
A Programming Language for Cognitive Agents
Goal Directed 3APL

Mehdi Dastani Birna van Riemsdijk Frank Dignum John-Jules Ch. Meyer
Institute of Information and Computing Sciences

Utrecht University
The Netherlands

{ mehdi , birna , dignum , jj }@cs.uu.nl

ABSTRACT
This paper presents the specification of a programming lan-
guage for cognitive agents. This programming language is
an extension of 3APL (An Abstract Agent Programming
Language) and allows the programmer to implement agents’
mental attitudes like beliefs, goals, plans, and actions, and
agents’ reasoning rules by means of which agents can mod-
ify their mental attitudes. The formal syntax and semantics
of this language is presented as well as a discussion on the
deliberation cycle and an example.

1. INTRODUCTION
In research on agents, besides architectures, the areas of

agent theories and agent programming languages are dis-
tinguished. Theories concern descriptions of (the behavior
of) agents. Agents are often described using logic [8, 13].
Concepts that are commonly incorporated in such logics are
for instance knowledge, beliefs, desires, intentions, commit-
ments, goals and plans.

It has been argued in the literature that it can be useful to
analyze and specify a system in terms of these concepts [4,
11, 17]. If the system would however then be implemented
using an arbitrary programming language, it will be difficult
to verify whether it satisfies its specification: if we cannot
identify what for instance the beliefs, desires and intentions
of the system are, it will be hard to check the system against
its specification expressed in these terms. This is referred
to by Wooldridge as the problem of ungrounded semantics
for agent specification languages [16]. It will moreover be
more difficult to go from specification to implementation if
there is no clear correspondence between the concepts used
for specification and those used for implementation.

To support the practical development of intelligent agents,
several programming languages have thus been introduced
that incorporate some of the concepts from agent logics.
First there is a family of languages that use actions as their
starting point to define commitments (Agent-0, [12]), in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

tentions (AgentSpeak(L), [9]) and goals (3APL, [5]). All
of these languages however lacked an important element of
BDI ([10]) or KARO ([14]) like (declarative) logics, which
incorporate a declarative notion of goals. Having the no-
tion of goals separate from structures built from actions,
has the advantage that one can describe pro-active behavior
of an agent. To bridge this gap, in [15], the language Drib-
ble was proposed which constitutes a synthesis between the
declarative and the procedural approaches, combining both
notions in one and the same programming language. Drib-
ble is however a propositional language without variables,
which severely limits its programming power. In this paper,
we propose an extension of the language 3APL, inspired
by Dribble, with declarative goals and first order features.
Furthermore, whereas in Dribble one can use goals for plan
selection only, in this extension of 3APL we add rules for rea-
soning with goals. We will refer to the extension of 3APL
presented in this paper, simply with the same name 3APL.

In the extended version of 3APL we consider the notion
of procedural goals (used in [5]), to be reduced to that of
plans, which are selected to achieve declarative goals. So,
this version of 3APL provides formal constructs to imple-
ment an agent’s beliefs, goals and plans. Of course, to solve
the problem of ungrounded semantics for 3APL agents one
should be able to implement an agent’s intentions as well.
However, in this paper for simplicity reasons we concentrate
only on declarative goals. A discussion on the notion of in-
tention and how to incorporate it in 3APL is discussed in
[3]. In order to implement the dynamic behavior of 3APL
agents, one needs formal constructs by means of which goals
and plans are selected, plans executed, reasoning and plan-
ning rules are applied, etc. The language which is needed
to implement such issues is called the deliberation language.
The behavior of 3APL agents can be implemented by means
of a deliberation cycle which is an expression of the deliber-
ation language. More details on the formal specification of
the deliberation language can be found in [2].

In the next section we introduce the syntax of the ex-
tended version of 3APL and indicate some of the important
(new) features. In section 3 we describe the operational se-
mantics of 3APL using state transitions. In section 4 we
indicate a number of issues to be dealt with at the delib-
eration level of goal directed agents. In section 5 we give
an example to illustrate the use of the various programming
constructs of 3APL. We give some conclusions and areas for
further research in section 6.

2. SYNTAX

2.1 Beliefs and goals
The beliefs of a 3APL agent describe the situation the

agent is in. The belief base can contain information the
agent believes about the world and it can contain informa-
tion that is internal to the agent. The goals of the agent
on the other hand, denote the situation the agent wants to
realize. The beliefs and goals can be represented by a first-
order domain language. The terms of the domain language
represent the domain objects and its formulae represent the
relations between domain objects. In the sequel, a language
defined by inclusion shall be the smallest language contain-
ing the specified elements. The canonical tautology > shall
be an element of the domain language and the belief and goal
languages which are defined below. It is defined to mean
φ ∨ ¬φ where φ is a formula of one of the above-mentioned
languages. The canonical contradiction ⊥ is defined to be
¬>.

