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1. Introduction 

There is currently increasing interest in that class of opti

mization problems known as semi-infinite programming problems, which 

are characterized by a finite number of variables and an infinite 

number of constraints. Such problems arise, for example, in air 

pollution control, in the solution of weakly singular integral 

equations, in probability distributions, etc.: details of these and 

other applications may be found in the conference proceedings [ 3 ] , 

(8] and in papers referenced therein. In particular, [ 3] is useful 

as a state-of-the-art treatment of the subject area. It is clear 

that a large body of theory exists for semi-infinite programming 

problems, although with the exception of some special cases, such as 

continuous linear Chebyshev approximation, the algorithmic develop

ment is less far advanced. This is not to say that the provision of 

algorithms for general problems has been entirely neglected. A number 

of locally convergent methods have been published, mainly based on the 

application of Newton's method to first order necessary conditions 

for a solution (for example [10] [11]). Suitable initial approximations 

can often be obtained through the solution of a discretization of the 

original problem, and this has led to the formulation of two (or even 

three) phase methods (see, for example, [6] and the review paper [9]). 

To our knowledge, the only methods developed so far which claim 

to be globally convergent are those given in [13] , [14] (although a 

conceptual globally convergent method based on continuation is 

suggested in [ 5 ] ) . The algorithm presented in [14] adapts to the 

present situation a well-established technique for the globalization 

of methods for finite problems, involving the minimization of an 

.exact penalty function, and as the numerical results in [14] show, 

can perform well. 
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However, it has two main disadvantages: firstly each iteration 

requires the solution of anineq.iality constrained quadratic 

programming problem and secondly, fast ultimate convergence 

depends on conditions which may well not be satisfied. The 

purpose of this paper is to present a modification of that 

method which, in particular, overcomes these difficulties. 

We begin by introducing the problem to be solved and some 

notation. Let X C RN be a c:artesian product of closed intervals 

and let g:X x Rn + R, with g twice continuously differentiable 

as a function of its parameters. Let f :Rn + R be a twice 

continuously differentiable function, and consider the problem: 

find~ E Rn to minimize f(~) (1.1) 

subject to g (x,a) ~ 0, Vx E X. ,..., ,..., ,..., 

The algorithm to be developed will be capable of finding a 

stationary point of (Ll), defined as follows. We let cp. (a) 
J ,...., 

and ~j(~,,~) respectively denote the partial derivatives off 

and g with respect to a., j = 1,2, ..• ,n, although the explicit J . 

dependence on ,?:S and a will sometimes be suppressed when no 

confusion can arise. 

Definition l. Let,.e* E Rn be feasible in (1.1) and let there 

* exist points x. 
"'1. 

multipliers * A. I 
1. 

* 
cp . (.e ) + 

i 
t 
L: 

J i=l 

* 

* * with g(x~ ,a) = O, i = 1,2, •.. ,t and non-negative 
"'-1,..., 

= 1,2, ..• ,t such that 

* * * .:\. tjJ. (x. ,a ) 
1. J "-'l. ,..., 

o, j = 1,2, ... ,n. (1. 2) 

Then a is a stationary point of (1.1). 
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* The Fritz-John first order necessary conditions for a 

* to solve (1.1) correspond to (1.2) with¢. (a ) replaced by 
J ,...., 

* - * Ao¢j (~ ) , where Ao ;;;:,: 0 (for example [ 1]). If a first order 

* * constraint.qualification holds at~ then Ao I 0 and (1.2) 

becomes the usual (Kuhn-Tucker) necessary conditions. 

A key assumption in the algorithm developed in [14] is that 

* in a neighbourhood of a , the variables ~. representing local 
,...., 1. 

maxima of the function g(~,,~) can be eliminated from (1.2) by 

expressing them as functions of a. For this, we require, in 

particular that the implicit function theorem be applicable to 

any zero-derivative conditions characterizing these local maxima. 

The algorithm in fact requires the more general assumption that 

an analogous elimination be possible at all points encountered 

in the solution process, and this forces restriction of points 

n 
~ being considered to a subset B, say, of R at which 

appropriate ·conditions hold. 

require some further notation. 

