
A Programmable Overlay Router for
Service Provider Innovation

Bruce Davie
Cisco Systems, Inc.

1414 Massachusetts Ave.
Boxborough, MA 01719

bsd@cisco.com

Jan Medved
Cisco Systems, Inc.
170 W Tasman Dr.

San Jose, CA 95134
jmedved@cisco.com

ABSTRACT
The threat of commoditization poses a real challenge for service
providers. While the end-to-end principle is often paraphrased as
“dumb network, smart end-systems”, the original paper makes a
more subtle argument about appropriate distribution of function-
ality among endpoints and intermediate systems. Functions may
be implemented in the network for performance reasons, and when
they offer value to a wide range of applications without inhibiting
the correct operation of applications that do not need these func-
tions. In this context, we describe a prototype platform for ex-
perimentation with novel, useful functions “inside” the network.
This programmable platform allows service providers to innovate
quickly and to deploy new functions within the network when it
makes sense. By implementing the platform as an overlay, ser-
vice providers can assist those applications that benefit from added
functions such as caching and streaming support, without interfer-
ing with the correct and efficient operation of other applications
that do not need them. Service providers can also leverage their
detailed topological knowledge and ability to control network re-
sources, features that would be difficult for conventional overlays.
Programmability of the platform enables features to be extended
or composed with other pieces of software, by either the service
providers or third parties.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network Topology;
C.2.6 [Internetworking]: Routers

General Terms
Design, Performance

Keywords
Overlays, programmable routers, end-to-end argument

1. INTRODUCTION
It is often asserted that the end-to-end principle [21] mandates

that networks should be “dumb” and that most functionality should

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PRESTO’09, August 21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-446-1/09/08 ...$10.00.

be provided by end-systems. In fact, that assertion considerably
oversimplifies the arguments of the original paper. We quote the
original argument here:

The function in question can completely and correctly be im-
plemented only with the knowledge and help of the applica-
tion standing at the end points of the communication system.
Therefore, providing that questioned function as a feature of
the communication system itself is not possible. (Sometimes
an incomplete version of the function provided by the com-
munication system may be useful as a performance enhance-
ment.)

We will return to consider this argument more closely later in
the paper, but for now it is worth noting that it is hardly a blan-
ket prohibition on the implementation of functionality inside the
network. We note in particular the parenthetical statement at the
end: a case can be made for “in-network” functionality when it
provides a performance enhancement, even if certain functionality
is “incomplete”.

The “networks should be dumb” mantra is problematic for ser-
vice providers1 in a competitive environment, because it effectively
requires all service providers to provide the same service — basic
packet transport. This leads to the notion that the service provider
is offering a commodity service, in which providers differentiate
themselves primarily through price. While selling a commodity
need not be unprofitable (as demonstrated in recent memory by
the oil companies), many if not most service providers would pre-
fer to differentiate themselves from their competition by offering
more compelling services. Thus, the idea of adding valuable func-
tionality to the network itself is potentially appealing to service
providers2. As discussed below, however, there are abundant down-
side risks to the addition of in-network functionality, and thus ser-
vice providers should exercise careful judgment when moving be-
yond simple packet transport.

This paper proposes an approach by which service providers can
both add new functionality to the network and experiment with the
utility of such new functionality, without encumbering those ap-
plications and users that have no need of such functionality. At
the heart of this approach is a prototype platform which we refer
to as a “programmable overlay router”. We argue that an overlay
provides an appropriate means for experimenting with new func-
tionality “in” the network, in part because it allows the underlay
1We use the term “service provider” broadly to encompass
providers of networks including both Internet service providers
(ISPs) and Telecommunications service providers (telcos).
2The economics of the service provider business is much too com-
plex for a thorough discussion in this paper. Furthermore, we have
no desire to step outside our area of expertise by holding forth on
economic topics.

1

to be kept simple and stable. Meanwhile, programmability of the
overlay devices enables experimentation with new functionality at
relatively low cost.

The concept of using overlay networks to enhance the functional-
ity of an underlying IP network is not new (see, for example, [17].)
The contribution of this paper is to focus on service provider-hosted
overlays. This contrasts with prior work that has typically assumed
that overlays are operated by an administrative entity distinct from
the one operating the “underlay” IP network. Allowing the same
entity to operate both the underlay and the overlay presents both
challenges and opportunities. The focus of our work has been to
tackle those challenges and exploit the opportunities.