Definition 1. (domain language) Let V AR, FUNC, and
PRED be the sets of domain variables, functions (functions
with no arguments are constants), and predicates, respec-
tively, and n ≥ 0. The terms TL of the domain language L
are defined as follows:

• if x ∈ V AR, then x ∈ TL,

• if f ∈ FUNC and t1, . . . , tn ∈ TL, then
f(t1, . . . , tn) ∈ TL.

The formulae of the domain language L consist of the fol-
lowing expressions:

• if p ∈ PRED and t1, . . . , tn ∈ TL, then
p(t1, . . . , tn) ∈ L for n ≥ 0,

• if φ, φ′ ∈ L, then ¬φ, φ ∧ φ′ ∈ L,

• if x1, . . . , xn ∈ V AR and x1, . . . , xn occur in φ, then
∀x1, . . . , xnφ ∈ L

A 3APL agent has a belief base and a goal base, both be-
ing sets of formulas from this domain language. In the rules
which will be defined in the sequel, one needs to be able to re-
fer to sentences from the belief base or goal base. Therefore,
we define the following belief language and goal language on
top of the domain language.

Definition 2. (beliefs and goals) Let L be the domain
language. Then, the belief language LB and the goal lan-
guage LG are defined as follows:

• The belief language LB:

– if φ ∈ L, then Bφ ∈ LB,

– if β, β′ ∈ LB, then β ∧ β′ ∈ LB

• The goal language LG:

– if φ ∈ L, then Gφ ∈ LG,

– if κ, κ′ ∈ LG, then κ ∧ κ′ ∈ LG

The belief and goal languages do not include negation.
Main reason is to avoid a number of the problems occur-
ring with substitutions and unifications concerning negation.
They are very similar to those occurring in logic programs
with negation. Although some (partial) solutions thus could
be used from that area they would complicate the current
paper unnecessary. We therefore left negation as a separate
issue to be dealt with in a subsequent paper.

2.2 Plans
In order to reach its goals, a 3APL agent adopts plans.

A plan is a sequence built from basic elements. The basic
elements can be basic actions, tests on the belief base or ab-
stract plans (sometimes called achievement goals [5]). As in
the languages GOAL and 3APL, basic actions specify the ca-
pabilities with which an agent should achieve a certain state
of affairs. The effect of execution of a basic action is not a
change in the world, but a change in the belief base of the
agent. An abstract plan cannot be executed directly in the
sense that it updates the belief base of an agent. Abstract
plans serve as an abstraction mechanism like procedures in
imperative programming. If a plan consists of an abstract
plan, this abstract plan could be transformed into basic ac-
tions through reasoning rules. Abstract plans can be repre-
sented using plan names. Plans are ultimately sequences of
actions that are executed in a domain. To refer to objects
in this domain, abstract plans are plan names which can be
parameterized with these domain objects. We thus use a set
of plan names PNAME = {ρ1, ρ2, . . .} which can be used to
define the set of abstract plans AP : AP = {ρ(t1, . . . , tn) |
ρ ∈ PNAME, t1, . . . , tn ∈ TL, n ≥ 0}. Moreover, we as-
sume a set of basic action names ANAME = {a1, a2, . . .}
which are used to define the set of basic actions ACT =
{a(t1, . . . , tn) | a ∈ ANAME, t1, . . . , tn ∈ TL, n ≥ 0}. Fi-
nally, we use E to denote the empty plan.

Definition 3. (plans) Let β ∈ LB. The plan language
LP consists of the following elements:

• empty plan: E ∈ LP ,

• basic action: ACT ⊆ LP ,

• test: β? ∈ LP ,

• abstract plan: AP ⊆ LP ,

• composite plans: if π1, π2 ∈ LP , then
π1; π2 , if β then π1 else π2 fi , while β do π1od ∈
LP

Moreover, if E, π ∈ LP it holds that E; π = π; E = π.

2.3 Rules
We propose various rules to reason with goals, plans, and

their interactions. These rules are conditionalized by beliefs.

Definition 4. (rules) Let β ∈ LB, κ, κh, κb ∈ LG, and
π, πh, πb ∈ LP . We define sets of reasoning rules for goals
GR, plans PR, and their interactions IR as follows:

• κh ← β | κb ∈ GR,

• κ ← β | π ∈ IR,

• πh ← β | πb ∈ PR.

The goal rules are used to revise, generate or drop goals.
For example, the goal rule G(on(x, y)) ← B(tooHeavy(x)∧
notHeavy(z)) | G(on(z, y)) can be used to revise one of an
agent’s goals: it informally means that if the agent desires
to have block x on block y, but it believes that x is too
heavy while z is not heavy, then it should revise its goal and
aim to have block z on block y. The goal rules can also be
used to generate, extend or drop goals by using the following
general forms, respectively:

• > ← β | κb for goal generation,

• κh ← β | κh ∧ κb for goal extension,

• κh ← β | > for dropping goals,

It is important to note that maintenance of goals can be
modelled by goal rules of the form > ← > | κ.