We now define such a subset and 

n 
In particular, for given~ ER , 

let E(~) denote the set of local maxima of g(~,~) in X which 

satisfy <;/" (~, ~ ;;;:,: - n' where n > 0 is a prescribed constant. 

(The role of n will become clear subsequently; however it is a 

minor one and we will not explicitly show dependence upon it). 

Let x EE(~), with cr1, cr2, ••• ,crl the indices of the components 

of ~on the boundary of X. Also let 'Vig denote the vector in 

Rl whose components are the partial derivatives of g with respect 

to the components of ~ in these positions (evaluated at _2S,~). 
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" d h . N-l h ' 1 Let v2g enote t e vector in R w ose components are the partia 

derivatives of g with respect to the remaining components of x 

and let l/22g denote the corresponding (N-l)X(N-l) matrix of 

second partial derivatives of g. Then we define B C Rn as the 

open set of points (assumed non-empty) such that 

(1) there are a finite number of points ~ E X such that 

(2) at each point of (1) corresponding to a local 

maximizer of g, l/22 g is negative definite and each 

component of Vig is non-zero. 

The significance of these assumptions is that for ~EB, 

appropriate components of each of the p local maximizers x. of 
~i 

g(·,~) may be regarded locally as differentiable functions of 

the parameters ~ through the use of the implicit function 

theorem applied to 

l/2g(,iS. ,a) = O, i = 1,2, ... ,p. 
1. ,.....,, 

For any ~ E B, we may therefore define 
p 

f(~) + .2:
1 

A.h. (a), 
i= 1 1 ,.....,, 

where 

h.(R:,) = g(x.(a),a), i = 1,2, ... ,p 
1 ,...._,J_ ,....._, ~ 

(1. 3) 

the Lagrangian function 

(1. 4) 

(1. 5) 

and the functions x.(a), i = 1,2, ... ,p, are defined by (1.3). ,....,,1,.....,, 

* In particular, if a EB, then it is easy to see the relationship 

between (1.2) and the usual first order necessary conditions, 

as the required result carries over directly from the finite 

case: we may write (1.2) as 
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* * I/ £(a , A. ) = 0 , a -... -... ,,......, (1. 6) 

* .where without loss of generality we may assume that t = p(a ) . 
~ 

In addition we mayobtain the corresponding second order conditions 

in an analogous manner. The relevant results are as follows. 

* * Theorem 1. Let a EB solve (1.1) and let there exist~ such 

that (1.6) holds. Then if a certain regularity assumption holds 

T 2 * * s [I/ £(a ,A. )]s~O ,..._, a -... -... ,..._, 

for all R,: T * 
S l/h , ( a ) = Q f i = 1 f 2 I • • • f t • 
~ ]. ~ 

* Theorem 2. Let ~ EB be a feasible point satisfying (1.6) and 

let 

T 2 * * s [I/ £(a ,A. )]s>o _,,, a -... -.,, ,,....., 

T * * for alls : s 'Vh. (a) = O, i = 1,2, ... ,t. Then a is a local 
~ ]. ~ 

solution of (1.1). 

The basis of the algorithm developed here is the systematic 

provision of descent directions for an exact penalty function 

appropriate to (1.1). Given 8 > 0 such a function may be 

defined for ~ E B by 

(1. 7) 

where h.(a), i = 1,2, ..• ,p is given by (1.5) and (1.3). 'It may 
]. ~ 

be shown by the standard arguments available in the finite case 

* that provided e >A, I i = 1,2, ... ,t then~ EB minimizing 
]. 

P(~ is a stationary point of (1.1) in the sense that~ is 

feasible in (1.1) and satisfies (1.6) [ 2]. 
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In the next section we show how descent directions for P 

may be calculated at any approximation ~ E B , and 

in section 3 we describe a suitable active set strategy, This 

leads to the detailed statement of the proposed algorithm 

which is given in section 4. Numerical results for 

an implementation of the algorithm, applied to a number 

of semi-infinite· programming problems, are presented in 

section 5. 

