
A Program for Aligning Sentences in 
Bilingual Corpora 

Wil l iam A. Gale* 

AT&T Bell Laboratories 

K e n n e t h  W. C h u r c h *  

AT&T Bell Laboratories 

Researchers in both machine translation (e.g., Brown et al. 1990) and bilingual lexicography (e.g., 

Klavans and Tzoukermann 1990) have recently become interested in studying bilingual corpora, 

bodies of text such as the Canadian Hansards (parliamentary proceedings), which are available 

in multiple languages (such as French and English). One useful step is to align the sentences, 

that is, to identify correspondences between sentences in one language and sentences in the other 

language. 

This paper will describe a method and a program (align) for aligning sentences based on a 

simple statistical model of character lengths. The program uses the fact that longer sentences in 

one language tend to be translated into longer sentences in the other language, and that shorter 

sentences tend to be translated into shorter sentences. A probabilistic score is assigned to each 

proposed correspondence of sen tences, based on the scaled difference of lengths of the two sentences 

(in characters) and the variance of this difference. This probabilistic score is used in a dynamic 

programming framework to find the maximum likelihood alignment of sentences. 

It is remarkable that such a simple approach works as well as it does. An evaluation was 

performed based on a trilingual corpus of economic reports issued by the Union Bank of Switzer- 

land (UBS) in English, French, and German. The method correctly aligned all but 4% of the 

sentences. Moreover, it is possible to extract a large subcorpus that has a much smaller error 

rate. By selecting the best-scoring 80% of the alignments, the error rate is reduced from 4% to 

0.7%. There were more errors on the English-French subcorpus than on the English-German 

subcorpus, showing that error rates will depend on the corpus considered; however, both were 

small enough to hope that the method will be useful for many language pairs. 

To further research on bilingual corpora, a much larger sample of Canadian Hansards (ap- 

proximately 90 million words, half in English and and half in French) has been aligned with the 

align program and will be available through the Data Collection Initiative of the Association 

for Computational Linguistics (ACL/DCI). In addition, in order to facilitate replication of the 

align program, an appendix is provided with detailed c-code of the more difficult core of the align 

program. 

1. Introduction 

Researchers in both machine translation (e.g., Brown et al. 1990) and bilingual lexi- 
cography (e.g., Klavans and Tzoukermann 1990) have recently become interested in 

s tudying bilingual corpora, bodies of text such as the Canadian Hansards (parliamen- 
tary debates), which are available in multiple languages (such as French and English). 

The sentence alignment task is to identify correspondences between sentences in one 
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Table 1 

Input to alignment program. 

English French 

According to our survey, 1988 sales of 
mineral water and soft drinks were much 
higher than in 1987, reflecting the grow- 
ing popularity of these products. Cola drink 
manufacturers in particular achieved above- 
average growth rates. The higher turnover 
was largely due to an increase in the sales 
volume. Employment and investment levels 
also climbed. Following a two-year transi- 
tional period, the new Foodstuffs Ordinance 
for Mineral Water came into effect on April 
1, 1988. Specifically, it contains more strin- 
gent requirements regarding quality consis- 
tency and purity guarantees. 

Quant aux eaux min6rales et aux limonades, 
elles rencontrent toujours plus d'adeptes. En 
effet, notre sondage fait ressortir des ventes 
nettement sup6rieures a celles de 1987, pour 
les boissons ~ base de cola notamment. La 
progression des chiffres d'affaires r6sulte en 
grande partie de l'accroissement du volume 
des ventes. Uemploi et les investissements 
ont 6galement augment6. La nouvelle ordon- 
nance f6d6rale sur les denr6es alimentaires 
concernant entre autres les eaux min6rales, 
entr6e en vigueur le ler avril 1988 apr6s une 
p6riode transitoire de deux ans, exige surtout 
une plus grande constance dans la qualit6 et 
une garantie de la puret6. 

language and sentences in the other language. This task is a first step toward the more 

ambitious task finding correspondences among words.  1 

The input  is a pair of texts such as Table 1. The output  identifies the al ignment 

between sentences. Most English sentences match exactly one French sentence, but  it 

is possible for an English sentence to match two or more  French sentences. The first 

two English sentences in Table 2 illustrate a particularly hard case where  two English 

sentences align to two French sentences. No smaller alignments are possible because 

the clause " . . .  sales . . . w e r e  h i g h e r . . . "  in the first English sentence corresponds to 

(part of) the second French sentence. The next two alignments below illustrate the 

more typical case where  one English sentence aligns with exactly one French sentence. 

The final al ignment matches two English sentences to a single French sentence. These 

alignments agreed with the results p roduced  by  a h u m an  judge. 

Aligning sentences is just a first step toward  constructing a probabilistic dict ionary 

(Table 3) for use in aligning words  in machine translation (Brown et al. 1990), or for 

constructing a bilingual concordance (Table 4) for use in lexicography (Klavans and 

Tzoukermann  1990). 

Although there has been some previous work  on the sentence al ignment (e.g., 

Brown, Lai, and Mercer 1991 [at IBM], Kay and R6scheisen [this issue; at Xerox], 

and Catizone, Russell, and Warwick, in press [at ISSCO], the al ignment task remains a 

significant obstacle prevent ing many  potential  users f rom reaping many  of the benefits 

of bilingual corpora,  because the proposed  solutions are often unavailable, unreliable, 

a n d / o r  computat ional ly prohibitive. 

Most of the previous work  on sentence al ignment has yet  to be published. Kay's 

draft (Kay and R6scheisen; this issue), for example,  was wri t ten more than two years 

ago and is still unpublished.  Similarly the IBM work  is also several years old, but  not 

1 In statistics, string-matching problems are divided into two classes: alignment problems and 
correspondence problems. Crossing dependencies are possible in the latter, but not in the former. 
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Table 2 

Output from alignment program. 

English French 

According to our survey, 1988 sales of min- 
eral water and soft drinks were much higher 
than in 1987, reflecting the growing popular- 
ity of these products. Cola drink manufac- 
turers in particular achieved above-average 
growth rates. 

Quant aux eaux min6rales et aux limonades, 
elles rencontrent toujours plus d'adeptes. En 
effet, notre sondage fait ressortir des ventes 
nettement sup6rieures a celles de 1987, pour 
les boissons a base de cola notamment. 

The higher turnover was largely due to an La progression des chiffres d'affaires r6sulte 
increase in the sales volume, en grande partie de l'accroissement du vol- 

ume des ventes. 

Employment and investment levels also L'emploi et les investissements ont 6gale- 
climbed, ment augment6. 

Following a two-year transitional period, the 
new Foodstuffs Ordinance for Mineral Wa- 
ter came into effect on April 1, 1988. Specif- 
ically, it contains more stringent require- 
ments regarding quality consistency and pu- 
rity guarantees. 

La nouvelle ordonnance f6d6rale sur les 
denr6es alimentaires concernant entre autres 
les eaux min6rales, entr6e en vigueur le ler 
avril 1988 apr6s une p6riode transitoire de 
deux ans, exige surtout une plus grande con- 
stance dans la qualit6 et une garantie de la 
puret6. 

Table 3 

An entry in a probabilistic dictionary. 

(from Brown et al. 1990) 

English French Prob (FrenchlEnglish) 

the le 0.610 
the la 0.178 
the 1' 0.083 
the les 0.023 
the ce 0.013 
the il 0.012 
the de 0.009 
the ~ 0.007 
the que 0.007 

ve ry  well  d o c u m e n t e d  in the pub l i shed  literature; consequent ly ,  there has  been  a lot 

of  unneces sa ry  subsequen t  w o r k  at ISSCO and  elsewhere.  2 

The m e t h o d  w e  descr ibe has  the same  sen t enceqeng th  basis as does  that  of  Brown,  

Lai, and  Mercer,  whi le  the two  differ cons iderab ly  f rom the lexical app roaches  tried 

by  Kay  and  R6scheisen a nd  by  Cat izone,  Russell, and  Warwick.  