The interaction rules are used to generate plans to achieve
goals. They are similar to the goal rules of Dribble. For ex-
ample, the interaction rule
G(on(x, z)) ← B(on(x, y)) | move(x, y, z) states that if the
agent desires to have block x on block z, but it believes that
x is on block y, then it plans to move x from y and put it on
z. The belief condition thus indicates when the plan could
be selected to achieve the specified goal. Interaction rules
can also be used to model reactive behavior with rules of
the form > ← β | π.

Finally, the plan rules, which are similar to the practical
reasoning rules of 3APL, are used to revise and drop plans
For example, the plan rule move(x, y, z) ←
B(¬clear(x)) | on(u, x)?; move(u, x, F l); move(x, y, z) infor-
mally means that if the agent plans to move block x from
block y onto block z, but it cannot move x because (it be-
lieves that) there is a block on x, then the agent should
revise its plan by finding out which block (u) is on x, mov-
ing u onto the floor, and finally moving x from y onto z.
Plan rules are not used to generate plans. This is because
we assume that a plan is only generated to achieve a certain
goal. The generation of plans is therefore restricted to the
interaction rules. The general forms of the rules for mod-
ifying and dropping plans are similar to those of the goal
rules.

2.4 A 3APL configuration
Above, the beliefs, goals and plans of a 3APL agent were

defined. These are the elements that change during the ex-
ecution of the agent. Together with a fourth substitution
component, they constitute a 3APL configuration. The sub-
stitution is used to store values or bindings associated with
first order variables. In the sequel, we will use Free(e) to
indicate the set of free variables (not bound by a quantifier)
that occur in the syntactic element e and dom(θ) to denote
the set of variables that form the domain of the substitution
θ.

Definition 5. (configuration) A configuration of a 3APL
agent is a tuple 〈σ, γ, Π, θ〉, where σ ⊆ L is the belief base of
the agent, γ ⊆ L is the goal base of the agent, Π ⊆ LP ×LG

is the plan base of the agent1, and θ represents the sub-
stitution that binds domain variables to domain terms, i.e.
θ ⊆ { [xi/ti] | xi ∈ V AR , ti ∈ TL, xi 6∈ Free(tj),
∀i 6= j xi 6= xj}. Moreover, the belief and goal bases are
assumed to be grounded, i.e. they consist of formulae in
which no free variables occur. Finally, the belief base and
the goal base of agents are such that for any goal φ ∈ γ it
holds:

• σ 6|= φ, i.e. the goal φ is not entailed by the agent’s
beliefs,

• φ 6|= ⊥, i.e. the goal φ is consistent,

1Note that with each plan the (initial) goal to be achieved
by the plan is associated.

• σ 6|= ⊥, i.e. the agent’s beliefs are consistent.

In this definition, we have defined Π as consisting of plan-
goal formula pairs. The goal for which a plan is selected
is recorded with the plan, because this for instance pro-
vides the possibility to drop a plan of which the goal is
reached. Furthermore, goals may be revised or dropped and
one might want to remove a plan associated with a goal
which has been dropped, from the plan base.

The rationale behind the conditions on belief base and
goal base is the following. The beliefs of an agent describe
the state the agent is in and the goals describe the state the
agent wants to realize. If an agent believes φ is the case,
it cannot have the goal to achieve φ, because the state of
affairs φ is already realized. Furthermore, the individual
goals in the goals base must be consistent: an agent can-
not desire a state which is not logically possible. The entire
goal base does not have to be consistent, because two in-
consistent goals could both be realized, although not at the
same time. A consequence of this is, that an agent cannot
adopt the conjunction of two separate goals in the goal base
as a new goal, for this could lead to inconsistent goals (see
definition 7). Finally, the belief base must be consistent, be-
cause an agent with an inconsistent belief base would believe
everything and could therefore hardly function.

2.5 A 3APL agent
To program a 3APL agent means to specify its initial be-

liefs and goals and to write sets of goal rules, interaction
rules and plan rules. This is formalized in the specification
of a 3APL agent.

Definition 6. (3APL agent) A 3APL agent is a tuple
〈σ0, γ0, GR, IR, PR〉 where 〈σ0, γ0, ∅, ∅〉 is the initial config-
uration, GR is a set of goal rules, IR is a set of interaction
rules and PR is a set of plan rules.

The plan base of the agent is empty in the initial mental
state. This choice reflects the idea that an agent should
start to act because it has certain goals or because it reacts
to a certain situation using a reactive interaction rule.

3. SEMANTICS
We define an operational semantics for 3APL in terms

of a transition system ([7]). A transition system is a set
of derivation rules for deriving transitions. A transition is
a transformation of one configuration into another and it
corresponds to a single computation step.

3.1 Semantics of belief and goal formulae
In order to define the semantics of the various rules, we

first need to define the semantics of the belief and goal for-
mulae.

Definition 7. (semantics of belief and goal formulae)
Let 〈σ, γ, Π, θ〉 be an agent configuration, φ, φ′ ∈ L and
ϕ, ϕ′ ∈ LB ∪ LG.