2. The calculation of descent directions 

In the algorithm of [14], a descent direction d for P(~) 

at a point ~ E B is obtained through the solution of the 

following quadratic programming problem. 

Find d E Rn to minimize £T,S£(~) + ~£TH£ (2 .1) 

subject to T 
h . (a) + d 'ilh. (a) ~ 0 , i = 1 , 2 , •.• , p,, 1 ,.._ ,.._ 1 _..., 

where H is a given positive definite matrix. It is shown in 

~3] that a solution d to (2.1) is a descent direction for P 

at ~provided that there is a Lagrange multiplier vector 

associated with (2.1) which has no component larger than 8. On 

the other hand, if £ = Q solves (2.1) then examination of the 

Kuhn-Tucker conditions for (2.1) shows that~ is a stationary 

point of (1.1) . 

A key property possessed by (2.1) is that if H is chosen 

to be 'i7 2£(a,A), with a and A approximations to the optimal values, ,..,.,, ,..,.,, ,..,.,, 

* then in a neighbourhood of a stationa:t.y point ~ , £ solving 

(2,1) is, under mild conditions, the increment in a given by 
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the application of Newton's method to the system of equations (1.6) 

together with h. (a)= O, i =I ,2, ... ,p. A potential difficulty 
]. ,..., 

* * however, is that V 2£(~,~) may have negative eigenvalues, so that 

if H is forced to be positive definite, then the desirable 

connection with Newton's method is lost. The intention here is 

to maintain that connection by working with an appropriate 

equality. constraint quadratic subproblem instead of with (2 .1). 

For given a EB, let C be the nXp matrix whose jth colwnn 
,.._, 

is Vh. (a), j = 1,2, •.• ,p and consider.the quadratic programming . J ,.._, 

problem: 

find d E Rn to minimize dT¢ + ~dTHd 
,.._, ,.._, 

subject to (2.2) 

where~. E If has jth component h. (a) and where H is a given 
·- J ,.._, 

(nXn) symmetric matrix. We assume for the moment that p ~ n. 

Let the QR factorization of C (which we will assume to have full rank) 

be given by C = [ W: Z] [ ~ ] 
( 2. 3) 

p n n-p n where W:R + R, Z:R + R with [w:z] orthogonal, and 

U:RP +RP is upper triangular. Let 

Then if £1 is chosen to satisfy 

T 
u .s:!,1 = -,Q, , ( 2. 4) 

it is clear that the constraints of (2.2) are satisfied and we 

are left with an unconstrained problem in the vector £_2. 

Setting the derivative with respect to £2 to zero then gives 
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(2.5) 

which has a unique solution provided that the reduced 

matrix ZTHZ is non-singular. If the conditions of Theorem 2 are 

satisfied at a stationary point a*, then ZT [9 2£(a,A)]Z is ,.._, ,.._, ,..,_, 

positive definite in a neighbourhood of this point and it is 

clear that the choice H = 9 2£(R:,,~) is appropriate (for some 

suitably chosen 2J. 

If 92£ is not positive definite (and there is no reason why 

it should be) at a stationary point, then the choice H = 92£ + µI 

can be used with µ chosen to force positive definiteness of H. 

This is the strategy used in [14] but it has the disadvantage of 

slowing the rate of convergence on some problems. Clearly the 

matrix ZTHZ is the one which should be forced to be positive 

definite since then the choice H = 92£ + µI will allow µ = 0 to be 

chosen in a neighbourhood of the solution where the conditions of 

Theorem 2 hold. On the other hand, forcing only ZTHZ to be positive 

definite may cause the solutions to the quadratic programming 

subproblems (2.1) or (2.2) to be non-descent directions for the 

penalty function (1.7) as the following example·illustrates. 

(2. 6) 

subject to x - a1a2 < O, x E [0,1]. 