The feasibility of  o ther  m e t h o d s  has  var ied  greatly. Kay ' s  a p p r o a c h  is appa ren t l y  

quite  slow. At  least, wi th  the cur ren t ly  inefficient implementa t ion ,  it m igh t  take hou r s  

2 After we finished most of this work, it came to our attention that the IBM MT group has at least four 
papers that mention sentence alignment. (Brown et al. 1988a,b) start from a set of aligned sentences, 
suggesting that they had a solution to the sentence alignment problem back in 1988. Brown et al. (1990) 
mention that sentence lengths formed the basis of their method. The draft by Brown, Lai, and Mercer 
(1991) describes their process without giving equations. 
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Table 4 

A b i l i n g u a l  c o n c o r d a n c e .  

bank /banque  ("money" sense) 

it could also be a place where we would  have a bank of experts. SENT i know several people who  a 
ftre le lieu oti se retrouverait une esp6ce de banque d'  experts. SENT je connais plusieurs pers  

f finance (mr. wilson) and the governor  of the 

es finances ( m .  wilson ) et le gouverneur  de la 

reduced by over 800 per  cent in one week through 
us de 800 p. 100 en une semaine a cause d ' une  

bank of canada have frequently on behalf  of the ca 

banque du  canada ont f r6quemment  utilis6 au co 

bank action. SENT there was a haberdasher  who  wou  

banque. SENT voila un chemisier qui aurait appr  

bank /banc  ("place" sense) 

h a forum. SENT such was the case in the georges 
entre les 6tats-unis et le canada a propos du 

han i did. SENT he said the nose and tail of the 
gouvernement  avait c6d6 les extr6mit6s du  

he fishing privileges on the nose and tail of the 
les privil6ges de p~che aux extr6mit6s du 

bank issue which was settled be tween canada and th 

banc de george. SENT c'est dans  le but de r6 

bank were surrendered by this government.  SENT th 

banc. SENT en fait, lors des n6gociations de 1 

bank went  d o w n  the tube before we even negotiated 

banc ont 6t6 liquid6s avant rhyme qu'  on ai 

to align a single Scientific American article (Kay, personal communication). It ought to 

be possible to achieve fairly reasonable results with much less computation. The IBM 

algorithm is much more efficient since they were able to extract nearly 3 million pairs 

of sentences from Hansard materials in 10 days of running time on an IBM Model 

3090 mainframe computer with access to 16 megabytes of virtual memory (Brown, 

Lai, and Mercer 1991). 

The evaluation of results has been absent or rudimentary. Kay gives positive ex- 

amples of the alignment process, but no counts of error rates. Brown, Lai, and Mercer 

(1991) report that they achieve a 0.6% error rate when the algorithm suggests aligning 

one sentence with one sentence. However, they do not characterize its performance 

overall or on the more difficult cases. 

Since the research community has not had access to a practical sentence alignment 

program, we thought that it would be helpful to describe such a program (align) and to 

evaluate its results. In addition, a large sample of Canadian Hansards (approximately 

90 million words, half in French and half in English) has been aligned with the align 
program and has been made available to the general research community through the 

Data Collection Initiative of the Association for Computational Linguistics (ACL/DCI). 

In order to facilitate replication of the align program, an appendix is provided with 

detailed c-code of the more difficult core of the align program. 

The align program is based on a very simple statistical model of character lengths. 

The model makes use of the fact that longer sentences in one language tend to be 

translated into longer sentences in the other language, and that shorter sentences 

tend to be translated into shorter sentences. A probabilistic score is assigned to each 

pair of proposed sentence pairs, based on the ratio of lengths of the two sentences 

(in characters) and the variance of this ratio. This probabilistic score is used in a 

dynamic programming framework in order to find the maximum likelihood alignment 

of sentences. 

It is remarkable that such a simple approach can work as well as it does. An 

evaluation was performed based on a trilingual corpus of 15 economic reports issued 

by the Union Bank of Switzerland (UBS) in English, French, and German (14,680 

words, 725 sentences, and 188 paragraphs in English and corresponding numbers in 
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the other two languages). The method correctly aligned all but 4% of the sentences. 

Moreover, it is possible to extract a large subcorpus that has a much smaller error 

rate. By selecting the best-scoring 80% of the alignments, the error rate is reduced 

from 4% to 0.7%. There were more errors on the English-French subcorpus than on 

the English-German subcorpus, showing that error rates will depend on the corpus 

considered; however, both were small enough for us to hope that the method will be 

useful for many language pairs. We believe that the error rate is considerably lower 

in the Canadian Hansards because the translations are more literal. 

2. Paragraph Alignment 

The sentence alignment program is a two-step process. First paragraphs are aligned, 

and then sentences within a paragraph are aligned. It is fairly easy to align paragraphs 

in our trilingual corpus of Swiss banking reports since the boundaries are usually 

clearly marked. However, there are some short headings and signatures that can be 

confused with paragraphs. Moreover, these short "pseudo-paragraphs" are not always 

translated into all languages. On a corpus this small the paragraphs could have been 

aligned by hand. It turns out that "pseudo-paragraphs" usually have fewer than 50 

characters and that real paragraphs usually have more than 100 characters. We used 

this fact to align the paragraphs automatically, checking the result by hand. 

The procedure correctly aligned all of the English and German paragraphs. How- 

ever, one of the French documents was badly translated and could not be aligned 

because of the omission of one long paragraph and the duplication of a short one. 

This document was excluded for the purposes of the remainder of this experiment. 

We will show below that paragraph alignment is an important step, so it is fortu- 

nate that it is not particularly difficult. In aligning the Hansards, we found that para- 

graphs were often already aligned. For robustness, we decided to align paragraphs 

within certain fairly reliable regions (denoted by certain Hansard-specific formatting 

conventions) using the same method as that described below for aligning sentences 

within each paragraph. 

3. A Dynamic Programming Framework 

Now, let us consider how sentences can be aligned within a paragraph. The program 

makes use of the fact that longer sentences in one language tend to be translated into 

longer sentences in the other language, and that shorter sentences tend to be trans- 

lated into shorter sentences. 3 A probabilistic score is assigned to each proposed pair 

of sentences, based on the ratio of lengths of the two sentences (in characters) and 

the variance of this ratio. This probabilistic score is used in a dynamic programming 

framework in order to find the maximum likelihood alignment of sentences. The fol- 

3 We will have little to say about how sentence boundaries are identified. Identifying sentence 
boundaries is not always as easy as it might  appear for reasons described in Liberman and Church (in 
press). It would  be much easier if periods were always used to mark sentence boundaries;  but 
unfortunately, many periods have other purposes.  In the Brown Corpus, for example, only 90% of the 
periods are used to mark sentence boundaries;  the remaining 10% appear in numerical expressions, 
abbreviations, and so forth. In the Wall Street Journal, there is even more discussion of dollar amounts  
and percentages, as well as more use of abbreviated titles such as Mr.; consequently, only 53% of the 
periods in the Wall Street Journal are used to identify sentence boundaries.  For the UBS data, a simple 
set of heuristics were used to identify sentences boundaries.  The dataset was sufficiently small that it 
was possible to correct the remaining mistakes by hand. For a larger dataset, such as the Canadian 
Hansards,  it was not possible to check the results by hand. We used the same procedure that is used in 
Church (1988). This procedure was developed by Kathryn Baker (unpublished). 
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Figure 1 
Paragraph lengths are highly correlated. The horizontal axis shows the length of English 
paragraphs, while the vertical scale shows the lengths of the corresponding German 
paragraphs. Note that the correlation is quite large (.991). 

lowing striking figure could easily lead one to this approach. Figure 1 shows that the 

lengths (in characters) of English and German paragraphs are highly correlated (.991). 

