
Hindawi Publishing Corporation
VLSI Design
Volume 2008, Article ID 319095, 17 pages
doi:10.1155/2008/319095

Research Article

A Programmable Max-Log-MAP Turbo
Decoder Implementation

Perttu Salmela, Harri Sorokin, and Jarmo Takala

Department of Computer Systems, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland

Correspondence should be addressed to Perttu Salmela, perttu.salmela@tut.fi

Received 18 April 2008; Accepted 30 September 2008

Recommended by Mohab Anis

In the advent of very high data rates of the upcoming 3G long-term evolution telecommunication systems, there is a crucial
need for efficient and flexible turbo decoder implementations. In this study, a max-log-MAP turbo decoder is implemented as
an application-specific instruction-set processor. The processor is accompanied with accelerating computing units, which can
be controlled in detail. With a novel memory interface, the dual-port memory for extrinsic information is avoided. As a result,
processing one trellis stage with max-log-MAP algorithm takes only 1.02 clock cycles on average, which is comparable to pure
hardware decoders. With six turbo iterations and 277 MHz clock frequency 22.7 Mbps decoding speed is achieved on 130 nm
technology.

Copyright © 2008 Perttu Salmela et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Telecommunications devices conforming with 3G standards
[1, 2] are targeted on high volume consumer markets.
For this reason, there is a real need for highly optimized
structures where every advantage is taken to achieve cost
efficiency. In many cases, high throughput and efficiency
are obtained with highly parallel hardware implementation,
which is designed only for the application in hand. On the
contrary, processor based implementations tend to achieve
lower performance due to limited number of computing
resources and low memory throughput. As advantages,
the development time is rapid if there is tool support
for processor generation and the processors are flexible
as the highest level behavior is described with software.
One solution to achieve the benefits of both processor and
pure hardware based implementations is to use application-
specific instruction-set processors (ASIP) with highly parallel
computing resources.

Many signal processing functions can be implemented
with such processors. Especially in the telecommunication
field, many baseband functions, like QR decomposition, fast
Fourier transform, finite impulse response filtering, symbol
detection, and error correction decoding lie on the edge
between dedicated hardware and programmable processor
based implementations. Turbo codes [3] are included in

3G telecommunications standards [1, 2] and decoding
them is one of the most demanding baseband functions
of 3G receivers. Naturally, if adequate performance can
be obtained, it is tempting to implement more and more
baseband processing functions on processors.

For obtaining high throughput, firstly, the processor
should have specialized hardware units accelerating certain
functions in the application. If there is no compiler support
available, too fine grained specialized units should be avoided
as they may lead to extremely long instruction word and,
therefore, error prone programming. Secondly, the processor
should allow accurate control of all the available resources
for obtaining high utilization. In other words, even if the
required resources were available, it is possible that the
instruction set does not support their efficient usage. As
a third requirement, the processor should provide cus-
tomizable interfaces to external memory banks. Otherwise,
details of the memory accesses can widen the instruction
word unnecessarily or the memory accesses can limit the
performance, even if there were highly parallel computing
resources available.

In this paper, a turbo decoder is implemented as a
highly-parallel ASIP. On the contrary to our previous
turbo decoder ASIP [4], far higher parallelism is applied
and higher throughput is targeted. As a consequence, also
higher memory throughput is required. Expensive dual-port

2 VLSI Design

memory is avoided with a novel memory interface of the
extrinsic information memory. The accelerating units are
allowed to connect directly to the memory interfaces of
the processor to enable fast memory access. The main
computations of the decoding algorithm are accelerated
with dedicated function units. Due to the high parallelism
and throughput, the proposed ASIP could be used as a
programmable replacement of pure hardware decoder. The
proposed ASIP is customizable, fully programmable, and
achieves 22.7 Mbps throughput for the eight-state code,
[1((1+D+D3)/(1+D2 +D3))], with six iterations at 277 MHz
clock frequency.

The next section introduces previous turbo decoder
implementations. In Section 3, principles of turbo decoding
and details of the applied decoding algorithm are presented.
In Sections 4 and 5, parallel memory access is developed
for extrinsic information memory and branch metrics. The
memory interfaces are applied in practice in Section 6 as an
ASIP implementation is presented and compared with other
implementations. Conclusions are drawn in the last section.

2. RELATED WORK

In this section, previous turbo decoder implementations and
parallel memory access methods are discussed and the differ-
ences with the proposed implementation are highlighted.

2.1. Turbo decoder implementations

Turbo decoders are implemented on high-performance DSPs
in [5–7]. However, their throughput is not sufficient even
for current 3G systems if interfered channel conditions
require several turbo iterations. Obviously, common DSPs
are mainly targeted for other algorithms like digital filtering,
but not for turbo decoding. The complexity of typical
computations of turbo decoding is not high, but in the lack of
appropriate computing resources the throughput is modest.

Higher throughput can be obtained if the processor
is designed especially for turbo decoding, that is, it has
dedicated computing units for typical tasks of decoding
algorithms. Such an approach is applied in [8, 9] where single
instruction multiple data (SIMD) processor turbo decoders
are presented. In [9], three pipelines and a specific shuffle
network is applied. In [8], the pipeline has specific stages
for turbo decoding tasks. With this approach the computing
resources are more tightly dedicated to specific tasks of the
decoding algorithm. In our previous work [4], a similar
processor template is used as in this study, but far lower
parallelism and throughput was targeted.

Even higher throughput can be obtained with pure hard-
ware designs like [10, 11]. However, the programmability
and flexibility is lost. Naturally, the more parallelism is
used the higher throughput can be obtained. For example,
by applying radix-4 algorithms the decoders in [10, 12]
can process more than one trellis stage in one clock cycle.
A slightly more flexible solution is to use monolithic
accelerator, which is accompanied with a fully programmable
processor like in [13, 14]. However, a monolithic solution can
be uneconomical if the memory banks are not shared. Turbo

coding requires long code blocks, so the memories can take
significant chip area.

When compared to DSPs in [5–7], the proposed pro-
cessor is mainly optimized for turbo decoding. There are
no typical signal processing resources like multipliers. The
resources of the proposed processor can be used in a
pipelined fashion but there is no similar pipeline as in SIMD
processor in [8]. In addition, more computing resources are
used in the proposed processor as the targeted throughput
is one trellis stage per clock cycle. Instead of using a
specific shuffle network as a separate operation [9], the
permutations are integrated in the internal feedback circuits
of the path metric computations in the proposed processor.
On the contrary to [10, 11], the proposed processor is
programmable. When compared to [13, 14], the application-
specific computing resources are accessed via datapath in the
proposed processor. Thus, the resources can be controlled in
detail with software.

2.2. Parallel memory access in turbo decoders

Implementations processing one trellis stage in less than two
clock cycles require parallel access to the extrinsic informa-
tion memory. In general, parallel access can be implemented
with separate read and write memories, dual-port memory, a
memory running with higher clock frequency, or some kind
of memory banking structure as proposed in this paper.

Unfortunately, [10–13] do not provide details of the
applied parallel access method. In [15, 16] a conflict
free access scheme for extrinsic information memory is
developed, but the studies do not present turbo decoder
implementation applying the memory access scheme. The
methods are based on address generation and bank selection
functions, which are derived from the interleaving patterns
of the 3GPP standard. Both methods require six memory
banks for conflict free accesses. In [15] also a structure with
four memory banks is presented. With four banks only few
access conflicts are present. As a drawback, the structures are
specific to only one class of interleaver as there is a close
connection of the interleaving patterns and bank selection.
For the same reason, the structures depend on the additional
information provided by the interleaver.

In [17] a conflict free mapping is derived with an
iterative annealing procedure. The native block length of the
algorithm is a product of the number of parallel compo-
nent decoders and the number of memory banks. Even if
the reconfiguration is mandatory for varying interleaving
patterns, no hardware implementation is presented for the
annealing procedure.

In [18] graph coloring is used to find mappings. It uses
more memory banks than [17], but a hardware architecture
for the reconfiguration is presented. The reconfiguration
takes about 10K clock cycles for K length code block [18].
For comparison, one conflict would take one additional clock
cycle. Therefore, it can be more advantageous to suffer all
the conflicts instead of reconfiguration in some cases. In
addition, the address computations in [18] require division
and modulus, which are difficult to implement on hardware
when the block length is not a power of two.

Perttu Salmela et al. 3

Encoding Channel Decoding

Half iteration Half iteration Iterations . . .

π

π

π

SISO SISO SISO SISO SISOπ−1 π

π−1

0

Input
bits Convolutional

encoder

Convolutional
encoder C

h
an

n
el

· · ·

· · ·

· · ·

Bit
estimates

Figure 1: Turbo encoding and decoding. The decoding is an iterative process, which runs SISO component decoder several times.
Interleaving and deinterleaving are denoted with π and π−1, respectively.