• 〈σ, γ, Π, θ〉 |= Bφ ⇔ σ |= φ

• 〈σ, γ, Π, θ〉 |= Gφ ⇔ ∃φ′ ∈ γ : φ′ |= φ and σ 6|= φ

• 〈σ, γ, Π, θ〉 |= ϕ ∧ ϕ′ ⇔
〈σ, γ, Π, θ〉 |= ϕ and 〈σ, γ, Π, θ〉 |= ϕ′

As explained above, the semantics of Gφ is defined in terms
of separate goals, as opposed to defining it in terms of the
entire goal base. The idea is, that all logical consequences
of a particular goal are also goals, but only if they are not
believed ([6]).

3.2 Transition system
In the following, a set of derivation rules is proposed that

specifies the semantics of various ingredients of 3APL. These
rules specify the semantics of a 3APL agent with a set of
goal rules GR, a set of plan rules PR and a set of interac-
tion rules IR. In the rules, variables and their values play
an important role and substitutions are applied to syntactic
elements. We assume the usual notions of ground substi-
tutions and application of a substitution as also defined in
[5].

The first derivation rule specifies the execution of the plan
base of a 3APL agent. The plan base of the agent is a set
of plan-goal pairs. This set can be executed by executing
one of the constituent plans. The execution of a plan can
change the agent’s configuration.

Definition 8. (plan base execution) Let
Π = {(π1, κ1), . . . , (πi, κi), . . . , (πn, κn)} ⊆ LP × LG and
Π′ = {(π1, κ1), . . . , (π

′
i, κi), . . . , (πn, κn)} ⊆ LP × LG be

plan bases, θ, θ′ be ground substitutions, and V = Free(Π).
Then, the derivation for the execution of a set of plans is
specified in terms of the execution of individual plans as fol-
lows:

〈σ, γ, (πi, κi), θ〉V → 〈σ′, γ′, (π′i, κi), θ
′〉

〈σ, γ, Π, θ〉 → 〈σ′, γ′, Π′, θ′〉
Transitions for individual plans are parameterized by the
set of free variables V of the entire plan base Π. This is
necessary because in the transition rules for individual plans,
sometimes reference needs to be made to this set.

In the following, we use Goal as a function of type LG →
℘(L) that removes the G modalities from a goal formula
returning its goals from L. For example, Goal(G(p(a)) ∧
G(q(b))) = {p(a), q(b)}. Now we will introduce the deriva-
tion rules for the execution of individual plans. We introduce
derivation rules for two types of basic elements of plans: ba-
sic actions and tests. We do not introduce derivation rules
for abstract plans, because abstract plans cannot be exe-
cuted. They can only be transformed using plan rules.

Definition 9. (basic action execution) Let α ∈ ACT
and let T be a function that specifies the belief update result-
ing from the execution of basic actions, then the execution
of a single action is specified as follows:

T (αθ, σ) = σ′ & 〈σ, γ, {(α, κ)}, θ〉 |= κ

〈σ, γ, (α, κ), θ〉V → 〈σ′, γ′, (E, κ), θ〉
where γ′ = γ\{φ ∈ γ | φ ∈ Goal(κ) & σ′ |= φ}.
Note that the condition 〈σ, γ, {(α, κ)}, θ〉 |= κ guarantees
that the action can only be executed if the goal for which
α was selected is still entailed by the current configuration.
This condition might be considered too strong. An alter-
native is, to remove the condition from this transition rule.
The decision of whether to execute plans of which the goal
is not entailed by the current configuration, could then be
lifted to the deliberation cycle (see section 4). The function
T is assumed to preserve consistency of the belief base (see
definition 5).

The substitution θ is used to instantiate free variables in
the basic action α. Note also that the effect of the execution
of basic actions is first of all a belief update. If goals in the
goal base are realized through the execution of the action,
these goals are removed from the goal base.

The derivation rule for the execution of the test can bind
the free variables that occur in the test formula for which
no bindings have been computed yet.

Definition 10. (test execution) Let β ∈ LB and let τ be
a ground substitution such that dom(τ) = Free(βθ), then

〈σ, γ, Π, θ〉 |= βθτ

〈σ, γ, (β?, κ), θ〉V → 〈σ, γ, (E, κ), θτ〉
Having explained the test execution, we can now state the
following assumption about configurations. Let z ∈ ACT ∪
AP . For each configuration 〈σ, γ, Π, θ〉 we assume that for
each plan π with (π, κ) ∈ Π and for each z occurring in π,
one of the following properties holds for all x ∈ Free(z):
- x ∈ dom(θ),
- z is preceded by a test β? where x ∈ Free(βθ).
The idea is, that variables in basic actions or abstract plans
should either be bound by a substitution or they should be
preceded by a test through which this binding can be com-
puted. The reason for this assumption is, that the meaning
is not clear of for instance the execution of a basic action
with variables without a binding. The same goes for ab-
stract plans.