The extra conditions a1,a2 > 0 have been added to exclude the 

lower branch of the hyperbolic constraint; they are not active 

T 
at the solution which is clearly given by!::,* = (1,1) . 
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The set E(~) = {l} is independent of~ in this simple example and 

* t = p(a ) = p(a) 
"' "' 

1 with the optimal Lagrange multiplier easily 

calculated to be A*= 1. The definitions (1.4), (1.5) then give 

[ 
o -A] 
-A o 

which is clearly indefinite. 

T 
Suppose now that~= (l-E,1-E) and A=~ is the current 

* * 2 approximation to (~ ,A ) and choose H = 9 £(~ 1 A) so that 

Then the solution to (2.1) or (2.2) gives 

£ = 6(1,l) T, B = E + ~E 2/(l - E) 

which is clearly an excellent direction for 0 < E < 1 .. The 

Lagrange multiplier associated with (2.1) or (2.2) is 

1- B/2 > 1 = A* 
1-E 

However, the direction~' given by (2.7) is not a descent direction 

" for the penalty function (1.7) when e =A because the directional 

derivative, P' (~ ; £) = B 2 > 0. Fortunately it is always possible 

(and appropriate) to make £ a descent direction in such cases by 

increasing the penalty parameter e and the following results allow 

a threshold value to be determined. 

Theorem 3. If ZTHZ is positive definite and CTZ = (0) where [c:z] 

has full rank, then 3a such that [H + crccT] is positive definite 

for all 0 > a . 

This is essentially a restatement of the result in [ 4 ;p ·132 ] • 

Theorem 4. If£ solves the quadratic programming problem (2.2) 

then d also solves: 

( 2. 8) 

subject to 
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for any value of o and the Lagrange multipliers of problem (2.8) 

" ~(O) say, are related to those of problem (2.2) by the equation 

" 
~(O) ~(O) + 0£. (2.9) 

This result is a straightforward application of the Kuhn-Tucker 

conditions. 

Using Theorems 3 and 4 and Han's result [ 7], we deduce that 

the solution to problem (2.1) will be a descent direction for the 

penalty function (1.7) provided that the parameter e satisfies 

e~~.(o) 
1. 

i 1,2, ... ,p. (2.10) 

At points remote from~* it may be necessary to increase 8 in 

order to ensure the satisfaction of the inequalities (2.10). Of 

-course O will not generally be known so in the algorithm described 

in section 4 if ,2_, calculated to solve problem (2.1), is not a 

descent direction then the current value of e must be too small and 

so it is repeatedly doubled until the directional derivative changes 

sign. (For a more detailed description of the overall strategy for 

determining a suitable value of e see section 4). 

3. Active set strategy 

In order to obtain a suitable descent direction for the penalty 

function (1.7) we have shown that, if the correct active set of 

constraints has been identified, it is appropriate to solve 

problem (2.2) with the matrix 

where )J (~O) is chosen so that ZTHZ is positive definite. Now the 

matrix Z depends on the matrix C and this complicates matters when 

some of the constraints of problem (2.2) would not be active at the 

solution to problem (2.1). This situation is easily identified 
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since it implies that at least one of the Lagrange multipliers of 

problem (2.2) is negative, indicating that a;constraint should be 

dropped. A further difficulty now arises in that dropping a 

constraint causes a column to be deleted from the matrix C, which 

in turn results in the matrix Z defined by equation (2.3) having 

an extra column. In this case the matrix ZTHZ is increased in size 

by one row and column and it is possible that the current value of 

µ may not be large enough to guarantee positive definiteness of 

this new ZTHZ matrix. It is, therefore, necessary to consider 

increasing µ.when a constraint is deleted. Of course, increasing 

µ may mean that the deleted constraint should be reinserted and 

this is accounted for in the strategy adopted which essentially 

solves a sequence of problems of the form (2.2) but adjusts the 

number of equality constraints and the value of µ automatically 

until a solution to (2.1) is obtained. Specifically, the active 

set method described in [ 4 , pp88-90] is used except that initially, 

and whenever a constraint is dropped from the active set, the matrix 

H is revised if necessary to make ZTHZ positive definite by increas-

ing µ according to the formula 

µ := 4µ + µ ' I min 
(3.2) 

and by repeatedly applying (3.2) until positive definiteness is 

obtained. Initially µ = 0 is always tried, which explains the 

need for the extra parameter µ . ( > 0) . 
min 

In a neighbourhood of a*, the solution to equations (2.3) -,...,.. 