A different approach is applied in [19–23] where buffers
are applied instead of deriving conflict free address gener-
ation and bank selection functions. In [19–21] high-speed
decoding with several write accesses is assumed. For each
writer there is one memory bank and for each bank there
is a dedicated buffer. In [20] the buffered approach is
developed further and the memories are organized in ring
or chordal ring structures. The work is continued in [24]
where a packet switched network-on-chip is used and several
network topologies are presented. To reduce the sizes of
queue buffers and to prevent overflows, the network flow
control is applied.

In order to conform with standards applying varying
interleaving patterns a practical memory structure with
four banks is proposed in this paper. The structure applies
simple address generation and bank selection functions
and buffering of conflicting accesses. The principles were
presented in our previous work [25] and now they are
applied in practice with turbo decoder implementation.
Instead of solving all the conflicts with complex memory
bank mechanism as in [15–18], our approach is to use a very
simple memory bank selection function and to maintain a
constant throughput with buffering in spite of conflicting
accesses. In [15, 16], six memory banks are required for
conflict free memory access. In the proposed method, only
four banks are suggested.

It is shown that a modest buffer length is sufficient
for 3GPP turbo codes. On contrary to previous buffered
parallel access methods [19–21] our method relies on the
asymmetric throughput rates of turbo decoder side and
memory subsystem side. Instead of one memory bank per
access, we apply a total of four banks to guarantee dual
access with a modest buffer length. Furthermore, instead of
dedicated buffers, we apply a centralized buffer to balance
buffer length requirements, which leads to an even shorter
buffer length.

3. TURBO DECODER

In this section, high-level descriptions of turbo decoding and
an implementation of the decoder are given. In principle, the
turbo decoder decodes parallel concatenated convolutional
codes (PCCCs) in an iterative manner. In addition to the
variations in the actual decoding algorithm, the implemen-

tations can be characterized also with the level of parallelism,
scheduling, or the required memory throughput.

3.1. Principal operation

The functional description of the PCCC encoding and
turbo decoding is shown in Figure 1. The encoding process
in Figure 1 passes the original information bit, that is,
systematic bit, unchanged. Two parity bits are created by
two component encoders. One of the component encoders
takes systematic bits in sequential order, but the input
sequence of the second component encoder is interleaved.
The interleaving is denoted by π in Figure 1.

The turbo decoding is described with the aid of soft-in
soft-out (SISO) component decoders. The soft information
is presented as logarithm of likelihood ratios. The compo-
nent decoder processes systematic bit vector, ys, parity bit

vector, yp, and a vector of extrinsic information λ
in. As a

result new extrinsic information, λout, and soft bit estimates,
L, of the transmitted systematic bits are generated, that is,

(

λ
out, L

)

= fSISO

(

λ
in, ys, yp

)

. (1)

Passing the extrinsic information between the component
decoders describes how a priori information of the bit vector
estimates is used to generate new a posteriori information.
The turbo decoding is an iterative process where generated
soft information is passed to the next iteration. Every second
half iteration corresponds with the interleaved systematic
bits. Since the interleaving changes the order of the bits,
the next component decoding cannot be started before the
previous is finished. Therefore, the signals passed between
the SISO component decoders in Figure 1 are, in fact, vectors
whose length is determined by the code block length.

3.2. Practical decoder structure

Due to the long code block lengths a practical decoder imple-
mentation in Figure 2 consists of the actual SISO decoder
and memories. Since only one component decoding phase,
that is, half iteration, can be run at a time, it is economical
to have only one SISO whose role is interchanged every
half iteration. Although, if decoding is blockwise pipelined,
then several component decoders can be used [26]. The
extrinsic information is passed via a dedicated memory

4 VLSI Design

SISO

Address

Data

Address

Data

Data

Address

Read address

Write address

Read data
Write data

M
U

X
M

U
X

Read address

π Delay

Parity1

Parity2

Systematic

Extrinsic

Figure 2: Practical decoder requires SISO component decoder,
interleaved address generation, and memories. Extrinsic informa-
tion memory is both read and written.

between the half iterations. If the component decoder is
capable of processing one trellis stage every clock cycle,
dual access to the extrinsic information memory is required.
The interleaving takes place by accessing the memory with
interleaved addresses as shown in Figure 2. In practice, the
extrinsic information can reside in the memory in sequential
order and no explicit de-interleaving is needed. When the
interleaving is required the extrinsic information is read from
and written to according to interleaved addresses. Thus, the
order remains unchanged and no explicit de-interleaving is
required before accessing the memory in sequential order on
the next iteration.

3.3. Sliding window algorithm

The SISO component decoder can be implemented with soft-
output Viterbi or some variation of a maximum a posteriori
(MAP) algorithm. The MAP algorithm is also referred as the
Bahl, Cocke, Jelinek, and Raviv (BCJR) algorithm according
to its inventors [27]. In this study a max-log-MAP algorithm
is assumed. The basic MAP algorithm consists of forward
and backward processes and both forward and backward
path metrics are required to compute the final outcome.
Due to the long block lengths, some type of sliding window
algorithm, like the one presented in [28], is usually applied
to reduce the memory requirements. In the sliding window
algorithm, the backward computation is not started in the
end of code block but two window length blocks before the
beginning of current forward process. The backward path
metrics are initialized with acquisition process to appropriate
values during the first window length trellis stages. After
the acquisition, the backward process generates valid path
metrics for the next window length stages.

Two alternative schedules for forward and backward
computations are shown in Figures 3(a) and 3(b). The
schedules show that the processes access the same trellis
stages three times. Except for the first window length block,
the blocks are first accessed in reverse order by backward
path metric acquisition process, then in normal order by
forward path metric computation process, and after that in
reverse order by backward path metric computation process.
On the contrary to three parallel processes in Figure 3(a), the

schedule in Figure 3(b) has only one process running at a
time. Thus, the memory throughput requirements are less
demanding, but also the throughput is one third of the more
parallel schedule. The proposed decoder in Section 6 applies
the more parallel schedule in Figure 3(a).

3.4. Max-log-MAP algorithm

Basically, max-log-MAP algorithm can be divided into four
computation tasks, which are branch metrics generation,
forward metrics generation, backward metrics generation,
and generation of a soft or hard bit estimate together with
new extrinsic information. The forward path metric of state
u at trellis stage k, αk(u), is defined recursively as

αk(u) = max
u′∈Upred(u)

(

αk−1(u′) + dk(u′,u)
)

, (2)

where du′,u(k) is the branch metrics, u′ is the previous state,
and the set Upred(u) contains all the predecessor states of u,
that is, the states from which there is a state transition to the
state u. Respectively, the backward path metrics are defined
as

βk−1(u′) = max
u∈Usucc(u′)

(

βk(u) + dk(u′,u)
)

, (3)

where the set Usucc(u′) contains all the successor states of
state u′.

The soft output, Lk, is computed with the aid of the
forward, backward, and branch metrics as a difference of
two maximums. In the following, the minuend maximum
corresponds to the state transitions with transmitted system-
atic bit xs = 0 and the subtrahend corresponds to the state
transitions with xs = 1,

Lk = max
u′,u:xs=0

(

αk−1(u′) + βk(u) + dk(u′,u)
)

− max
u′,u:xs=1

(

αk−1(u′) + βk(u) + dk(u′,u)
)

.
(4)

The hard bit estimate is obtained simply by the signum
function, sgn(·), of the Lk. The new extrinsic information
λout
k is computed with the aid of Lk, that is, a posteriori

information λout
k is obtained as

λout
k =

1

2
Lk − ysk − λin

k , (5)

where λin
k is the a priori information, and ysk is the received

soft systematic bit, that is, ysk can have positive or negative
noninteger values.

In this study, the 3GPP constituent code [1] is used as
an example. The trellis of this code is shown in Figure 4.
There are only eight states and four possible systematic and
parity bit combinations. All the branch metrics dk(u′,u)
correspond to the transmitted systematic and parity bit

Perttu Salmela et al. 5

A
cc

es
se

d
tr

el
li

s
st

ag
e

Time

βacq.

βacq.

βacq.

βacq.

α

α

α

α

α

β

β

β

β

β

(a)

A
cc

es
se

d
tr

el
li

s
st

ag
e

Time

βacq.

βacq.

βacq.
βacq.

