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A programmable qudit-based quantum processor
Yulin Chi1,12, Jieshan Huang 1,12, Zhanchuan Zhang1,12, Jun Mao 1, Zinan Zhou1, Xiaojiong Chen1,

Chonghao Zhai1, Jueming Bao1, Tianxiang Dai 1, Huihong Yuan1,2, Ming Zhang3, Daoxin Dai3, Bo Tang4,

Yan Yang 4, Zhihua Li4, Yunhong Ding 5,6, Leif K. Oxenløwe 5,6, Mark G. Thompson 7,

Jeremy L. O’Brien8, Yan Li 1,9,10,11, Qihuang Gong 1,2,9,10,11 & Jianwei Wang 1,2,9,10,11✉

Controlling and programming quantum devices to process quantum information by the unit

of quantum dit, i.e., qudit, provides the possibilities for noise-resilient quantum commu-

nications, delicate quantum molecular simulations, and efficient quantum computations,

showing great potential to enhance the capabilities of qubit-based quantum technologies.

Here, we report a programmable qudit-based quantum processor in silicon-photonic inte-

grated circuits and demonstrate its enhancement of quantum computational parallelism. The

processor monolithically integrates all the key functionalities and capabilities of initialisation,

manipulation, and measurement of the two quantum quart (ququart) states and multi-value

quantum-controlled logic gates with high-level fidelities. By reprogramming the configuration

of the processor, we implemented the most basic quantum Fourier transform algorithms, all

in quaternary, to benchmark the enhancement of quantum parallelism using qudits, which

include generalised Deutsch-Jozsa and Bernstein-Vazirani algorithms, quaternary phase

estimation and fast factorization algorithms. The monolithic integration and high program-

mability have allowed the implementations of more than one million high-fidelity prepara-

tions, operations and projections of qudit states in the processor. Our work shows an

integrated photonic quantum technology for qudit-based quantum computing with enhanced

capacity, accuracy, and efficiency, which could lead to the acceleration of building a large-

scale quantum computer.
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Natural quantum matters store rich multidimensional
quantum information in a superposition of more than
two electronic or mechanical modes. Engineering artificial

multilevel quantum devices to mimic nature may allow funda-
mental innovations and technological advances. Recently, though
the state-of-the-art qubit-based quantum technologies have demon-
strated revolutionary milestones, e.g., loophole-free Bell tests1,2,
satellite-relayed quantum communications3,4 and quantum compu-
tational advantages5,6, qudit-based quantum technologies might be
able to further enhance quantum capabilities as they are intrinsically
consistent with our natural quantum systems. For example, entangled
qudit states can strengthen the Bell nonlocality7 and moderate the
detection loophole8; distributing qudit states allows high-capacity
noise-resilient quantum cryptography9–11; by mapping Hamiltonians
into multilevel quantum devices, it can provide a direct solution for
quantum simulations of complex molecular and physical
systems12–16; more importantly, universal quantum computation
with qudits is possible in both of the circuit models17 and
measurement-based models18,19, requires less resource overhead in
quantum error correction20,21, and can improve the execution of
quantum algorithms22,23. Heuristically, the exponential speed-up of
many quantum algorithms is enabled by the quantum parallel eva-
luation of a function f(x) for all input x values simultaneously, as
∑x xj i f ðxÞ

�� �
, where the x input string is represented by a super-

position of quantum states. The adoption of qudit as the basic
quantum information unit in processing quantum algorithms24 offers
enhanced computational capacity that is represented by the size of
the Hilbert space of dn, where n is the number of qudits and d is the
local size of each qudit. Moreover, it can lead to higher computational
accuracy for example in implementing quantum Fourier transform
algorithms such as Shor’s fast factorisation25 and phase estimation26,
in which the computational accuracy is determined by the size of
auxiliary qudits. Processing the Kitaev’s version of quantum Fourier
algorithms26–29 with qudits may allow further speed-up of quantum
computing. These unique capabilities have strongly prompted the
development of qudit-based quantum computing in universal
models17–19,30,31, and very recently in experimental controls of qudit
states and logic gates in photonics32, solid-state15, trapped ion33, and
superconducting34 platforms. In particular, photons are intrinsically
multidimensional35, enabling flexible and reliable encoding of qudits
with their different degrees-of-freedom, e.g, path36,37, frequency38,39,
spatial mode40,41 and temporal mode11,42. Advances in the control of
quantum photonic devices have recently allowed remarkable
experimental progress. For example, multidimensional Greenberger-
Horne-Zeilinger (GHZ) states and cluster states prepared in the
frequency-bins and time-bins of two photons generated in a single
microring resonator43,44, have firstly shown enhancement in quan-
tum computation by providing increased quantum resources and
higher noise robustness compared to the qubit counterparts; An
integrated photonic chip for the generation, manipulation and
measurement of two-photon multidimensional Bell states has been
demonstrated36, while the scaling capability has been verified by the
generation of multiphoton multidimensional GHZ states45,46, and
the realisation of single-qudit quantum teleportation47,48. Despite of
these remarkable development of multidimensional quantum pho-
tonic technologies that mainly focus on the preparation and control
of qudit states and gates, a monolithically integrated quantum device
that is able to initialise, manipulate and analyze qudit states and gates
is lacking. Furthermore, the programmability of quantum hardware
presents the major enabling capability of quantum computing tech-
nologies. For example, several milestones in qubit-based quantum
computing have been all realised in programmable quantum devices
of photons49,50, trapped ions51,52, superconductors5,6 and
semiconductors53. However, limited to the best to our knowledge,
such a qudit-based quantum computing device that can be fully