The organization of the paper is as follows. Section 2 outlines
some of the challenges faced by service providers as they attempt
to add useful functionality to their networks, using the end-to-end
principle as a guide. In Section 3 we describe an overall architec-
ture to address the challenges using a programmable overlay. Sec-
tion 4 presents a prototype implementation of this approach and
gives an overview of one example application that we have built
using the platform. Finally, we discuss the related work that has
informed our ideas, and present some concluding remarks.

2. CHALLENGES FOR SERVICE
PROVIDERS

Service providers who attempt to add functionality to their net-
works above and beyond simple packet transport face a number of
challenges. If functions which are not generally useful to applica-
tions are added, they add cost and complexity without providing
sufficient benefits to justify the costs. This is at the heart of the
end-to-end argument: if, for example, the only way for an appli-
cation to truly ensure reliability is to implement its own reliability
mechanisms, there is not much value in providing partial reliabil-
ity mechanisms inside the network, and there is a cost to doing
so. Hence, one challenge for service providers is to identify those
mechanisms that are better provided in the network itself than by
the endpoints.

A more subtle challenge arises when we consider the problem of
innovation. As observed in a paper that re-examines the end-to-end
argument in a modern context [8]:

The edge orientation for applications and comparative sim-
plicity within the Internet together have facilitated the creation
of new applications, and they are part of the context for inno-
vation on the Internet.

Put another way, the simplicity of the Internet’s core fosters inno-
vation by enabling a rich diversity of new applications to be de-
ployed at the edges, requiring no modification to the network core
itself. Conversely, if every new application were to require some
service provider involvement before it could be deployed, innova-
tion would likely be stifled.

In summary, service providers would like to add more function-
ality to their networks in the hope of “adding value” and differ-
entiating themselves from their competition. In doing so, however,
they must avoid adding needless cost and complexity and also avoid
creating barriers to innovation. In the following section, we will
describe an approach by which service providers can achieve an
appropriate balance between these apparently conflicting goals.

3. TECHNICAL APPROACH
Our technical approach to addressing the problems described

above can be summarized as follows: service providers can supple-
ment their core network infrastructure with a programmable over-

lay. They continue to offer a simple, robust IP packet delivery
service thus ensuring that edge-based innovation can continue to
happen as before. At the same time, they can offer enhanced func-
tionality and services using the overlay for those applications and
users that stand to benefit from such enhancements. By making
the overlay programmable, they can begin with a small set of rel-
atively well-understood and well-defined functions, which can be
subsequently added to and combined to produce new functional-
ity. This enables service providers to experiment with new func-
tionality at relatively low cost, retaining only the functionality that
demonstrates long-term value. In a sense, this is analogous to the
way application developers experiment with new ideas at the edge
today, with the most successful applications surviving and contin-
uing to grow.

Figure 1: The Service Routing Layer

Figure 1 illustrates the proposed approach at a high level, us-
ing the example of content delivery applications. In this exam-
ple, all the applications consist of some content, a user interface
(UI), and some application layer functionality/protocols (App). On
the far left, the application also includes some “middleware” (e.g.,
naming and lookup functions) and a caching function. The ser-
vice provider-hosted overlay implements a set of functions which
we refer to as the “service routing layer”. The application on the
left completely bypasses this layer, running directly over IP as nor-
mal. Other applications, such as those on the right-hand side, make
use of supplemental functionality provided by the service routing
layer. This functionality might include, for example, overlay rout-
ing, naming services, caching of popular content, etc. Other appli-
cations might choose to implement some functionality on their own
while selectively drawing on functionality provided by the service
routing layer.

The goal of implementing the service routing layer as part of
the service provider’s infrastructure is to facilitate the deployment
of new applications by either the service provider or by cooper-
ative third parties. For example, a company wishing to develop
and deploy a new peer-to-peer television service could utilize the
peer-to-peer overlay and caching functions provided by the service
provider, while focusing the majority of its energy on obtaining
compelling content and developing an effective user interface. This
contrasts with the “over the top” model, in which the aspiring P2P
TV company would also have to develop its own caches and over-
lay, while also doing all the other things necessary to produce a
compelling application. The key question, of course, is which func-
tions have enough general applicability to merit inclusion in the ser-
vice routing layer. The following sections describe our approach to
answering this question in more detail.