α

α

α

α

α

β

β

β

β

β

(b)

Figure 3: Schedules for sliding window algorithm, (a) three parallel processes are used, (b) one process runs at a time. Initialization of
backward metrics with acquisition process is denoted with βacq., backward computation with β, forward computation with α.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

(Systematic, parity)

(0,0)

(1,1)

(0,0)

(0,0)

(0,1)

(1,0)

(1,0)

(1,0)

(0,1)

(0,0)

(1,1)

(1,1)

(1,0)

(0,1)

(0,1)

(1,1)

State Next stateu′ u

Figure 4: Trellis of eight state 3GPP constituent code. Transmitted
systematic and parity bit pairs (xs, xp) correspond with state
changes of the component encoder.

pairs (xsk, x
p
k). Therefore, the branch metrics notation can be

defined also with the following four symbols:

γ00
k = dk(u′,u)

xsk=0,x
p
k=0

= ysk + λin
k + y

p
k ,

γ01
k = dk(u′,u)

xsk=0,x
p
k=1

= ysk + λin
k − y

p
k ,

γ10
k = dk(u′,u)

xsk=1,x
p
k=0

= −ysk − λin
k + y

p
k ,

γ11
k = dk(u′,u)

xsk=1,x
p
k=1

= −ysk − λin
k − y

p
k ,

(6)

where the received soft parity bit is y
p
k . Previous notation

shows how the branch metrics are computed. Since the
branch metrics with complemented indices are negations
of each other, computing only two branch metrics is
sufficient if respective additions in (2)–(4) are substituted
with subtractions.

4. PARALLEL MEMORY ACCESS

In this section, a parallel access scheme for the extrinsic
information memory is developed. Here, expensive dual-
port memory is avoided and a parallel memory approach
based on multiple single-port memories is used.

4.1. Problem description

The schedule in Figure 3(a) and the computation of path
metrics in (2) and (3) with branch metrics defined in (6)
show that there are three parallel read accesses of extrinsic
information, λin/out

k , memory. These three accesses can be
replaced with one read access and appropriate buffering
as will be shown in Section 5. However, the extrinsic
information memory will be also written as the new values
are computed and stored for later use on the next half
iteration. Thus, there is a need for two accesses, that is, read
and write, on the same clock cycle if one trellis stage is
processed in one clock cycle.

The memory is accessed with two access patterns, namely
sequential sawtooth and interleaved pattern. In sequential
sawtooth access, consecutive addresses are accessed except
for the window boundaries. With a window length Lwin and a
code block length, K , the sequential sawtooth access pattern
can be defined as

P(i) = Lwin

⌊

i

Lwin

⌋

+ Lwin − 1− (i mod Lwin), (7)

where index i ∈ {0, 1, . . . ,K − 1 + 2Lwin + crw} and constant
term crw originates from from the delay of computations in
the decoder. The interleaved access pattern is formed with
interleaving function, π(i,K), which generates interleaved
addresses, π(P(i),K). There is a constant difference 2Lwin +
crw between the read and write indices of access pattern
P(i), which means that in general case, there is no constant
distance between read and write addresses.

The required parallel accesses can be defined with read
operation, READ(·), and write operation, WRITE(·), and
parallel execution, | |, as

READ
(

P(i)
)

| |WRITE
(

P
(

i− 2Lwin − crw

))

(8)

for sequential access and

READ
(

π
(

P(i),K
))

| |WRITE
(

π
(

P
(

i− 2Lwin − crw

)

,K
))

(9)

6 VLSI Design

MUX MUX MUX MUX MUX

Write
access buffer

Memory

interfaces

Memory

banks

Interface
002

Interface
012

Interface
Nbanks

Bank
002

Bank
012

Bank
Nbanks

· · ·
· · ·

· · ·

· · ·

· · ·

M
U

X

rd addr

rd data

WL wr data, wr addr

[0 . . .WL− 1] [WL. . . 2WL− 1] [2WL. . . 3WL− 1] [3WL. . . 4WL− 1] [(Lb − 1)WL. . . LbWL− 1]

[0 . . . LbWL− 1]

Figure 5: Proposed memory structure with buffered write operations. Word length of data and address pair is denoted with WL. Indices in
brackets index the bus connected to the Lb length buffer.

for interleaved access. In the above, write operations are
omitted when i < 2Lwin + crw and read operations are
omitted when i ≥ K . The index i traverses all the values
0, 1, . . . ,K − 1 + 2Lwin + crw in sequential order. So, in the
beginning there are only read operations and in the end only
write operations.

The parallel access scheme should provide such a map-
ping from addresses to parallel accessible memory banks
that conflicts are avoided or, alternatively, performance
degradation due to the conflicts is avoided. There cannot be
a constant mapping to memory banks since the interleaving
function π(i,K) varies as it is a function of code block
length, K . For example, in the 3GPP standard, different
interleaving patterns are specified for all the block lengths
K ∈ {40, 41, 42, . . . , 5114} [1] and, therefore, the memory
bank mapping should be computed on the fly. Even if graph
coloring results in the minimum number of memory banks
[25], such computation will be too expensive for real-time
operation. To meet practical demands of on the fly mapping,
a simpler memory bank mapping is required. An obvious
solution for sequential access pattern is to divide the memory
into two banks for even and odd addresses but it results in
conflicts with interleaved addressing on every second half
iteration. A dual-port memory should also be avoided as
it takes more chip area than a single-port memory and
the memories dominate the chip area with long code block
lengths.

4.2. Parallel memory access method

The proposed parallel access method combines simple mem-
ory bank mapping and buffering of conflicting accesses. With
simple bank selection the number of conflicts is decreased

to a tolerable level and the performance penalty of memory
access conflicts can be overcome with a short buffer. This
practice of combining memory banks and buffer is illustrated
in Figure 5.

The bank selection function is a simple modulo opera-
tion of the address and the number of banks, Nbanks. Thus,
when accessing the kth trellis stage the bank selection, Bsel,
and address, Baddr, are generated according to

Bsel = k mod Nbanks,

Baddr =

⌊

k

Nbanks

⌋

.
(10)

So, if the number of banks is a power of two, the bank selec-
tion and address generation can be generated by low-order
interleaving. In other words, bank selection is implemented
by simply hardwiring the low-order bits to the new positions
and higher-order bits form the address.

In Figure 5 each memory bank is accompanied with
an interface. The functionality of the memory interface
is shown in Figure 6. In principle, the memory interface
gives the highest priority for memory read operations. The
read operations must be always served to allow continuous
decoding. On the contrary, write operations are inserted to
the buffer, which consists of registers in Figure 5. All the
memory banks that do not serve the read operation are free
to serve write operations waiting in the buffer. The proposed
buffer must be able to be read and written in a random access
manner and in parallel by all the memory bank interfaces.
Thus, it must be implemented with registers. However, the
length of the buffer for practical systems will be modest as
will be shown later on.

Basically, the buffer balances memory accesses. Balancing
is targeted also with a single shared buffer instead of

Perttu Salmela et al. 7

=

AGEN

AGEN

AGEN

AGEN

AGEN

=

=

=

BSEL =

Priority
encoder

Read/write

Write data 1

address 2
Write

address 1
Write

address 0
Write

address
Read

Write data

Write data 2

Read dataRead data

Address

Write data 0

ID

ID

ID

ID

ID

Write
address

Write data

BSEL

BSEL

BSEL

BSEL

M
U

X M
U

X

M
U

X

· · ·

· · ·

· · ·

· · ·

· · ·

Lb − 1

Lb − 1

Figure 6: Memory bank interface. Length of the buffer is denoted with Lb and address generation and bank selection with AGEN and BSEL,
respectively. The ID refers to the number of the interfaced bank. Write address and data signals are connected to the respective elements of
the buffer.

dedicated buffers for each memory bank. If there were
dedicated buffers for memory banks, their length should
match the maximum requirements. However, the length of
combined buffer is less than sum of dedicated buffers. This
is natural, since only one buffer could be filled at a time if
dedicated buffers were used.

The decoder produces memory accesses at a constant
rate, two accesses per clock cycle, that is, one read and one
write operation. On the contrary, the memory system is
capable of maximum throughput directly proportional to the
number of banks. In other words, the ability of the proposed
method to perform without performance degradation is
based on the asymmetric throughput rates and throughput
capability between the decoder side and memory bank side.

4.3. Operation with 3GPP interleaving pattern

The parallel access method is used in the proposed turbo
decoder processor in Section 6. Four memory banks are used
in the practical implementation. With Lwin = 32, crw =

9, and Nbanks = 4 a buffer of 16 data and address pairs
is sufficient to avoid buffer overflows with all the 3GPP
interleaving patterns with block length, K = 2557, . . . , 5114.
If the code block is shorter than 2557, memory banks can
always be organized as dedicated read and write memories.
In addition to the number of memory banks, the required
overflow free buffer length depends also on the distance
between read and write operations, 2Lwin + crw, but it is not
proportional to the distance. In other words, the required
buffer length can be shorter or longer with some other values
of crw.

