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1. Introduction 

Given a definition of a data item in a program, it is 
frequently desirable to know what uses might be af- 
fected by the particular definition. The inverse is also 
true: for a given use the definitions of data items which 
can potentially supply values to it are of interest. Such 
data flow relationships, or "def-use" relationships, as 
they are often called, can be deduced by a static, com- 
pile time analysis of a program. A procedure for deter- 
mining the information required for these def-use rela- 
tionships is given in this paper. 

Another data flow relationship which is also of in- 
terest is the following: given a program point (instruc- 
tion) what data definitions are "live" at that point, that 
is, what data definitions given before this point are used 
after this point. This information is of interest, for 
example, when assigning index registers: data which is 
live at a point in a program might profitably be held in a 
index register at that point. The procedure given here 
includes the analysis required to expose live informa- 
tion. 

In order to more precisely define the relationships 
derived by the procedure and to motivate the method 
used, certain basic concepts and constructs must be de- 
fined. This is done in Section 2. Section 3 gives the basic 
data flow analysis method and concludes with a brief 
survey of various methods. Section 4 discusses "inter- 
vals," the control flow basis used by the procedure given 
in this paper. In Sections 5 and 6 the procedure is de- 
scribed, with the latter section giving a PL//I implementa- 
tion of the procedure. The paper concludes with a sum- 
mary and an extended bibliography. 

The data flow analysis procedure given here has been 
implemented and used in a PL/I oriented, Experimental 
Compiling System. Dr. Kenneth Kennedy of Rice Uni- 
versity is responsible for the "live" analysis algorithm. 
Mr. Richard Stasko of IaM contributed to some of the 
data structure ideas used in the implementation. Dr. 
Jeffrey Ullman of Princeton, Dr. Matthew Hecht of the 
University of Maryland, Dr. Gary Kildall of the Naval 
Post Graduate School, Dr. Marvin Schaefer of SDC, 
Dr. Jacob Schwartz of New York University, and 
others have also made substantial contributions to this 

area. 

2. Context and Problem Statement 

Our approach is to derive and express the data flow 
relationships in terms of the control flow graph [3, 7] 
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of the program. For  the purposes of this paper the con- 
trol flow graph G of a program is a connected, directed 
graph having a single entry node no. G consists of a set 
of  nodes, N = {no, nl , n ._ , , . . . ,  m}, representing se- 
quences of  program instructions and a set of edges, E, 
of  ordered pairs of nodes representing the flow of con- 
trol. 

f 
Fig. 1. 

The graph depicted in Figure 1 has 

no = 1; 
N = { 1, 2, 3 , . . . ,  7} (the numbering is arbitrary);  and 
E = { (1, 2), (1, 7), (2, 3), etc. } 

The immediate successors of a node n~ are all of  the 
nodes ni for which (n~, n~) is an edge in E. The imme- 
diate predecessors of node nj are all of the nodes n~ for 
which (n~, n~) is an edge in E. A path is an ordered 
sequence of nodes (nl ,  n _ ~ , . . . ,  nk) and their connect- 
ing edges in which each n~ is an immediate predecessor 
of n~+~. A closed path or cycle is a path in which the 
first and last nodes are the same. The successors of a 
node n~ are all of  the nodes nj for which there exists a 
path  (ni , . . .  , n j). The predecessors of a node nj are 
all of the nodes n~ for which there exists a path f rom n~ 
to n j .  

We can now more precisely define the data flow rela- 
tionships we are interested in. A data definition is an 
expression or that part  of  an expression which modifies 
a data item. A data use is an expression or that part  of an 
expression which references a data item without modify- 
•ng it. A data definition potentially affects a use if the 
data items are the same and the result of the definition 
is available to the use. In order to determine which defi- 
nitions affect which uses, two types of expression rela- 
tionships can be distinguished: those relationships which 
exist between expressions within straight line sequences 
of  code and those which exist in the context of  control  
flow. Methods for finding and codifying the relation- 
ships in straight line sequences are relatively easy and 
will not be given in this paper. (Cocke and Schwartz 
[8] contains a discussion of one excellent m e t h o d - -  
value numbering.) 

In this paper we are concerned with determining the 
data flow relationships that exist between collections of  
instructions. Two particularly interesting collections are 
now defined. 

A basic block is a linear sequence of program instruc- 
tions having one entry point (the first instruction exe- 
cuted) and one exit point (the last instruction exe- 
cuted). The nodes of  the control flow graph can repre- 
sent the basic blocks of a program. A node can also 
represent an extended basic block: a sequence of pro- 
gram instructions each of which, with the exception of 
the first instruction, has one and only one immediate  
predecessor and that predecessor precedes it, ( though 
not necessarily immediately) in the extended basic 
block. An extended basic block can be formed from the 
tree of basic blocks such as those derived for IF  . . .  
T H E N . . .  ELSE clauses. Again the data relationships 
internal to such blocks can be easily der ived- -a  simple, 
stack oriented extension of the basic value numbering 
method can be used. The data methods in this paper  will 
be given in terms of nodes which can represent basic 
blocks, extended basic blocks or, as will be seen, more  
complex collections of instructions and even entire 
procedures. 

In order to introduce the basic data method more 
easily, several interesting sets of data flow information 
will now be defined in terms of basic blocks; some of 
these definitions will, however, later be revised to refer 
to the edges and paths on the control flow graph. 

A locally available definition for a basic block is the 
last definition of the data item in the basic block. 

Any definition of a data item X in the basic block is 
said to kill all definitions of the same data item reaching 
the basic block. Another way of expressing this is that  
all definitions of a data item which reach a basic block 
are preserved by the basic block if the data item is not 
redefined in the basic block. 

A definition X in basic block n~ is said to reach basic 
block nk if 
1. X i s  a locally available definition f rom n~, 
2. nk is a successor of n~, and 
3. There is at least one path  f rom n~ to nk which does 

not contain a basic block having a redefinition of the 
same data item; that is, X is preserved on some path 
f rom n~ to nk. 
The data flow analysis procedure given in this paper  

determines, among other things, the set of definitions, 
R~, that reach each node in the control flow graph. 

A locally exposed use in a basic block is a use of  a 
data item which is not preceded in the basic block by a 
definition of  the data item. 

A use of  a data i tem is upwards exposed in basic 
block n~ if either it is locally upwards exposed f rom n~ 
or there exists a path ( n ~ . . .  nk) such that  the used data 
item is locally upwards exposed f rom nk and there does 
not exist a j ,  i < j <  k, which contains a definition of the 
data item. The upwards exposed uses at a basic block n~ 
can be expressed as a set U~. 

A definition, d, is active or live at basic block n~ if d 
reaches n~ (i.e. d C R~) and there is an upwards ex- 
posed use at n~ of the data i tem defined by d. The set L~ 
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of definitions active or live at basic block nt is: 

Lt = R~ n Ut .  

