notation for programs via Hoare triple syntax:

{p} F {q} ⇔ p ≤ F q.

Box notation shows that

{p} [R] {q} ⇔ p ≤ [R]q

for relational program R. Thus [R]q = wlp(R, q) is the well-known weakest liberal

precondition of program R and postcondition q. This encoding is standard in the context

of Kleene algebras with domain [26]. It also explains our slight abuse of relational or

imperative notation for predicate transformers: e.g. we write [R]; [S] instead of [R] · [S]
because the latter expression is equal to [R;S], as indicated in the previous section.

Proposition 5.1. Let p, q, r, p′, q′ ∈ BS×M be predicates. Let F,G,H be monotone

predicate transformers over BS×M , with H being local. Then the rules of propositional

Hoare logic (no assignment rule) and the frame rule of separation logic are derivable.

p ≤ q ⇒ {p} skip {q},

p ≤ p′ ∧ q′ ≤ q ∧ {p′} F {q′} ⇒ {p} F {q},

{p} F {r} ∧ {r} G {q} ⇒ {p} F ;G {q},

{p ⊓ r} F {G} ∧ {p ⊓ r} G {q} ⇒ {p} if r then F else G fi {q},

{p ⊓ q} F {p} ⇒ {p} while q do F od {b ⊓ p},

{p} H {q} ⇒ {p ∗ r} H {q ∗ r}.

Proof. We derive the frame rule as an example. Suppose p ≤ H q. Then, by isotonicity

of ∗ and locality, p ∗ r ≤ (H q) ∗ r ≤ H(q ∗ r). ⊓⊔

The remaining derivations are just as simple and fully automatic in Isabelle. In fact,

these laws can be derived within the predicate transformer quantale [26, 20], but prag-

matically, in the context of verification condition generation, this abstraction leads to

less applicable Isabelle tactics.

Beyond the simple fixpoints studied in this section, the quantale setting guarantees

the existence of least fixpoints of arbitrary monotone functions. A verification condition

10 Brijesh Dongol, Victor B. F. Gomes, and Georg Struth

for parameterless recursive procedures can therefore be derived as well, supporting the

verification of more general recursive programs. A Hoare logic for recursive imperative

programs has already been implemented in the quantale setting in Isabelle4, however, it

remains to be combined with the assertion quantale of separation logic.

6 Refinement Laws

To demonstrate the power of the predicate transformer approach to separation logic we

now outline its applicability to local reasoning in program construction and transfor-

mation. We show that the standard laws of Morgan’s refinement calculus [27] plus an

additional framing law for resources can be derived and programmed in Isabelle with

little effort. It only requires defining one single additional concept—Morgan’s specifi-

cation statement—which is definable in every predicate transformer quantale.

Formally, for predicates p, q ∈ BS×M , we define the specification statement as

[[p, q]] =
∑

{F | p ≤ F q}.

It models the most general predicate transformer or program that links postcondition q
with precondition p. It is easy to see that

{p} F {q} ⇔ F ≤ [[p, q]],

which entails the characteristic properties

{p} [[p, q]] {q}, {p} F {q} ⇒ F ≤ [[p, q]]

of the specification statement: program [[p, q]] relates precondition p with postcondition

q whenever it terminates; and it is the largest program with that property. It is easy to

check that specification statements over the pre-quantale of local monotone predicate

transformers are themselves local and monotone.

Like Hoare logic, Morgan’s basic refinement calculus provides one refinement law

per program construct. Once more we ignore assignments at this stage. We also switch

to standard refinement notation with refinement order ⊑ being the converse of ≤.

Proposition 6.1. For p, q, r, p′, q′ ∈ BS×M , and predicate transformer F the following

refinement laws are derivable in the algebra of local monotone predicate transformers.

p ≤ q ⇒ [[p, q]] ⊑ skip,

p′ ≤ p ∧ q ≤ q′ ⇒ [[p, q]] ⊑ [[p′, q′]],

[[p, q]] ⊑ [[p, r]]; [[r, q]],

[[p, q]] ⊑ if b then [[b ⊓ p, q]] else [[b ⊓ p, q]] fi,

[[p, b ⊓ p]] ⊑ while b do [[b ⊓ p, p]] od,

[[p ∗ r, q ∗ r]] ⊑ [[p, q]],

[[0, 1]] ⊑ F,

F ⊑ [[1, 0]].