Dynamic programming is often used to align two sequences of symbols in a vari- 

ety of settings, such as genetic code sequences from different species, speech sequences 

from different speakers, gas chromatograph sequences from different compounds, and 

geologic sequences from different locations (Sankoff and Kruskal 1983). We could ex- 

pect these matching techniques to be useful, as long as the order of the sentences does 

not differ too radically between the two languages. Details of the alignment techniques 

differ considerably from one application to another, but all use a distance measure to 

compare two individual elements within the sequences and a dynamic programming 

algorithm to minimize the total distances between aligned elements within two se- 

quences. We have found that the sentence alignment problem fits fairly well into this 

framework, though it is necessary to introduce a fairly interesting innovation into the 

structure of the distance measure. 

Kruskal and Liberman (1983) describe distance measures as belonging to one of 

two classes: trace and time-warp. The difference becomes important when a single 

element of one sequence is being matched with multiple elements from the other. In 

trace applications, such as genetic code matching, the single element is matched with 

just one of the multiple elements, and all of the others will be ignored. In contrast, 

in time-warp applications such as speech template matching, the single element is 

matched with each of the multiple elements, and the single element will be used 

in multiple matches. Interestingly enough, our application does not fit into either of 
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Figure 2 
Delta is approximately normal. The horizontal axis shows ~, while the vertical scale shows the 
empirical density of delta for the hand-aligned regions as points, and a normal (0,1) density 
plot (lines) for comparison• The empirical density is slightly more peaked than normal (and its 
mean is not quite zero), but the differences are small enough for the purposes of the algorithm. 

Kruskal  and Liberman ' s  classes because our  distance measure  needs to compare  the 

single e lement  with an aggregate  of the mult iple  elements. 

4. The Distance Measure 

It is convenient  for the distance measure  to be based on a probabilistic mode l  so that  

information can be combined  in a consistent way. Our  distance measure  is an est imate 

of - logProb(ma tch  I 6), where  ~ depends  on 11 and/2 ,  the lengths of the two port ions 

of text under  consideration. The log is int roduced here so that add ing  distances will 

p roduce  desirable results. 

This distance measure  is based on the assumpt ion  that each character  in one lan- 

guage,  L~, gives rise to a r a n d o m  n u m b e r  of characters in the other language,  L2. We 

assume these r a n d o m  variables are independen t  and  identically distr ibuted with  a 

normal  distribution. The model  is then specified by  the mean,  c, and variance, s 2, of 

this distribution, c is the expected n u m b e r  of characters in L2 per  character  in Lb and 

s 2 is the variance of the n u m b e r  of characters in L2 per  character  in L1. We define ~ to 

be (12 - llC)/V~l s2 so that it has a normal  distribution with  mean  zero and  variance 

one (at least when  the two port ions of text under  considerat ion actually do h a p p e n  to 

be translations of one another).  

Figure 2 is a check on the assumpt ion  that 6 is normal ly  distributed. The figure is 

constructed using the pa ramete r s  c and  s 2 es t imated for the program.  
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Figure 3 
Variance is modeled proportional to length. The horizontal axis plots the length of English 
paragraphs, while the vertical axis shows the square of the difference of English and German 
lengths, an estimate of variance. The plot indicates that variance increases with length, as 
predicted by the model. The line shows the result of a robust regression analysis. Five extreme 
points lying above the top of this figure have been suppressed since they did not contribute to 
the robust regression. 

The parameters  c and S 2 a r e  determined empirically from the UBS data. We could 

estimate c by  counting the number  of characters in German  paragraphs then divid- 

ing by the number  of characters in corresponding English paragraphs.  We obtain 

81105/73481 ~ 1.1. The same calculation on French and English paragraphs yields 

c ~ 72302/68450 ~ 1.06 as the expected number  of French characters per English 

character. As will be explained later, performance does not seem to be very  sensitive 

to these precise language-dependent  quantities, and therefore we simply assume the 

language- independent  value c ~ 1, which simplifies the program considerably. This 

value would  clearly be inappropriate  for English-Chinese alignment,  but  it seems 

likely to be useful for most  pairs of European languages. 

s 2 is estimated from Figure 3. The model  assumes that s 2 is proport ional  to length. 

The constant of proport ional i ty  is de termined by  the slope of the robust regression 

line shown in the figure. The result for English--German is s 2 = 7.3, and for English-  

French is s 2 = 5.6. Again, we will see that the difference in the two slopes is not 

too important.  Therefore, we can combine the data across languages, and adopt  the 

simpler language- independent  estimate s 2 ~ 6.8, which is what  is actually used in the 

program. 

We now appeal  to Bayes Theorem to estimate Prob(match ] 6) as a constant times 

Prob(6 I match) Prob(match). The constant can be ignored since it will be the same for 
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Table 5 

Prob(match) 

Category Frequency Prob(match) 

1-1 1167 0.89 
1-0 or 0-1 13 0.0099 
2-1 or 1-2 117 0.089 
2-2 15 0.011 

1312 1.00 

all proposed matches. The conditional probabili ty Prob(~ I match) can be estimated by  

Prob(~ ] match) = 2(1 - Prob(]~l) ) 

where  Prob(]61) is the probabili ty that a r andom variable, z, with a s tandardized (mean 

zero, variance one) normal  distribution, has magni tude  at least as large as 16]. That is, 

Prob(~)- 1 f~ v ~  oo e -z2/2 dz. 

The program computes  6 directly from the lengths of the two portions of text, 11 and 

12, and the two parameters,  c and s 2. That is, 6 = (/2 - llC)/IX/~lS 2. Then, Prob(]6]) is 

computed  by integrating a s tandard normal  distribution (with mean  zero and variance 

one). Many statistics textbooks include a table for comput ing  this. The code in the 

appendix uses the pnorm function, which is based on an approximation described by 

Abramowitz  and Stegun (1964; p. 932, equation 26.2.17). 

The prior probabili ty of a match, Prob(match), is fit with the values in Table 5, which 

were determined from the hand-marked UBS data. We have found that a sentence in 

one language normally matches exactly one sentence in the other language (1-1). Three 

additional possibilities are also considered: 1-0 (including 0-1), 2-1 (including 1-2), and 

2-2. Table 5 shows all four possibilities. 

This completes the discussion of the distance measure. Prob(match I 6) is computed  

as an (irrelevant) constant times Prob(~ ] match)Prob(match). Prob(match) is computed  

using the values in Table 5. Prob(6 ] match) is computed  by  assuming that Prob(6 ] 
match) = 2(1 -Prob(]~]) ), where Prob(16]) has a standard normal  distribution. We first 

calculate 6 as (12 - llc)/Ix/~lS 2 and then Prob(]6[) is computed  by  integrating a s tandard 

normal  distribution. See the c-function two_side_distance in the appendix for an example 

of a c-code implementat ion of these calculations. 

The distance function d, represented in the program as two,side_distance, is defined 

in a general way  to allow for insertions, deletion, substitution, etc. The function takes 

four arguments: Xl~ Yl, x2, y2. 

1. Let d(xl,yl, 0~ 0) be the cost of substituting Xl with yl, 

2. d(xl, 0; 0, 0) be the cost of deleting Xl, 

3. d(O, yl; 0, 0) be the cost of insertion of Yl, 

4. d(Xl,yl; x2, 0) be the cost of contracting Xl and x2 to yl, 
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5. d(Xl,yl;O, y2) be the cost of expanding X1 to yl and y2, and 

6. d(Xl,yl;x2,y2) be the cost of merging xl and x2 and matching with Yl 

and yR. 

5. The Dynamic Programming Algorithm 

The algorithm is summarized in the following recursion equation. Let si, i = 1 . . .  I, be 

the sentences of one language, and tj, j -- 1-. .  J, be the translations of those sentences in 

the other language. Let d be the distance function described in the previous section, and 

let D(i,j) be the minimum distance between sentences s l , . . . s i  and their translations 

t l , . . . t j ,  under the maximum likelihood alignment. D(i,j) is computed by minimizing 

over six cases (substitution, deletion, insertion, contraction, expansion, and merger) 

which, in effect, impose a set of slope constraints. That is, D(i,j) is defined by the 

following recurrence with the initial condition D(i,j) = O. 