2

3.1 Service provider-hosted overlay
The idea of using overlays to incrementally add functionality to

existing networks can be traced back at least as far as the Mbone3

[11], and programmable overlays became popular around a decade
ago, motivated in part by concerns about “ossification” of the In-
ternet [14]. PlanetLab [16] is perhaps the most widely known pro-
grammable overlay network.

Content

Provider

Content

Consumer

Foreign

Resource

Figure 2: Programmable Overlay Network Architecture

Overlays have generally been operated without the involvement
of the service provider who operates the “underlay”, but clearly our
goal here is to enable the service provider to be directly involved
in the delivery of higher layer services. In this context, the service
provider benefits from using an overlay because it enables selective
addition of new, higher-layer services for the benefit of those appli-
cations that find them useful, while other applications continue to
operate on the unmodified underlay — the IP layer.

A programmable overlay can be contrasted with programmabil-
ity at the IP layer itself. An overlay clearly limits our ability to
change the operation of the IP data plane, although small-scale ex-
perimentation with new data plane functionality is still possible,
much as in the Mbone. However, since the IP layer needs to be kept
robust and simple, it is attractive to be able to make modifications
to the services offered by the network without risking disruption at
the IP layer. We also observe that many modern applications could
benefit from enhancements above the IP layer, such as caching and
support for streaming media. (We return to this subject below in
section 3.4.) In fact, we believe that there is likely to be more need
for innovation above the IP layer, making a programmable overlay
an attractive choice. Also, since the demand for the new, higher-
layer services is likely to be small initially compared to the demand
for traditional IP packet delivery, it is appealing to be able to deploy
a small number of devices in the overlay, which can then be scaled
up as demand dictates4.

3.2 Topological proximity
When an overlay is operated by an entity that is independent of

the provider of the underlay, there is typically a certain amount of
information hiding between the layers. For example, PlanetLab
nodes are ignorant of the detailed IP-layer topology interconnect-
ing the nodes. By contrast, a service provider who operates his own
overlay on top of his own network infrastructure has the liberty to
exchange information between the layers. One or more of the over-

3The Internet may itself be counted as a famous example overlay
on top of the PSTN.
4Significant experimentation with new data-plane functionality is
not precluded by our approach, it is simply not our focus. Issues
related to the use of overlays for data-plane experimentation are
well discussed in [17].

lay nodes may, for example, listen to the IP-layer routing proto-
cols to obtain an accurate picture of the network layer topology.
Equipped with such information, an overlay node may then answer
a range of queries related to the distance or routing cost between
various entities in the network. We refer to this as a “topological
proximity” function.

A topological proximity function can be used in a variety of
ways. For example, if the service provider is offering a caching
service, it can be used to determine which of several possible cache
locations is the best one from which to serve a particular cached
item. Alternatively, applications that operate outside of the service
provider’s control, such as peer-to-peer file-sharing applications,
can request assistance from the proximity function to help them
perform peer selection. This sort of capability has recently attracted
considerable attention in the IETF and elsewhere [6][23][15].

As illustrated in Figure 2, the proximity function can provide a
logical connection between the overlay and the network layer. We
implement the proximity function in a subset of the overlay routers
(labeled Service Gateway in the figure), where it participates as a
passive listener in the routing protocols (IS-IS, OSPF, and BGP).
It may then communicate with its peers in the overlay to answer
their queries related to network topology. We are also defining an
interface to the proximity function that could be used by a range of
clients [1].

One might reasonably ask whether this inter-layer communica-
tion actually provides a benefit when compared to “traditional”
overlays that have no access to detailed information from the un-
derlay. For example, the RON overlay [2] successfully uses prob-
ing to establish the suitability of various paths across the under-
lay. While we are not aware of any comprehensive comparative
study that answers this question, there is evidence that explicitly
providing topological information to some classes of applications
such as peer-to-peer file sharing can both improve the performance
of those applications and reduce their consumption of network re-
sources [6][23]. Further exploration of the value of the topological
proximity function is a focus of our ongoing work.