(2.5) will also usually solve problem (2.1) and the active set strategy 

is not invoked. If this is not the case, then the solution to 

problem (2.2) provides an initial feasible point for the active 
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set strategy. The only potential difficulty occurs when p > n 

in which case problem (2.2) has no solution, whereas we assume 

problem (2.1) always has a solution. This difficulty is also 

easily resolved using the active set strategy. All that is required 

is that some subset of the constraints be used to define_an initial 

feasible point for problem (2.1). In the algorithm described in 

the next section we have assumed, for simplicity, that satisfaction 

of the n most violated constraints (i.e. those with larger values of 

h.} always gives rise to a feasible point. This is not foolproof 
l.. 

but almost always p ~ n was satisfied for the problems solved in 

section 5. An exception is in the case of problem 9 which has 

infinitely many local maxima in the set E(~*) and this caused 

failure of the algorithm.· (Note, however, that both assumptions 

(1) and (2) of section 1 are not satisfied in this case). 

4. A projected Lagrangian algorithm 

The algorithm described in this section models very closely 

that described in [14]; the major difference is due to the method 

of calculating the descent direction d for the penalty function 

(1.7) and this has already been discussed in sections 2 and 3. In 

order to guarantee descent -of the penalty function P a suitable 

step lengthy in the direction£ must be determined. As in [14] 

y is chosen as the largest member of the sequence {l,~ 1 ~ 1 ••• } 

satisfying 

where 

T(y,~)~ p I 

T(y,~) = P(~,+y£) - P(~) 

yP' (~ ,2,) 

( 4 .1) 

(4. 2) 
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and P' (~;~_) < 0 is the directional derivative of the penalty 

function (1.7) at a in the direction d. The value p = .0001 was used 

I 
as in [14] . 

In order to calculate H, defined by equations (3.1) and (1.4), 

at the start of each iteration it is necessary to obtain 

approximations to the Lagrange multipliers A., i = 1,2, .•. ,p. 
i 

Because successive values of p may change at each iteration, 

(particularly far from a stationary point) it is not appropriate to 

use the Lagrange multipliers of the problem (2.1) as estimates. 

Instead, A was chosen at the start of each iteration to minimize the 

least squares norm of the vector 
p 

+ .L
1

\.;t:_(x. ,a) = ;t_ + c~ 
i= i -i ,...., 

with any negative components replaced by zeros. This least squares 

problem is easily solved, using the QR factorization of the 

constraints of ,Problem (2.2), by back substitution in the triangular 

system 

To complete the definition of H it is necessary to fix a 

suitable value for µ . to be used in (3.2). In early numerical 
min 

trials the value µ . = 1 was useo and this usually gave good 
min 

results. However, on some problems when ZTV 2 £(!: 1 l)Z was singular 

it became clear that ·a smaller value was sometimes more 

appropriate particularly when the current approximation a was 

far from the solution. Also when ZTV 2 £(a,\)Z has large negative ,...., ,...., 

eigenvalues it makes sense to consider increasing µ Therefore min" 

the following rules were used to adjust µ . 
nun 

through (3.2)) from iteration to iteration. 

(and hence µ 

In [14], p. 199 the values quoted for p (there called 0) and the 
limiting directional derivative should have the number of zeros 
interchanged. 
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(1) If µ = µ and T > . 5 and y 
min 

l set µ 
min 

(2) If µ = µ . and y ~ ~ set µ . = µ . *4. 
min min min· 

µ . /4 
min 

The motivation for rule (1) is that if the test is satisfied it 

indicates that the current value of µ (nece·ssarily greater than 

zero) may be causing too small a step to be taken in the direction 

defined by the quadratic programming subproblem. Because T > .5 

there is reasonable agreement with a linear model and decreasing 

µ . by a factor of 4 should cause a corresponding increase in 
min 

the size of d used for the next iteration. In rule (2) the 

situation suggests that the current step.size,y, has had to be 

decreased from 1 because the current value of µ is too small and 

µ is therefore increased. These rules were found to work very 
min 

well on the range of problems tested and were the ones used to 

obtain the numerical results of the next section. 