reconfigured and reprogrammed to implement different tasks has not
been realised to date, in any quantum system. Likely, it requires an
integrated platform35,54,55, capable of initialising, manipulating and
measuring qudit states and gates, in a fully controllable and highly
programmable manner. Realising a programmable qudit-based
quantum processor therefore presents a significant step to transi-
tion the technological advances of controlling qudit states and logic
gates to the implementations of quantum tasks and quantum com-
putational algorithms, in d-ary.

In this work, we demonstrate a programmable qudit-based
quantum processing unit (d-QPU) on a large-scale silicon-pho-
tonic quantum chip. The initialisation, manipulation and mea-
surement of arbitrary single-qudit and two-qudit states, and
multi-value quantum-controlled logic gates can be implemented
on the single d-QPU chip. Such a fully monolithic integration of
all necessary functionalities allows the implementation of a top-
down hierarchy of programmable qudit-based quantum compu-
tation, as shown in Fig. 1. Different quantum tasks and compu-
tational algorithms are implemented, all in quaternary, by
recompiling the qudit logic circuit in the software level, and then
executing the circuit by reprograming the configurations of the d-
QPU chip in the hardware level. We then benchmark the
enhancement of quantum computational parallelism, by per-

Fig. 1 The top-down hierarchy of qudit-based quantum computation.
Users can define different quantum tasks and implement different quantum
algorithms in d-ary, e.g., the generalised Deutsch-Jozsa (DJ), Bernstein-
Vazirani (BV), quantum phase estimation (QPEA) and Shor’s fast
factorization algorithms. In the software level, a multi-qudit quantum logical
circuit for executing the algorithm is compiled with single-qudit gates (e.g,
Zd, Xd and Hd) and multi-value controlled-unitary (MVCUd) gates. In the
hardware level, the logical circuit is physically implemented by an
integrated photonic quantum device, i.e, the programmable d-QPU, and the
gate operations are realised by optical waveguide devices, such as
entangled photon sources, phase shifters, beamsplitters and
interferometers. Multiple quantum tasks and algorithms can be executed,
without the need of altering the device, only by reprogramming the
configurations of waveguide circuits. The outcome of the hardware is given
by photon coincidence counts, which are recorded and analysed by classical
electronics and classical computer. Experimental outcomes can be feed-
forwarded into the d-QPU for the implementation of Kitaev’s version of
quantum Fourier transform algorithms.
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forming the generalised Deutsch-Jozsa and Bernstein-Vazirani
algorithms, quaternary phase estimation and order finding algo-
rithms. Our results show a proof-of-principle demonstration of
qudit-based quantum computer with integrated optics, that
allows improvement of the capacity, accuracy and efficiency of
quantum computing.

Results
Scheme of multiqudit quantum processor. Figure 2 shows the
core of a multiqudit processor, i.e, the multiqudit multi-value con-
trolled logic gate, which is realised by the following three steps:
generation of the multiphoton multidimensional Greenberger-
Horne-Zeilinger entangled state GHZj inþ1;d

45,46, which enables the
entangling operations between the multiqudit states; Hilbert space
expansion of each qudit in y-register to form an entire space of d2n,
that locally allows individual and arbitrary single-qudit operations56;
coherent compression of the entire state back to a dn space57. These
sequences of operations result in a multiqudit multi-value controlled-

unitary (MVCU) gate as 1ffiffi
d

p ∑d�1
j¼0 kj

���
E
�Qn

i¼1 Oi;j ϕ
�� �

i, where kj

���
E

in the auxiliary x-register presents the logical state in the j-th mode
(for simplicity it is denoted as j

�� �), and Oi,j in the data y-register
refers to an arbitrary local operation on the qudit state ϕ

�� �
i
that is

initialised by the Pi qudit generator. Such multiqudit MVCU gate
works with a (1/d) success probability regardless of n (see Supple-
mentary Note 3 and Supplementary Fig. 1). The quantum circuits in
Fig. 2a, b provide a scheme of implementing multiqudit quantum
Fourier algorithms in the scalable Kitaev’s framework26–29.