In the semantics of composite plans and rules, we will need
the notion of a variant. A syntactic element e is a variant
of another element e′ in case e can be obtained from e′ by
renaming of variables. We will use variants of plans or rules
to avoid unwanted bindings between variables in those plans
or rules and variables in the plan base (V) or in dom(θ).

The derivation rules for the execution of composite plans
are defined recursively in the standard way below.

Definition 11. (execution of composite plans) Let τ be
a ground substitution such that dom(τ) = Free(βθ). Let π′

be a variant of π such that no free variables in π′ occur in V
or dom(θ). The following transitions specify the execution
of different types of composite plans.

〈σ, γ, (π1, κ), θ〉V → 〈σ′, γ′, (π′1, κ), θ′〉
〈σ, γ, (π1; π2, κ), θ〉V → 〈σ′, γ′, (π′1; π2, κ), θ′〉

〈σ, γ, Π, θ〉 |= β θτ

〈σ, γ, (if β then π1 else π2 fi, κ), θ〉V → 〈σ, γ, (π1τ, κ), θ〉

¬∃τ : 〈σ, γ, Π, θ〉 |= β θτ

〈σ, γ, (if β then π1 else π2 fi, κ), θ〉V → 〈σ, γ, (π2, κ), θ〉

〈σ, γ, Π, θ〉 |= β θτ
〈σ, γ, (while β do π od, κ), θ〉V →

〈σ, γ, (πτ ; while β do π′ od, κ), θ〉

¬∃τ : 〈σ, γ, Π, θ〉 |= β θτ

〈σ, γ, (while β do π od, κ), θ〉V → 〈σ, γ, (E, κ), θ〉

Note that the goal associated with some plan is passed on
unchanged through the transitions modifying this plan.

We will now define the transition rules for the reasoning
rules. A goal rule κh ← β | κb is applicable if its head

is derivable from the agent’s goal base and its condition is
derivable from the agent’s belief base. The application of
the goal rule only affects the goal base of the agent, i.e. the
goal base of the agent is revised according to the goal rule.

Definition 12. (goal rule application) Let κh, κb ∈ LG,
β ∈ LB, η, τ be ground substitutions such that dom(η) =
Free(κh) and dom(τ) = Free(βη). Let the rule κh ← β | κb

be a variant of a goal rule ∈ GR such that no free variables
in the rule occur in dom(θ) and Free(κb) ⊆ Free(κh) ∪
Free(β). Then the transition rule for the goal rule κh ← β |
κb is defined as follows:

〈σ, γ, Π, θ〉 |= κhη & 〈σ, γ, Π, θ〉 |= βητ &
∀φ′′ ∈ Goal(κb) : σ 6|= φ′′ητ
〈σ, γ, Π, θ〉V → 〈σ, γ′, Π, θ〉

where γ′ = (γ\{φ ∈ γ | φ′ ∈ Goal(κh) and φ |= φ′η}) ∪
{φ′′ητ | φ′′ ∈ Goal(κb)}.
The effect of the application of the goal rule on the goal base
is that it removes goals of which a goal in the head of the
rule is a logical consequence (for all substitutions τ) from
the goal base, and adds the goals in the body of the goal
rule to the goal base (for any substitutions τ and η).

A plan rule πh ← β | πb is applicable if its head πh unifies
with a plan of the agent and its condition β is derivable
from agent’s beliefs. We assume that the revised plan πb

is designed to achieve the same goal. Therefore, the goal
associated with plan πh in the plan base will be associated
with the revised plan πb as well. The application of a plan
rule only affects the plan base of the agent, i.e. the plan to
which the plan rule is applied, is revised.

Definition 13. (plan rule application) Let πh, πb ∈ LP , κ ∈
LG, β ∈ LB, πh ← β | πb be a variant of a plan rule ∈ PR
such that no free variables in the rule occur in V or dom(θ),
η be a most general unifier for π and πh, and θ, τ be ground
substitution such that dom(τ) = Free(βη). Then,

〈σ, γ, Π, θ〉 |= βητ & 〈σ, γ, {(α, κ)}, θ〉 |= κ

〈σ, γ, (π, κ), θ〉V → 〈σ, γ, (πbητ, κ), θ〉
The effect of the application of the plan rule on the plan
base is that the plan π is replaced by the body πb of the
plan rule instantiated with the substitution η, that resulted
from matching the head of the rule with the revised plan,
and with the substitution τ that resulted from matching
the condition of the rule with the belief base. Note that the
substitution θ is not updated by the substitution τ because
the body of the rule is a variant and does not contain any
variable occurring in Π or dom(θ). This implies that all
bindings in τ are about new variables that occur only in the
body of the rule. τ can therefore be applied directly to πb.

An interaction rule κ ← β | π specifies that the goal κ
can be achieved by plan π if β is derivable from the agent’s
beliefs. An interaction rule only affects the plan base of the
agent.