4 http://www.dcs.shef.ac.uk/˜victor/verification

A Program Construction and Verification Tool for Separation Logic 11

Proof. Using the frame rule, we derive the framing law, the sixth law in Proposition 6.1,

as an example:

{p} [[p, q]] {q} ⇒ {p ∗ r} [[p, q]] {q ∗ r} ⇔ [[p ∗ r, q ∗ r]] ⊑ [[p, q]].

The first step uses the frame rule from Proposition 5.1, the second one the Galois con-

nection for the specification statement. The proofs of the other refinement laws are

equally simple, using the corresponding Hoare rules in their proofs. They are fully au-

tomatic in Isabelle. A refinement law for recursive programs can be derived as well. ⊓⊔

The entire theory hierarchy discussed so far, from partial monoids to predicate trans-

former quantales, has been formalised in modular fashion as algebraic components in

Isabelle/HOL, much of which was highly automatic and required only a moderate ef-

fort. It benefits, to a large extent, from Isabelle’s integrated first-order theorem proving,

SMT-solving and counterexample generation technology. These tools are highly opti-

mised for equational reasoning, interacting efficiently with the algebraic layer.

7 Data Domain Integration

This section describes the integration of the data domain layer into our Isabelle tools for

program construction and verification. It uses an important Isabelle feature, namely that

the mathematical structures formalised in Isabelle are all polymorphic. We can there-

fore instantiate the abstract algebras for the control flow with various concrete models

by soundness proofs, that is, quantales with predicate transformers, predicate trans-

formers with binary relations and functions which update program states. In particular,

abstract resource monoids are linked with various concrete models for resources, in-

cluding store-heap pairs.

Our data domain integration can build on excellent Isabelle libraries and decades-

long experience in reasoning with functions and relations, all sorts of data structures and

data types. In particular, for program construction and verification with separation logic,

Isabelle already provides support for reasoning with pointers and the heap [25, 40]. This

is predominantly based on set theory.

As previously mentioned, program states in separation logic are store-heap pairs

(s, h). Program stores are implemented in Isabelle as records of program variables,

each of which has a retrieve and an update function. On the one hand, this approach is

polymorphic and supports variables of any Isabelle type. For instance, Isabelle’s built-

in list data type and list libraries can be used to reason about list-based programs. On

the other hand, Isabelle records are static, which makes it difficult to accommodate dy-

namic features such as variable scoping, as considered in the framing laws of Morgan’s

refinement calculus.

Heaps have been modelled in Isabelle as partial functions on N [25, 40]; they there-

fore have type nat → nat option.

We implement assignments first as functions from states to states,

(‘x := e) = λ(s, h). (x update s e, h),

12 Brijesh Dongol, Victor B. F. Gomes, and Georg Struth

where ‘x is a program variable, x update the update function for ‘x, (s, h) a state and

e an evaluated expression of the same type as ‘x.

Next, we implement the typical commands for heap manipulation of separation

logic. For heap allocation, we use Hilbert’s ε operator, where ε x. P x denotes some x
such that P x provided it exists. Heap allocation is then programmed as

(‘x := cons e) = λ(s, h). let n = ε y. (∀x ∈ dom h. x < y)

in (x update s n, h[n 7→ e]),

where dom h is the domain of the heap h, expression e is of natural number type,

and h[n 7→ e] maps n to e and is the same as h for all other parameters, namely,

h[n 7→ e] = λm. if m = n then e else h(m). In a similar fashion, we implement

deallocation and mutation as

(dispose e) = λ(s, h). (s, h[e := None]),

(@e := e′) = λ(s, h). (s, h[e 7→ e′]),

where the expressions e and e′ evaluate to natural numbers and h[e := None] removes

e from the domain of h.

We lift these atomic commands to predicate transformers as

[f] = λq. q · f,

where · denotes function composition, as usual. This definition is consistent with the

definition of lifting in Section 4. As previously, we generally do not write the lifting

brackets explicitly, identifying program pseudocode with predicate transformers to sim-

plify verification notation. It then remains to show that these atomic commands are local

and monotonic.

With this infrastructure in place we can prove Hoare’s assignment rule and Reynolds’

local axioms for allocation, deallocation and mutation of separation logic [35] in the

concrete heap model. We write q[e/‘x] for the substitution of variable ‘x by expres-

sion e in q, write e 7→ e′ for the singleton heap mapping e to e′, write e 7→ − for the

singleton heap mapping e to any value, and write emp for the empty heap.

Proposition 7.1. Suppose p ≤ q[e/‘x] holds. Then the following local rules are deriv-

able in the store-heap model:

{p} ‘x := e {q},

{emp} ‘x := cons e {‘x 7→ e},

{e 7→ −} dispose e {emp},

{e 7→ −} @e := e′ {e 7→ e′}.