(It is assumed that the elements of the R~ and U~ sets 
are encoded so that uses and definitions can be meaning- 
fully intersected.) It should be noted that this definition 
differs slightly from some other definitions which have 
appeared in the literature [14, 19] in that it is the defini- 
tion that is considered live rather than an exposed use 
of a data item. 

Our procedure determines the upwards exposed uses 
U~ for each node nt and the definitions which are live on 
each edge in the graph--this  latter is a slight variant on 
the form of definition for Lt just given but is in fact a 
more useful formulation. 

Consider the example in Figure 2. 

Fig. 2. 

I =X 

=X X= 

X= 

Subscripting the definitions of X in nodes 5 and 7 
in order to distinguish them we get the values shown in 
Table I for R~, U~, and L~ for each node m.  It is evident 
from this example that one of the interesting side bene- 
fits of deriving this information is that possible uninitial- 
ized uses of data items are found. 

In Section 3 the basic methods for deriving the reach 
information are given. 

3. Basic Data Flow Analysis Method 

A fundamental item of information which must be 
derived is what definitions of data items reach each 
node from other nodes in the graph. It should be readily 
apparent that the set of definitions which reach a node 
nt is the union of the definitions available from the 
nodes which are immediate predecessors of n t .  Letting 
At denote the set of available definitions at node n~ and 

Table I. 

Node Ri Ui Li 

1 ~ x 
2 X7 X X7 
3 X~X7 X XsX7 
4 X~X7 X X6X7 
5 X~X7 ~ ,Q" 
6 X~X7 X X~X7 
7 X~X7 ~ JD" 

R~ denote the set of definitions which reach ni then: 

Rt = U Ap for all np which are immediate pred- (1) 
P ecessors of n i .  

In order to formalize the construction of available 
definitions A, for a node n t ,  let DB~ be the set of locally 
available definitions of all data items defined in the 
node. Let PB~ be the set of all definitions in the program 
which are preserved through node i. Thus, if data item X 
is defined in the node then PB~ will not contain any 
definitions of X; on the other hand, if X is not defined 
anywhere in the node, then all the definitions of X in the 
program will be represented in PBt .  A~ is constructed 
by formula (2). 

At  = (R ,  17 PB, )  13 D B , .  (2) 

(The B appended to P and D in the notation is used here 
and throughout the paper to indicate that the informa- 
tion expressed has been collected from the interior of 
the node.) 

Consider the example in Figure 3. (The definitions 
are indexed with the node name in order to distinguish 
them.) 

Fig. 3. 

XI = 
YI = 
X 2 = 

Y5 = X 4 = 

The D B  and P B  sets for each node are: 

DB~ = [)(1, Y~], PB1 = [,@'], 
DB~ = IX2], PB~ = [Y,,  Y,], 
DB~ = [Ys], PB~ = IX1, )(2, X4], 
DB4 = IX4], PB4 = [Yx, Y,]. 

Using formulas (1) and (2) to process the nodes in the 
order 1, 2, 3, 4 yields: 

R~ = [ / ] ,  A, = [X~, r d ,  
R~ = [X~, Yd, A~ = [X~, Yd, 
R, = [X~, Yd, .4, = [X~, Y,], 
R, = [)(i, X2, r~], A4 = [)(4, Y,]. 

In the preceding example we were able to determine 
the definitions reaching each node in a single pass 
through the graph. This was possible because the graph 
did not contain cycles and we could therefore order the 
nodes so that a node was not processed until all of  its 
predecessors were processed. Program control flow 
graphs usually contain cycles, however. There is no way 
in the presence of cycles to predictably determine the 
reaching information in one pass through the graph. 
In Figure 2, the definition of X in node 5 reaches node 3 
(as well as 4, 5, 6, and 7). Since 3 is both a predecessor 
and successor of 5 a node ordering which allows reach- 
ing information to be propagated forward through the 
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pa ths  of  the g raph  wi thou t  visi t ing the nodes more  than  
once does no t  exist. In  fact  we need to say what  ha ppe ns  
to fo rmula  (1) when all of  the predecessors  o f  a node  
have not  been visi ted and  hence all  of  the A¢ are  no t  
known.  

The s implest  a lgo r i thm for der iv ing the reaching  
in fo rma t ion  in a general  con t ro l  flow graph  is given in 
the Basic Reach  Algo r i t hm.  

Basic Reach Algorithm 

Inputs: the PBI and DBi for each node in the control flow graph 
Output: R~, the set of definitions which reach each node in the 

graph. The set A~ of definitions available from each node 
is also created. 

Method: 
1. Initialize all of the A~ and R~ to the null set. 
2. Perform step 3 while there is no change in any R~ or A,  
3. Apply formula (1) followed by formula (2) to the nodes of 

the graph. [] 

In  an excel lent  pape r  on " A  Unif ied  A p p r o a c h  to  
G l o b a l  P r o g r a m  O p t i m i z a t i o n , "  K i lda l l  [17] gives a 
genera l iza t ion  of  this a lgo r i thm and  proves  tha t  the 
i n f o r m a t i o n  does  indeed stabil ize.  

Clear ly  the r ap id i ty  with which the i n fo rma t ion  sta- 
bil izes for  a given graph  very much  depends  on the 
order  in which the nodes  of  the  g raph  are examined .  In  
[10], Hech t  and  U l l m a n  use a node  o rde r ing  es tab l i shed  
by  app ly ing  Ta r j an ' s  dep th  first spann ing  tree a lgo r i t hm 
to the con t ro l  f low graph.  The  p rocedure  given in this  
p a p e r  is based  u p o n  the use of  in tervals  [3, 4, 5, 7]. 

4.  I n t e r v a l s  

Given  a node  h, an interval I(h) is the  max imal ,  
single ent ry  subg raph  in which h is the only  ent ry  node  
and  in which all c losed pa ths  conta in  h. The  un ique  
in terva l  node  h is cal led the interval head or s imply  the 
header node. A n  interval  can be expressed in te rms o f  
the  nodes  in it  : I(h) = (n l ,  n2, . . .  ,nm). 

By selecting the p rope r  set o f  header  nodes,  a g raph  
m a y  be pa r t i t i oned  into  a unique  set of  d is jo in t  in tervals  

= {/(ha), I(h~) . . . } .  A n  a lgo r i thm for such a par t i -  
t ion is:  

Algorithm for Finding Intervals 

1. Establish a set H for header nodes and initialize it with no, the 
unique entry node for the graph. 

2. For h E Hfind l(h) as follows: 
2.1. Put h in l(h) as the first element of l(h). 
2.2. Add to l(h) any node all of whose immediate predecessors 

are already in l(h). 
2.3. Repeat 2.2 until no more nodes can be added to l(h). 

3. Add to H all nodes in G which are not already in H and which 
are not in l(h) but which have immediate predecessors in l(h). 
Therefore a node is added to H the first time any (but not all) 
of its immediate predecessors become members of an interval. 

4. Add l(h) to a set9 of intervals being developed. 
5. Select the next unprocessed node in H and repeat steps 2, 3, 4, 5. 