Definition 14. (interaction rule application) Let κ ∈ LG,
β ∈ LB , π ∈ LP , κ ← β | π be a variant of an interac-
tion rule ∈ IR such that no free variables in the rule occur
in V or dom(θ), and η, τ be ground substitutions such that
dom(η) = Free(κ) and dom(τ) = Free(βη). Then,

〈σ, γ, Π, θ〉 |= κη & 〈σ, γ, Π, θ〉 |= βητ

〈σ, γ, Π, θ〉V → 〈σ, γ, Π ∪ {(πητ, κη)}, θ〉

Note that the goal κη that should be achieved by the plan
πητ is associated with it. It is only this rule that associates
goals with plans.

The goal base of the agent does not change because the
plan πητ is not executed yet; the goals of agents change only
after execution of plans. We do not add substitution τ to θ
since this substitution should only influence the new plan π.

3.3 Semantics of a 3APL agent
The semantics of a 3APL agent is derived directly from

the transition relation →. The meaning of a 3APL agent
consists of a set of so called computation runs.

Definition 15. (computation run) A computation run
CR(s0) for a 3APL agent is a finite or infinite sequence
s0, . . . , sn or s0, . . . where si are configurations, and ∀i>0 :
si−1 → si is a transition in the transition system for the
3APL agent.

The meaning of a 3APL agent 〈σ0, γ0, GR, PR, IR〉 is the
set of computation runs CR(〈σ0, γ0, ∅, ∅〉). Note that the first
state of the computation runs is the initial mental state of
the 3APL agent.

4. DELIBERATION CYCLE
In the previous sections we have described the syntax and

semantics of 3APL. However, in order to run 3APL we also
need an interpreter that determines the order in which rules
are applied, when actions should be performed, when belief
updates should be made, etc. This interpreter is not fixed in
3APL but is itself a program again. This deliberation mod-
ule for 3APL without the declarative goals was described
already in [1].
The addition of declarative goals will, however, substantially
influence the deliberation cycle. Although a complete dis-
cussion of all issues falls outside the scope of this paper (and
no space is available for such a discussion) we describe some
of the prominent topics to be dealt with during the deliber-
ation.

First of all one has to make choices about which types
of rules to apply at what moment in time. Do we apply
goal rules (changing current goals) whenever applicable or
do we only invoke those rules when it seems the current goals
are not reachable using any possible plan and using any
possible planning rule. The latter leads to what is called
”blindly committed” agents in [10]. Some more moderate
alternatives are also possible. E.g. create a plan for a goal
(using an interaction rule) and use the planning rules in
order to perform this plan. If this leads to a stage where
no planning rule can be used any more and the goal is not
reached, then one can change the goal using a goal rule. So,
this leads to a strategy where one plan is tried completely
(including all possible rewrites depending on the situation)
and if it fails the goal is abandoned.

At the deliberation level we also have to check the rela-
tion between plans and goals. Although we check whether
a goal still exists during the plan execution and thus avoid
continuing with a plan while a goal is reached (or dropped),
we still keep the plan itself. It is up to the deliberation mod-
ule to perform a kind of ”garbage collection” and remove a
left-over plan for a goal that no longer exists. If this would
not be done the left-over plan would become active again as
soon as the goal would be established at any later time.

The last issue that we will describe in this paper is that
of having multiple (parallel) goals and/or plans. First one
should decide whether only one or more plans can be derived
for the same goal at any time. If we allow only one current
plan for each goal, the plans in the plan base will all be for
different goals.
In this case one has to determine whether the plans will be
executed interleaved or consecutively. Interleaving might be
beneficial, but can also lead to resource contention between
plans in a way that no plan executes successfully anymore.
E.g. a robot needs to go to two different rooms that lay in
opposite directions. If it has a plan to arrive in each room
and interleaves those two plans it will keep oscillating around
its starting position indefinitely. Many of the existing work
on concurrent planning can, however, be applied straight
away in this setting to avoid most problems in this area.

Although many issues arise at this level, they can all be
reduced to determining the order in which the rules are ap-
plied. In [1] the basic constructs needed to program this
level were indicated . The same constructs can be used to
write programs to tackle the issues indicated above.

The semantics of a 3APL agent was specified in section
3.3. This definition could be extended to include a cer-
tain programmed deliberation cycle. The resulting seman-
tics should then define a subset of the traces of the most
general semantic specification of section 3.3. As we however
did not formally specify the constructs with which the de-
liberation cycle can be programmed, we cannot formulate
this extension of the definition.