3.3 Network Control
Just as a service provider-hosted overlay has more access to topo-

logical information than a separately managed overlay, the service
provider also has potentially more ability to control properties of
the network. For example, an overlay node operated by the service
provider may be able to signal to the network that a particular qual-
ity of service is needed for a given flow, using mechanisms such as
RSVP [24] or Differentiated Services [7]. If the underlay supports
MPLS traffic engineering, the overlay could explicitly signal to the
underlay to establish a particular traffic engineering path meeting
a set of specified constraints. Similarly, GMPLS could be used to
establish optical paths in a suitable underlay network5.

It is noteworthy that deployments of QoS technologies such as
RSVP and Diffserv have been largely limited to single domains
[9]. Thus, the fact that the overlay nodes can be treated as being
in the same administrative domain as the underlying IP network
raises the possibility of greater usage of QoS capabilities at the IP
layer. Our current implementation makes use of Diffserv in this
way. RSVP brings more solid QoS guarantees at the cost of more
state, which would be most logical for a relatively small class of
high-value applications.

To simplify the task of developing applications that run in the
overlay and might take advantage of these network layer functions,
one could imagine abstracting the low-level network capabilities

5An approach along these lines is being explored by the DRAGON
project [10].

3

behind a more developer-friendly API. For example, something
along the lines of the Microsoft generic QoS API could be pro-
vided in the overlay nodes and used by applications to invoke the
network-layer QoS mechanisms, with the low level details (e.g.,
DSCP values, RSVP messages) being controlled in response to
higher level goals (e.g. “gold”, “silver”, “bronze” QoS levels).

3.4 Built-in functions
While the programmability of the overlay is essential to enable

new capabilities to be added and experimented with, it makes sense
to include some number of “built-in” functions that are likely to
have wide utility. At the time of our implementation, we identified
a relatively small set of functions that enable a wide range of ap-
plications to be supported. In the following sections, we discuss
how these functions can be extended and composed with others to
produce more complex applications and services.

The set of functions that we identified was influenced heavily by
the prevalence of streaming video in today’s networks. The func-
tions include:

• Distributed hash table (DHT). DHTs are well established as a
scalable and resilient technique for constructing overlay net-
works. We use a DHT based on Pastry [19] to construct our
overlay; we also offer DHT storage and look up functions as a
building block service, in a similar manner to OpenDHT [18].
We store structured descriptors in the DHT to support a variety
of functions, such as maintaining pointers to content replicas in
the distributed cache, and to point to instances of replicated ser-
vices. The DHT provides a unified naming system for all objects
(content, services, etc.) and a robust, scalable means to route re-
quests to overlay nodes that can service them – it forms the heart
of the “service routing” layer. The DHT may also be used simply
to store opaque data.

• Proximity. The topological proximity function was described
above. It is used by other functions such as caching, to enable the
nearest replica of an object in the cache to be selected. It is also
made available as a service, to be used by applications that can
benefit from the topological knowledge of the service provider
(e.g., peer-to-peer applications).

• Caching. Caching is probably one of the clearest examples of
a piece of functionality that a service provider is well equipped
to offer. Caching requires that cached copies of objects are lo-
cated close to where they are needed; the service provider has
the necessary footprint to place caches where they will be most
effective, and also has the detailed knowledge of the network
topology to enable intelligent choices to be made among multi-
ple cache locations.

• Streaming support. With video becoming an increasingly domi-
nant component of network traffic, it may be useful not only to be
able to cache video files in the overlay devices but also to be able
to stream video directly from these devices to end-users. While
the proliferation of different streaming formats complicates the
situation, just supporting a couple of popular formats is likely
to provide significant benefit, and support for other formats can
always be added.

• Events. Scalable event notification is another useful building
block for a wide range of applications, and is readily imple-
mented on top of a DHT-based infrastructure [20].

The next section describes how these building block functions
may be extended and composed to implement a rich set of applica-
tions and features.

3.5 Extensibility and open APIs
The extensibility of our platform is critical to enabling service

providers to innovate and experiment with new functionality. While
any programmable platform is by definition extensible, we have
taken a number of steps to make it easy to extend the platform.
These steps include:

• Well-defined APIs using Web services. All of the built-in
functions described in the preceding section are made avail-
able as Web services. The APIs are formally described using
WSDL (Web Service Definition Language), thus making it fairly
straightforward for external applications to access the functions
described above6.