When there are no more unprocessed nodes in H, the procedure 
terminates. [] 
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Figure  4 i l lustrates  the pa r t i t i on ing  o f  a g raph  into  
intervals .  

Fig. 4. 

Graph 

() 

Intervals 

I(1) = 1 
1(2) = 2 
1(3) = 3, 4, 5, 6 
1(7) = 7, 8 

A p r o p e r t y  of  in tervals  which is of  pa r t i cu l a r  in- 
terest  in da t a  f low analys is  is the o rde r  of  nodes  in an 
in terva l  list (cal led the  interval order). The  o rde r  is 
such tha t  if  the nodes  on a in terva l  list are  p rocessed  in 
the  order  given then all  in terva l  p redecessors  of  a node  
reachab le  a long  loop - f l ee  pa ths  f rom the header  will 
have been processed  before  the given node.  

The  in tervals  descr ibed  thus  far have  been f o r m e d  
f rom the nodes  given in the  ini t ia l  con t ro l  f low graph .  
F o r  reasons  which will be a p p a r e n t  shor t ly ,  these in- 
tervals  are cal led the basic orfirst order intervals and  the 
g raph  f rom which they  were der ived  is cal led the  basic 
or first order graph. A superscr ip t  n o t a t i o n  is used to  
des ignate  the order ,  e.g. Ia(h) C aa. 

Fig. 5. 

G l G 2 G a G 4 

91 9: 9 3 

P(I )  = 1 P(1) = 1 P(1) = 1, 11 
I'(2) = 2 I'(2) = 2, 9, 10 
11(3) = 3, 4, 5, 6 
11(7) = 7, 8' 

@ 

9 4 

I4(12) = 12 

The  second order graph is der ived  f rom the first o rde r  
g raph  and  its in terva ls  by  m a k i n g  each first o rde r  in ter -  
val  in to  a node  and  each in te rva l  exit  edge in to  an  e d g e  

in the  second  o rde r  graph.  Second order intervals are  
the  in terva ls  in the second  o rde r  g raph .  Since the  nodes  
of  the second  o rde r  in terva ls  a re  first o rde r  in tervals ,  
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this nesting can be used when determining inter-interval 
relationships. Successively higher order graphs can be 
derived until the nth order graph consists of a single 
node. Figure 5 illustrates such a sequence of derived 
graphs. 

Not  all graphs reduce to a single node by the itera- 
tive derivation indicated. A reducible graph is a graph 
whose nth order derived graph is a single node. A 
irreducible graph is a graph for which there does not 
exist an nth order derived graph consisting of a single 
node. Examples of irreducible graphs are given in 
Figure 6. 

Fig. 6. 

~AND 
(o) (b) 

Methods for "splitting" (copying) certain nodes in 
an irreducible graph to produce an equivalent graph 
containing intervals exist [I, 7, 20]. Figure 7 illustrates 

Fig. 7. 

) 

split graphs for the two irreducible forms given in Figure 
6. It should be emphasized that splitting is an analysis 
technique and does not imply that the code in the nodes 
will appear more than once in the generated program. 
It is interesting to note that a program written by one 
of the authors to analyze the control flow of 75 "real"  
Fortran programs found that over 90 percent of the 
control flow graphs are reducible [7]. Further, Knuth 
[18] found no irreducible graphs in 50 Fortran pro- 
grams. 

The data flow analysis described in the next section 
is based on the interval construct just described. 

5. Data Flow Analysis Using Intervals 

By definition and by construction, an interval I(h) 
has only one entry, h, and all closed paths go through h. 
The definitions which reach each basic node in the in- 
terval could be determined, therefore, by formulas (1) 

and (2) if all of the definitions which reach h, both from 
predecessors outside the interval and from predecessors 
in the interval, were known. These definitions can be 
found by a two-phase process. 

The first phase of the process collects information 
and the second phase propagates it to the appropriate 
places. The first phase first collects information about 
what is defined and preserved in each first-ol der interval 
by processing the nodes in each interval in their interval 
order. The information collected is then posted to the 
node representing each interval in the second order 
derived graph. The second order intervals are then 
processed in the same way as the first order intervals and 
the process iterates. 

For  each interval at each level during the first phase, 
two items of information are collected from the nodes 
which comprise it (three items if the interval contains a 
loop) : 

1. The definitions which are defined in the interval and 
locally available from it. This becomes the DB set for 
the node representing the interval in the next higher 
order graph. 

2. The definitions which are preserved by the interval. 
This becomes the PB set for the representative node. 

If the interval contains a loop, then a third item of 
information is collected: which definitions in the interval 
can reach the interval head. A set Rh associated with the 
interval head expresses this. During the second phase 
the Rh sets will make definition information available 
before the nodes containing the definitions have been 
processed. They are also used in the first phase to deter- 
mine what definitions are available at interval exit 
points in cases such as depicted in Figure 8. There the 

Fig. 8. 

~ x= 

definition of X in node 3 reaches the interval head and, 
assuming all definitions of X are preserved on the path 
from 1 through 2, X3 is available on exit from the inter- 
val. The effect of the first phase then is to percolate the 
influence of each node outwards into an increasingly 
more global context. 

The second phase uses the information collected by 
the first phase and, by processing the graphs from high 
order to low order, generates the set of definitions reach- 
ing each node. Before processing an interval the Rh set 
associated with the header is modified to reflect those 
definitions that can reach the interval from outside. 
These are given in the R set generated for the interval's 
representative block in the next higher order graph. The 
modified Rh set is used to initiate processing the inter- 
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val. The order of the process is the interval  o rde r - - t he  

operat ions  of the process are those given in formulas  
(1) and  (2). 

Since a node can represent  collections of ins t ruct ions  
having  in terna l  flow and  thus different paths f rom the 
entry to the different exits, the data i tems defined and  
preserved on the different exits will generally be differ- 
ent. In  order to reflect these dist inctions,  the definit ions 
defined and  preserved, bo th  those init ially given and  
those accumula ted  within an interval  dur ing  phase I, 
will be associated with the edges of the graph rather  
than  with the nodes.  

Fur the rmore ,  when formula  (2) in phase I I  deter- 
mines  the definit ions avai lable f rom a node and  its 
predecessors, that  i n fo rma t ion  will be associated with 
the exit edges of the nodes  since it may be different for 
the different exits f rom the node.  Consider  the example 
in Figure  9. 

Fig. 9. 

G l G 2 G ~ 

Y5 ffi T T EXITm EXIT2 
EXIT, EXIT z 

Assuming  all the nodes  in G 1 represent  basic blocks, 
then the init ial  D B  and  P B  sets are given in Table  II. 
(el represents  exit1 and  e2 represents exit~ .) As a result  
of  de te rmin ing  (in phase I of  the analysis) what  may 
be defined and  preserved th rough  the nodes  in the 
graphs, v~e get the results given in Table  III .  