Figure 2c illustrates the integrated photonic quantum circuits for a
two-ququart version of qudit-based quantum processing unit (d-
QPU). It was fabricated in silicon using the complementary metal-
oxide-semiconductor (CMOS) process with the 248nm deep
ultraviolet lithography (see a device image in Fig. 2d). The processor
allows the generation of a path-encoded two-ququart entangled state
of GHZj i2;4 (i.e., the 4-dimensional generalised Bell state of Bellj i4),
by a coherent excitation of four integrated spontaneous four-wave-
mixing (SFWM) sources. It is followed by the sequences of processes
of “space expansion–local operation–coherent compression" for the
realisation of d-QPU, see Fig. 2b. The d-QPU chip monolithically
integrates the core capabilities and functionalities, including arbitrary
single-ququart preparation (P), arbitrary two-ququart MVCU
operation (that presents a d-ary generalisation of two-qubit
controlled-unitary operation), and arbitrary single-ququart measure-
ment (M). Though on-chip generation, manipulation and measure-
ment of entangled qudit states have been reported36, this work
demonstrate the key abilities to initialize, manipulate, and analyze
qudit states and gates in a fully reconfigurable and reprogrammable
manner, providing a major technological advance for qudit quantum
computing. In Fig. 2d it shows one of the largest-scale programmable
quantum photonic chip having 451 photonic components, including
116 reconfigurable phase-shifters (see their characterisations in Fig. 2c
insets). The two-photons detection rate at the magnitude of 103/s was
measured in the two-ququart device, which is six orders higher than
that in a four-qubit device (note the detection rate depends on the
performance and loss of the quantum devices as well as their
pumping and measurement apparatuses)58. Details of device
fabrication, state evolution and experimental setup are provided in
Supplementary Notes 1 and 3.

Characterisation of d-ary multi-value controlled-unitary gates.
Before reporting experimental results, we first define classical
statistic fidelity (Fc) and quantum state (process) fidelity (Fq),
used in this work to quantify the qudit states, logic gates and
algorithm implementations. The Fc is defined as ð∑i

ffiffiffiffiffiffiffi
piqi

p Þ2,

where pi, qi are theoretical and measured distributions, respec-
tively; the state Fq is defined as ðTr½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ0
p � ρ � ffiffiffiffiffi

ρ0
pp �Þ2, where ρ0, ρ

are ideal and measured states, respectively; the process Fq is
defined as Tr[χ0χ], where χ0, χ are ideal and reconstructed process
matrices, respectively.

We first characterised the single-ququart and two-ququart logic
gates. As examples, two single-ququart gates are characterised: the

generalised d-level Pauli-Xd gate that is defined as Xd ki
�� � ¼ kði�d1Þ

���
E

where⊕ d is addition module of d, and the d-level quantum Fourier
gate Fd that transforms the computational basis of ki

�� �
to the Fourier

basis f i
�� �

of 1ffiffi
d

p ∑d�1
j¼0 ωij j

�� � where i, j∈Nd and ω= exp ði 2πd Þ. When

d is two, they return to the standard Pauli and Fourier (Hadamard)
gates for qubits. In Fig. 2c inset, it shows the measured mean Fc of
0.988(13) for the five X4 gates and 0.967(19) for the five F4 gates,
where the values in parentheses are uncertainty from photon
statistics. Next, we characterised the two-qudit entangling gate:

MVCU xj i y
�� � ¼ xj iOx y

�� �
; ð1Þ

where O can be arbitrarily operated59 on the xj i and y
�� �

registers.
Notably, the MVCU gate presents a coherent entanglement between
the auxiliary x-register and the data y-register. The processing of d-
ary quantum algorithms relies on the multiple path interference in
the d-dimensional Fourier gate to obtain the desired solutions. Such
coherent superposition of qudits ensures quantum parallelism, that is
function evaluations for multiple inputs are executed in parallel. The
MVCU is thus a core logic enabling the quantum parallel evaluation
of the function. For example, as the d-ary generalisation of the CNOT
gate24, the MVCXd gate allows the creation of a complete set of four-
level Bell states Ψj ii;j defined as 1