In the end of a half iteration, there are no parallel read
accesses but only write accesses for the last samples and
the utilization of the buffer cannot increase. If the buffer is
not emptied during this phase, extra clock cycles are spent
to empty the buffer. The experimented cases with 3GPP
interleaving pattern and K = 2557, . . . , 5114 do not require
such extra cycles, that is, the buffer is empty when the
decoder issues the last write operation. Since extra clock
cycles are not required, there is no performance degradation
due to the buffering of conflicting accesses.

The area costs in terms of equivalent logic gates is only
3.3 kgates for the buffer and 0.5 kgates for one memory
interface with f = 100 MHz clock frequency. With four mem-
ory banks, four interfaces are required. The complexities of
memory interface and buffer are relatively low, since they do
not require complex arithmetic and the buffer length is short.

4.4. Differences with other approaches

Methods in [17, 18] solve conflicts with complex memory
bank mapping and address generation mechanism. However,
their complexity limits their practical applicability. Methods
in [15, 16] are less complex but they require six memory
banks, instead of four, for conflict free access. Naturally, a
memory divided into two parallel accessible banks has a
lower area overhead than a respective dual-port memory.
On the other hand, if the dual access requires splitting
the memory into too many banks, the area overhead may
exceed the costs of dual-port memory. Buffered accesses are
presented in [19–21], but the ratio of memory banks to
the number of parallel accesses differs and the methods are

8 VLSI Design

0

1

2

3

4

5

6

7

8

9

0

1

2

3

0

1

2

3

0

1

BankWindow
Accessed
trellis stage

Time

βacq.

βacq.

βacq.

βacq.

βacq.

βacq.

βacq.

βacq.

βacq.

α

α

α

α

α

α

α

α

α

α

β

β

β

β

β

β

β

β

β

β

(a)

M
U

X M
U

X
M

U
X

M
U

X
M

U
X M

U
X

M
U

X

M
U

X

M
U

X
M

U
X

=11

=11

11

=10

2

=102

=012

=012

=002

=002

002

012

2

2

2

10

r/w

Addr

rd data

wr data

Bank

r/w

Addr

rd data

wr data

Bank

r/w

addr

rd data

wr data

r/w

Addr

rd data

wr data

Bank

2

Bits 5, 6

Bits 5, 6

Backward data

Forward data

Bits 5, 6

Bank

6...0

Acquisition address
6...0

Backward address
Forward address

6...0

Acquisition data

(b)

Figure 7: Buffering of branch metrics. (a) Mapping the accessed windows to four memory banks. (b) Structure of memory interface with
four banks.

targeted for systems consisting of multiple parallel decoders.
As a second difference there are dedicated buffers for each
memory bank, which increases the total length of the buffers.
Buffers and segmented memory are applied also in [22, 23].
In [23] multiple parallel decoders decoding the same code
block are targeted.

5. BRANCH METRIC BUFFERING

The sliding window schedule in Figure 7(a) indicates that
three trellis stages are accessed in parallel. Furthermore,
computing the branch metrics according to (6) requires that
also the systematic and parity bit memories are accessed
in addition to the extrinsic information memory. Instead
of boosting the proposed parallel memory system for even
higher throughput, buffering of branch metrics can be
applied. There are certain advantages of such buffering.
Firstly, the buffer requires only a small amount of memory
when compared to the systematic bit, parity bit, and extrinsic
information memories, whose sizes are determined by the
largest code block. Secondly, single-port memory can be used
for all the memories. Thirdly, the access pattern of the buffer
is independent of the interleaving.

The sliding window schedule in Figure 7(a) shows that
even if there are sawtooth and sequential access patterns, the
accessed trellis stages can be mapped to separate windows.
The accessed windows do not overlap. Thus, the windows

can be mapped to memory banks in order to enable
parallel access. This practice is illustrated in Figure 7(a)
where accessed memory banks and windows are denoted.
In theory, three memory banks are required. However, four
memory banks are required for a simpler and more flexible
implementation. With four memory banks any delays of
memory banks or processes do not cause short-term conflicts
when transition from previous window to the next one takes
place. In addition, implementation complexity of division
and modulo operations is avoided with simple hardwired
logic. Having more than four memory banks does not give
additional benefits. For these reasons, four memory banks
are used in Figure 7.

The forward and backward path metric computation
processes read branch metrics from the buffer. The data is
written to the buffer by the backward path metric acquisition
process. The bank mapping in Figure 7(a) shows that the
acquisition process of backwards metrics is always ahead
of other processes. With window length Lwin, the bank
selection, Bsel, of the process accessing the kth trellis stage
can be defined formally as

Bsel =

⌊

k

Lwin

⌋

mod Nbanks. (11)

The address of the accessed bank, Baddr, is defined as

Baddr = k mod Lwin. (12)

Perttu Salmela et al. 9

Control ADDRGEN Forward path metric computation

Backward
Backward path metric, extrinsic information,

and hard output computation

BMGEN
Branch metric generation and

memory interfaces
ADD CMP

RF
1 reg.

RF
1 reg. CU

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Forward

Figure 8: TTA turbo decoder processor. Filled circles denote connections between resources and buses. CONTROL: generation of control
word for SFUs, ADDRGEN: address generation, FORWARD: forward path metric computation and stack memory interface, BACKWARD:
acquisition, backward path metric, extrinsic information, and hard output computations, BMGEN: branch metric buffering and memory
interfaces, ADD: addition unit, CMP: comparison unit, RF: register file, CU: program flow control unit.

Naturally, division and modulo operations are avoided if
the window length, Lwin, and the number of banks, Nbanks,
are powers of two. With this practice, the Bsel is formed by
the bits log2Lwin, . . . , log2Lwin + log2Nbanks − 1 of the binary
presentation of k. In a similar way, the Baddr is given by the
bits 0, . . . , log2Lwin − 1 of k. The structure of the memory
interface applying the bitwise bank selection and address
generation with Lwin = 32 and Nbanks = 4 is shown in
Figure 7(b).

As the accessed windows do not overlap, the memory
interface in Figure 7(b) can map the accesses to memory
banks with simple hardwired logic. Due to the hardwired
logic, the overhead and delay of the interface is kept at
minimum. Furthermore, using the buffer does not require
any changes to the accessing processes. In other words, the
behavior of the processes remains the same as it would be
with expensive multiport memory and without buffering.

6. TURBO DECODER PROCESSOR IMPLEMENTATION

The principles presented in previous sections are applied
in practice as the turbo decoder is implemented on a
customizable ASIP. The details of the implementation are
discussed in the following subsections.

6.1. Principles of transport triggered
architecture processors

In this study, we have used Transport Triggered Architecture
(TTA) [29] as the architecture template. The presented
principles can be applied on any customizable processor,
which possesses sufficient parallelism. The TTA was chosen
mainly because of the rapid design time, flexibility, and up-

to-date tool support [30]. The TTA processor is an ASIP
template where parallel resources can be tailored according
to the application.

On the contrary to conventional operation triggered
architecture processors, in TTA the computations are trig-
gered by data, which is transported to the computing unit.
The underlying architecture is reflected to the software
level as the processor is programmed with data transports.
The processor is programmed with only one assembly
instruction, the move operation, → , which moves data
from one unit to another. The number of buses in the
interconnection network determines how many moves can
take place concurrently. In other words, instead of defining
operations in the instruction word, the word defines data
transports between computing resources. Such a program-
ming approach exposes the interconnection network for the
programmer and, therefore, the programmer can control all
the operations in detail.

TTA processors are modular, as they are tailored by
including only the necessary function units (FU). The user
defined special FUs (SFU) are used to accelerate the target
application by rapid application-specific computations. In
addition, the SFU can be connected to the external ports
of the processor, which enables custom memory interfaces.
Since the processor is programmed by data transports via
interconnection network, data is frequently bypassed directly
from one FU to another, that is, the operands are not passed
via register file (RF). Since the data is bypassed in the first
hand, there is no need for a dedicated bypass network.

As the processor is tailored according to the application,
the interconnection network does not have to contain all
the connections. Therefore, only the connections that are
required by the application program are sufficient and the

10 VLSI Design

i

Lwin + 3

2Lwin + crw

K + 2Lwin + crw

Lwin + K + 3

Bits 4 . . . 0

Interleaving mode

000112

=

>

<=

=

=

Operand load

M
U

X

Forward
initialization

Write
enable

Backward
initialization

Acquisition
initialization

Interleaving mode

Figure 9: Control SFU evaluates several conditions in parallel and
generates control word for the other SFUs. Length of sliding window
is denoted with Lwin, distance between extrinsic information read
and write operations with 2Lwin + crw, and code block length with
K . Input i is the current time step.

rest of the connections can be excluded. The exclusion of
unused connections reduces the load on the buses and,
therefore, it speeds up the maximum clock frequency of the
processor. In this study, the proposed processor is not re-
configurable, that is, the architecture is static. If any other
applications should be run with the same processor, required
FUs and connections should be included in the processor.