5. EXAMPLE
Our example agent has to solve the problem of building a

tower of blocks. The blocks have to be stacked in a certain
order: block C has to be on the floor, B on C and block
A on B. Initially, the blocks A and B are on the floor,
while C is on A. The only action an agent can perform, is
to move a block x from some block y onto another block z
(move(x, y, z)). The action is enabled only if the block to be
moved (x) and the block onto which x is moved (z) are clear.
The result of the action is, that x is on z and not on y, block
y becomes clear and block z is not clear anymore (assuming
that z is not the floor, because the floor is always clear). In
this example, we assume the agent only has one plan in its
plan base regarding this task. Otherwise, different plans for
this task could interfere with each other in unwanted ways
(this problem could be solved on the deliberation level, but
this is outside the scope of this article). Interaction rules
can thus only be applied if the relevant plan of the agent is
empty. Let

σ0 = {on(A, F l) ∧ on(B, F l) ∧ on(C, A) ∧ clear(B)
∧ clear(C) ∧ clear(Fl),
on(x, y) ∧ y 6= Fl → ¬clear(y)},

γ0 = {on(A, B) ∧ on(B, C) ∧ on(C, F l)}.
A 3APL agent can solve the tower building problem with
the following rules (i ∈ IR, p1, p2 ∈ PR).

i : G(on(x, z)) ← B(on(x, y)) | move(x, y, z)
p1 : move(x, y, z) ← B(¬clear(x)) |

on(u, x)?; move(u, x, F l); move(x, y, z)
p2 : move(x, y, z) ← B(¬clear(z)) |

on(u, z)?; move(u, z, F l); move(x, y, z)

The interaction rule is used to derive the move(x, y, z) ac-
tion that should be executed to fulfil a goal on(x, z). The

preconditions of the move action are not checked in this rule,
so it is possible that the derived action cannot be executed
in a particular configuration. The plan rules can then be
used to create a configuration in which this action can be
executed. Note that the interaction rule is used to select an
action to fulfil a goal of the form on(x, z). The initial goal
base however contains a conjunction of on(x, z) predicates.
The interaction rule is applicable to this conjunction, be-
cause a formula Gφ is true if φ is a logical consequence of
a goal in the goal base, but only if φ is not believed by the
agent.

Plan rule p1 can be applied to an action move(x, y, z) if
the condition that x is clear is not satisfied which means that
the action cannot be executed. Rule p2 can be applied if z is
not clear. The plan rules with head move(x, y, z) construct
a plan to create a configuration in which the move action
can be executed. Rule p1 for example specifies that if x is
not clear, a move(x, y, z) action should be replaced by the
plan on(u, x)?; move(u, x, F l); move(x, y, z): first bind u to
the block that is on top of x, then clear x by moving u, then
move x.

In the initial configuration of the agent 〈σ0, γ0, ∅, ∅〉, three
possible substitutions of interaction rule i can be computed:
τ = {x/A, y/F l, z/B} or {x/B, y/F l, z/C} or
{x/C, y/A, z/F l} (yielding move(A, F l, B), move(B, F l, C)
or move(C, A, F l)). Suppose the first substitution is chosen.
After application of this interaction rule, the plan of the
agent becomes the plan in the consequent of the rule after
application of τ . The goal on(A, B) is moreover associated
with the plan, resulting in the following plan base (other
components of the initial configuration do not change):

Π = {(move(A, F l, B),G(on(A, B)))}.
The plan cannot be executed because the preconditions of
the action are not satisfied in this configuration (block A is
not clear). The interaction rule cannot be applied because
the plan of the agent is not empty. The only applicable rule
is the plan rule p1 where η = {x/A, y/F l, z/B}, resulting in
the following plan base:

Π = {(on(u, A)?; move(u, A, F l); move(A, F l, B),
G(on(A, B)))}.

The only option is to execute the test. The substitution
τ = {u/C} is computed and added to the empty substitu-
tion of the current configuration: θ = {u/C}. Then the
action move(C, A, F l) is executed (the substitution θ is ap-
plied to the action). The modified components of the agent’s
configuration are as follows:

σ |= on(A, F l) ∧ on(B, F l) ∧ on(C, F l) ∧ clear(A) ∧
clear(B) ∧ clear(C) ∧ clear(Fl),

Π = {(move(A, F l, B),G(on(A, B)))},
θ = {u/C}.

In the above configuration, the action move(A, F l, B) is ex-
ecuted. After a number of other test and action executions
and rule applications, the agent reaches the final configu-
ration. In this configuration, the goal is reached and thus
removed from the goal base:

σF |= on(A, B) ∧ on(B, C) ∧ on(C, F l) ∧ clear(A) ∧
clear(Fl),

γF = ∅,
ΠF = ∅,
θF = {u/C, v/A}.

During the execution, a substitution θF is computed with

v ∈ dom(θF). We assume variable u of plan rule p1 was re-
named to v in the creation of a variant of p1. The example
execution shows that the 3APL agent can reach its initial
goal. The agent will however not always take the short-
est path. The length of the path depends on which choices
are made if multiple substitutions can be computed for the
interaction rule.

In this example, we did not use any goal rule in order
to keep it simple. However, in a domain where blocks for
instance have weights, a goal rule could be added to drop
goals involving blocks which are too heavy. Suppose the
belief base of an agent contains a formula weight(x, n)∧(n >
3) → tooHeavy(x) to indicate that a block x is too heavy
for this agent if its weight exceeds 3 and suppose it contains
the formula weight(A, 5). The following goal rule could then
be used to drop for instance a goal on(A, B) ∧ on(B, C) (a
second rule would of course have to be added for the y-part
of an on(x, y) formula).

g : G(on(x, y)) ← B(tooHeavy(x)) | >
The substitution η = {x/A, y/B} is computed and goals of
which on(A, B) is a logical consequence, are dropped.