2∑
3
m¼0 ω

mi mj i m�dj
�� �

, by inputing

the f i
�� �� kj

���
E
states into the logic, i, j= 0,1,2,3. Figure 3a shows the

reconstructed Ψj i12 state, and Fig. 3c shows measured Fq for the 16
Bell states with an averaged fidelity of 0.967(31). The state matrices
(ρ) represented as a linear combination of Gell-Mann matrices were
reconstructed by implementing compressed sensing quantum state
tomography techniques60. In addition, a fully product state was
created in Fig. 3b, given an input of f 0f 0

�� �
. Figure 3d shows the

experimental process matrix (χ) of the MVCXd gate, by performing
quantum process tomography with a full set of 256 state tomographic
measurements61, and a process fidelity Fq of 0.952 was obtained. We
then characterised the MVCZd gate (Zd is the generalised d-level
Pauli-Zd gate) transforming xj i y

�� �
to xj iωxy y

�� �
, and the MVCHd

gate where Hd is the d-level Hadamard gate with elements of
1ffiffi
d

p ð�1Þi�j (i⊙ j is the bitwise dot product, see Supplementary

Note 2). Instead of performing full process tomography, we adopted
an efficient characterisation by using complementary classical
fidelity62. Figure 3e–j show measured input-output truth tables and
their classical fidelity (Fc1, Fc2) for the MVCU in two complementary
{base I, base II}, from which the complementary classical fidelity is
upper and lower bounded by [Fc1+ Fc2− 1,Min(Fc1, Fc2)].

Experimental implementation of d-ary Deutsch’s algorithms.
The class of Deutsch’s algorithms well identify quantum parallelism.
A generalised d-ary Deutsch-Jozsa algorithm can determine whether
a multi-value function f: {0, 1,..., d−1}n→ {0, 1,..., d− 1} is constant
or balanced by a single query of a quantum oracle63. Classically, it
however requires dn−1+ 1 queries. The quantum circuit performing
f(x)⊕ dy is shown in Fig. 4a. In the case of d = 2, it returns to the
original binary Deutsch-Jozsa64. We implemented the ququart
Deutsch-Jozsa algorithm on the d-QPU for the case of n= 1 and
d= 4. Figure 4b–h show the measured probability distributions of
the x-register in the computational basis, when the multi-value
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function is chosen as constant (see Fig. 4b) and balanced (see
Fig. 4c–h), respectively. The d-QPU thus determines whether f is
constant or balanced, and the fidelity Fc of 0.967(2) was measured to
quantify its success probability. Notably, the measured distributions

in Fig. 4b, c, h, i are fully distinguishable. These imply an interesting
capability of computing a close expression for an affine function f:
A0⊕A1x1⊕ . . .⊕Anxn. That presents the d-ary generalisation of the
Bernstein-Vazirani algorithm65, whose task is to compute the d-ary

Fig. 2 A qudit-based programmable quantum processing unit in a photonic integrated circuit chip. a Quantum circuit, and b physical implementation of
the multiqudit QPU. It bases on multiphoton multidimensional entanglement of GHZj inþ1;d, where n+ 1 is the number of photonic qudits and d is the local
dimensionality of each qudit. Pi is an arbitrary single-qudit gate; Fd is a generalised d-level Fourier gate; Mi is an arbitrary single-qudit projector; Oi,j