6.2. Turbo decoder processor

The principal block diagram of the developed TTA processor
is shown in Figure 8. Since the processor is targeted only to
turbo decoding, it has only two conventional FUs, namely
addition and comparison units. The control unit, CU, in
Figure 8 is used for jump, call, and return, that is, the new
value of program counter is written to the CU and the return
address is read from the CU.

Due to the frequent bypassing of data, the processor
contains only two general purpose registers in two RFs. In
the turbo decoding program, the registers are used in parallel
to delay continuously generated values, which are needed
also on the next clock cycle. The native word length of the
processor can be adjusted. In particular, the required word
length depends heavily on the scaling of the input data and
maximum block length. In the developed turbo decoder
TTA processor, the word length of the buses and interfaces
of FUs and SFUs is set to 14 bits. Naturally, the SFUs
use shorter internal word length when appropriate. With
relatively long word length, 14 bits, of the interconnection
network, the processor could be modified to run some other
applications easily. In general, if the additional FUs were
inserted and the interconnection network contained all the
required connections, then any other application could be
run on the same processor.

6.3. Special function units

The proposed processor in Figure 8 contains five SFUs, which
were designed for the application in hand. The structure and
operation of these units are discussed in the following.

1

−1

−1Previous

Previous

Next address

Next address

Next addresscomputation address

computation address

computation address

Previous forward

backward

acquisition

M
U

X
M

U
X

=

=

000002

000002

2Lwin − 1

2Lwin − 1

Bits 4 . . . 0

Bits 4 . . . 0

Figure 10: Address generation SFU generates one sequential and
two sawtooth pattern address sequences. Length of the sliding
window is denoted with Lwin.

6.3.1. Control SFU

The purpose of the controlling SFU is to generate a control
word, which is used as an argument of other SFUs. Even if the
highest level control takes place in software level, the lowest
level control can be implemented more conveniently in
hardware. With this practice unnecessary details are hidden
from the application program. The word is used to control
multiplexers, initialization of state registers, and signals in
the memory interfaces.

Generating the control word requires evaluating several
conditionals in parallel as depicted in Figure 9. The parame-
ter, 2Lwin + crw in Figure 9 is the constant distance between
read and write operations of the extrinsic information,
λin/out
k , memory. The operands of the SFU are current time

step, i, and interleaving mode. Even if the control could be
distributed among the SFUs, the verification and any future
changes, if required, are alleviated, since the control signals
are packed to the single control word generated with an
independent unit.

6.3.2. Address generation SFU

The address generation SFU generates addresses for accessing
branch metrics, γ00

k and γ01
k . As it is shown by the schedule in

Figure 7(a), there are three parallel processes and all of them
require branch metrics. The branch metrics are generated
and buffered in the branch metric computation SFU. Thus,
the generated addresses are addresses of the buffer and they
are not affected by the interleaving mode.

The access pattern of the addresses of the forward
path metric, α, computation is sequential but the backward
processes require sawtooth access patterns as show in
Figure 7(a). The previous addresses are operands of the SFU
and they are fed back via the interconnection network. The
internal operation of the SFU is depicted in Figure 10. The
window length parameter, Lwin, in Figure 10 determines the
period of the sawtooth pattern.

Perttu Salmela et al. 11

Registers

ACSU

ACSU

ACSU

ACSU

8WL

MUXes

0

Stack

8WL

memory
Stack

+initial weight

control

−initial weight

wr data

rd addr
rd data

wr addr
wr enable

Forward metrics

Forward initialization

N
o

rm
al

iz
at

io
n

γ00, γ10, γ01, γ11

α(0 . . . 7)

Figure 11: Forward path metric SFU contains four ACSUs, and it interfaces an external stack memory. Word length is denoted with WL.

6.3.3. Forward computation SFU

The forward computation SFU generates forward path
metrics, αk, normalizes them and continuously reverse
orders one window of forward path metrics. The path metric
computation in (2) requires add compare select (ACS)
operations. All the path metrics for one trellis stage are
computed in parallel, so the SFU contains four ACS units
(ACSU) as indicated by Figure 11. Since the ACSUs followed
by normalization reside in the critical path of the processor,
the path metrics are fed back internally.

Reverse ordering window length block of path metrics
is required, since the extrinsic information, λout

k , and hard
output, sgn(Lk) are computed together with the backward
path metrics. The path metrics are reverse ordered with a
stack in external memory. Since the stack resides in memory,
the window length, that is, depth of the stack can be varied
easily. All the path metrics must be pushed to the stack in
parallel. Therefore, the word length is eight times the word
length of forward path metrics, that is, 8× 11 = 88 bits.

The SFU updates read and write pointers of the stack
memory. Instead of having two stacks, the same memory
area can be used for continuous reverse ordering. The new
samples are stored to the memory locations which were
previously loaded. The direction of the stack is interchanged
after a window length of push and pop operations. In
other words, the pointers are first incremented, then they
are decremented and so on. With this practice, the stack
memory area remains full all the time after the first
window length push operations. Since the push and pop
operations access always consecutive memory locations, the
parallel access can be implemented trivially by two memory
banks.

6.3.4. Backward computation SFU

The backward computation SFU is divided into several
pipeline stages as indicated by Figure 12. The first stage
computes the backward path metrics of the acquisition mode
and the second stage computes valid path metrics, βk. The
first two stages are structured similarly as the forward path
metric computation SFU, that is, both stages contain four
ACSUs.

The next stages in Figure 12 are responsible for comput-
ing the extrinsic information, λout

k , and hard output, sgn(Lk).
Since there is no feedback loop, the computations can be
pipelined freely to several stages. The structure takes an
advantage of mapping the computations of (4) to radix-
2 ACS operations, maximum operations, and radix-1 ACS
operations. The mapping of computations is derived in the
previous work of the authors [31]. The computation of
extrinsic information, λout

k , according to (5) uses the fact that

γ00
k + γ01

k = ysk + λin
k + y

p
k + ysk + λin

k − y
p
k

= 2ysk + 2λin
k .

(13)

With this practice the required term ysk + λin
k can be obtained

without additional memory access. Otherwise, the memory
of systematic bits, ysk, would need dual access or there
should be a long delay line preserving the values of ysk. Even
if the backward path metric computation SFU includes a
lot of arithmetic operations, it has a simple design since
there is a one-to-one mapping between the computations
and arithmetic units. Control signals are required only for
initialization and passing forward the path metrics from the
acquisition mode process.

12 VLSI Design

MAX

MAX

MAX

MAX

ACSU

ACSU

ACSU

ACSU

ACSU

ACSU

ACSU

ACSU

branch metrics
Backward

MSB

MUXes

8WL

RegistersMUXes
0

metrics
branch
Acquisition

Registers

8WL

backward metrics
Acquisition

Backward initializationAcquisition initialization

Radix−1
ACSU

ACSU
Radix−1

Backward metrics

0

ACSU

ACSU

ACSU

ACSU

N
o

rm
al

iz
at

io
n

N
o

rm
al

iz
at

io
n

γ00...11 γ00...11

Computation of L and extrinsic information

sgn(L)

λout

MSB. . . 1

γ01

γ00

α(0)
α(1)

α(2)
α(3)

α(4)
α(5)

α(6)
α(7)

Figure 12: Backward computation SFU contains several pipeline stages for acquisition of path metrics, computation of valid backward path
metrics, and computation of extrinsic information, λout

k , and hard output, sgn Lk . Word length of path metrics is denoted with WL.

1

1

sgn()

computation
Branch metricrd addr

rd addr

wr addrwr addrwr enable

rd addr

rd data

Systematic
Interleaving
pattern

Parity

rd data

Extrinsic

information

Output

metric

Branch

buffer

Address
queue

wr data

Backward stage

Forward stage

Forward

Backward

Branch

acquisition

wr data

wr enable

wr data

Hard bit

Extrinsic information

metrics for:
5120

Acquisition

stage

wr addr

rd data

Interleaving mode

Interleaving mode

Write enable

rd addr rd data rd addr rd data

M
U

X
M

U
X

λout

λin

L

γ

π

yp ys

Figure 13: Branch metric computation unit interfaces external output, extrinsic information, systematic bit, parity bit, interleaver, address
queue, and branch metric buffer memories.

Perttu Salmela et al. 13

6.3.5. Branch metric computation SFU

The SFU computes the branch metrics and interfaces the
external memories for soft systematic, ysk, and parity bits,

y
p
k , extrinsic information, λout/in

k , hard output, sgn(Lk),
interleaving pattern, address queue, and branch metric
buffer. Generated branch metrics are buffered in memory
banks as proposed in Section 5. The main advantage of
the SFU is grouping of branch metric related memory
interfaces into the same unit. As the SFU is used, it hides
memory accesses, interleaving, and their latencies which
simplifies programming and requires fewer buses in the
interconnection network of the processor. The structure of
the SFU is shown in Figure 13. The interleaving pattern is
read from the memory but, in principle, it could be replaced
with a hardware unit capable of generating one interleaved
address in one clock cycle. The branch metrics are computed
straightforwardly according to (6). Since the branch metrics
with complemented indices are negations of each other, only
the branch metrics γ00

k and γ01
k are buffered. The branch

metrics generated for the acquisition mode backward process
are passed forward and stored in the buffer. The branch
metrics for the forward and backward processes are read
from the buffer.