D(i,j - 1) + d(O, tj;O,O) 
D ( i -  1,j) + d(si, O;O,O) 

D ( i -  1 , j -  1) + d(si, tj;O,O) 
D(i,j) = min D ( i -  l , j -  2) q- d(si, tj;O, tj_l) 

D ( i -  2 , j - 1 )  + d(si, ty;Si-l,0) 
D ( i -  2 , j -  2) + d(si, tfisi-l,tj-1) 

6. Evaluation 

To evaluate align, its results were compared with a human alignment. All of the UBS 

sentences were aligned by a primary judge, a native speaker of English with a reading 

knowledge of French and German. Two additional judges, a native speaker of French 

and a native speaker of German, respectively, were used to check the primary judge on 

43 of the more difficult paragraphs having 230 sentences (out of 118 total paragraphs 

with 725 sentences). Both of the additional judges were also fluent in English, having 

spent the last few years living and working in the United States, though they were 

both more comfortable with their native language than with English. 

The materials were prepared in order to make the task somewhat less tedious for 

the judges. Each paragraph was printed in three columns, one for each of the three 

languages: English, French, and German. Blank lines were inserted between sentences. 

The judges were asked to draw lines between matching sentences. The judges were 

also permitted to draw a line between a sentence and "null" if they thought that the 

sentence was not translated. For the purposes of this evaluation, two sentences were 

defined to "match" if they shared a common clause. (In a few cases, a pair of sentences 

shared only a phrase or a word, rather than a clause; these sentences did not count as 

a "match" for the purposes of this experiment.) 

After checking the primary judge with the other two judges, it was decided that 

the primary judge's results were sufficiently reliable that they could be used as a 

standard for evaluating the program. The primary judge made only two mistakes on 

the 43 hard paragraphs (one French mistake and one German mistake), whereas the 

program made 44 errors on the same materials. Since the primary judge's error rate is 

so much lower than that of the program, it was decided that we needn't be concerned 

with the primary judge's error rate. If the program and the judge disagree, we can 

assume that the program is probably wrong. 

The 43 "hard" paragraphs were selected by looking for sentences that mapped 

to something other than themselves after going through both German and French. 
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Table  6 

Complex matches are more difficult. 

category English-French English-German total 

N err % N err % N err % 

1-0 
1-1 
2-1 
2-2 
3-1 
3-2 

8 8 100 
542 14 2.6 
59 8 14 
9 3 33 
1 1 100 
1 1 100 

5 5 100 
625 9 1.4 
58 2 3.4 
6 2 33 
1 1 100 
0 0 - -  

13 13 100 
1167 23 2.0 
117 10 9 
15 5 33 
2 2 100 
1 1 100 

Specifically, for each English sentence, we at tempted to find the corresponding German 

sentences, and then for each of them, we at tempted to find the corresponding French 

sentences, and then we at tempted to find the corresponding English sentences, which 

should hopefully get us back to where we started. The 43 paragraphs included all 

sentences in which this process could not be completed around the loop. This relatively 

small group of paragraphs (23% of all paragraphs) contained a relatively large fraction 

of the program's  errors (82%). Thus, there seems to be some verification that this 

trilingual criterion does in fact succeed in distinguishing more difficult paragraphs 

from less difficult ones. 

There are three pairs of languages: English-German,  English-French, and French-  

German. We will report  on just the first two. (The third pair is probably dependent  

on the first two.) Errors are reported with respect to the judge's responses. That is, 

for each of the "matches" that the pr imary  judge found,  we report  the program as 

correct if it found the "match" and incorrect if it didn't .  This procedure  is better than 

comparing on the basis of alignments proposed by the algori thm for two reasons. 

First, it makes the trial "blind," that is, the judge does not know the algorithm's result 

when  judging. Second, it allows comparison of results for different algorithms on a 

common basis. 

The program made  36 errors out of 621 total alignments (5.8%) for English-French 

and 19 errors out of 695 (2.7%) alignments for English-German.  Overall, there were 

55 errors out of a total of 1316 alignments (4.2%). The higher error rate for English- 

French alignments may  result from the German being the original, so that the English 

and German differ by one translation, while the English and French differ by two 

translations. 

Table 6 breaks down  the errors by category, illustrating that complex matches 

are more difficult. 1-1 alignments are by far the easiest. The 2-1 alignments, which 

come next, have four times the error rate for 1-1. The 2-2 alignments are harder  still, 

but  a majority of the alignments are found. The 3-1 and 3-2 alignments are not even 

considered by the algorithm, so naturally all three instances of these are counted as 

errors. The most  embarrassing category is 1-0, which was never  handled correctly. In 

addition, when  the algorithm assigns a sentence to the 1-0 category, it is also always 

wrong. Clearly, more work is needed to deal with the 1-0 category. It may  be necessary 

to consider language-specific methods  in order  to deal adequately with this case. 

Since the algori thm achieves substantially better performance on the 1-1 regions, 

one interpretation of these results is that the overall low error rate is due  to the 

high frequency of 1-1 alignments in English-French and Engl ish-German translations. 
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Table 7 

The distance measure is the best predictor of errors. 

Variable Coef. Std. Dev. 

Distance Measure .071 .011 
Category Type .52 .47 
Paragraph Length .0003 .0005 
Sentence Length .0013 .0029 

Coef./Std. Dev. 

6.5 
1.1 
0.6 
0.5 

Translations to linguistically more different languages, such as Hebrew or Japanese, 

might encounter  a higher  propor t ion of hard matches. 

We investigated the possible dependence  of the error rate on four variables: 

1. Sentence Length 

2. Paragraph Length 

3. Category Type 

4. Distance Measure. 

We used logistic regression (Hosmer  and Lemeshow 1989) to see how well each of 

the four variables predicted the errors. The coefficients and their s tandard deviations 

are shown in Table 7. Apparently,  the distance measure is the most  useful predictor, 

as indicated by  the last column. In fact, none of the other three factors was found to 

contribute significantly beyond  the effect of the distance measure,  indicating that the 

distance measure is already doing an excellent job, and we should not expect much  

improvement  if we were to try to augment  the measure to take these additional factors 

into account. 

The fact that the score is such a good predictor  of performance can be used to ex- 

tract a large subcorpus that has a much smaller error rate. By selecting the best scoring 

80% of the alignments, the error rate can be reduced from 4% to 0.7%. In general, we 

can trade off the size of the subcorpus and the accuracy by setting a threshold, and 

rejecting alignments with a score above this threshold. Figure 4 examines this trade-off 

in more detail. 

Less formal tests of the error rate in the Hansards  suggest that the overall error 

rate is about  2%, while the error rate for the easy 80% of the sentences is about  0.4%. 

Apparent ly  the Hansard  translations are more literal than the UBS reports. It took 

20 hours  of real t ime on a sun 4 to align 367 days of Hansards,  or 3.3 minutes per 

Hansard-day. The 367 days of Hansards  contained about  890,000 sentences or about  37 

million "words"  (tokens). About  half of the computer  t ime is spent identifying tokens, 

sentences, and paragraphs,  and about  half of the time is spent in the align program 

itself. 
The overall error, 4.2%, that we get on the UBS corpus is considerably higher  

than the 0.6% error reported by Brown, Lai, and Mercer (1991). However ,  a direct 

comparison is misleading because of the differences in corpora and the differences in 

sampling. We have observed that the Hansards  are much  easier than the UBS. Our  

error rate drops by  about  50% in that case. Aligning the UBS French and English texts is 

more difficult than aligning the English and German,  because the French and English 

86 



William A. Gale and Kenneth W. Church Program for Aligning Sentences 

03 

o 

.~, 04 
c -  

O 

0.. 