F u r t h e r m o r e  at the end of phase I we have R2 = 
{)(4}. Assuming  no definit ions reach the entry  node,  the 
definit ions reaching each node  (and available on each 
edge) after phase II  are given in Table  IV. 

I t  will be no ted  that  we have not  only de termined the 
data  i tems which reach each node in the first order graph 
and  which are available on each edge in that  graph bu t  

we have also de termined that  i n fo rma t ion  for the nodes  
and  edges of the higher order graphs. Fur the rmore ,  we 
have de termined the data  i tems defined and  preserved 
a long  the edges of the higher-order  graphs. We have 
thus collected up data  flow rela t ionships  between large 
sections of the p r o g r a m  and  indeed know what data 
i tems are defined on exit f rom the p rogram and  what  

data  i tems may be preserved dur ing  an execution of the 

program.  In te rprocedura l  data  flow analysis as de- 

scribed in [6] exploits these characteristics of the analy-  

sis method.  A n  a lgor i thm which determines what  defi- 

n i t ions  may  reach each node  in the graphs is now 

given. 

R e a c h  Algorithm (Interval Based) 

i 
Inputs 
1. The ordered set of graphs (G ~, G z, . . . ,  G ~) determined by in- 

terval analysis. 
2. The intervals in each graph with their nodes given in interval 

process order. 
3. The definitions defined and preserved on each edge in the first 

order graph. These are expressed in the DB and PB sets. 
Outputs 

A set R of the definitions that reach each node. 
A set A of the definitions available on each edge. 

Steps 
Phase I 

1. For each graph, Gg, in the order G ~, 6 n . . . .  , G~-I, perform 
steps 2 and 3. 

2. If the current graph is not G ~ then initialize the PB and DB 
sets for the edges of the graph. This is done by first identifying 
the edge in G ~-~ to which each edge in Go corresponds (these 
will be interval exit edges). Then, using the information gen- 
erated during step 3 for G0-1, for each edge i in Go with cor- 
responding exit edge x from interval with head h in Go-x, set: 
2.1. PB~ = P~ and 
2.2. DB~ = (Rh n Px) u D x  

3. For each exit edge of each interval in Ga determine P, the 
definitions preserved on some path through the interval to the 
exit, and D, the definitions in the interval that may be avail- 
able on the exit. These are determined by finding P and D 
for each edge in the interval: 
3.1. For each exit edge i of the header node: 

Pi = PB~ 
D~ = D B i  

3.2. For each exit edge i of each node j (j = 2, 3, . . .  ) in 
interval order: 

P,  : (o1",) n e s ,  

Di = ( (U Dp) rl PBi) U DB~ f o r  a l l  p 

P input edges to node j. 

While processing an interval determine the set of definitions, 
Rh, that can reach the interval head, h, from the inside the 
interval by: 

\ 

Rh = U Dt 
t 

for all interval edges I which enter h, (sometimes called latching 
edges or latches). If there are none set Rh = .~. 

Between phase I and II the R vector for the single node in the 
nth order derived graph is initiated: Rx = q~ or whatever set of 
definitions is known to reach the program from outside. 
Phase I1 
1. For each graph, Go, in the order G ,,-~, . . . , G 2, G 1, perform 

steps 2 and 3. 
2. For each node i in Go+~ form Rh = Rh U R i  where h is the head 

of the interval in Go which i represents in G g+~. 
3. For each interval process the nodes in interval order deter- 

mining the definitions reaching each node and available on 
each node exit edge as follows: 
3.1. For each exit edge i of the header node h 

Ai = (Rh n PBi) U DBi  

3.2. For each node j (j = 2, 3 . . . .  ) in interval order first 
form 

Ri = u Ap for all input edges p to j 
p 

then for each exit edge i of j  form 

Ai = (Rj n PBi) u DBi  [] 

1 4 2  Communications March 1976 
of Volume 19 
the ACM Number 3 



Table II. 

For G 1 
Edge DB PB 

1-2 XI Y3 
2-3 Z~ X1X4X3 
2-4 Z; XIX4X3 
3-e~ Y3 XtX4 
4--2 X~ Y3 
4--e~ X4 Y~ 

Table III. 

For G 2 For G 3 
Edge DB PB Edge DB PB 

1-5 Xl Yz 6-et XIX4X3 .~f 
5-et X~Y~ XIX4 6-e2 X, Y~ 
5-e2 X4 Ya 

We need to account for the effects of irreducible 
graphs on the algorithm. There are, in fact, no effects. 
Figure 10 shows a graph in its irreducible then split 
forms. 

Fig. 10. 

G G' 

~ X I • 

X 2 • 

Fig. 11. 

The irreducible graph G is either the initial graph or 
is a graph derived from the initial graph. It does not 
matter since in either case the nodes can be treated as 
interval heads. (Some efficiency may accrue from eliding 
the actual treatment of these as heads of single node 
intervals if this is not the initial graph.) Treating these 
as intervals heads, phase I will derive P~ and D~ for 
each edge. In order to continue to propagate outwards 
the effects of each node we treat the split form of the 
graph, G', as if it were a higher order graph. Step 2 
of phase I will initialize the DB~ and PB~ sets for the 

edges in the higher order graph as usual and in the 
process the D and P sets for edge 3-2 will be picked 
up twice--once for 3 ' -2 and once for 3"-2. During 
phase II the data definitions which reach node 3 in 
the irreducible graph will be found by step 2. By this 
step we will, as regards node 3, form R~ = R~ 13 R~,, 
and then R3 = R3 U R3.. In this case, since R3 was 
initially null, we have, in effect, formed R3 = R3, U R3.. 
Thus the data items that are known to reach node 3 are 
those that could reach it on either path. 

It should be apparent from this description that the 
existence of an irreducible graph is transparent to the 
algorithm and further that node splitting is an analysis 
device and does not result in duplicated code. 

We now turn to the derivation of the use and live 
information. 

An upwards exposed use of a data item at a node 
bi is, it will be recalled from Section 2 of this paper, a 
use which is either locally upwards exposed from b~ or 
from some successor of b~ which can be reached without 
going through a redefinition of the data item. Given 
the upwards exposed uses Ui and the definitions R~ 
which reach a point in the program, the live informa- 
tion can be readily determined. This, however, gives 
the data items that are live on entry to a node. While 
this is useful it is frequently desirable, during register 
allocation, for example, to know what is live on exit 
from a node. Rather than retain both sets, the live in- 
formation can be found for the edges and the node 
related live information trivially constructed when neces- 
sary. Consider the example in Figure 11. 

=× 

×, 

By storing the fact that X is live on edges 3-4 and 
4-5, the fact that X is live on entry to node 4 and on 
exit from node 4 as well as the fact that X is not live 
on exit from node 2 and on entry to node 6 can be 
readily deduced. 

Table IV. 