Variants of these rules can easily be derived. For example, global rules, obtained

by a simple application of the frame rule, emphasise that anything in the heap different

from the mutated location is left unchanged:

{r} ‘x := cons e {(‘x 7→ e) ∗ r},

{(e 7→ −) ∗ r} dispose e {r},

{(e 7→ −) ∗ r} @e := e′ {(e 7→ e′) ∗ r}.

A Program Construction and Verification Tool for Separation Logic 13

Applying the weakening rule and the identity p ∗ (p −∗ q) ≤ q yields another global

mutation rule for backward reasoning, which is more suitable for automation

{(e 7→ −) ∗ ((e 7→ e′)−∗ q)} @e := e′ {q}.

Note that the magic wand operation −∗ has been discussed briefly at the end of Sec-

tion 3. The resulting set of control-flow and data-domain inference rules for separation

logic allows us to program the Isabelle proof tactic hoare, which generates verification

conditions automatically and eliminates the entire control structure when the invariants

of while loops are annotated.

One can also use the assignment rules to derive their refinement counterparts:

p ≤ q[e/‘x] ⇒ [[p, q]] ⊑ (‘x := e),

q′ ≤ q[e/‘x] ⇒ [[p, q]] ⊑ [[p, q′]]; (‘x := e),

p′ ≤ p[e/‘x] ⇒ [[p, q]] ⊑ (‘x := e); [[p′, q]].

The second and third laws are called the following and leading refinement law for as-

signments [27]. They are useful for program construction. We have derived analogous

laws for heap allocation, deallocation and mutation. We have also programmed the tac-

tic refinement, which automatically tries to apply all the rules of this refinement calculus

in construction steps of pointer programs.

8 Examples

To show our approach at work, we present three examples, among them the obligatory

correctness proof of the classical in situ linked-list reversal algorithm. The post-hoc

verification of this algorithm in Isabelle has been considered before [25, 40]. However,

we follow Reynolds [35], who gave an informal annotated proof, and reconstruct his

proof step-by-step in refinement style. As usual for verification with interactive theorem

provers, functional specifications are related to imperative data structures. The former

are defined recursively in functional programming style and hence amenable to proof by

induction. Such detailed functional specifications of data structures used in separation

logic are usually not amenable to pure first-order reasoning and therefore beyond the

scope of first-order tools such as SMT solvers.

First, we define two inductive predicates on the heap. The first one creates a con-

tiguous heap from a position e using Isabelle’s functional lists as its representation, i.e.,

by induction on the structure of the list,

e [7→] [] = emp,

e [7→] (t#ts) = (e 7→ t) ∗ (e+ 1 [7→] ts),

where [] denotes the empty list, t#ts denotes concatenation of element t with list ts,

e 7→ t is again a singleton heap predicate and emp states that the heap is empty.

The second predicate indicates whether a heap, starting from position i, contains

the linked list represented as a functional list:

list i [] = (i = 0) ∧ emp,

list i (j#js) = (i 6= 0) ∧ (∃k. i [7→] [j, k] ∗ list k js).

14 Brijesh Dongol, Victor B. F. Gomes, and Georg Struth

This is Reynolds’ definition; it uses separating conjunction instead of plain conjunction.

Example 1: Constructing a linked list reversal algorithm. We reconstruct Reynolds’

classical proof relative to the standard recursive function rev for functional list reversal.

The initial specification statement is

[[list ‘i A0, list ‘j (rev A0)]],

where A0 is the input list and ‘i and ‘j are pointers to the head of the list on the heap.

The main idea behind Reynolds’ proof is to split the heap into two lists, initially A0

and an empty list, and then iteratively swing the pointer of the first element of the first

list to the second list. The full proof is shown in Figure 1; we now explain its details.

In (1), we strengthen the precondition, splitting the heap into two lists A and B, and

inserting a variable ‘j initially assigned to 0 (or null). The equation

(rev A0) = (rev A) @ B

then holds of these lists, where @ denotes the append operation on linked lists. Justi-

fying this step in Isabelle requires calling the refinement tactic from Section 6, which

applies the leading law for assignment. This obliges us to prove that the lists A and B
de facto exist, which is discharged automatically by calling Isabelle’s force tactic. In

fact, 8 out of the 10 proof steps in our construction are essentially automatic: they only

require calling refinement followed by Isabelle’s force or auto provers.

The new precondition generated then becomes the loop invariant of the algorithm.