(i= 1,..., n, j= 1,..., d) is an arbitrary single-qudit logic gate that is locally performed on the i-th qudit of the y-register, and the Oi,j gates are coherently
entangled with the x-register state. The process of “space expansion--local operation--coherent compression" results in the multiqudit entangling gate,
with a success probability of 1/d, independent on n. c The simplified schematic of a two-ququart d-QPU: (I) generation of four-level entangled state in an
array of four integrated identical SFWM sources; (II) Hilbert space expansion and arbitrary single-qudit preparation of the y-register state; (III) arbitrary
single-qudit operation of the x-register state; (IV) arbitrary single-qudit operation (loading in the four layers) of the y-register state, in which the operations
are coherently entangled with the x-register state, thus forming the MVCU entangling gate, where the state-gate entanglement is indicated by the four
colourful links; (V) coherent compression of Hilbert space by an indistinguishable erasure of spatial information; (VI) and (VII) arbitrary single-qudit
projective measurement in the x and y registers. Insets: left top, measured resistance of all thermal-optic phase shifters (TOPSs); measured interference
visibility of all 2-dimensional Mach-Zehnder Interferometers (MZIs); bottom right, measured classical statistic fidelities (Fc) for the Pauli X4 gate with a
mean of 0.988(13) and Fourier F4 gate with a mean of 0.967(19). d A microscopy image of the d-QPU chip. It monolithically integrates 451 optical
components, including 4 SFWM sources, 116 reconfigurable TOPS, 131 multimode interferometer (MMI) beamsplitters, 4 wavelength-division multiplexing
(WDM) filters, 156 waveguide crossings and 40 grating couplers (GC). The d-QPU chip is wire bounded and can be flexibly controlled by classical
electronics, and can be reliably reprogrammed and reconfigured to benchmark a spectrum of different quaternary quantum algorithms.
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Fig. 3 Characterisation of quaternary multi-value controlled-unitary logic operations. a, b Measured density matrices (ρ) for a four-level maximally
entangled Bell state and a fully product state. Column heights (colours) represent absolute values ∣ρ∣ (phases Arg(ρ)) of the elements. Quantum state
fidelity Fq was measured to be 0.983(4) and 0.953(3), respectively. c, Measured quantum state fidelities for a complete set of four-level Bell states Ψj ii;j,
i, j = 0,1,2,3. The generalised Bell states are created by operating input states of f i

�� �� kj
�� �

in the MVCXd gate. Shaded areas atop bars refer to ± 1σ error
bars. The Fq values in a–c were estimated by Monte Carlo the photon counts with photon Poissonian statistics. d Reconstructed process matrix (χ) of the
MVCXd gate. It was measured by quantum process tomography with in total 256 quantum state tomographic measurements. We obtained the quantum
process fidelity of 0.952, that is defined as Tr[χ0χ], where χ0 is the ideal matrix. The χ matrix is represented in the standard identity and Pauli basis {I2,
X2, Y2, Z2}. Blue and red colours are used to improve the clarity. e–j Measured truth tables (normalised photon counts) for three MVCU logic gates in two
complementary bases {I, II}: e, f, a multi-value controlled-Xd (MVCXd) gate; g, h, a multi-value controlled-Zd (MVCZd) gate; i, j, a multi-value controlled-
Hd (MVCHd) gate. The definitions of basis are given as: computational basis ki

�� �
; Fourier basis f i

�� �
; Hadamard basis hi

�� �
; basis li

�� �
is another eigenstate of

the Hadamard and ai
�� �

and bi
�� �

are given by rotations, which are provided in Supplementary (i= {0, 1, 2, 3}). Classical statistic fidelities (Fc1, Fc2) are
measured, which are adopted to estimate the lower and upper bound of the complementary classical fidelity: [0.891(2), 0.931(1)] for the MVCXd,
[0.912(2), 0.952(1)] for the MVCZd, and [0.865(1), 0.920(1)] for the MVCHd. In e–j, the probability distributions are colour coded (key is provided at the
right bottom). The values in parentheses of Fc and Fq refer to ± 1σ uncertainty from photon statistics.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28767-x ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1166 | https://doi.org/10.1038/s41467-022-28767-x | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


coefficients Ai. The output state of the x register can be derived as
ω�A0 A1;A2; :::;An

�� �
, where the A1;A2; :::;An

�� �
state can be directly

read out in its computational basis (A0 is lost as a global phase).
From the experimental results in Fig. 4b, c, h, i one can

therefore determine the multi-value function with A1= {0, 1, 2, 3},
respectively, by a single query of the oracle. Details of the
generalisation of the Deutsch’s algorithms are provided in
Supplementary Note 4.

Benchmarking of d-ary phase estimation and order finding.
Quantum phase estimation and order finding are two of the most
featured quantum Fourier transform ralgorithms, that are
essential to molecular simulation66 and fast factorisation25.
Kitaev’s scalable implementation of both algorithms (in
binary)26–29 has been reported in several leading quantum
platforms67–72. The remarkable idea is to replace the 2n qubits by

a single qubit in the auxiliary x-register, but at the expense of
repeating m-sequences of single-qubit measurement and single-
qubit feedforwarded operation, see quantum circuits in Fig. 5a. In
Kitaev’s phase estimation and order-finding algorithms, the
computational capacity is determined by the number of n-qubits
in the y-register, and the computational accuracy is determined
by the number of m-sequences in the x-register. In this respect,
one can see processing quantum algorithms with qudits results in
nontrivial advantages: a log2(d) larger computational capacity,
and log2(d) higher computational accuracy or log2(d)-less com-
putational steps to achieving the same precision, as shown in
Supplementary Fig. 3b, which could be important to quantum
computers with limited coherence time.