The second operation of the SFU is writing the new
extrinsic information, λout

k , and hard bit estimates, sgn(Lk),
to the memory. The parallel memory accesses are imple-
mented with the structure proposed in Section 4. In the
proposed processor interleaving pattern is read from a
dedicated memory. If a hardware interleaver were used,
generating two interleaved addresses in one clock cycle
would double the complexity of the interleaver. To enable
an option for using hardware interleaver instead of memory,
the addresses are buffered in a queue data structure, which
is denoted as address queue in Figure 13. As the two access
patterns of the address queue are sequential with a constant
offset between them, the memory can be divided into odd
and even banks trivially. In principle, the address queue
buffer delays the addresses 2Lwin + crw = 73 clock cycles,
which is the difference between read and write indices of
access pattern P(i) defined in (7).

Separate memory banks are used for the extrinsic
information and hard bit estimates. In principle, the hard
bit estimates could overwrite the extrinsic information in
the last iteration. However, if stopping criterion like cyclic
redundancy check [32] is applied for reducing the number of
iterations, then overwriting cannot be used, as the number of
iterations is not known in advance. Since the memories are
interfaced with the SFU, it could also operate as an ordinary
load/store unit if the encoding of the control signals were
extended.

The sizes of external memories are summarized in
Table 1. Naturally, the required word lengths depend heavily
on the initial scaling and accuracy of the input data. In this

study, the systematic and parity soft bits, ysk and y
p
k , are stored

in 7-bit wide memory banks. The address width and data
width of the interleaver memory is determined by the code
block size 5120, which requires 13-bit address bus. Both the
parity bits are mapped to the same memory bank, as they are

procedure turbo begin

First iteration

call max-log-MAP
call max-log-MAP

∣

∣

∣

∣

∣

∣

∣

∣

interleaving := false
interleaving := true

· · ·

Last iteration

call max-log-MAP
call max-log-MAP

∣

∣

∣

∣

∣

∣

∣

∣

interleaving := false
interleaving := true

end

procedure max-log-MAP begin

call initialization of SFUs

loop (K + 2× Lwin) begin

call run SFUs

end

call finish computations

end

Algorithm 1: High-level program flow of the turbo decoder.
Parallelism is denoted with | |. Code block length and window
length are denoted with K and Lwin, respectively.

not accessed during the same half iteration. Therefore, the
parity memory is double sized. The forward metric stack in
Table 1 requires wide word length as eight path metrics are
stored in parallel.

6.4. Turbo decoder program

The turbo decoder program is programmed in parallel
assembly and it follows the sliding window schedule in
Figure 7(a). The highest-level pseudo code is shown in
Algorithm 1. The subprograms of the max-log-MAP proce-
dure are inlined to avoid jump latency. The first procedure,
initialization of SFUs, feeds the initial constants to
the control and address generation SFUs. The loop kernel
repeats instruction words consisting of computation and
loop control parts. The computation part of the instruction
word feeds the control word to all the SFUs, addresses to
branch metric computation SFU, branch metrics to forward
and backward computation SFUs, and hard bit estimates
and extrinsic information to the branch metric computation
SFU. The loop control part includes addition, comparison,
and conditional jump operations. In total, the instruction
word consists of 30 parallel data transports.

The number of iterations of the main loop in Algorithm 1
exceeds the block length K . Additional clock cycles are taken
by the first window length Lwin trellis stages as the branch
metrics buffer is filled with the values of first window. The
last window requires also additional Lwin clock cycles, as the
results can not be computed before the forward path metrics
for the last window are ready. Due to the latencies of the
SFUs, valid results are not generated immediately. Therefore,
the total number of activations of SFUs exceeds the number
of iterations in the loop. The last stages are not processed in
the loop to match the total number of required activations.

14 VLSI Design

Table 1: External memory banks. Turbo code block length is 5120.

Memory Address width Data width Size (bits)

Systematic bits, ysk 13 7 5120× 7 = 35840

Parity bits, y
p
k 14 7 10240× 7 = 71680

Extrinsic inf., λin/out
k 11 10 4× 1280× 10 = 51200

Interleaver, π 13 13 5120× 13 = 66560

Hard output, sgn(Lk) 13 1 5120× 1 = 5120

Address queue 7 13 73× 13 = 949

Branch metric buffer, γ00
k , γ01

k 5 20 4× 32× 20 = 2560

Fwrd. metric stack, αk(0, . . . , 7) 5 88 32× 88 = 2816

6.5. Performance and complexity

Since the actual max-log-MAP algorithm is unaltered, the
error correction performance of the decoder equals to typical
max-log-MAP based turbo decoders with the same window
and block lengths. The throughput is determined by the
number of clock cycles per code block. The developed TTA
turbo processor takes 10404 clock cycles with the length-
5120 code block. So, the throughput of one iteration is

R = 5120 bits

/(

10404
1

fc

)

, (14)

where fc is the clock frequency. The processor was syn-
thesized on 130 nm standard cell technology with nominal
conditions of 1.35 V voltage and 125◦C temperature. The
area in terms of logic gate equivalents of the generated netlist
and the corresponding throughput are given in Table 2. The
design is area-efficient as the computing resources are used
efficiently, there are no large multiplexers, and the high-level
structure of the processor is very simple as shown in Figure 8.

In addition to absolute valued throughput in Table 2, the
relative efficiency of the developed processor and decoder
program can be analyzed. The number of clock cycles per
trellis stage, Cstage, of max-log-MAP computation, that is,
half iteration is

Cstage =
10404/2

5120
= 1.016. (15)

The efficiency can be described as a measure how close to
the theoretical cycle count the achieved number of clock
cycles approaches. With the applied resources, the theoretical
cycle count equals to the block length. Thus the efficiency
can be defined as E = 1/Cstage = 0.984. In general, if
the applied algorithm contains any loops, the efficiency
of processor implementation is degraded by the overhead
of loop prologues and epilogues. Overhead can also be
caused by jump latency or inability to fully apply software
pipelining. The obtained high efficiency indicates that such
an unavoidable overhead has only minor part in the total
cycle count. The efficiency, E, gives also the utilization of
the main SFUs. Thus, the high efficiency indicates that the
main computing resources are in use most of the time and
the developed turbo decoder TTA processor operates almost
as efficiently as it is theoretically possible with the given
resources.

Table 2: Complexity and throughput of the turbo decoder TTA
processor.

Clock frequency Area
Throughput 1
iteration

Throughput 6
iterations

100 MHz 27.9 kgates 49 Mbps 8.2 Mbps

200 MHz 31.9 kgates 98 Mbps 16.4 Mbps

250 MHz 35.7 kgates 123 Mbps 20.5 Mbps

277 MHz 43.2 kgates 136 Mbps 22.7 Mbps

6.6. Comparison

A comparison with other turbo decoder implementations
is summarized in Table 3. The implementations are cate-
gorized into three classes. Pure hardware designs are not
programmable. Monolithic accelerators are implementations
where processor is accompanied by a dedicated hardware
decoder. The third category contains processors, in which the
computing resources are accessed via a datapath.

Naturally, turbo decoders applying more accurate algo-
rithms like log-MAP instead of max-log-MAP require more
area and the longer critical path lowers clock frequency.
In log-MAP algorithms, an approximation, ln(ea + eb) =
max(a, b) + f (a, b), is used and comparisons are difficult
since the accuracy of the correction term, f (a, b), may vary.
Typically the recursive update in (2) and (3) dominates the
critical path and prevents high clock frequencies. However,
the path metric computation can be accelerated also by
expressing the recursion in such a way that the control
signals of selection operations are computed in parallel with
additions like in [33, 34].

The complexity is tabulated if it is given as logic
gate equivalents excluding the memories in the respective
reference. Due to the differing underlying cell structures,
comparing different FPGA architectures would be difficult
and the size of the memories depends on the targeted block
size and technology. For example, [20] takes 250 kgates with
memories but the computing units of the core decoder take
only 24 kgates. Even if the memories are excluded in Table 3,
it is still possible that some implementations may use register
based delay lines for queue data structures and the registers
are naturally included in the gate count. Such a register based
approach is simple to design as it does not require address
generation nor memory bank selection logic. As a drawback,

Perttu Salmela et al. 15

Table 3: Comparison of turbo decoder implementations.