It allows us to refine our specification statement to a while loop in step (2), where

we iterate ‘i until it becomes 0. Calling the refinement tactic applies the while law for

refinement. From step (3) to (10), we refine the body of the while loop and do not

display the outer part of the program.

Because now ‘i 6= 0, the list A has at least an element a. We can thus expand the

definition of list in step (3). Next, we assign the value pointed to by ‘i + 1 to ‘k—our

first list now starts at ‘k and ‘i points to [a, ‘k]. Isabelle then struggles to discharge the

generated proof goal automatically. In this predicate, the heap is divided in three parts.

One needs to prove first that ‘i+1 really points to the same value when considering just

the first part of the heap or the entire heap. After that, the proof is automatic.

Step (5) performs a mutation on the heap, changing the cell ‘i+1 to ‘j, consequently

‘i now points to [a, ‘j]. Because ∗ is commutative, we can strengthen the precondition

accordingly in step (6). We now work backwards, folding the definition of list in step

(7) and removing the existential of a in step (8). This step again requires interaction: we

need to indicate to Isabelle how to properly split the heap. This amounts to finding the

right summand in the convolution expressing separating conjunction, or alternatively

finding the existential split in the corresponding logical formulation. Last, to establish

the invariant, we only need to swap the pointers ‘j to ‘i and ‘i to ‘k in steps (9) and

(10). The resulting algorithm is highlighted in Figure 1 and shown in Figure 2. ⊓⊔

Example 2: Verifying a list deallocation algorithm. We verify an algorithm for list

deallocation in a post-hoc fashion. It has been annotated in the standard way by a pre-

condition, a postcondition and a loop invariant. The latter simply states that there exists

A Program Construction and Verification Tool for Separation Logic 15

[[list ‘i A0, list ‘j (rev A0)]]
⊑ (1)

‘j := 0;
[[∃A B. (list ‘i A ∗ list ‘j B) ∧ (rev A0) = (rev A) @ B, list ‘j (rev A0)]]
⊑ (2)

‘j := 0;
while ‘i 6= 0 do

[[(∃A B. (list ‘i A ∗ list ‘j B) ∧ (rev A0) = (rev A) @ B) ∧ ‘i 6= 0,

∃A B. (list ‘i A ∗ list ‘j B) ∧ (rev A0) = (rev A) @ B]]
od

[[(∃A B. (list ‘i A ∗ list ‘j B) ∧ (rev A0) = (rev A) @ B) ∧ ‘i 6= 0,

∃A B. (list ‘i A ∗ list ‘j B) ∧ (rev A0) = (rev A) @ B]]
⊑ (3)

[[(∃a A B k. (‘i [7→] [a,k] ∗ list k A ∗ list ‘j B) ∧ (rev A0) = (rev (a#A)) @ B) ∧ ‘i 6= 0,

∃A B. (list ‘i A ∗ list ‘j B) ∧ (rev A0) = (rev A) @ B]]
⊑ (4)

‘k := @(‘i + 1);
[[(∃a A B. (‘i [7→] [a,‘k] ∗ list ‘k A ∗ list ‘j B) ∧ (rev A0) = (rev (a#A)) @ B) ∧ ‘i 6= 0,

∃A B. (list ‘i A ∗ list ‘j B) ∧ (rev A0) = (rev A) @ B]]
⊑ (5)

‘k := @(‘i + 1);
@(‘i + 1) := ‘j;
[[(∃a A B. (‘i [7→] [a,‘j] ∗ list ‘k A ∗ list ‘j B) ∧ (rev A0) = (rev (a#A)) @ B) ∧ ‘i 6= 0,

∃A B. (list ‘i A ∗ list ‘j B) ∧ (rev A0) = (rev A) @ B]]
⊑ (6)

‘k := @(‘i + 1);
@(‘i + 1) := ‘j;
[[(∃a A B. (list ‘k A ∗ ‘i [7→] [a,‘j] ∗ list ‘j B) ∧ (rev A0) = (rev (a#A)) @ B) ∧ ‘i 6= 0,

∃A B. (list ‘i A ∗ list ‘j B) ∧ (rev A0) = (rev A) @ B]]
⊑ (7)

‘k := @(‘i + 1);
@(‘i + 1) := ‘j;
[[(∃a A B. (list ‘k A ∗ list ‘i (a#B)) ∧ (rev A0) = (rev A) @ (a#B)) ∧ ‘i 6= 0,

∃A B. (list ‘i A ∗ list ‘j B) ∧ (rev A0) = (rev A) @ B]]
⊑ (8)