For G ~ For G 2 
Node R Edge A Node R Edge A 

For G 1 
Node R Edge A 

6 .~ 6-el X1X4X3 1 Zf .1-5 
6-e~ X4 5 Xl 5-el 

5-e~ 

Xl 
X1X4X3 
X4 

1 ~ 1-2 
2 XIX4 2-3 
3 X1X4 2-4 
4 X1X4 3-el 

4--2 
4-e2 

Xl 
X1X, 
XIX4 
X,X,X3 
X, 
X, 
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In order to compute the live information for the 
edges of the graph rather than for the nodes, the set of 
the definitions, A, available on each edge is used. For 
a given edge e, incident into node i 

L~ = A, fq Ui. 

Since A, was derived by the Reach Algorithm, the 
basic i tem of information which must be derived is U~. 
The process of  determining which uses reach back- 
wards through the graph is analogous to that of deter- 
mining which definitions reach forwards. Hence to 
determine what is upwards exposed f rom a node in- 
volves knowing what is upwards exposed f rom the suc- 
cessors of a node and what data items are preserved 
through the node. 

The algorithm for generating the U~ sets for the 
nodes of the graph again requires two phases, the first 
of  which can be conveniently imbedded in the first 
phase of the Reach Algorithm. Given the locally up- 
wards exposed uses f rom each node in the basic graph, 
the purpose of the first phase is to find the upwards ex- 
posed uses f rom each interval and hence the locally 
upwards exposed uses for each node in the derived 
graph. The upwards exposed uses f rom each interval is 
found as follows: 
1. Prior to processing each interval initiate a set Uh 

which will contain the uses upwards exposed in the 
interval: 

Uh = UBh 

interval will have been computed before the U~ of a 
node needs to be computed. Two other kinds of imme- 
diate successors can exist. In Figure 12, which has in- 
tervals (1, 2) and (3), node 2 has as immediate successors 

Fig. 12. 

(3 

the head of the interval it belongs to, node 1, and the 
head of another interval, node 3. When computing U2, 
the values of U~ and /-/3 are known as are the values of 
the U~ at all the interval heads for the graph being 
processed. These sets are known because: 
1. During phase I the uses Uh upwards exposed f rom 

within each interval are determined then. 
2. During phase II  each Uh is updated with the value of 

Uz, the upwards exposed uses found for the node 
representing the interval in the next higher order 
graph. 
Figure 13 shows a series of derived graphs with a use 

of X in node 5. 

2. For  each node i in the interval (i --- 2, 3 , . . . )  update 
Uh with the locally exposed uses UB~ in i which 
can be preserved along some path f rom h to i: 

Uh = Uh U ((U P,) 17 UB~ 
p 

where P,  is the set of data items preserved on input 
edge p to node i and whose computat ion is given 
in the Reach Algorithm. 
Each Uh is used to initiate the UB~ of the node 

node (or nodes in case of  node splitting) which repre- 
sents the interval in the next higher order graph. 

Having determined the set of uses locally upwards 
exposed f rom each node in all of the graphs, the second 
phase can determine the U~ for each node. This is done 
by processing the graphs f rom high order to low order 
and going backwards through the nodes in each in- 
terval. The data uses upwards exposed at a node are 
those which are locally upwards exposed or are upwards 
exposed f rom its successors and are preserved by the 
node. The basic formula used in the second phase is 

U, = ((U U.) n PB,) U UB, 
$ 

where U. is the set of  upwards exposed uses f rom the 
immediate successors of node i. 

When traversing backwards through the nodes of 
an interval (i.e. in inverse interval order), the U sets 
of  all immediate successors which are interior to an 

Fig. 13. 
G 1 G 2 G 3 

After phase I, the Uh values for G 1 are U1 = .(Zf, 
U2 = .~,  and U4 = X and for G 2 they are U1 = X. 
Furthermore,  after phase I UB1 = J25, UBv = Zf and 
UB8 ~- X. Going backwards through G 2 during phase I I  
leads to 

Us=X, UT=X, UI=X, 

The Uh values for nodes 1, 2, and 4 are then updated 
before the intervals in G 1 are processed. This leads to 
U1 = X, U2 = X, and U4 -- X. Even if the interval c o n -  
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sisting of (2, 3) is processed before (4, 5, 6), the U~ for 
the two successors of node 3 are known since U: = X 
and U4 = X have already been established. 

As has already been observed, phase I of the live 
analysis algorithm can be embedded in phase I of the 
Reach Algorithm. Since the second phase of the live 
algorithm requires a backwards pass through the graph 
it cannot be embedded in phase II of the Reach Al- 
gorithm. The combined algorithm therefore requires 
three phases. We will not give any more details on this 
in algorithmic form since the procedure in the next 
section gives a more definitive version of the combined 
data flow analysis. 

6. A Data  Flow Analysis  Procedure 

A P L / I  program, DATFLOW,  which finds the 
definitions that reach each node, the uses that are up- 
wards exposed from a node and its successors, and the 
definitions that are live on each edge of the control flow 
graph is given in this section. Before giving the proce- 
dure, two representational techniques which greatly 
affect the actual speed of the algorithm are described. 
We first describe the representation of the data sets and 
then the representation of the control flow information. 

Associated with each node i on input to the proce- 
dure is the set of uses, UB~, which are locally upwards 
exposed from the node; associated with each edge e are 
the DBe and PB, sets. DB, contains the data definitions 
defined in the node and available on the exit edge e. 
PB, contains the data definitions in the program which 
may be preserved through the node when exit edge e is 
taken. The operations on these sets and on others 
formed by the analysis are almost entirely intersection 
and union. By expressing the sets as comparable bit 
vectors, the more rapid boolean operations of and and 
or can be used. 

Each bit in the vectors represents a definition in the 
program. A correspondence table is used to correlate 
the bit vector entry with the definition point: the ith 
bit in a bit vector corresponds to the ith entry in the 
correspondence table where the program location of the 
definition is recorded. 

An obvious question arises: how are the UB and U 
sets encoded so that they can be meaningfully inter- 
sected with the vectors of available definitions? A use 
of a data item is multiply encoded: if X is the data item 
being used then that use is encoded by using all the bit 
entries for definitions of X. Figure 14 shows the DB, 
PB, and UB vectors for the three nodes and four edges. 

We now turn to the representation of the control 
flow. The nodes of the graphs have been arbitrarily 
numbered from l to n with all the nodes in a given 
graph having a contiguous sequence of numbers which 
is larger than those of the next lower order graph. These 
numbers are used to uniquely identify the node and in 
the D A T F L O W  procedure to index any data associated 

Fig. 14. 

Correspondence X ~ ( 
Table Y 

I Entry Def 

1 X~ X • 

2 Y~ 3 
3 Xz 
4 X3 -X (~ 

X,  

DBI = 1100 

PB~ = 0000 
DB2 = 1100 

2 PB~ = 0000 

DBa = 0010 

PB3 = 0100 
D B ~  = 0 0 0 1  

PB~ = 0100 

UBt  = 0000 
UB~ = 0000 

UB~ = 1011 

with it. The edges are similarly though independently 
numbered from 1 to m. A table, GRAPHS,  has an entry 
for each graph which gives the first and last node and 
the first and last edge in the graph. The table is ordered 
by graph level with the initial (low order) graph as the 
first entry. 