Finally, we give the rules used for adjusting the penalty 

parameter 8. If the initial choice is big enough then there is 

no need to consider adjustment in theory. In practice, though, too 

large a value of 8 can retard the rate of convergence by placing 

too much emphasis on reducing constraint violations. The initial 

value of 8 was 1 with 8 reset to the maximum value of the Lagrange 

multipliers at the solution to problem (2.1) whenever this value 

exceeded 8. This guarantees that the direction calculated, as 

described in section 2, is a descent direction when H is positive 

definite, but if H has negative eigenvalues and th~ current 8 

does not give rise to a descent direction then e is temporarily 

increased further as described in section 2. Equation (2.9) 

shows that this latter device will not usually be required close 



15. 

to the solution because ~(0) + ~(O) as the solution is approached. 

This is borne out by the numerical results for problem 14 presented 

in the next section. 

Algorithm summary 

(1) Given an approximation~ to a* determine the set E(~) 

defined in section 1. 

(2) Determine a direction d as described in sections 2,3 and 

increase 8 if necessary so that d is a descent 

direction for P(!,8). 

(3) Set R, = ~ + y~ with Y chosen to satisfy (4.1). 

(4) If insufficient accuracy go to step (1). 

Step (1) was implemented as in [14]by superimposing a uniform 

grid on the set X and identifying local maxima on the discrete set 

of points thus obtained. These discrete local maxima were then 

refined using a Newton-like iteration. The value n = 0.5 was used 

in the definition of the set E(a) given in section 1, in order to ,.._,, 

obtain a valid comparison with the results presented in ~4] and 

summarized in Table 1. 

5. Numerical Results 

The algorithm was coded in ALGOL on the Burroughs B6930 computer 

of the University of Canterbury, which gives about 11 decimal places 

for single precision. For comparison purposes the algorithm was 

applied to the thirteen test problems listed in [14] and the results 

are summarized in Table 1. The column headed k gives the number of 

iterations required to increase the (negative) directional 
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derivative to a value greater than -.00001, that headed P' gives the 

final value of the directional derivative and t gives the final number 

of active points. Numbers in brackets correspond to values obtained 

by the algorithm in [14] and it can be seen that the present 

algorithm compares favourably, There is no significant difference in 

the two algorithms on problems 1,2,7,10,12, and 13; of course, it is to 

be expected that the two algorithms will give similar results whenever 

V2£ remains positive definite throughout the calculation. Significant 

improvements were, however, obtained on problems 3,4(n = 6,8), 8 and 11. 

* Problem 4 is interesting because V2£ · is singular and it is worth 

considering this problem in detail: 

Problem 4 

n 3 

n = 6 

x = [ 0, l] 

f 

g 

T Starting point (0,0,0) 

f* = 0.649042 

= 

= 

n 
I: 

i=l 

tanx 

a* ,..., 

T Starting point (O,O,O,O,O,O) ; 

a. 
l. 

i 

n 
i-1 - I: a.x 

i=l l. 

T = (0.08910, Q.42305, 1.04526) I 

~* = (O.O, 1.02326, -0.24060, 

1.22168, -l.38826, 0.94133) I f* = 0.616085. 

n = 8 Starting point: a* for n = 6, to 3 decimal places, with zeros 

in the last two components; a* = (0.0, 1.00342, -0.06095, 

0.75112, -1.40994, 2.65270, -2.311602, 0.03267), f* = 0.615653. 