In the quantum phase estimation, we aim to compute the
eigenphase ϕ of an unitary as O ψ

�� �
=ei2πϕ ψ

�� �
, given the eigenstate of

ψ
�� �

. The eigenphase of ϕ can be described in d-ary as 0. ϕ1ϕ2…
ϕm−1ϕm, where m denotes iterative steps determining the approx-
imation accuracy26,29, and each dit of the phase is in
[0, 1,..., d− 1]67,69,73. We take the s-th step as an example (see
quantum circuit in Fig. 5a). We prepare an input state of
1ffiffi
d

p ∑d�1
j¼0 j

�� � ψ
�� �

and perform the MVCU gate, that results in a state

of 1ffiffi
d

p ∑d�1
j¼0 eij2πð0:ϕsϕsþ1:::ϕmÞ j

�� � ψ
�� �

. Then, the x-register qudit state is

feed-forwardly rotated around the Pauli Zd basis as
diag[1; ei2πθs ; :::; ei2πðd�1Þθs ], where the rotation angle θs of− 0.0ϕs
+1ϕs+2…ϕm is given by previous measurement outcomes. Remark-
ably, implementing an inverse Fd in the x-register returns an output
state as ϕs

�� � ¼ sj i (see Supplementary Note 5). Measuring the x-
register in the computational basis of sj i therefore allows the
extraction of the s-th dit of the dit expansion. The algorithm
iteratively computes all m dits of the eigenphase backwardly, in
which, notably, each dit is once estimated with d-ary accuracy.
Figure 5b–d report measured eigenphases of 4-dimensional unitary
matrices by quaternary phase estimation. We estimated the four
eigenphases for three logic gates, i.e., a phase gate Z4, a Fourier gate F4

Fig. 4 Implementations of generalised Deutsch-Jozsa and Bernstein-
Vazirani algorithms in quaternary. a Quantum logical circuit for
implementing the d-ary Deutsch-Jozsa and Bernstein-Vazirani algorithms.
This circuit can be implemented by the scheme in Fig. 1a, b with an
exchange of the x and y registers. The task of the d-ary Deutsch-Jozsa
algorithm is to determine an unknown multi-value function f: {0, 1,..., d−1}
n→ {0, 1,..., d− 1} is either constant or balanced, while that of the d-ary
Bernstein-Vazirani algorithm is to compute the close expression of a multi-
value affine function f: A0⊕ A1x1. . .⊕ Anxn, using only a single call of
quantum oracle. When d equals to 2, the two algorithms return to the
original Deutsch’s algorithms. The key part is the implementation of
f(x)⊕ dy by the MVCU gate. The outcome of the algorithms is measured in
the computation basis of the x-register states. b–i Measured probability
distributions (normalised coincidence counts) of the x-register in the
computational basis. Results in b–h demonstrate that the d-ary Deutsch-
Jozsa algorithm allows the determination of whether f(x) is constant (b) or
balanced (c–h). Results in b, c, i, h show the d-ary Bernstein-Vazirani
algorithm can determine the expression of affine functions f: b, f(x) is
constant and A1=0; c, f(x) is affine and A1=1; i, f(x) is affine and A1=2;
h, f(x) is affine and A1=3; Dotted boxes in (b--i) refer to theoretical
probability distributions. Experimental probability distributions (coloured
bars) are obtained from photon coincidences, which are accumulated by
20s per measurement. The classical fidelity Fc presents the success
probability of each measurement. In order to make the small error bars
visible in the plots, they are plot by ± 3σ. The values in parentheses refer
to ± 1σ uncertainty. All error bars are estimated from photon Poissonian
statistics.
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and a randomised gate Urandom (see their explicit forms in
Supplementary). Each pie chart presents one dit measurement
outcomes, and the area of each coloured sector denotes measured
probability distributions in the computational basis of
{ 0j i, 1j i, 2j i, 3j i}, respectively. In Fig. 5b, c, the eigenphases of Z4
and F4 gates can be described by a single dit. Figure 5d shows the
computed eigenphases of the Urandom gate with an accuracy of 12
dits, by running the algorithm with a number of 12 interactions on
the d-QPU. Instead, in the qubit-based device, achieving the same

computational accuracy of ± 4−12 requires a number of 24
computational interactions. And the achieved computational accura-
cies of 12 quarts are sufficient for the calculation of molecular eigen-
energies67,69. In Fig. 5, it shows experimental data are in good
agreement with theoretical predictions (indicated under each pie).