Associated with the graphs is a node ordered edge 
listing (called EDGES TABLE in the program). It has 
the following characteristics: 
1. Every edge in the graph appears in the table twice: 

once as the in-edge of a node and once as an out- 
edge. 

2. All of the edges incident to a node are given in se- 
quential entries with all in-edges appearing before 
all out-edges. 

3. E a c h  entry contains the node index and the edge 
index as well as indicators to indicate whether or 
not the node is an interval header, whether the edge 
is an in-edge or an out-edge and if an out-edge 
whether or not it is a latch (is an in-edge to the head 
of the interval containing it). 

4. The interval process order on the nodes is used to 
determine the order of the entries in the table. All 
entries for an interval are grouped together with the 
entries for the header node first. The order of entries 
for the different intervals in a given graph is not 
important  for the procedure. 
Kennedy [16] has recently proposed a node listing 

approach to data flow analysis which is of 0(l) where l 
is the length of the list. Aho and Ullman [2] have given 
an algorithm for producing such a listing for reducible 
graphs. In their algorithm a listing whose length is 
O(n log n) can be found for a reducible graph of n 
nodes. Furthermore if the number of edges is of O(n), 
then the listing can be found in O(n log n) time. Since 
the procedure given here associates information with 
both edges and nodes it is roughly 0(l' .q- n') where l' is 
the number of entries in EDGES TABLE and n' is the 
number of nodes in the collection of graphs. 

Figure 15 shows the entries for the first order graphs; 
the entries for the second order would follow. 

Processing a graph in a phase of the algorithm in- 
volves making a pass through the EDGES T A B L E - -  
forwards for the phases that compute reaching informa- 
tion and backwards for the second phase of the live 
computation (phase III in the procedure). The node and 
edge fields index the tables where the information is 
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Fig. 15. 

) 

4 

Edges Table 
Node Edge In-edge Out-edge Latch Head 

l l x /  x /  
2 I "V / V t 
2 7 %/ %/ 
2 2 %,/ %/ 
3 2 x/ x/ 
3 5 V X/' 
3 3 "V / X/ 
3 4 X/ X/ 
4 3 x /  
4 5 x/ 
4 6 ~/ 
5 4 
5 6 x/ 
5 7 x/ 
5 s x/ 

accumulated. Since all in-edges to a node appear before 
all out-edges and since all interval predecessors of a node 
appear before the node, the in-edges for a node will 
index information calculated when the edges appeared 
as out-edges of interval predecessors. Consider, for 
example, the phase II calculation of the reach and avail- 
able vectors for the nodes and edges of the graph given 
in Figure 15. Assuming that the reach vectors for the 
interval heads have been established and the reach 
vectors for the other nodes have been initialized to zero, 
we would make one pass through the EDGES TABLE. 
For  each entry i with edge index, EDGE,  and node 
index, N O D E :  
1. If  the entry is for an in-edge to a node which is not a 

header then R(NODE)  = R(NODE)  ~/ A(EDGE) 
2. Otherwise if the entry is for an out-edge A(EDGE) 

= R(NODE) /~ (PB(EDGE) V DB(EDGE)).  
Consider the three entries for node 4 in Figure 15. 

processing the first entry gives the reach for node 4, the 
next two entries cause the calculation of the definitions, 
A, available on edges 5 and 6. As we continue through 
the table we will use A6 when calculating R~. 

The Appendix gives the PL/I procedure DATFLOW,  
which determines the reach, live, and use information. 

7.  S u m m a r y  and  F i n a l  R e m a r k s  

A procedure has been given which determines the 
data flow relationships in a program by a static, global 
analysis. Given a control flow graph representation of a 
program and information about the data items used, 
defined and preserved by each node in the graph the 
following information can be determined by the de- 
scribed methods: 
1. What data definitions reach each node in the graph 

and can therefore affect uses in the block repre- 
sented by the node. 

2. What uses of data items are upwards exposed from 
each node and its successors and hence can be 
affected by definitions of the items. 

3. What definitions are "live" on each edge of the 
graph. 

146 

The approach used is based on intervals and has the 
following features: 
1. Certain information is associated with edges rather 

than nodes. 
2. Irreducible and reducible graphs are treated indis- 

tinguishably. 
3. The data flow characteristics in large program units 

(the nodes of the higher order graphs) are sub- 
summed. 

4. An interval ordered edge listing together with a bit 
vector representation of the relationships is used to 
give a fast implementation. 
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Appendix. The P L / I  Procedure D A T F L O W  