0 

. . . . . . . . . . . . .  ~_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I I I I I 

20 40 60 80 1 O0 

percent of retained alignments 

Figure 4 
Extracting a subcorpus with lower error rate. The fact that the score is such a good predictor 
of performance can be used to extract a large subcorpus that has a much smaller error rate. In 
general, we can trade off the size of the subcorpus and the accuracy by setting a threshold and 
rejecting alignments with a score above this threshold. The horizontal axis shows the size of 
the subcorpus, and the vertical axis shows the corresponding error rate. An error rate of about 
2/3% can be obtained by selecting a threshold that would retain approximately 80% of the 
corpus. 

versions are separated by  two translations, both  being translations of the Ge rman  

original. In addition, IBM samples  only the 1-1 al ignments,  which are much  easier 

than any  other category, as one can see f rom Table 6. 

Given these differences in testing me thodo logy  as well  as the differences in the 

algorithms, we find the methods  giving broadly  similar results. Both methods  give 

results with sufficient accuracy to use the result ing al ignments,  or selected port ions 

thereof, for acquisition of lexical information.  And  neither me thod  achieves h u m a n  

accuracy on the task. (Note that one difference be tween  their me thod  and ours  is that  

they never  find 2-2 alignments.  This would  give their me thod  a m i n i m u m  overall  error 

rate of 1.4% on the UBS corpus,  three t imes the h u m a n  error rate on hard paragraphs . )  

We conclude that a sentence a l ignment  me thod  that achieves h u m a n  accuracy will 

need to have  lexical information available to it. 

7. Variations and Extensions 

7.1 Measuring Length in Terms Of Words Rather than Characters 

It is interesting to consider wha t  happens  if we  change our  definition of length to count  

words  rather  than characters. It might  seem that  a word  is a more  natural  linguistic 

unit  than a character. However ,  we have  found that words  do not pe r fo rm as well  as 
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characters. In fact, the "words" variation increases the number of errors dramatically 

(from 36 to 50 for English-French and from 19 to 35 for English-German). The total 

errors were thereby increased from 55 to 85, or from 4.2% to 6.5%. 

We believe that characters are better because there are more of them, and there- 

fore there is less uncertainty. On the average, there are 117 characters per sentence 

(including white space) and only 17 words per sentence. Recall that we have modeled 

variance as proportional to sentence length, V(I) = s21. Using the character data, we 

found previously that s 2 ~ 6.5. The same argument applied to words yields s 2 ~ 1.9. 

For comparison's sake, it is useful to consider the ratio of x / -V~/m (or equivalently, 

s/x/-m), where m is the mean sentence length. We obtain x/V(m)/m ratios of 0.22 for 

characters and 0.33 for words, indicating that characters are less noisy than words, 

and are therefore more suitable for use in align. 
Although Brown, Lai, and Mercer (1991) used lengths measured in words, com- 

parisons of error rates between our work and theirs will not test whether characters 

or words are more useful. As set out in the previous section, there are numerous 

differences in testing methodology and materials. Furthermore, there are apparently 

many differences between the IBM algorithm and ours other than the units of mea- 

surement, which could also account for any difference on performance. Appropriate 

methodology is to compare methods with only one factor varying, as we do here. 

7.2 Ignoring Paragraph Boundaries 

Recall that align is a two-step process. First, paragraph boundaries are identified and 

then sentences are aligned within paragraphs. We considered eliminating the first step 

and found a threefold degradation in performance. The English-French errors were 

increased from 36 to 84, and the English-German errors from 19 to 86. The overall 

errors were increased from 55 to 170. Thus the two-step approach reduces errors by 

a factor of three. It is possible that performance might be improved further still by 

introducing additional alignment steps at the clause and/or  phrase levels, but testing 

this hypothesis would require access to robust parsing technology. 

7.3 Adding a 2-2 Category 

The original version of the program did not consider the category of 2-2 alignments. 

Table 6 shows that the program was right on 10 of 15 actual 2-2 alignments. This was 

achieved at the cost of introducing 2 spurious 2-2 alignments. Thus in 12 tries, the 

program was right 10 times, wrong 2 times. This is significantly better than chance, 

since there is less than 1% chance of getting 10 or more heads out of 12 flips of a fair 

coin. Thus it is worthwhile to include the 2-2 alignment possibility. 

7.4 Using More Accurate Parameter Estimates 

When we discussed the estimation of the model parameters, c and s 2, we mentioned 

that it is possible to fit the parameters more accurately if we estimate different values 

for each language pair, but that doing so did not seem to increase performance by very 

much. In fact, we found exactly the same total number of errors, although the errors are 

slightly different. Changing the parameters resulted in four changes to the output for 

English-French (two right and two wrong), and two changes to the output for English- 

German (one right and one wrong). Since it is more convenient to use language- 

independent parameter values, and doing so doesn't seem to hurt performance very 

much (if at all), we have decided to adopt the language-independent values. 
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7.5 Extensions 

7.5.1 Hard and Soft Boundaries. Recall that we rejected one of the French documents 

because one paragraph was omitted and two paragraphs were duplicated. We could 

have handled this case if we had employed a more powerful paragraph alignment 

algorithm. In fact, in aligning the Canadian Hansards, we found that it was necessary 

to do something more elaborate than we did for the UBS data. We decided to use 

more or less the same procedure for aligning paragraphs within a document as the 

procedure that we used for aligning sentences within a paragraph. Let us introduce 

the distinction between hard and soft delimiters. The alignment program is defined 

to move soft delimiters as necessary within the constraints of the hard delimiters. 

Hard delimiters cannot be modified, and there must be equal numbers of them. When 

aligning sentences within a paragraph, the program considers paragraph boundaries 

to be "hard" and sentence boundaries to be "soft." When aligning paragraphs within 

a document, the program considers document boundaries to be "hard" and paragraph 

boundaries to be "soft." This entension has been incorporated into the implementation 

presented in the appendix. 

7.5.2 Augmenting the Dictionary Function to Consider Words. Many alternative 

alignment procedures such as Kay and R6scheisen (unpublished) make use of words. It 

ought to help to know that the English string "house" and the French string "maison" 

are likely to correspond. Dates and numbers are perhaps an even more extreme exam- 

ple. It really ought to help to know that the English string "1988" and the French string 

"1988" are likely to correspond. We are currently exploring ways to integrate these 

kinds of clues into the framework described above. However, at present, the algorithm 

does not have access to lexical constraints, which are clearly very important. We expect 

that once these clues are properly integrated, the program will achieve performance 

comparable to that of the primary judge. However, we are still not convinced that it 

is necessary to process these lexical clues, since the current performance is sufficient 

for many applications, such as building a probabilistic dictionary. It is remarkable just 

how well we can do without lexical constraints. Adding lexical constraints might slow 

down the program and make it less useful as a first pass. 

8. Conclusions 

This paper has proposed a method for aligning sentences in a bilingual corpus, based 

on a simple probabilistic model, described in Section 3. The model was motivated 

by the observation that longer regions of text tend to have longer translations, and 

that shorter regions of text tend to have shorter translations. In particular, we found 

that the correlation between the length of a paragraph in characters and the length of 

its translation was extremely high (0.991). This high correlation suggests that length 

might be a strong clue for sentence alignment. 

Although this method is extremely simple, it is also quite accurate. Overall, there 

was a 4.2% error rate on 1316 alignments, averaged over both English-French and 

English-German data. In addition, we find that the probability score is a good predictor 

of accuracy, and consequently, it is possible to select a subset of 80% of the alignments 

with a much smaller error rate of only 0.7%. 

The method is also fairly language-independent. Both English-French and English- 

German data were processed using the same parameters. If necessary, it is possible to 

fit the six parameters in the model with language-specific values, though, thus far, we 

have not found it necessary to do so. 
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We have examined a number  of variations. In particular, we found that it is better 

to use characters rather than words  in counting sentence length. Apparently,  the per- 

formance is better with characters because there is less variability in the differences of 

sentence lengths so measured.  Using words as units increases the error rate by ha l l  

from 4.2% to 6.5%. 

In the future, we would  hope to extend the method  to make use of lexical con- 

straints. However ,  it is remarkable just how well we can do wi thout  such constraints. 