The task of quantum factoring is to efficiently compute the
prime factors p and q from an integer N25. It can be reduced to
the task of finding the order r of a module N, i.e., by computing a
function f: armodN= 1 (a is a co-prime of N), and with a high

Fig. 5 Implementations of quaternary quantum phase estimation and order-finding. a Their quantum logical circuit for implementing Kitaev’s scalable
approaches. For the d-ary phase estimation, the task is to compute the eigenphase ϕ of a unitary O given its eigenstate of ϕ

�� �
. For the d-ary order-finding,

the task is to find the order of a function as (armodN)= 1. The x-register single-qudit state is initialised by the Fourier gate Fd; the y-register is prepared in
the ϕ

�� �
eigenstate ( 0j i�n

d state) for phase estimation (for order-finding). The Fyd terminates the x-register to output the desired solution in the
computational basis. In the s-th step, the Zd rotation is added with a feedback angle of θs=− 0.0ϕs+1ϕs+2…ϕm, that is determined by previous
measurements. The algorithm is iterated m times -- each step returns 1 dit result with d-ary accuracy, to obtain a m-dit estimation of the eigenphase of a
unitary or the order of a function. b–d Measured probability pie-distributions of the four eigenphases (ϕ1, ϕ2, ϕ3, ϕ4) for three different unitary matrices,
using the quaternary quantum phase estimation: b a generalised phase gate Z4 as diag[1; ei2πθ; ei2π2θ; ei2π3θ] where θ= 1/4; c a generalised Fourier gate F4;
d a random gate Urandom (see form in Supplementary Note 5). Coloured sectors represent the experimental outcomes of {0,1,2,3} for each iteration,
measured in the computational basis of { 0j i, 1j i, 2j i, 3j i}, respectively. The measured dominating sector is used to obtain every dit of the eigenphases;
theoretical values for each dit are provided under the pies. The eigenphases are backwardly computed from the least significant dit from m= 12 to 1.
e, f Measured probability distributions for the quaternary order-finding algorithm with a setting of a= 4 and a= 2, respectively. From the distributions, the
order of r= 2 and r= 4 are experimentally computed with a 3-quart resolution (equivalent to 64-level), and with a classical statistic fidelity (Fc) of
0.909(9) and 0.922(9), respectively. The order-finding together with classical algorithm allows the factorisation of 15= 3 × 5. Errors ( ± 1σ) arising from
photon Poissonian noise are indicated as red shaded caps. Dashed lines refer to theoretical predictions. Experimental probability distributions in b–f are
calculated from photon coincidences, which are accumulated by 20s per measurement.
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probability it returns a factor as gcd(ar/2 ± 1,N), where gcd(α, β)
refers to the greatest common divisor of α and β. As the order-
finding is just the phase estimation of a unitary having the
eigenphases of s/r, s∈ [0, r− 1], one can directly adopt the d-ary
phase estimation to determine the order of r in the d-ary format.
It can be considered as a generalisation of d-ary order-finding by
adopting Kiteav’s iterative techniques70–72 (see details in
Supplementary Note 6). We then reprogrammed the d-QPU to
implement the order-finding in quaternary. The a∈ [0, r− 1]
satisfying gcd(a, 15)= 1 is randomly chosen. We chose a= 4 and
2 as examples, and set the unitary of the MVCU gate as
{Id, Xd, Id, Xd} and fId;Xd;X

2
d;X

3
dg, respectively, where Id is the d-

mode identity. In our experiment, the order-finding algorithm
was iteratively implemented by three steps, and each step returns
quaternary outcomes in the computational basis, resulting in the
3-quart (64-level) computational accuracy of the s/r eigenphase.
Figure 5e, f show the measured output probabilities of the x-
register in the computational basis of ijk

�� �
, i, j, k= 0, 1, 2, 3.

Classical statistic fidelities Fc of 0.909(9) and 0.922(9) were
obtained in comparison with theoretical distributions, showing
successful estimations of the order of r= 2 (Fig. 5e) and r= 4
(Fig. 5f), respectively. The d-QPU thus finds the order with
double-enhanced computational accuracy; alternatively speaking,
it executes the task twice faster than a qubit-QPU, given the same
estimation precision. The order-finding algorithm together with
classical processing using the continued fraction algorithm
returns the factor of gcd(ar/2 ± 1,N) = (3, 5). Implementing the
d-ary algorithms in the d-QPU can therefore find the order of a
function and compute the eigenphase of a unitary, with a log2(d)-
faster computational speed.