• Service registration and replication. New services and functions
can be added to the system either through the addition of code
running on the platform itself, or on external systems (see “for-
eign resources” below). These services can be published using a
service descriptor mechanism. Service descriptors are stored in
the DHT. The location in the DHT is determined by a hash of the
service name, and the descriptor itself contains a list of URLs for
instances of the service. Thus, for example, a new service could
be implemented on some subset of the programmable overlay
routers, and a descriptor for that service would be stored in the
DHT, pointing to the nodes at which the service is available. This
means that a popular service can be widely replicated, and con-
sumers of the service can be directed to a nearby instance of the
service using the proximity functionality. Note that this ability to
replicate a service enables a service provider to experiment with
new functionality and increase the amount of resources allocated
to that function if it turns out to be popular.

• Support for “foreign resources”. We use the term “foreign re-
sources” to refer to functionality that is implemented on systems
other than the overlay routers. For example, a service provider
may wish to make use of functionality provided by some third
party (e.g., persistent storage provided by Amazon Web Services
[4]) or to access other services implemented elsewhere in his
network. The overlay nodes provide a proxy function, to create
the illusion (from the perspective of an end user) that these re-
mote functions are actually implemented in the overlay routers.
End users interact with the proxy function running on an over-
lay router, and the proxy function communicates with the re-
mote server that implements the foreign resource. This provides
a level of isolation between the foreign resources and the cus-
tomers, and creates the appearance of a seamlessly integrated
application.

If multiple instances of a foreign resource are available (e.g.,
multiple data centers providing persistent storage), the proximity
function can be used to select among the different instances.

These capabilities, combined with some virtualization support
described below, considerably simplify the task of adding function-
ality to the network.

3.6 Virtualization
The programmable overlay routers can run code from a variety

of sources. In addition to the “built-in” functions described above,
service providers may develop their own code to run on the over-
lay nodes; they may also wish to execute code provided by third
parties, content providers, etc.

6Our initial implementation uses SOAP; a RESTful implementa-
tion is on the roadmap.

4

In this environment, some degree of isolation between differ-
ent pieces of code is clearly required. One option would be to
run multiple virtual machines on a single programmable overlay
router, providing strong isolation between code from different par-
ties. This in turn could be achieved in a number of ways, such
as a hypervisor environment, container-based virtualization simi-
lar to PlanetLab, or a high-level language-based VM such as Java.
Soltesz et al. [22] discuss some of the trade-offs among these ap-
proaches in terms of isolation, performance, etc.

4. IMPLEMENTATION
We have implemented a prototype version of the architecture de-

scribed above. Our implementation runs on generic server-class PC
hardware (with copious amounts of disk and RAM) and is built on
a standard Linux environment. It includes one or more instances
of an embedded off-the-shelf Web application server that handles,
among other things, processing of Web Services API requests and
the upper, more complex layers of system infrastructure. Lower
layers of the infrastructure, time-critical functions and data move-
ment functions, such as the cache control daemon, the routing pro-
tocol daemons, the HTTP server, the DHT daemon, and streaming
engines, are implemented in C for better efficiency.

We opted to use a Java VM to provide the application virtualiza-
tion support described in the previous section, although we expect
that a real-world deployment would quite likely require the higher
level of isolation provided by container-based VMs or a hypervisor.
Thus, if one wishes to extend the capabilities of the system by de-
ploying code on the overlay router itself, that code today is written
in Java. Of course, code written in any language may be deployed
on external systems, and integrated into an application that uses the
overlay router platform, by treating the external system as a Foreign
Resource, as described above. Ultimately we expect that a range of
language environments would need to be supported to fully realize
the potential of the programmable overlay.

Management of both the system infrastructure and the de-
ployed applications is achieved using Java Management Extensions
(JMX). In addition to the “native” JMX management interface, the
system also provides SNMP and a command line interface similar
to Cisco IOS R©. System management is implemented in a separate
JVM. The JMX management API enables use of 3rd party node
management tools and emerging open-source and commercial net-
work monitoring tools.

4.1 An example application: Social TV
To illustrate how the capabilities of the overlay router have been

used to rapidly deploy a novel application, we provide a quick
overview of an application that we developed to demonstrate the
system.