We might  advocate our  simple character al ignment procedure  as a first pass, even to 

those who advocate the use of lexical constraints. Our  procedure  would  complement  

a lexical approach quite well. Our  method  is quick but  makes a few percent errors; 

a lexical approach is probably slower, though possibly more accurate. One might  go 

with our  approach when  the scores are small, and back off to a lexical-based approach 

as necessary. 

Acknowledgments 

We thank Susanne Wolff and Evelyne 
Tzoukermann for their pains in aligning 
sentences. Susan Warwick provided us with 
the UBS trilingual corpus and convinced us 
to work on the sentence alignment problem. 

References 

Abramowitz, M., and Stegun, I. (1964). 
Handbook of Mathematical Functions. US 
Government Printing Office. 

Brown, P.; Cocke, J.; Della Pietra, S.; Della 
Pietra, V.; Jelinek, F.; Mercer, R.; and 
Roossin, P. (1988a). "A statistical 
approach to French/English translation." 
In Proceedings, RIA088 Conference. 
Cambridge, MA. 

Brown, P.; Cocke, J.; Della Pietra, S.; Della 
Pietra, V.; Jelinek, F.; Mercer, R.; and 
Roossin, P. (1988b). "A statistical 
approach to language translation." In 
Proceedings, 13th International Conference on 
Computational Linguistics (COLING-88). 
Budapest, Hungary. 

Brown, P.; Cocke, J.; Della Pietra, S.; Della 
Pietra, V.; Jelinek, F.; Lafferty, J.; Mercer, 
R.; and Roossin, P. (1990). "A statistical 
approach to machine translation." 
Computational Linguistics, 16, 79-85. 

Brown, P.; Lai, J.; and Mercer, R. (1991). 
"Aligning sentences in parallel corpora." 
In Proceedings, 47th Annual Meeting of the 
Association for Computational Linguistics. 

Catizone, R.; Russell, G.; and Warwick, S. 

(in press). "Deriving translation data from 
bilingual texts." In Lexical Acquisition: 
Using on-line Resources to Build a Lexicon, 
edited by Zernik. Lawrence Erlbaum. 

Church, K. (1988). "A stochastic parts 
program and noun phrase parser for 
unrestricted text." In Proceedings, Second 
Conference on Applied Natural Language 
Processing. Austin, TX. 

Hosmer, D., and Lemeshow, S. (1989). 
Applied Logistic Regression. Wiley. 

Klavans, J., and Tzoukermann, E. (1990). 
"The BICORD system." In Proceedings, 
15th International Conference on 
Computational Linguistics (COLING-90), 
174-179. 

Kay, M., and R6scheisen, M. (1988). 
"Text-translation alignment." Xerox Palo 
Alto Research Center. 

Kruskal, J., and Liberman, M. (1983). "The 
symmetric time-warping problem: From 
continuous to discrete." In Time Warps, 
String Edits, and Macro Molecules: The 
Theory and Practice of Sequence Comparison, 
edited by D. Sankoff and J. Kruskal. 
Addison-Wesley. 

Liberman, M., and Church, K. (in press). 
"Text analysis and word pronunciation in 
text-to-speech synthesis." In Advances in 
Speech Signal Processing, edited by S. Furui 
and M. Sondhi. 

Sankoff, D., and Kruskal, J. (1983). Time 
Warps, String Edits, and Macromolecules: The 
Theory and Practice of Sequence Comparison. 
Addison-Wesley. 

90 



William A. Gale and Kenneth W. Church Program for Aligning Sentences 

Appendix: Program 

with Michael D. Riley 

The following code is the core of align. It is a C language program that inputs two 

text files, with one token (word) per line. The text files contain a number of delimiter 

tokens. There are two types of delimiter tokens: "hard" and "soft." The hard regions 

(e.g., paragraphs) may not be changed, and there must be equal numbers of them in 

the two input files. The soft regions (e.g., sentences) may be deleted (1-0), inserted (0- 

1), substituted (1-1), contracted (2-1), expanded (1-2), or merged (2-2) as necessary so 

that the output ends up with the same number of soft regions. The program generates 

two output files. The two output files contain an equal number of soft regions, each 

on a line. If the -v command line option is included, each soft region is preceded by 

its probability score. 

#include <fcntl. h> 

#include <malloc.h> 

#include <math.h> 

#include <stdio.h> 

#include <string.h> 

#include <sys/mman.h> 

#include <sys/types.h> 

#include <values.h> 

#include <sys/stat.h> 

/* 

usage: 

align regions -D '.PARA' -d '.End of Sentence' file1 file2 

outputs two files: filel.al ~ file2.al 

hard regions are delimited by the -D arg 

soft regions are delimited by the -d arg 

*/ 

#define dist(x,y) distances[(x) * ((ny) + 1) + (y)] 

#define pathx(x,y) path x[(x) * ((ny) + i) + (y)] 

#define pathy(x,y) path_y[(x) * ((ny) + 1) + (y)] 

#define MAX_FILENAME 286 

#define BIG DISTANCE 2800 

/* Dynamic Programming Optimization */ 

struct alignment { 

int xl; 

int yl; 

int x2; 

int y2; 

int d; 

}; 

char *hard_delimiter = NULL; 

char *soft_delimiter = NULL; 

int verbose = O; 

/* utility functions */ 

I~ -D arg *I 

I* -d arg *I 

I* -v arg *I 

91 



Computational Linguistics Volume 19, Number 1 

char *readchars(), **readlines(), **substrings(); 

void err(); 

/* 

seq_align by Mike Riley 

x and y are sequences of objects, represented as non-zero ints, 

to be aligned. 

dist_funct(xl, yl, x2, y2) is a distance function of 4 args: 

dist_funct(xl, yl, O, O) gives cost of substitution of xl by yl. 

dist_funct(xl, O, O, 01 gives cost of deletion of xl. 

dist_funct(O, yl, O, 01 gives cost of insertion of yl. 

dist_funct(xl, yl, x2, 01 gives cost of contraction of (xl,x2) to yl. 

dist_funct(xl, yl, O, y2) gives cost of expansion of xi to (yl,y2). 

dist_funct(xl, yl, x2, y2) gives cost to match (xl,x2) to (yl,y2). 

align is the alignment, with (align[i].xl, align[i].x2) aligned 

with (align[i].yl, align[i].y2). Zero in align[].xl and align[].yl 

correspond to insertion and deletion, respectively. Non-zero in 

align[].x2 and align[].y2 correspond to contraction and expansion, 

respectively, align[].d gives the distance for that pairing. 

The function returns the length of the alignment. 
*/ 

int 

seq_align(x, y, nx, ny, dist_funct, align) 

int *x, *y, nx, ny; 

int (*dist_funct)(); 

struct alignment **align; 

int *distances, *path_x, *path_y, n; 

int i, j, oi, oj, di, dj, dl, d2, d3, d4, d5, d6, dmin; 

struct alignment *ralign; 

distances = (int *) malloc((nx + I) * (ny + i) * sizeof(int)); 

path_x = (int *) malloc((nx + i) * (ny + I) * sizeof(int)); 

path_y = (int *) malloc((nx + I) * (ny + i) * sizeof(int)); 

ralign = (struct alignment *) malloc((nx + ny) 

• sizeof(struct alignment)); 

for(j = O; j <= ny; j++) { 

for(i = O; i <= nx; i++) { 

dl = i>O &~ j>O ? /* substitution */ 

dist(i-l, j-l) + (*dist_funct)(x[i-l], y[j-1], O, O) 

: MAXINT; 

d2 = i>O ? /* deletion */ 

dist(i-l, j) + (*dist_funct)(x[i-l], O, O, O) 

: MAXINT; 

d3 = j>O ? /* insertion */ 

dist(i, j-l) + (*dist_funct)(O, y[j-1], O, O) 
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: MAXINT; 

d4 = i>l && j>O ? /* contraction */ 

dist(i-2, j-l) + (~dist_funct)(x[i-2], y[j-l], x[i-l], O) 