* * * * * * * * * * * * * * * * * * * * * * * * * *  GATF LO~; * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
/ *  DATFLOW DETERMINES TIIE DATA DEFINITIONS TIIAT REAC',I EACM NODE FROM * /  
/ *  PREDECESSOR NODES, THE USES TIIAT ARE UPWARDS EXPOSED AT A NODE *I  
/ *  FROM BDTil TIIE NODE AND FROM SUCCESSOR NODES, ANFI THE DATA */ 
/ *  DEFINITIONS TIIAT ARE ALIVE ALONG EAC!t EDGE. THIS INFOR~ATIDN * /  
/ *  IS EXPRESSED IN TIlE REACII, USED AND LIVE VECTC)RS RESPECTIVELY. * I  
/ *  DATELOW INPUT IS A DESCRIPTION OF THE PROGRAm4 COrlTROL FLDI; * /  
/ *  RELATIONSHIPS, AND LOCAL INFORMATION ABOUT THE DATA ITEMS USED, * /  
1, DEFINED AND PRESERVED ON TIIE NODES AND EDGES OF THE GRAPH. ,1 
/ *  TIIE PROGNAr~ CONTROL FLOW RELATIONSHIPS ARE GIVEN IN SNAP';S, * /  
/ *  EDGES_TABLE, FROM_TO_TABLE, CORRES_tIEAD, AND GORGES_EDGE. * /  
/ *  T!IESE RELATIONSHIPS ARE DETERMINED BY TIIE INTERVAL ANALYZER. * /  
/* TIIE LOCAL INFORMATION AROUT TIIE DATA ITEMS IS GIVEN IN "1 
/ *  EDGEDATA AND IN NODEDATA. * /  
1 .  GRAPtlS CONTAINS ONE ENTRY FOR EAC!I GRAPH (BASIC, DERIVED, OR * /  
/ *  S P L I T ) .  EASlt ENTRY CONTAINS INDICES FOR TIlE FIRST AND LAST NOnE * /  
/ *  AND TIlE FIRST AND LAST EDGE. * /  
/ *  EDGESTABLE CONTAINS 2 ENTRIES FOR EACII EDGE IH TIIE GRAPHS. * /  
/ *  TIIE TABLE IS ORDERED SO THAT ALL NODES IN AN INTERVAL ARE IN TIIE*/ 
/ *  TABLE IN INTERVAL ORDER. FURTHER ALL TIIE ENTRIES FOR EDGES * /  
/ *  ENTERING A NODE IMMEDIATELY PRECEDE THE EXIT EDGES. ALL NODES * /  
/ *  FOR A GRAPH ARE GROUPED. THE TABLE ORDER IS USED AS THE ORPER * /  
/ *  FOR PROCESSING THE INFORMATION. * /  
/ *  FROM_TOTABLE CONTAINS 2 ENTRIES FOR EACH EDGE IN THE GRAPNS: * /  
/* TIIE NODE TIIE EDGE COMES FROM AND TIlE NODE IT ENTERS. *I 
I -  CORRES MEAD CONTAINS AN ENTRY FOR EACH NODE IN THE IIIGHER ORDER * /  
/ *  GRAPHS: TIIE IIEAD OF TIrE INTERVAL WHICM THIS NODE REPRESENTS. * /  
/ *  IF TIlE GRAPH IS THE RESULT OF SPLITTING TItEN MORE TITAN ONE NODE * /  
/ *  MAY INDEX TIlE SAME NODE IN TIlE NEXT LOV;ER ORDER GRAPH. "1 
/ *  T i l lS  TABLE IS USED WIIEN NODE RELATED INFORMATION IS POSTED UP * /  
/ *  (DURING PIIASE I )  OR DONN (DURING PHASE I I ) ,  * /  
/ *  CORRES_EDGE CONTAINS AN ENTRY FOR EACH EDGE IN THE HIGHER ORDER " /  
/¢ GRAPHS: TIIE EDGE IN THE NEXT LOWER ORDER GRAPH WHICH THIS EDGE * /  
/ "  REPRESENTS. IF TIIE GRAPH IS TIIE RESULT OF SPLITTINC TIIEN MORE */  
/ *  TIIAN ONE EDGE MAY INDEX TIlE SAItE EDGE IN THE NEXT LOitER GRAPH. * /  
1 .  T i l lS  TABLE IS USED WIIEN EDGE RELATED INFORMATION IN POSTED UP *'/ 
/, (DURING PltASE I )  OR DONN (DURING PtlASE I I ) ,  * /  
1. EDGE_DATA CONTAINS TIIE EDGE RELATED LOCAL INFORMATION: * /  
/ *  DB ARE TIlE DEFINITIONS IN THE NODE WIIICH ARE AVAILABLE ON EXIT * /  
I* PB ARE TIIE DEFINITIONS IN TIIE PROGRAM ~/tllC'l ARE PRESERVED qY 4/ 
/ *  TIIE NODE. ON ENTRY TO DATFLOI; TIIE DB AND Pq FOR ONLY * /  
/ *  BASIC NODES IS GIVEN. DATFLOW DETERMINES On AN D Pq FOR THE -1 
/ *  NODES OF THE IIIGllER ORDER GRAPHS. "1 
I *  NODE_DATA CONTAINS THE NODE RELATED LOCAL INFORMATION: .1 
/ *  US ARE TIIE USES IN THE NODE WIIICH ARE UPUARDS EXPOSED. ON ENTRY * I  
1 .  TO DATFLOW TIlE UB FOR BASIC NODES ARE GIVEN. DATFLO'I DETERrIINES * /  
1. THE UB FOR TIIE NODES OF TIIE IIISIIER ORDER GRAPHS. * /  
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

DATFLU~;:PNDC(URAPiIS, EDGES_TABLE,FROFI_TO_TADLE,CORRES_HEAD,CORRES_EDGE, 
EDGE_DATA, NODE_DATA, REACH, US ED, L I VE ) ; 

DCL I GRAPIIS (NO OF GRAPHS) CTL, /*FOR EACH GRAPH: * /  
2 FIRST_NGDE FIXED DIN(15), /*INDX OF IST NODE * /  
2 LAST_NUDE FIXED BIN(15), /*INDX OF LAST NODE * /  
2 FIRST EDGE FIXED BIN(15), /*INDX OF 1ST EDGE * /  
2 LAST_EDGE FIXED BIN(15); /*INDX OF LAST EDGE * /  

DCL I EDGES_TABLE (2*NO_OF_EDGES) CTL, / *2  ENTRIES FOR EACII EDGE IN*/ 
2 INDICATORS, /*GRAPHS. * I  

3 IN EDGE B I T ( l ) ,  /*ON IF EDGE ENTERS NODE * /  
30U~_EDDE R I T ( 1 ) ,  /*ON IF EDGE LEAVES NODE * /  
3 LATCH B I T ( l ) ,  /*ON IF OUT EDGE ArID LATCH * /  
3 IIEADER B I T ( l ) ,  /*ON IF NODE IS AN INT HEAD * I  

2 NODE FIXED BIN(1S), /*INDX TO NODE RELATED INED * /  
2 EDGE FIXED B I N ( 1 5 ) ;  /41RDX TO EDGE RELATED INFO -1 

DCL 1 FSDtt TO TABLE(NO_OFEDGES) CTL, /*FOR EACH EDGE: * /  
2 FROM FIXED B I N ( 1 5 ) ,  / *  THE NODE IT COMES EROIA * /  
2 TO FIXED B I N ( 1 5 ) ;  

DCL CORRES_IIEAD (NO_OF_NODES) CTL 
FIXED BIN(15); 

DCL CORRES_EDGE (NO_OF_EDGES) CTL 
FIXED B I N ( 1 5 ) ;  

/ *  THE NODE IT GOES TO * I  

/*FOR EACH NODE--THE HEAD OF*/ 
/.THE INTERVAL IVIIICM THIS * /  
/*NODE REPRESENTS * /  

/4FOR EACH EDGE; EDGE IN TI tE* /  
/*NEXT LOWER ORDER GRAPH IT * /  
/*CORRESPONDS TD . /  

DCL 1 EDGE DATA (NO OF_EDGES) CTL, 
2 D B - -  BIT(NO_OF_DEFS), 
2 PB BIT(NO_OF_DEFS); 

DCL L NODE_DATA (NO_OF_NODES) CTL, 
2 UB DIT(NOOF_DEFS); 

/ * * * *  DECLARATIONS OF OUTPUT DATA 

DCL USED.(NO_OF_NODES) BIT(NO OF_DEFS) CTL; 
DCL REACII(NO OF NODES) BIT(NO~OF_DEFS) CTL; 
BCL LIVE (NO_OF_EDGES) BIT(NO_OF_BEES) CTL; 

/ * * * *  DECLARATIONS OF LOCAL ~ATA 

DCL NO OF GRAPIIS FIXED B I N ( 1 5 ) ;  
NCL NO_OF_NODES FIXED B I N ( 1 5 ) ;  
DCL NO_OF_EDGES FIXED BIN(IS) ;  
DCL NO_OF_DEFS FIXED B I N ( 1 5 ) ;  
DCL IIEAO FIXED B I N ( 1 5 ) ;  
GEL G FIXED R I N ( E 5 ) ;  
OCL I FIXED B I N ( 1 5 ) ;  