‘k := @(‘i + 1);
@(‘i + 1) := ‘j;
[[(∃A B. (list ‘k A ∗ list ‘i B) ∧ (rev A0) = (rev A) @ B) ∧ ‘i 6= 0,

∃A B. (list ‘i A ∗ list ‘j B) ∧ (rev A0) = (rev A) @ B]]
⊑ (9)

‘k := @(‘i + 1);
@(‘i + 1) := ‘j;
‘j := ‘i;
[[(∃A B. (list ‘k A ∗ list ‘j B) ∧ (rev A0) = (rev A) @ B) ∧ ‘i 6= 0,

∃A B. (list ‘i A ∗ list ‘j B) ∧ (rev A0) = (rev A) @ B]]
⊑ (10)

‘k := @(‘i + 1);
@(‘i + 1) := ‘j;
‘j := ‘i;
‘i := ‘k

Fig. 1. In situ list reversal by refinement. The first block shows the refinement up to the introduc-

tion of the while-loop. The second block shows the refinement of the body of that loop.

16 Brijesh Dongol, Victor B. F. Gomes, and Georg Struth

[[list ‘i A0, list ‘j (rev A0)]]
⊑

‘j := 0;
while ‘i 6= 0 do

‘k := @(‘i + 1);
@(‘i + 1) := ‘j;
‘j := ‘i;
‘i := ‘k

od

Fig. 2. In situ reversal list algorithm

a list xs starting from the pointer ‘x while ‘x is not equal to 0. The Isabelle code is

shown in Figure 3. Calling the hoare tactic generates several verification conditions for

the data domain, which are easily discharged by auto and other Isabelle proof tools.

⊓⊔

lemma list-dealloc: ⊢ {| list ‘x xs |}
while ‘x 6= 0

inv {| ∃ xs. list ‘x xs |}
do

‘y := ‘x;
‘x := @(‘x + 1);
dispose ‘y;
dispose (‘y + 1)

od

{| emp |}
apply hoare

apply (auto simp: mono-def dispose-comm-def list-i-null, frule list-i-not-null-var)
by (auto simp: is-singleton-def , auto intro!: list-cong-ex heap-div-the heap-ortho-div2)

Fig. 3. List deallocation algorithm

Example 3: Explicit application of the frame rule. The frame rule is hidden as part

of the global mutation rule in Example 1 and is not required in Example 2. Therefore

we present a third (somewhat artificial) example designed to demonstrate its use. The

following Isabelle code fragment shows the Hoare triple used for verification.

{ x [7→] [-, j] ∗ list j as } @x := a { x [7→] [a, j] ∗ list j as }

Calling the hoare tactic for verification condition generation was sufficient for prov-

ing the correctness of this simple example automatically. Internally, the frame and the

global mutation rule have been applied. ⊓⊔

In addition, we have performed a post-hoc verification of the list reversal algorithm

(Figure 1) using two different approaches. The first, previously taken by Weber [40],

uses Reynolds’ list predicate, as we have used it in the above refinement proof. The

A Program Construction and Verification Tool for Separation Logic 17

second follows Nipkow in using separating conjunction in the pre- and postcondition,

but not in the definition of the list predicate. Since our approach is modular with respect

to the underlying data model, it was straightforward to replay Nipkow’s proof in our

setting. The degree of proof automation with our tool is comparable to Nipkow’s proof.

In summary, our approach supports the program construction and verification of

pointer-based programs with separation logic, but larger case studies need to be per-

formed to assess the performance of our tool. The algebraic approach has been used,

apart from soundness proofs and the certification of the tool itself, predominantly in the

derivation and implementation of tactics for program construction and verification. In

the future, a Sledgehammer-style integration of optimised provers and solvers for the

data level seems desirable for increasing the general degree of automation. This can be

obtained, first of all, by integrating decision procedures for data types and data struc-

tures in Isabelle. Alternatively, it is sometimes possible to represent such data structures

algebraically and use automated reasoning for their analysis. Dang and Möller [10],

for instance, have shown how pointer structures with a generalised notion of separat-

ing conjunction can be modelled within modal Kleene algebras. Implementing this ap-

proach in Isabelle seems promising.

9 Related Work

This section discusses two main lines of related work: tool support for separation logic

and similar algebraic approaches.

Numerous tools supporting separation logic have been created for various purposes.

Some tools (e.g., Predator [17], JStar [14] and VeriFast [36]) are able to reason auto-

matically about shape properties of real-word programming languages like C and Java.