In each case a* is the point reached by the algorithm when terminated 

and f* is the corresponding function value. This problem arises from 

the one sided L1 approximation of tan x by a polynomial [12] and the 
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poor choice of basis functions makes the problem severely ill-conditioned 

for quite moderate values of n. When n = 6, Table 1 shows that the 

earlier algorithm of (14] terminated after 25 iterations with a 

directional derivative greater than -.00001, and with 3 active points 

for the constraint function g. The present algorithm required only 20 

iterations and found a solution with 4 active points. Because the 

solutions to the two algorithms gave quite different results, the 

projected Lagrangian algorithm was rerun using the solution to the n=6 

problem, obtained by the algorithm of (14], as the starting point. The 

new algorithm did not accept this point as a solution but converged once 

more to the solution given above. Similar remarks apply to the n=8 

case but because this problem is so ill-conditioned it is unlikely that 

the solution given above is accurate to more than 3 or 4 significant 

figures. 

In problem 6, the presence of exponential terms in the constraint 

function g(~1 ~) caused large negative eigenvalues to be present in the 

projected Lagrangian Hessian in the early iterations. Initially the 

value µ = 1365 was required to make zTV 2£z + µI positive definite. This 

value was reduced to 341 on the ,second iteration and µ = 1 on the third; 

thereafter µ = 0 was acceptable. The detailed progress of the 

algorithm on this problem is given in Table 2 and clearly demonstrates 

the second order rate of convergence once the correct number of active 

points is identified and the projected Lagrangian Hessian becomes 

positive definite. 

The only problem which caused difficulties for the algorithm was 

problem 9. Here the ass1,llllptions of section 1 are not satisfied and 

this caused the algorithm to fail. 



Problem k t P' Comments 
(See[J4]) 

n 

* 1 2 16 (16) 1 ( 1) -5.7 -6 (-1.l -5) )q = 5461 (-+oo) 

2 2 7 ( 7) 1 (1) -2.5 -10 (-3.4 -7) 

3 3 10 (14) 1 ( 1) -6.2 -12 (-6. 7 -6) 

4 3 5 (5) 2 ( 2) -5.4 -8 (-5.3 -8) 

} 
2 * V £ singular but 

6 20 (25) 4 ( 3) -6.4 -6 (-5. 9 -6) [ TV2£ J * . . Z Z positive 
definite - n=8 case 

8 16 (14) 5 ( 3) -7. 4 -6 (-9.6 -6) very ill-conditioned. 

5 3 4 (5) 2 (2) -6.9 -6 (-7.5 -6) 
~ 

6 2 9 (8) 1 (1) -1.1 -8 (-5.3 -6) 

7 3 3 ( 3) 1 ( 1) o.o (0.0) 

8 6 9 (19) 4 ( 4) -1.1 -8 (-7. 5 -7) 
-

µ( 18)= 256, * 9 6 18 ( 9) ? (1) -4.8 -2 (-3.5 -3) IE (a ) I = 00 

irregularities caused 
failure. 

10 3 3 ( 3) 1 ( 1) -2.8 -7 (-3. 9 -9) 

* * 11 3 12 (19) 2 (2) -2.2 -7 (-3.0 -8) Values with asterisks 
have been corrected 

12 3 4 (4) 1 ( 1) -l. 7 -11 (-2.2 -10) from those appearing in 

* * 
[I 4 ] 

13 3 4 ( 4) 1 (1) -3.5 -7 (-3. 6 -7) 

Table 1 

Summary for all problems 



Problem 9 

19. 

X = [ -1 I l] X [ -1 I l] 

2 
f = -4ai - 3(a4 +as) 

g = a1 + azx + a3y + a4x + asxy + a 6y 2 
- 3 - (x 2 

- y 2
)

2
• 

Starting point (5,1,1,1,l,l)T ; ~* = (3,0,0,0,0,0)T, f* -12. 