Figure 3 gives a high-level overview of a “social TV” applica-
tion. From a user perspective, the application supports groups of
users watching the video content while exchanging messages, rec-
ommendations, etc. with each other. It is implemented as a dis-
tributed application that has both client and server (“back end”)
components. The server components are deployed into a selected
set of nodes and provide APIs utilized by clients. The APIs pro-
vide login, content browsing and search, program guide, user con-
tent upload and social functions, such as instant messaging, content
rating, comments, etc.

Operation proceeds as follows. Initially, a user logs in to a spe-
cialized “portal node”, which, after querying the proximity func-
tion, redirects the user to the nearest overlay router. The user down-
loads the necessary client software (a browser plug-in). The client
software then proceeds to interact with software running on the

Figure 3: Example Application

nearest overlay node. The overlay provides routing of client re-
quests to backend servers, content caching and delivery, and uses
the event notification service as the basis for instant messaging.

Observe that this application uses most of the built-in functions
described in Section 3.4. The benefits of implementing the ap-
plication in the overlay include: reduced latency; efficient use of
network resources (popular content traverses the backbone only
once per “point of presence”, where it is then cached); better isola-
tion between backend servers and clients (which communicate only
with nearby overlay nodes); and the ability to scale up the applica-
tion by replicating it on as many overlay nodes as necessary.

5. RELATED WORK
As already noted, the programmable overlay architecture draws

heavily on prior research. In some respects, it is most similar to
PlanetLab [16]. Our work builds on PlanetLab’s programmable
overlay model by adding a number of built-in functions (described
in section 3.4) to form the foundation of the “service routing layer”.
In this respect, we also build on the foundation of OpenDHT [18],
adding several other built-in functions above and beyond the DHT
infrastructure. In contrast to both of these efforts, we have tried to
integrate the overlay more closely with the network layer through
the use of topological proximity and allowing the overlay to control
network resources. By allowing select overlay nodes to passively
listen to network layer routing, for example, we enable applications
to make intelligent choices among replicated content, services, etc.
based on the location of these replicas in the network. This enables
service providers to take advantage of their network infrastructure
in a way that would be challenging for more traditional overlay
networks.

Akamai [13], along with other content distribution networks
(CDNs), is a salient example of the effective use of overlays to add
functionality to an IP network, providing benefits to a wide range
of applications. These overlays are again not closely integrated
with the service provider infrastructure, nor do they offer the pro-
grammability or open interfaces to facilitate easy extensibility by
either the providers or by third parties.

Our work also suffers from a potential disadvantage compared
to separately managed overlays. Most service provider networks
have limited geographic scope, whereas overlays such as PlanetLab
and Akamai have close to global footprints. Enabling some sort of
peering among providers at the content or application level would
seem to be a necessary step to address this concern, and is a focus of
ongoing work. Our initial efforts in this area build on the “peering
peer-to-peer” work of Balakrishnan et al.[5]

It is interesting to compare our approach with “cloud computing”
as exemplified by services such as Amazon Web Services [4] and
Google’s App Engine [12]. In the sense that our programmable

5

overlay provides a general-purpose computation environment that
is located in “the cloud” and available to a wide range of users, it
could be considered a form of cloud computing environment. (As
widely noted, cloud computing is a term with many definitions —
see [3] for some relatively clear discussion on this topic.) A main
point of contrast between our approach and the mainstream cloud
computing providers is the attempt to locate computation “inside”
the network specifically to take advantage of the service provider’s
footprint and resources.

6. CONCLUDING REMARKS
Service providers face a difficult challenge if they attempt to

move beyond the world of “commodity” packet transport by adding
potentially valuable functionality to their networks. Not only do
they risk adding costly functionality that applications cannot or do
not use; the additional complexity may also make their networks
less robust. Furthermore, they risk stifling innovation if new appli-
cations cannot be readily added without changes to the network.

Our proposed way out of this bind is the use of a programmable
overlay, or a “service routing” layer. A stable, robust IP layer is
preserved, while useful “in-network” functionality is performed by
the overlay. By making the overlay devices fully programmable,
we enable service providers to experiment with new functionality
and to rapidly develop new applications and services using such
functionality. By giving the overlay routers access to the network
layer topology information, requests for replicated content or ser-
vices can be routed to the nearest replica, thus providing better ser-
vice to users and more efficient network utilization than in a con-
ventional overlay. Overlay nodes also have the ability to control
network resources (e.g. QoS settings), which may prove advanta-
geous compared to separately managed overlays.