These are often highly optimised by using decision procedures and SMT solver at the

data domain level. However, soundness of these tools is not guaranteed as they have

not been verified relative to a small core, as provided by an LCF-style proof assistant

such as Isabelle/HOL. Additionally, these tools have different degrees of interactivity

and generally do not allow the user to prove any remaining verification conditions by

interactively; they also cannot deal with higher-order aspects of data types and the store.

Other verification tools have been built on top of proof assistants such as Coq or

Isabelle/HOL. These are generally less automatic, but allow more precise properties of

the store and heap to be proved. Smallfoot [37], for example, has been implemented

within HOL4; it supports concurrent separation logic in an approach based on [7]. Sev-

eral formalisations of separation logic have been obtained in Coq, of which YNot [8]

seems to provide the highest level of proof automation. Formalisations in Isabelle/HOL

include that of Kolanski and Klein [23], which is targeted towards a subset of C, and

Weber [40], which uses a shallow embedding of a simple imperative language similar to

ours, but without allocation and deallocation laws. None of these tools has a lightweight

middle layer formed by an algebraic semantics, which provides more modularity and

flexibility when changing the programming language, logic or even the semantics. In

particular, none of these tools supports program construction and refinement.

An early algebraic approach to separation logic is O’Hearn and Pym’s logic of

bunched implication, which describes the assertion quantale of separation logic in a

18 Brijesh Dongol, Victor B. F. Gomes, and Georg Struth

category-theoretic setting [31]. Another source of inspiration is the abstract separation

logic of Calgagno, O’Hearn and Yang [7], where the role of the resource monoid, the

power set lifting to an assertion algebra, and the role of locality for deriving the frame

rule have been elaborated within a state transformer approach. Our predicate trans-

former approach based on convolution seems conceptually simpler; it is certainly more

suitable for implementation. Aspects of predicate transformers and the role of locality

have also been investigated in [20], but a coherent approach has not been developed.

The assertion quantale structure of separation logic has also been observed by Dang,

Höfner and Möller [9], and several subclasses of assertions are studied by these authors.

In addition, a relational characterisation of separating conjunction is given, and a so-

called frame property, which seems similar to locality, is used for deriving the frame

rule in an approach based on Kleene algebra with tests [24] and a relational semantics.

The precise relationship to the approach of [7] remains to be explored. It seems to be

conceptually more involved and less straightforward to implement in Isabelle than ours.

Using ideas from concurrent Kleene algebra [21, 20], Dang and Möller have extended

their approach to concurrent separation logic [11] with a relational semantics that seems

compatible with our predicate transformer approach. This might support an extension

of our formalisation to separation-based concurrency verification.

Another approach to concurrency verification is the Views framework [13, 39],

which aims to provide a metatheory consisting of several parameters. Specific instan-

tiations of these parameters gives rise to formalisms such as Owicki-Gries [33] and

rely/guarantee [22]. One of the parameters of the Views framework is a resource semi-

group or monoid, which supports the parallel or concurrent application of predicates to

a resource, as in [21]. However, there is no coherent algebraic approach and more in-

teresting algebraic structures, such as quantales, are never explored. Instead, reasoning

proceeds by using the operational semantics of their simple language, and hence, the

approach, and even the aims, of the Views framework differ significantly from ours.

Finally, we could have adapted modal Kleene algebra [26], which has already been

formalised in Isabelle [19], to program our predicate transformer approach. We could

have defined this algebra over the assertion quantale instead of the usual boolean al-

gebra, with the definition of locality (Section 4) providing the interaction of separat-

ing conjunction with the modal box operator. In practice, however, this leads to more

complex and less automatic Isabelle proofs due to the increased distance between the

abstract algebraic level and the concrete store-heap model. An optimisation is left for

future work.

10 Conclusion

A principled approach to the design of program verification and construction tools for

separation logic with the Isabelle theorem proving environment has been presented. The

general approach has been used previously for implementing tools for the construction

and verification of simple while programs [2] and rely-guarantee based concurrent pro-

grams [1]. It aims at a clean separation of concerns between the control flow and the

data domain of programs and focusses on developing a lightweight algebraic layer from

which verification conditions or transformation and refinement laws can be developed

A Program Construction and Verification Tool for Separation Logic 19

by simple equational reasoning. Previously, in the case of while programs, this layer has

been provided by Kleene algebras with tests; in the rely-guarantee case, new algebraic

foundations based on concurrent Kleene algebras were required.

Our approach to separation logic is a conceptual reconstruction of separation logic

beyond a mere implementation as well, which forms a contribution in its own right.