Category Reference Architecture/technology Clock frequency Area
Throughput 1
iteration

Algorithm
Cycles/stage

(Cstage)

Pure HW design

[10] 180 nm technology 145 MHz 410 kgates 144 Mbps log-MAP 0.50

[11] Virtex 5 FPGA 310 MHz — 139 Mbps MAX SCALE 1.12

[35] 130 nm technology 246 MHz 44.1 kgates 112 Mbps max-log-MAP 1.10

[12] Virtex 2 FPGA 56 MHz — 79.2 Mbps MAP 0.35

[36] 180 nm technology 100 MHz 115 kgates 27.1 Mbps max-log-MAP 1.84

[37] 180 nm technology 111 MHz 85.0 kgates 25 Mbps log-MAP 2.21

[20] 180 nm technology 133 MHz 24.0 kgates 22.8 Mbps log-MAP 2.92

Monolithic
accelerator

[13, 38]
Turbo coprocessor of
C64x

300 MHz 86.6 kgates 90.4 Mbps log-MAP 1.66

[14] SISO dec. with SIMD 135 MHz 34.4 kgates 32.9 Mbps [max]-log-MAP 2.05

Programmable
processor

Proposed TTA proc. (130 nm) 277 MHz 43.2 kgates 136 Mbps max-log-MAP 1.02

[8] SIMD ASIP (65 nm) 400 MHz 64.1 kgates 100 Mbps log-MAP 2.00

[4] TTA proc. (130 nm) 210 MHz 20.8 kgates 14.1 Mbps max-log-MAP 7.46

[9] SIMD DSP 400 MHz — 10.4 Mbps max-log-MAP 19.2

[5] TigerSHARC DSP 250 MHz — 9.6 Mbps max-log-MAP 13.0

[39, 40] VLIW ASIP (FPGA) 80 MHz — 5.0 Mbps max-log-MAP 8.00

[6] SP-5 SuperSIMD DSP 250 MHz — 4.7 Mbps max-log-MAP 26.9

[7] C62x VLIW DSP 300 MHz — 4.4 Mbps max-log-MAP 34.5

[41] ST120 VLIW DSP 200 MHz — 2.7 Mbps max-log-MAP 37.0

[42] C55x DSP 300 MHz — 2.0 Mbps max-log-MAP 74.8

[43] PC with Pentium III 933 MHz — 366 kbps max-log-MAP 1275

[44]
XiRisc reconf. proc.
(FPGA)

100 MHz — 270 kbps log-MAP 185

[41] DSP56603 DSP 80 MHz — 243 kbps max-log-MAP 165

transferring electric charge through all the registers in a delay
line consumes a lot of energy.

The throughput metrics are normalized to one itera-
tion to alleviate comparisons. The throughput is directly
proportional to the clock frequency, which results in a
low throughput for some FPGA based implementations.
Therefore, also the last column should be observed, as it
gives the number of clock cycles per trellis stage, Cstage. It
is calculated from the throughput and the clock frequency,
unless it is given in respective reference. For [42], an
achievable 300 MHz clock frequency has been assumed to
calculate the throughput.

The implementations [10, 12] in Table 3 have Cstage <
1, as they apply the radix-4 algorithm. The architecture in
[12] includes two component decoders. The decoders in
[36, 37] support also Viterbi decoding. The area of [36]
includes a path metric memory of the Viterbi decoder and
an embedded interleaver. The interleaver is included also in
the area of [35]. The implementation in [20] is targeted for
high-speed turbo architecture consisting of several parallel
decoders. The performance and complexity are reported
for one decoder in Table 3. Naturally, non-programmable
decoders tend to have a lot of dedicated computing resources
for functions of the decoding algorithm and they have high
throughput when compared to majority of programmable
processors.

For [13, 38] the complexity in Table 3 includes only
the turbo coprocessor, but not the accompanying C64x
VLIW DSP. The accompanying processor is included in
the complexity of [14] since the proportion of only the
decoder part was not available. The interleaving pattern is
computed with the processor and the decoder supports both
max-log-MAP and log-MAP algorithms in [14]. In both
implementations, the decoder is not tightly connected to the
datapath of the processor, so it is not flexibly controllable.
Instead, the decoder must process independently which
resembles pure hardware decoders. As a second drawback of
monolithic accelerators, some memory is dedicated only for
the turbo decoder component.

The ASIP in [8] supports also Viterbi decoding. The
ASIP has an 11 stage pipeline. There are dedicated pipeline
stages for address generation, branch metric generation, state
metric computation, and four stages for computing the soft
output. The processor in [9] has three pipelines and trellis
butterflies are alleviated with a specific shuffle network. The
decoding algorithm of the processors in [39, 40] is selectable.
In the table, performance of max-log-MAP is given as it
achieves higher clock frequency. Our previous work in [4]
applies more sequential schedule, which is presented in
Figure 3(b), as it contains less computing resources than
the proposed processor in this paper. Finally, Table 3 shows
that conventional commercial DSPs have modest throughput

16 VLSI Design

and Cstage. This is understandable, since their architectures
are optimized mainly for high throughput multiply and
accumulate operations but not for turbo decoding.

The proposed processor has the highest throughput of
all the programmable turbo decoder processors. The perfor-
mance is comparable with pure hardware implementations
and the number of clock cycles per trellis stage, Cstage, is best
of all the implementations, which do not apply the radix-4
algorithm. For example, even if the clock frequency is lower
when compared to [11], the proposed processor has only
slightly worse performance, since it has better Cstage. The low
Cstage shows that the programmability and flexibility of the
processor does not degrade the efficiency. The utilization of
the computing resources is even higher than with the pure
hardware decoder.

7. CONCLUSIONS

A programmable turbo decoder processor was presented
in this study. High decoding throughput was targeted as
the computing resources were designed to process one
trellis stage in a clock cycle. Such a throughput requires
high parallelism. As a significant result, the study showed
that high parallelism can be utilized with a programmable
processor if the algorithm can be partitioned to accelerating
units and highest level controlling software conveniently.
Complex memory access patterns and demand of several
small temporary memories showed the importance of
configurable memory interfaces in real implementation.
A large dual-port memory was avoided with a simple
parallel access method for the extrinsic information memory.
Instead of fixed memory interface, the proposed processor
allowed to integrate complex memory interfacing within
the SFUs. With this practice, the the memory throughput
requirements were met. Finally, the comparison showed
that even if the proposed turbo decoder TTA processor
is fully programmable, the performance was comparable
with pure hardware solutions. Thus, the benefits of both
implementation methods were obtained.

REFERENCES

[1] 3GPP, “3GPP TS 25.212; multiplexing and channel coding
(FDD),” December 2001.

[2] 3GPP, “3GPP2 C.S0002-C physical layer standard for
cdma2000 spread spectrum systems,” May 2002.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon
limit error-correcting coding and encoding: turbo-codes,” in
Proceedings of IEEE International Conference on Communica-
tions (ICC ’93), vol. 2, pp. 1064–1070, Geneva, Switzerland,
May 1993.

[4] P. Salmela, H. Sorokin, and J. Takala, “A turbo decoder ASIP
implementation forUMTS receiver,” submitted to Interna-
tional Journal of Embedded Systems.

[5] T. A. K. K. Loo and S. A. Jimaa, “High performance
parallelised 3GPP turbo decoder,” in Proceedings of the 5th
European Personal Mobile Communications Conference, pp.
337–342, Glasgow, UK, April 2003.

[6] J. G. Harrison, “Implementation of a 3GPP turbo decoder on
a programmable DSP core,” in Proceedings of Communications

Design Conference, pp. 1–9, 3DSP, San Jose, Calif, USA,
October 2001.

[7] J. Nikolic-Popovic, “Implementing a MAP decoder for
cdma2000TM turbo codes on a TMS320C62x DSP device,”
Texas Instruments, SPRA629, May 2000.

[8] T. Vogt and N. Wehn, “A reconfigurable application specific
instruction set processor for Viterbi and log-MAP decoding,”
in Proceedings of IEEE Workshop on Signal Processing Systems
Design and Implementation (SIPS ’06), pp. 142–147, Banff,
Canada, October 2006.

[9] Y. Lin, S. Mahlke, T. Mudge, C. Chakrabarti, A. Reid, and
K. Flautner, “Design and implementation of turbo decoders
for software defined radio,” in Proceedings of IEEE Workshop
on Signal Processing Systems Design and Implementation
(SIPS ’06), pp. 22–27, Banff, Canada, October 2006.

[10] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C.
Nicol, “A 24 Mb/s radix-4 Log-MAP turbo decoder for 3GPP-
HSDPA mobile wireless,” in Proceedings of IEEE International
Solid-State Circuits Conference (ISSCC ’03), pp. 150–151, San
Francisco, Calif, USA, February 2003.