7. ACKNOWLEDGMENTS
A large team contributed to the architecture and implementation

of the system described in this paper. We would like to thank the
entire team including Manish Bhardwaj, Pawel Lipka, Steven Lu-
ong, David Powell, Stefano Previdi, Radovan Semancik, George
Suwala, Albert Tian, Robert Varga and Tomasz Wysocki. We also
thank Tony Bates and Mark Carroll for their support of the project.
Finally, we thank the reviewers for their thoughtful and construc-
tive comments on the paper.

8. REFERENCES
[1] O. Akonjang, A. Feldmann, S. Previdi, B. Davie, and

D. Saucez. The PROXIDOR service. Internet draft, work in
progress, March 2009.

[2] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. Resilient Overlay Networks. In Proc. 18th ACM
Symposium on Operating Systems Principles, Banff, Alberta,
Canada, October 2001.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the clouds: A Berkeley view of cloud
computing. Technical Report EECS-2009-28, EECS Dept.,
UC, Berkeley, 2009.

[4] Amazon Web Services home page. http://aws. amazon.com/.
[5] H. Balakrishnan, S. Shenker, and M. Walfish. Peering

peer-to-peer providers. In 4th International Workshop on
Peer-to-Peer Systems, Ithaca, NY, Feb. 2005.

[6] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates,
and A. Zhang. Improving traffic locality in bittorrent via
biased neighbor selection. In Proc. ICDCS, 2006.

[7] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An architecture for differentiated services. Request
for Comments 2475, Dec. 1998.

[8] M. S. Blumenthal and D. D. Clark. Rethinking the design of
the Internet: the end-to-end arguments vs. the brave new
world. ACM Trans. Internet Techn., 1(1):70–109, 2001.

[9] B. Davie. Deployment experience with Differentiated
Services. In Proc. RIPQOS Workshop, SIGCOMM,
Karlsruhe, Aug 2003.

[10] DRAGON (dynamic resource allocation via GMPLS optical
networks). http://dragon.east.isi.edu.

[11] H. Eriksson. Mbone: The multicast backbone. Commun.
ACM, 37(8):54–60, 1994.

[12] Google App Engine. http://code.google. com/appengine/.
[13] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S.

Levine, and D. Lewin. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web. In ACM Symposium on Theory of
Computing, 1997.

[14] National Research Council. Looking Over the Fence at
Networks. National Academy Press, Washington D.C., 2001.

[15] J. Peterson and A. Cooper. Report from the IETF workshop
on P2P infrastructure, May 28, 2008. Internet draft, work in
progress, February 2009.

[16] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into the
Internet. In Proc. HotNets-I, Oct. 2002.

[17] L. L. Peterson, S. Shenker, and J. S. Turner. Overcoming the
Internet impasse through virtualization. In Proc. Hotnets-III,
Nov. 2004.

[18] S. C. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz,
S. Ratnasamy, S. Shenker, I. Stoica, and H. Yu. OpenDHT: a
public DHT service and its uses. In Proc. ACM SIGCOMM,
Philadelphia, PA, 2005.

[19] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. In IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), Nov. 2001.

[20] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
Scribe: The design of a large-scale event notification
infrastructure. In Networked Group Communication, Third
International COST264 Workshop (NGC’2001), Nov. 2001.

[21] J. Saltzer, D. Reed, and D. Clark. End-to-end arguments in
system design. ACM Transactions on Computer Systems,
2(4):277–288, Nov. 1984.

[22] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. C. Bavier, and
L. L. Peterson. Container-based operating system
virtualization: a scalable, high-performance alternative to
hypervisors. In Proc. EuroSys, Lisbon, Portugal, 2007.

[23] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and
A. Silberschatz. P4P: provider portal for applications. In
Proc. ACM SIGCOMM, Seattle, WA, 2008.

[24] L. Zhang, S. Deering, D. Estrin, S. Schenker, and
D. Zappala. RSVP: A new resource reservation protocol.
IEEE Network, 7(9):8–18, Sept. 1993.

6