4 * * * /  

* * * * /  

/ * * * * * * * * * * * * * * * * * * *  START OF pROGRA~.I * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
NO_OFGBAPHS=DItI(GRAP'IS.FIRST_NODE, 1 ) ;  
NO_OFNODES=UIM(NODEDATA.UD,1);  
NO_OF_EDGES=DIt4(EDGEDATA.DB, I ) ;  
NO_OFDEFS=LENGTtI(DB(1)); 
ALLOCATE REACH INIT((NO_OF_NODES)IOIB); 
ALLOCATE USED; 
USED=UB; / * IN IT .  USED TO UB FOR BASIC NUDES AND TD n FOR ALL OTHERS*/ 

/ * * . 4 4 4 , * * *  PItASE I - LOW ORDER GRAPH TO HIGH ORDER SRAPIt * * * * * * * * * * * /  
BEGINt 
DCL P (NO OF_EDGES) BIT(NO_OF_DEFS); /*PRESERVED OH PATII * /  
DCL D (NO_OF_EDGES) RIT(NO_OF_DEES); /*DEFINED ON PATH * /  
DCL Pi t ;  (NO_OFNODES) BIT(NO_OF_BEES) /*PRESERVED ON ENTRY*/ 

INIT((NO_OF_NODES)'D'R); 
DCL DIN (NO_OF_NODES) BIT(ND_OE_DEFS) /*~EEIRED ON ENTRY*/ 

INIT((NO_OE_NODES)'g'B); 
DO G=l TO NO_OF_GRAPIISol; 

IF G>l 
THEN DO; / *  PICK UP DATA FROM LOI~ER GRAPH * /  

DO I=EIRST EDGE(G) TO LASTEDGE(G); 
PB(1)=PTCORRES_EDGE(1)); 
DB(I)=REACH(CORRES_HEAD(FROM(I)))  & PD( I )  I 

D(CORRES_EDGE(I)) ;  
END; 
DO 1=FIRST NODE(G) TO LAST NODE(G); 

UB(1)=U~ED(CORRES_HEAD(1)); 
REACII(1)=NEACH(CORRES_HEAD(1)); 

END; 
END; 

HEAD=B; 
DO I=2*FIRST_EDGE(G)-I TO 2*LAST_EDGE(G); 

IF IIEADER(1) 
THEN DO; 

IF IIEAD "= NODE(1) TMEN HEAD=NODE(1); 
IF OUT EDGE(I)  

~HEN DO; 
P (EDGE(1 ) )=PB(EDGE(1 ) ) ;  
D ( E D G E ( I ) ) = D R ( E D G E ( I ) ) ;  

END; 
END; 
ELSE / *  NOT A HEADER NODE * /  

IF IN EDGE(I)  
TH~N DO; 

P I N ( N O D E ( I ) ) = P I N ( N O D E ( I ) )  I P l E D G E ( I ) ) ;  
D I N ( N O D E ( I ) ) = D I N ( N O D E ( I ) )  I D ( E D O E ( I ) ) ;  
USED(HEAD)=USED(t tEAD)I(P(EDGE(I) )  & U D ( N O D E ( I ) ) ) ;  

END; 
ELSE DO; / *  FOR THE OUT EDGE * /  

P(EDGE(1))=PIN(NODE(1)) & PR(EDGE(1)); 
D(EDGE(1))=DIN(NODE(1)) & PB(EDGE(1)) IDR(EOGE(1)); 

END; 
IF LATCl t ( I )  THEN REACII(MEAD)=REACH(tlEAD) I D ( E D G E ( I ) ) ;  

END; 1- OF PROCESSING A GRAPH * /  
END; / *  OF pROCESSING ALL GRAPHS BY PHASE I * /  
END; / *  OF BEGIN BLOCK (LOCAL DATA IS FREED) * /  

/ * * * * * * * * * * * * * * * * * * *  THE END OF PHASE I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

/ * * * * * * *  PIIASE I I  - PROCESS GRAPHS FROM IIIGH ORDER TO LOW ORDER * * . 4 . * /  
BEGIN; 

DCL A (NO OF EDGES) BIT(NO OF DEFS) IN IT ( (NO OF EDGES) '01R) ;  
REACH(NO_0F_NO~ES'~=I0'B; /*INITTALTZE TO DEFS THAT R-EACII PROGRAM 4/  
DO G=NO_OF_GNAPHS-I TO ]. BY - 1 ;  

DO I=FIRST NODE(G*1) TO LAST_NODE(G*I); 
REACH(COGBES_IIEAD(1))=REACH(CORRES_IIEAD(1)) I REACII(1); 

END; 
DO 1=2*FIRST_EDGE(G)- I  TO 2*LAST_EDGE(G); 

I F I N_EDGE( I ) & ~HEADER( I ) 
THEN REACH(NODE(I))=REACH(NOOE(1)) I A ( E D S E ( I ) ) ;  

IF OUT_EDGE(b) 
TIIEN A(EDGE( I ) )=REACH(NODE( I ) )  & PD(EDGE( I ) )  I 

DB( EDGE( I ) ) ; 
END; / *  OF PROCESSING GRAPIt * /  

END; / *  OF PROCESSING ALL GRAPHS By PItASE I I  * /  
/ * * * * * * * * * * * * * * * * *  TIlE END OF PHASE I I  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

/ * * * * * * * * * * * * * * * *  PIIASE I I I  - LIVE ANALYSIS * * * * * * * * * * * * * * * * * * * * * * * * * * *  
ALLOCATE LIVE;  
USED ( NO_OF_NODES ) =USED ( CORR ES_HEAD (NO_OF_NODES) ) ; 
UB (NO OF_NOD ES ) =USED ( CORR ES_ftEAD ( NO_OF_NODES ) ) ; 
DO G=NO_OF_GRAP!IS-I TO 1 BY - I ;  

DO I :F IRST NODE(G*I) TO LAST_NODE(G+1); 
USED(CORNES_IIEAD(1)):USED(CORRES_IIEAD(1)) I U B ( 1 ) ;  

END; 
DO 1=2*LAST_EDGE(G) TO 2*FIRST_EDGE(G)-E BY - 1 ;  

IF OUT EDGE(I)  & " I IEADER(I )  THEN 
USED( NODE( I ) ) =USED( NODE( I ) ) I (USED( TO( EDGE( I ) ) )DPB (EDGE( I ) ) ) ;  

IF IN EDGE(I)  TIIEN 
L I V E ( E D G E ( I ) ) : U S E D ( N O D E ( I ) )  & A ( E D G E ( I ) ) ;  

El;O; / *  OF PROCESSING GRAPH * /  
END; / *  OF LIVE ANALYSIS " /  
END; / *  OF BEGIN BLOCK * /  
RETURN; 

END; 
/ * * * * * * * * * * * * * * * * * * * * * * * N O  OF GATFLOW * * * * * * * * * * * * * * * * * 4 4 * * * * * 4 4 * * * * * *  
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