[11] Xilinx, “3GPP Turbo Decoder v3.1,” DS318, May 2007.

[12] D. G. Choi, M.-H. Kim, J. H. Jeong, et al., “An FPGA
implementation of high-speed flexible 27-Mbps 8-state turbo
decoder,” ETRI Journal, vol. 29, no. 3, pp. 363–370, 2007.

[13] S. Agarwala, T. Anderson, A. Hill, et al., “A 600-MHz VLIW
DSP,” IEEE Journal of Solid-State Circuits, vol. 37, no. 11, pp.
1532–1544, 2002.

[14] M.-C. Shin and I.-C. Park, “SIMD processor-based turbo
decoder supporting multiple third-generation wireless stan-
dards,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 15, no. 7, pp. 801–810, 2007.

[15] P. Salmela, T. Järvinen, T. Sipila, and J. Takala, “Parallel
memory access in turbo decoders,” in Proceedings of the
14th IEEE Personal, Indoor and Mobile Radio Communications
(PIMRC ’03), vol. 3, pp. 2157–2161, Beijing, China, September
2003.

[16] D.-S. Shiu and I. Yao, “Buffer architecture for a turbo
decoder,” International Patent Application WO 02/093 755 A1,
November 2002.

[17] A. Tarable, S. Benedetto, and G. Montorsi, “Mapping inter-
leaving laws to parallel turbo and LDPC decoder architec-
tures,” IEEE Transactions on Information Theory, vol. 50, no.
9, pp. 2002–2009, 2004.

[18] X. He, H. Luo, and H. Zhang, “A novel storage scheme
for parallel turbo decoder,” in Proceedings of the 62nd IEEE
Vehicular Technology Conference (VTC ’05), vol. 3, pp. 1950–
1954, Dallas, Tex, USA, September 2005.

[19] M. J. Thul, N. Wehn, and L. P. Rao, “Enabling high-
speed turbo-decoding through concurrent interleaving,” in
Proceedings of IEEE International Symposium on Circuits and
Systems (ISCAS ’02), vol. 1, pp. 897–900, Phoenix, Ariz, USA,
May 2002.

[20] M. J. Thul, F. Gilbert, T. Vogt, G. Kreiselmaier, and N. Wehn,
“A scalable system architecture for high-throughput turbo-
decoders,” The Journal of VLSI Signal Processing, vol. 39, no.
1-2, pp. 63–77, 2005.

[21] F. Berens, M. J. Thul, F. Gilber, and N. Wehn, “Electronic
device avoiding write access conflicts in interleaving, inpartic-
ular optimized concurrent interleaving architecture for high
throughput turbo-decoding,” European Patent Application
EP1401108 A1, March 2004.

[22] Z. Wang, Y. Tang, and Y. Wang, “Low hardware complexity
parallel turbo decoder architecture,” in Proceedings of IEEE

Perttu Salmela et al. 17

International Symposium on Circuits and Systems (ISCAS ’03),
vol. 2, pp. 53–56, Bangkok, Thailand, May 2003.

[23] Z. Wang and K. Parhi, “Efficient interleaver memory architec-
tures for serial turbo decoding,” in Proceedings of IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP ’03), vol. 2, pp. 629–632, Hong Kong, April 2003.

[24] C. Neeb, M. J. Thul, and N. Wehn, “Network-on-chip-
centric approach to interleaving in high throughput channel
decoders,” in Proceedings of IEEE International Symposium on
Circuits and Systems (ISCAS ’05), vol. 2, pp. 1766–1769, Kobe,
Japan, May 2005.

[25] P. Salmela, R. Gu, S. S. Bhattacharyya, and J. Takala, “Effi-
cient parallel memory organization for turbo decoders,” in
Proceedings of the 15th European Signal Processing Conference
(EUSIPCO ’07), pp. 831–835, Poznan, Poland, September
2007.

[26] E. Boutillon, C. Douillard, and G. Montorsi, “Iterative decod-
ing of concatenated convolutional codes: implementation
issues,” Proceedings of the IEEE, vol. 95, no. 6, pp. 1201–1227,
2007.

[27] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding
of linear codes for minimizing symbol error rate,” IEEE
Transactions on Information Theory, vol. 20, no. 2, pp. 284–
287, 1974.

[28] A. J. Viterbi, “An intuitive justification and a simplified
implementation of the MAP decoder for convolutional codes,”
IEEE Journal on Selected Areas in Communications, vol. 16, no.
2, pp. 260–264, 1998.

[29] H. Corporaal, “Design of transport triggered architectures,” in
Proceedings of the 4th IEEE Great Lakes Symposium on Design
Automation of High Performance VLSI Systems (VLSI ’94), pp.
130–135, Notre Dame, Ind, USA, March 1994.

[30] P. Jääskeläinen, V. Guzma, A. Cilio, T. Pitkänen, and J.
Takala, “Codesign toolset for application-specific instruction-
set processors,” in Multimedia on Mobile Devices 2007, vol.
6507 of Proceedings of SPIE, pp. 1–11, San Jose, Calif, USA,
January 2007.

[31] P. Salmela, T. Järvinen, and J. Takala, “Simplified max-
log-MAP decoder structure,” in Proceedings of the 1st Joint
Workshop on Mobile Future and the Symposium on Trends
in Communications (SympoTIC ’06), pp. 10–13, Bratislava,
Slovakia, June 2006.

[32] C. Bai, J. Jiang, and P. Zhang, “Hardware implementation
of Log-MAP turbo decoder for W-CDMA node B with
CRC-aided early stopping,” in Proceedings of IEEE Vehicular
Technology Conference (VTC ’02), vol. 2, pp. 1016–1019,
Birmingham, Ala, USA, May 2002.

[33] Z. Wang, “High-speed recursion architectures for MAP-
based turbo decoders,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 15, no. 4, pp. 470–474, 2007.

[34] I. Lee and J. L. Sonntag, “A new architecture for the fast Viterbi
algorithm,” IEEE Transactions on Communications, vol. 51, no.
10, pp. 1624–1628, 2003.

[35] C. Benkeser, A. Burg, T. Cupaiuolo, and Q. Huang, “A 58mW
1.2mm2 HSDPA turbo decoder ASIC in 0.13 µm CMOS,” in
Proceedings of IEEE International Solid-State Circuits Confer-
ence (ISSCC ’08), vol. 51, pp. 264–612, San Francisco, Calif,
USA, February 2008.

[36] C.-C. Lin, Y.-H. Shih, H.-C. Chang, and C.-Y. Lee, “A low
power turbo/Viterbi decoder for 3GPP2 applications,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 14, no. 4, pp. 426–430, 2006.

[37] M. A. Bickerstaff, D. Garrett, T. Prokop, et al., “A unified
turbo/Viterbi channel decoder for 3GPP mobile wireless in

0.18-µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 37,
no. 11, pp. 1555–1564, 2002.

[38] T. Wolf, D. Hocevar, A. Gatherer, P. Geremia, and A. Laine,
“600 MHz DSP for baseband processing in 3G base stations,”
in Proceedings of the Custom Integrated Circuits Conference, pp.
393–396, Orlando, Fla, USA, May 2002.

[39] P. Ituero and M. López-Vallejo, “New schemes in clustered
VLIW processors applied to turbo decoding,” in Proceedings
of International Conference on Application-Specific Systems,
Architectures and Processors (ASAP ’06), pp. 291–296, Steam-
boat Springs, Colo, USA, September 2006.

[40] P. Ituero and M. López-Vallejo, “Further specialization of
clustered VLIW processors: a MAP decoder for software
defined radio,” ETRI Journal, vol. 30, no. 1, pp. 113–128, 2008.

[41] H. Michel, A. Worm, N. Wehn, and M. Münch, “Hard-
ware/software trade-offs for advanced 3G channel coding,” in
Proceedings of the Conference on Design, Automation and Test
in Europe (DATE ’02), pp. 396–401, Paris, France, March 2002.

[42] T. Ngo and I. Verbauwhede, “Turbo codes on the fixed point
DSP TMS320C55x,” in Proceedings of IEEE Workshop on Signal
Processing Systems (SIPS ’00), pp. 255–264, Lafayette, La, USA,
October 2000.

[43] M. C. Valenti and J. Sun, “The UMTS turbo code and
an efficient decoder implementation suitable for software-
defined radios,” International Journal of Wireless Information
Networks, vol. 8, no. 4, pp. 203–215, 2001.

[44] A. La Rosa, C. Passerone, F. Gregoretti, and L. Lavagno,
“Implementation of a UMTS turbo-decoder on a dynamically
reconfigurable platform,” in Proceedings of the Conference on
Design, Automation and Test in Europe (DATE ’04), vol. 2, pp.
1218–1223, Paris, France, February 2004.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