Discussion
We have reported a proof-of-principle experimental demonstration
of a programmable qudit-based quantum processor in photonic
integrated circuits, and implementations of several generalised d-ary
quantum Fourier transform algorithms in the d-QPU chip. In
agreement with the references17–19,24,43–46, our experimental results
show that qudit-based quantum computation with integrated pho-
tonics can enhance quantum parallelism in terms of the computa-
tional capacity, accuracy and efficiency, in comparison with its qubit-
based quantum computing counterpart. The computational capacity
of the two ququart quantum processor is equivalent to that of a four-
qubit processor, thus allowing the implementations of the Deutsch’s
algorithms for a function with longer-string. Keeping the same
number of photons n but encoding each qudit in a dimension d, not
only gives a larger Hilbert space74, but also significantly improve the
detection rate of photons43,44. We obtained the detection rate of
about 6 orders brighter than that in another device with the same
Hilbert space58. More analysis is provided in Supplementary Fig. 3.
Moreover, multiple parallel evaluations of the function and multiple
path interference in the d-ary quantum Fourier gate, allow the
enhancement of the computational efficiency and speed up of the
determination of desired solutions. In the implementations of
Kitaev’s phase estimation and factorisation, a number of log2(d)-less
iterations are needed in the qudit processor, i.e., a log2(d) times speed
up of quantum computation, compared with the qubit ones, given
the same computational accuracy (see Supplementary Fig. 3b).

As the multi-value quantum controlled gates are the result of
the entanglement in the generation stage and the gates are instead
local operations that steer the state to collapse in the desired
outputs, our scheme can be straightforwardly generalised to multi-
qudit quantum computiation. Its scalability is naively dependent
on the number (n) of qudits and the dimensionality (d) of each

qudit. Regarding the dimension of units, though the ququart states
are implemented as an example in this work, it is straightforward
to extend to a larger-d device36, which can be fabricated using
the same CMOS fabrication techniques. Remarkably, this
entanglement-assisted d-QPU scheme works with a success
probability of 1/d regardless of n (Supplementary Note 3). The
scaling of d-QPU therefore strongly relies on the generation of the
qudit GHZ entangled states. Combing the state-of-the-art tech-
nologies, including the techniques of generating multi-photon
qudit GHZ states45,46, on-chip high-fidelity control of qudit
states36, high-quality photon-pair sources75,76, low-loss fibre-chip
interface75,77, and large-scale quantum integration57, we estimate
a 10-photons d-QPU is achievable in near term. Its further scaling
requires high-efficiency heralded multiplexing photon-pairs
sources78 and multiplexing qudit GHZ generators31. That being
said, given the efficient generation of the multi-photon multi-
qudit GHZ states, the d-QPU scheme is scalable. Calculations and
analysis are provided in Supplementary Note 9 and Supplemen-
tary Fig. 3d. Moreover, when scaling up the d-QPU, an interesting
concern is the required resources, in particular the number of
classical controls. As an example, let us consider a processor with
one qudit in the auxiliary register and n qudits in the data register
(see Fig. 2a). It requires a number of (n+ 1) single-qudit gen-
erators for state preparation, (nd) local single-qudit operators for
multi-qudit MVCU operation, and (dn+ 1) single-qudit projec-
tors. The physical resources, i.e, the number of phase-shifters,
scale with (d2− d) for the qudit operators50,59, and 2(d− 1) for
the qudit generators and projectors36, as shown in Supplementary
Note 9 and Supplementary Fig. 2. Importantly, the required
resources for classical controls scale polynomially with the number
of particles. In Supplementary Fig. 3c, it is shown that thousands
of phase-shifters are required for a 10-photon d-QPU. This large
amount of phase-shifters can be individually addressed and con-
trolled, by using a co-integration technology of photonic and
electronic circuits in silicon.

The highly flexible and reliable programmability of the qudit
processor, that is enabled by technological advances in a mono-
lithic integration of all key functionalities and capabilities in a
silicon chip, has allowed the implementations of more than one
million qudit generators, operators and projectors (see Supple-
mentary Note 8), and also the benchmarking of different gen-
eralised quantum algorithms. Such programmability can
transition the advanced technologies in controlling qudit states
and gates36–48 to algorithm implementations, playing an enabling
role in the roadmap of qudit-based quantum computations. The
full chip-scale integration technologies also perfectly match the
top-down hierarchy of quantum computing, in which users can
define and execute multiple quantum tasks by recompiling the
software and reprogramming the quantum hardware. In general,
the programmable qudit-based quantum devices can find appli-
cations in noise-resilient quantum network9,10, quantum simu-
lation of complex chemical and physical systems12–15, and
universal quantum computing with qudit cluster states19–21.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.

Code availability
The codes used for the analysis included in the current study are available from the
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