: MAXINT; 

d5 = i>O && j>l ? /~ expansion */ 

dist(i-l, j-2) + (~dist_funct)(x[i-l], y[j-2], O, y[j-l]) 

: MAXINT; 

d6 = i>l && j>l ? /~ melding ~/ 

dist(i-2, j-2) + (*dist_funct)(x[i-2], y[j-2], x[i-l], y[j-l]) 

: MAXINT; 

dmin = di; 

if(d2<dmin) dmin=d2; 

if(d3<dmin) dmin=d3; 

if(d4<dmin) dmin=d4; 

if(d5<dmin) dmin=dS; 

if(d6<dmin) dmin=d6; 

if(dmin == MAXINT) { 

dist(i,j) = O; 

} 

else if(dmin == dl) { 

dist(i,j) = dl; 

pathx(i,j) = i-l; 

pathy(i,j) = j-l; 

} 

else if(dmin == d2) { 

dist(i,j) = d2; 

pathx(i,j) = i-l; 

pathy(i,j) = j; 

} 

else if(dmin == d3) { 

dist(i,j) = d3; 

pathx(i,j) = i; 

pathy(i,j) = j-l; 

} 

else if(dmin == d4) { 

dist(i,j) = d4; 

pathx(i,j) = i-2; 

pathy(i,j) = j-l; 

} 

else if(drain == d5){ 

dist(i,j) = d5; 

pathx(i,j) = i-l; 

pathy(i,j) = j-2; 

} 

else /* dmin == d6 */ { 

dist(i,j) = d6; 

p a t h x ( i , j )  = i - 2 ;  

pathy(i,j) = j-2; 

} 
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} 

n=O; 

for(i=nx, 3=ny ; i>O II j>O ; i = oi, j = oj) { 

oi = pathx(i, j) ; 

oj = pathy(i, j) ; 

di = i - oi; 

dj = j - o j; 

if(di == i a~ dj == I) { /* substitution */ 

ralign[n] .xl = x[i-i] ; 

ralign[n].yl = y[j-i]; 

ralign [n] .x2 = O; 

ralign In] .y2 = 0 ; 

ralign[n++].d = dist(i, j) - dist(i-i, j-i); 

else if(di == 1 ~a dj == O) { /* deletion */ 

ralign[n] .xl = x[i-l] ; 

ralign[n] .yl = O; 

ralign[n] .x2 = O; 

ralign [n] . y2 = 0 ; 

ralign[n++].d = dist(i, j) - dist(i-l, j); 

else if(di == 0 ~ dj == I) { /* insertion */ 

ralign[n] .xl = O; 

ralign[n].yl = y[j-l]; 

ralig~ InS .x2 = O; 

ralign [n] . y2 = 0 ; 

ralign[n++] .d = dist(i, j) - dist(i, j-l); 

else if(dj == i) { /* contraction */ 

ralign[n] .xl = x[i-2] ; 

ralign[n].yl = y[j-l]; 

ralig~[n].x2 = x[i-l] ; 

ralign [n] . y2 = 0 ; 

ralign[n++].d = dist(i, j) - dist(i-2, j-l); 

else if(di == i) { /* expansion */ 

ralign[n].xl = x[i-l]; 

ralign In] . yl = y [j -2] ; 

ralign[n] .x2 = O; 

ralign[n].y2 = y[j-l]; 

ralign[n++].d = dist(i, j) - dist(i-l, j-2); 

} 

else /* di == 2 aa dj == 2 */ { /* melding */ 

ralign[n].xl = x[i-2] ; 

ralign In] . yl = y [j -2] ; 

ralign[n].x2 = x[i-l] ; 

ralign[n].y2 = y[j-l]; 
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ralign[n++].d = dist(i, j) - dist(i-2, j-2); 

} 

} 

*align = (struct alignment *) malloc(n * sizeof(struct alignment)); 

for(i=O; i<n; i++) 

bcopy(ralign + i, (*align) + (n-i-l), sizeof(struct alignment)); 

free(distances); 

free(path_x); 

free(path_y); 

free(ralign); 

return(n); 

} 

/* Local Distance Function */ 

/* Returns the area under a normal distribution 

from -inf to z standard deviations */ 

double 

pnorm(z) 

double z; 

{ 

double t, pd; 

t = 1 / ( 1  + 0 . 2 3 1 6 4 1 9  * z); 

• p d  = 1 - 0 , 3 9 8 9 4 2 3  * 

e x p ( - z  * z / 2 )  * 

( ( ( ( 1 . 3 3 0 2 7 4 4 2 9  * t - 1 .821255978)  * t 

+ 1 .781477937)  * t - 0 .356563782)  * t + 0 .319381530)  * t ;  

/ *  s e e  Abramowi tz ,  M., and I .  S t e g u n  (1964 ) ,  2 6 . 2 . 1 7  p.  932 * /  

r e t u r n ( p d ) ;  

} 

/ *  R e t u r n  -100  * l o g  p r o b a b i l i t y  t h a t  an E n g l i s h  s e n t e n c e  o f  l e n g t h  

l e n l  i s  a t r a n s l a t i o n  o f  a f o r e i g n  s e n t e n c e  o f  l e n g t h  l e n 2 .  The 

p r o b a b i l i t y  i s  b a s e d  on two p a r a m e t e r s ,  t h e  mean and v a r i a n c e  o f  

number o f  f o r e i g n  c h a r a c t e r s  p e r  E n g l i s h  c h a r a c t e r .  

*/ 

i n t  

m a t c h ( l e n l ,  l e n 2 )  

i n t  l e n l ,  l e n 2 ;  

{ 

d o u b l e  z ,  pd,  mean; 

d o u b l e  c = 1; 

d o u b l e  s2 = 6 . 8  ; 

if(lenl==O && len2==O) return(O); 

mean = (lenl + len2/c)/2; 

z = (c * lenl - len2)/sqrt(s2 * mean); 

/* Need to deal with both sides of the normal distribution */ 

if(z < O) z = -z; 
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pd = 2 * (1 - pnorm(z)); 

if(pd > O) return((int)(-lO0 * log(pd))); 

else return(BIG_DISTANCE); 

} 

int 

two_side_distance(xl, yl, x2, y2) 

int xl, yl, x2, y2; 

int penalty21 = 230; 

log([prob of 2-1 match] 

int penalty22 = 440; 

Iog([prob of 2-2 match] 

int penaltyOl = 450; 

log([prob of 0-i match] / [prob of I-i match]) 

/* -i00 * 

/ [prob of 1-1 match]) */ 

/ *  -100 * 

/ [prob of 1-1 match]) * /  

/ *  -100 * 
* /  

if(x2 == 0 ~& y2 == O) 

if(x1 == O) /* insertion */ 

return(match(x1, yl) + penalty01); 

else if(y1 == O) /* deletion */ 

return(match(x1, yl) + penalty01); 

else return (match(xl, yl)); /* substitution */ 

else if(x2 == O) /* expansion */ 

return (match(x1, yl + y2) + penalty21); 

else if(y2 == O) /* contraction */ 

return(match(xl + x2, yl) + penalty21); 

else /* merger */ 

return(match(x1 + x2, yl + y2) + penalty22); 

} 

/* Functions for Manipulating Regions */ 

struct region { 

char **lines; 

int length; 

}; 

void 

print_region(fd, region, score) 

int score; 

FILE *fd; 

struct region *region; 

{ 

char **lines, **end; 

lines = region->lines; 
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end = lines + region->length; 

for( ; lines < end ; lines++) 

fprintf(fd, "Zs\n", *lines); 

} 

int 

length_of_a_region(region) 

struct region *region; 

{ 

int result; 

char **lines, **end; 

lines = region->lines; 

end = lines + region->length; 

result = end - lines; 

for( ; lines < end; lines++) 

result += strlen(*lines); 

return(result); 