6. CONCLUSION AND FUTURE RESEARCH
In this paper we have described the syntax and seman-

tics of an agent programming language that includes all the
classical elements of the theory of agents. I.e. beliefs, goals
and plans (or intentions). We thus conjecture that it should
be possible to verify whether a 3APL program satisfies a
given specification in terms of beliefs, goals and plans. It
should moreover be easier to go from analysis and specifi-
cation in terms of these concepts to implementation. These
are however issues that remain for future research.

An interpreter for the basic form of 3APL is already im-
plemented and extensions are currently being programmed.
The interpreter will enable us to evaluate the effectiveness
of the language for problems of realistic complexity.

In this paper we only sketched a number of issues for the
deliberation cycle of 3APL agents. Especially determining
the balance between reactive and pro-active behavior and
how to capture this in programming structures on the delib-
erative level will be an important issue for further research.

In the version of the paper to be submitted for the post-
proceedings, we will include a comparison with other lan-
guages and architectures, such as PRS, DMARS and AgentS-
peak(L).

7. REFERENCES
[1] M. Dastani, F. de Boer, F. Dignum, and J. C. Meyer.

Programming agent deliberation. In Proceedings of
AAMAS, Melbourne, Australia, July 2003.

[2] M. Dastani, F. de Boer, F. Dignum, and J.-J. Meyer.
Programming agent deliberation: An approach
illustrated using the 3apl language. In Proceedings of
The Second Conference on Autonomous Agents and
Multi-agent Systems (AAMAS’03), Melbourne,
Australia, 2003.

[3] M. Dastani, F. Dignum, and J.-J. Meyer. Autonomy
and agent deliberation. In Proceedings of The First
International Workshop on Computatinal Autonomy -
Potential, Risks, Solutions (Autonomous 2003),
Melbourne, Australia, 2003.

[4] D. Dennet. The intentional stance. The MIT Press,
Cambridge, 1987.

[5] K. Hindriks, F. de Boer, W. van der Hoek, and J.-J.
Ch. Meyer. Agent programming in 3APL. Int. J. of
Autonomous Agents and Multi-Agent Systems,
2(4):357–401, 1999.

[6] K. Hindriks, F. de Boer, W. van der Hoek, and J.-J.
Ch. Meyer. Agent programming with declarative
goals. In N. Jennings and Y. Lesperance, editors,
Intelligent Agents VI - Proceedings of ATAL’2000,
LNAI-1757. Springer, Berlin, 2001.

[7] G. Plotkin. A structural approach to operational
semantics. Technical report, Aarhus University,
Computer Science Department, 1981.

[8] A. Rao and M. Georgeff. Modeling rational agents
within a BDI-architecture. In J. Allen, R. Fikes, and
E. Sandewall, editors, Proceedings of the Second
International Conference on Principles of Knowledge
Representation and Reasoning (KR’91), pages
473–484. Morgan Kaufmann, 1991.

[9] A. S. Rao. AgentSpeak(L): BDI agents speak out in a
logical computable language. In W. van der Velde and
J. Perram, editors, Agents Breaking Away (LNAI
1038), pages 42–55. Springer-Verlag, 1996.

[10] A. S. Rao and M. Georgeff. BDI Agents: from theory
to practice. In Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS-95),
pages 312–319, San Francisco, CA, June 1995.

[11] A. S. Rao and M. P. Georgeff. BDI-agents: from
theory to practice. In Proceedings of the First Intl.
Conference on Multiagent Systems, San Francisco,
1995.

[12] Y. Shoham. Agent-oriented programming. Artificial
Intelligence, 60:51–92, 1993.

[13] W. van der Hoek, B. van Linder, and J.-J. Ch. Meyer.
An integrated modal approach to rational agents. In
M. Wooldridge and A. Rao, editors, Foundations of
Rational Agency, Applied Logic Series 14, pages
133–168. Kluwer, Dordrecht, 1998.

[14] B. van Linder, W. van der Hoek, and J.-J. Ch. Meyer.
Formalizing abilities and opportunities of agents.
Fundameta Informaticae, 34(1,2):53–101, 1998.

[15] M. B. van Riemsdijk, W. van der Hoek, and J.-J. Ch.
Meyer. Agent programming in Dribble: from beliefs to
goals with plans. In Proceedings of AAMAS,
Melbourne, Australia, July 2003.

[16] M. Wooldridge. An introduction to multiagent systems.
John Wiley and Sons, LTD, West Sussex, 2002.

[17] M. Wooldridge and
N. R. Jennings. Intelligent agents: Theory and practice.
HTTP://www.doc.mmu.ac.uk/STAFF/mike/ker95/ker95-
html.h (Hypertext version of Knowledge Engineering
Review paper), 1994.