To make an Isabelle implementation as small, automatic and modular as possible, we

have once more aimed at finding a conceptually minimalist setting from which power-

ful verification conditions as well as transformation and refinement laws can be derived.

Though strongly inspired by abstract separation logic [7] and the logic of bunched im-

plications [31], we use a different combination of simplicity and mathematical abstrac-

tion. In contrast to the logic of bunched implication, we use power series instead of

higher categories, and in contrast to abstract separation logic we follow [41] in using

predicate transformers in the style of boolean algebras with operators instead of state

transformers. These design choices allow us to use power series, quantales and generic

lifting constructions throughout the approach, which leads indeed to a very small and

highly automated Isabelle implementation. A particular feature of this approach is the

view on separating conjunction as a notion of convolution over resources.

Our tool prototype has so far allowed us to verify some simple pointer-based pro-

grams with a relatively high degree of automation. So far it is certainly useful for edu-

cational and research purposes, but extensions and optimisations beyond the mere proof

of concept are desirable. This includes the consideration of recursive procedures [20],

for variable framing laws in our refinement calculus or of error states [7], the develop-

ment of more sophisticated proof tactics, and the integration of tools and techniques for

automatic data-level reasoning in Sledgehammer style.

Other opportunities for future work lie in the integration of categorial approaches to

data type constructions [18, 28], the consolidation with Preoteasa’s approach to predi-

cate transformers in Isabelle [34], in a further abstraction of the control-flow layer by

defining modal Kleene algebras over assertion quantales [26] for which some Isabelle

infrastructure already exists [19], in a combination with our rely-guarantee tool into

RGSep-style tools for concurrency verification [38], and in the exploration of the lan-

guage connection of separating conjunction in terms of representability and decidability

results.

Acknowledgements. We are grateful for support by EPSRC grant EP/J003727/1 and the

CNPq. The third author would like to thank Tony Hoare, Peter O’Hearn and Matthew

Parkinson for discussions on concurrent Kleene algebra and separation logic.

References

[1] A. Armstrong, V. B. F. Gomes, and G. Struth. Algebraic principles for rely-guarantee style

concurrency verification tools. In C. B. Jones, P. Pihlajasaari, and J. Sun, editors, FM 2014,

volume 8442 of LNCS, pages 78–93. Springer, 2014.

[2] A. Armstrong, V. B. F. Gomes, and G. Struth. Lightweight program construction and veri-

fication tools in Isabelle/HOL. In D. Giannakopoulou and G. Salaün, editors, SEFM 2014,

volume 8702 of LNCS, pages 5–19. Springer, 2014.

[3] R.-J. Back and J. von Wright. Refinement calculus. Springer, 1999.

20 Brijesh Dongol, Victor B. F. Gomes, and Georg Struth

[4] V. Bergelson, A. Blass, and N. Hindman. Partition theorems for spaces of variable words.

Proc. London Mathematical Society, 68(3):449–476, 1994.

[5] J. Berstel and C. Reutenauer. Les séries rationnelles et leurs langagues. Masson, 1984.

[6] R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson. Permission accounting in

separation logic. In J. Palsberg and M. Abadi, editors, POPL, pages 259–270. ACM, 2005.

[7] C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation logic. In

LICS 2007, pages 366–378. IEEE Computer Society, 2007.

[8] A. Chlipala, J. G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. Effective interactive

proofs for higher-order imperative programs. In G. Hutton and A. P. Tolmach, editors, ICFP

2009, pages 79–90. ACM, 2009.

[9] H.-H. Dang, P. Höfner, and B. Möller. Algebraic separation logic. J. Log. Algebr. Program.,

80(6):221–247, 2011.

[10] H.-H. Dang and B. Möller. Transitive separation logic. In W. Kahl and T. G. Griffin, editors,

RAMiCS 2012, volume 7560 of LNCS, pages 1–16. Springer, 2012.

[11] H.-H. Dang and B. Möller. Concurrency and local reasoning under reverse interchange.

Science of Computer Programming, 85:204–223, 2014.

[12] B. Day. On closed categories of functors. In Reports of the Midwest Category Seminar IV,

volume 137 of Lecture Notes in Mathematics, pages 1–38. Springer, 1970.

[13] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. J. Parkinson, and H. Yang. Views: com-

positional reasoning for concurrent programs. In R. Giacobazzi and R. Cousot, editors,

POPL, pages 287–300. ACM, 2013.

[14] D. Distefano and M. J. Parkinson. jstar: towards practical verification for java. In G. E.