} 

int * 

region_lengths(regions, n) 

struct region *regions; 

int n; 

{ 

int i; 

int *result; 

result = (int *)malloc(n * sizeof(int)); 

if(result == NULL) err("malloc failed"); 

for(i = O; i < n; i++) 

result[i] = length of_a_region(regions[i]); 

return(result); 

} 

struct region * 

find_sub_regions(region, delimiter, len_ptr) 

struct region *region; 

char *delimiter; 

int *len_ptr; 

struct region *result; 

char **i, **lines, **end; 

int n = O; 

lines = region->lines; 

end = lines + region->length; 

for(l = lines; i < end; I++) 

if(delimiter && strcmp(*l, delimiter) == O) n++; 
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result = (struct region ~)calloc(n+l, sizeof(struct region)); 

if(result == NULL) err("malloc failed"); 

*len_ptr = n; 

n = O; 

result[O].lines = lines; 

for(1 = lines; 1 < end; l++) 

if(delimiter &~ strcmp(*l, delimiter) == O) { 

result[n].length = 1 - result[n].lines; 

result[n+l].lines = I+i; 

n++; 

} 

result[n].length = 1 - result[n].lines; 

if(n != *len_ptr) { 

fprintf(stderr, "find_sub_regions: n = ~d, *len_ptr = ~d\n", n, 

*len_ptr); 

exit(2); 

} 

return(result); 

} 

/* Top Level Main Function */ 

int 

main(argc, argv) 

int argc; 

char **argv; 

char **linesl, ~*lines2; 

int number_oflinesl, number_of_lines2; 

struct region ~hard_regionsl, ~hard_regions2, ~soft regionsl, 

~soft_regions2; 

struct region ~hard_endl, ~hard_end2, tmp; 

int number_ofhard_regionsl; 

int number_of hard_regions2; 

int number_ofsoft_regionsl; 

int number_of soft_regions2; 

int ~lenl, ~len2; 

int c, n, i, ix, iy, prevx, prevy; 

struct alignment ~align, ~a; 

FILE *outl, ~out2; 

char filename[MAXFILENAME]; 

extern char ~optarg; 

extern int optind; 

/* parse arguments */ 

while((c = getopt(argc, argv, "vd:D:")) 

switch(c) { 

case 'v'' 

verbose = 1; 

break; 

case 'd': 

soft delimiter = strdup(optarg); 

!= EOF) 
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break; 

case 'D': 

hard_delimiter = strdup(optarg); 

break; 

default: 

fprintf(stderr, "usage: align_regions [d (soft delimiter)] 

(hard delimiter)]\n"); 

exit(2); 

} 

if(argc != optind + 2) err("wrong number of arguments"); 

/* open output files */ 

sprintf(filename, "~s.al", argv[optind]); 

out1 = fopen(filename, "w"); 

if(outl == NULL) { 

fprintf(stderr, "can't open ~s\n", filename); 

exit(2); 

} 

sprintf(filename, "~s.al", argv[optind+l]); 

out2 = fopen(filename, "w"); 

if(out2 == NULL) { 

fprintf(stderr, "can't open ~s\n", filename); 

exit(2); 
} 

[D 

linesl = readlines(argv[optind], &number_of_linesl); 

lines2 = readlines(argv[optind+l], &number_of_lines2); 

tmp.lines = linesl; 

tmp.length = number_of_linesl; 

hard_regionsl = find_subregions(&tmp, hard_delimiter, 

~number_of_hard_regionsl); 

tmp.lines = lines2; 

tmp.length = number_of_lines2; 

hard_regions2 = find_sub_regions(&tmp, hard_delimiter, 

&number_of_hard_regions2); 

if(number_ofhard_regionsl != number_of_hard_regions2) 

err("align_regions: input files do not contain the 

same number of hard regions"); 

hard_endl = hard_regionsl + number_of_hard_regionsl; 

hard_end2 = hard regions2 + number of_hard regions2; 

for( ; hard_regionsl < hard_endl ; hard regionsl++, hard_regions2++) { 

soft_regionsl = find_sub_regions(hard_regionsl[O], soft_delimiter, 

&number_of_soft_regionsl); 

soft_regions2 = find_sub_regions(hard_regions2[O], soft_delimiter, 

&number_of_soft_regions2); 

lenl = region_lengths(soft_regionsl, number_of_soft_regionsl); 
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len2 = region_lengths(soft_regions2, number_of_soft_regions2); 

n = seq_align(lenl, len2, number_of_soft_regionsl, 

number_of_soft_regions2, 

two_side_distance, ~align); 

prevx = prevy = ix = iy = O; 

for(i = O; i < n; i++) { 

a = aalign[i]; 

if(a->x2 > O) ix++; else if(a->xl == O) ix--; 

if(a->y2 > O) iy++; else if(a->yl == O) iy--; 

if(a->xl == 0 a~ a->yl == 0 ~& a->x2 == 0 ~ a->y2 == O) 

{ix++; iy++;} 

ix++; 

iy++; 

if(verbose) { 

fprintf(outl, ".Score ~dkn", a->d); 

fprintf(out2, ".Score ~dkn", a->d); 

} 

for( ; prevx < ix; prevx++) 

print_region(outl, soft_regionsl[prevx], a->d); 

fprintf(outl, "~sin", soft_delimiter); 

for( ; prevy < iy; prevy++) 

print_region(out2, soft_regions2[prevy], a->d); 

fprintf(out2, "Zskn", soft_delimiter); 

} 

fprintf(outl, "~skn", hard_delimiter); 

fprintf(out2, "~skn", hard_delimiter); 

free(align); 

free(soft_regionsl); 

free(soft_regions2); 

free(lenl); 

free (len2) ; 

} 

} 

/~ Utility Functions ~/ 

void 

err(msg) 

char ~msg; 

{ 

fprintf(stderr, "~ERROR~: %s\n", msg); 

exit(2); 

} 

/~ return the contents of the file as a string 

and stuff the length of this string into len_ptr ~/ 

char 

readchars(filen~ne, len_ptr) 

char ~filename; 
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int ~len ptr; 

FILE *fd; 

char *result; 

struct stat stat_buf; 

fd = fopen(filename, "r"); 

if(fd == NULL) err("open failed"); 

if(fstat(fileno(fd), &stat_buf) == -I) 

err("stat failed"); 

*len_ptr = stat buf.st_size; 

result = malloc(*len_ptr); 

if(result == NULL) err("malloc failed\n"); 

if(fread(result, sizeof(char), *len_ptr, fd) != ~len_ptr) 

err("fread failed"); 

if(fclose(fd) == -i) 

err("fclose failed"); 

return(result); 

} 

/* split string into a number of substrings delimited by a delimiter 

character 

return an array of substrings 

stuff the length of this array into len_ptr */ 

char ** 

substrings(string, end, delimiter, len_ptr) 

char *string, *end, delimiter; 

int *len_ptr; 

char *s, **result; 

int i = O; 

while(string < end && *string == delimiter) string++; 

for(s = string; s < end; s++) 

if(*s == delimiter) i++; 

*len_ptr = i; 

result = (char **)malloc(sizeof(char *) * (i+l)); 

if(result == NULL) err("malloc failed"); 

i = O; 

result[i++] = string; 

for(s = string; s < end; s++) 

if(~s == delimiter) { 

result[i++] = s+l; 

*s = O; 
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} 

i--; /*the last entry is beyond the end*/ 

if(i != *len_ptr) { 

fprintf(stderr, "align_regions: confusion; i = ~d; *len_ptr = ~d\n", i, 

*len_ptr); 

exit(2); 

} 

return(result); 

} 

/* return an array of strings, one string for each line of the file 

set len_ptr to the number of lines in the file */ 

char ** 

readlines(filename, len_ptr) 

char *filename; 

int *len_ptr; 

char *chars; 

int number_of_chars; 

chars = readchars(filename, ~number_of_chars); 

return(substrings(chars, chars + number_of_chars, '\n' , len_ptr)) ; 
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