Harris, editor, OOPSLA 2008, pages 213–226. ACM, 2008.

[15] B. Dongol, I. J. Hayes, and G. Struth. Convolution, separation and concurrency. CoRR,

abs/1312.1225, 2014.

[16] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Springer, 1st

edition, 2009.

[17] K. Dudka, P. Peringer, and T. Vojnar. Byte-precise verification of low-level list manipula-

tion. In F. Logozzo and M. Fähndrich, editors, SAS 2013, volume 7935 of LNCS, pages

215–237. Springer, 2013.

[18] P. H. B. Gardiner, C. E. Martin, and O. de Moor. An algebraic construction of predicate

transformers. Science of Computer Programming, 22(1-2):21–44, 1994.

[19] W. Guttmann, G. Struth, and T. Weber. Automating algebraic methods in Isabelle. In S. Qin

and Z. Qiu, editors, ICFEM 2011, volume 6991 of LNCS, pages 617–632. Springer, 2011.

[20] C. A. R. Hoare, A. Hussain, B. Möller, P. W. O’Hearn, R. Lerchedahl Petersen, and

G. Struth. On locality and the exchange law for concurrent processes. In J.-P. Katoen

and B. König, editors, CONCUR 2011, volume 6901 of LNCS, pages 250–264. Springer,

2011.

[21] T. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent kleene algebra and its founda-

tions. J. Log. Algebr. Program., 80(6):266–296, 2011.

[22] C. B. Jones. Tentative steps toward a development method for interfering programs. ACM

TOPLAS, 5(4):596–619, 1983.

[23] G. Klein, R. Kolanski, and A. Boyton. Mechanised separation algebra. In L. Beringer and

A. P. Felty, editors, ITP 2012, volume 7406 of LNCS, pages 332–337. Springer, 2012.

[24] D. Kozen. On Hoare logic and Kleene algebra with tests. ACM TOCL, 1(1):60–76, 2000.

[25] F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. Information and

Computation, 199(1-2):200–227, 2005.

[26] B. Möller and G. Struth. Algebras of modal operators and partial correctness. Theoretical

Computer Science, 351(2):221–239, 2006.

[27] C. Morgan. Programming from Specifications. Prentice-Hall, 1998.

A Program Construction and Verification Tool for Separation Logic 21

[28] D. A. Naumann. Beyond fun: Order and membership in polytypic imperative programming.

In J. Jeuring, editor, MPC 1998, volume 1422 of LNCS, pages 286–314. Springer, 1998.

[29] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-

Order Logic, volume 2283 of LNCS. Springer, 2002.

[30] P. W. O’Hearn. Resources, concurrency, and local reasoning. Theoretical Computer Sci-

ence, 375(1-3):271–307, 2007.

[31] P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of Symbolic

Logic, 5(2):215–244, 1999.

[32] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that alter data

structures. In L. Fribourg, editor, CSL 2001, volume 2142 of LNCS, pages 1–19. Springer,

2001.

[33] S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta Inf.,

6:319–340, 1976.

[34] V. Preoteasa. Algebra of monotonic boolean transformers. In A. da S. Simão and C. Mor-

gan, editors, SBMF 2011, volume 7021 of LNCS, pages 140–155. Springer, 2011.

[35] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS, pages

55–74. IEEE Computer Society, 2002.

[36] J. Smans, B. Jacobs, and F. Piessens. Verifast for java: A tutorial. In D. Clarke, J. Noble,

and T. Wrigstad, editors, Aliasing in Object-Oriented Programming. Types, Analysis and

Verification, volume 7850 of LNCS, pages 407–442. Springer, 2013.

[37] T. Tuerk. A Separation Logic Framework for HOL. PhD thesis, Computer Laboratory,

University of Cambridge, 2011.

[38] V. Vafeiadis. Modular Fine-Grained Concurrency Verificaiton. PhD thesis, Computer

Laboratory, University of Cambridge, 2007.

[39] S. van Staden. Constructing the views framework. In D. Naumann, editor, UTP 2014,

volume 8963 of LNCS, pages 62–83. Springer, 2014.

[40] T. Weber. Towards mechanized program verification with separation logic. In

J. Marcinkowski and A. Tarlecki, editors, CSL 2004, volume 3210 of LNCS, pages 250–

264. Springer, 2004.

[41] H. Yang and P. W. O’Hearn. A semantic basis for local reasoning. In M. Nielsen and

U. Engberg, editors, FOSSACS 2002, volume 2303 of LNCS, pages 402–416. Springer,

2002.