This example has an infinite number of points in E(a*), corresponding 

to the line segments of y = .±_x within X. Symmetry in the 

components of the starting point caused the algorithm to always generate 

T 
approximations of the form~= (a,O,O,S,O,S) . At such points the 

constraint function g has one maximizing point at the centre of the 

region X when S < 0 and 4 local maximizing points, corresponding to the 

four corners of the region X, when S > 0. Thus the set E(~) has either 

one, four or infinitely many members- accordingly as S < O, S > 0 or 

S = 0. For S < 0 the solution to the subproblem 2.1 always gives a 

direction which makes a1 = 3 if y = 1. If the corner constraints 

were added to this subproblem then the exact solution would be obtained 

in one iteration but unfortunately this can never be the case (unless 

S = 0 when the added complication of jE(~) I = 00 arises). In practice 

the algorithms switched between using 1 or 4 constraints and in either 

case the projected Lagrangian Hessian matrix is singular, and the 

choice of µ critically affects the size of the correction at each 

iteration. Despite these difficulties the algorithm still made progress 

towards the solution and after 18 iterations the approximation 

(18) T 
a = (3.002, 0.0, 0.0, -.000079, 0.0, -.000079) was obtained. An 

error was flagged at iteration 19 because the local maximizer of g had 

a numerically singular second derivative matrix, violating assumption 2 

of section 1. This was the only problem for which the choice µ = 0 

was not made in the final iterations. 
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k p t µ e P' y p 

1 2 1 1365 81.65 -1625.2 1.0 3013. 8 

2 2 1 341 201. 49 -2576.8 1.0 llOO. 3 

3 1 0 1 201.49 -356.69 1.0 178.97 

4 0 0 0 201. 49 -165.44 .125 159.54 

5 1 1 0 201. 49 -108.70 1.0 99.410 

6 1 1 0 201. 49 -3.8144 1.0 98.354 

7 1 1 0 201. 49 -1.1971 1.0 97.161 

8 1 1 0 201. 49 -0.0026 1.0 97.158 

_a 
9 1 1 0 201. 49 -1.1x10 

a* = (0.719961, -1. 450487) TI f* = 97.158852 ,...., 

Table 2 

Details for Problem 6 

k p t µ e P' y p 

1 0 0 0 1.0 -5.1 1.0 2.15 

2 1 1 0 1.05 +0.05 
2.10 -0.22 1.0 2.26 

3 1 1 0 1.10 -0.055 1.0 2.2013 

4 1 1 0 1.10 -0.0013 1.0 ·2.200000 

5 1 1 0 1.10 -8. 2 x 10- 7 

2:.,* = (-.095310, .095310)T ; f* = 2.2 

Table 3 

Details for Problem 14 
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Finally, we introduce a new problem to demonstrate the effect of 

a persistent negative eigenvalue in the second derivative matrix of 

the Lagrangian function (1.4). 

Problem 14 

x = [ 0, l] 

f = c2ea1 + ea2 

g = x - ea1 + a2 

Starting point (0.8, T a* (in le I, R,n I c I) T, f* = 2Ic1. 0.9) i = 

This has essentially the same properties as problem (2.6) but without 

the need to include extra positivity constraints. The results of 

applying the algorithm to this problem with c = 1.1 are given in 

Table 3. Note that on the second iteration the solution to subproblem 

(2.1) gives a non-descent direction for the penalty function, indicated 

by the positive directional derivative. However, the matrix 

ZT[V2£]z is positive definite so that increasing the penalty parameter 

e temporarily by a factor of two causes the directional derivative to 

change sign. The steplength has the value y = l on every iteration 

andµ= 0 throughout e~en though V2£* = L~lcl-1~1] has one negative 

eigenvalue. A second order rate of convergence is observed. 
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6. Concluding remarks 

Th.e algorithm presented in this paper is capable of the 

effective solution of a wide class of semi-infinite programming 

problems. It is globally convergent under mild assumptions on the 

problem, and typically has a second order convergence rate, with 

the solution of an equality constrained quadratic progrannning 

problem required per iteration. Perhaps the most awkward part of 

the method is the computation of the set E(~), which is required 

at least once on each iteration. This is of course not a finite 

calculation, and must always be a compromise between theory and 

practice. It should be emphasised, however, that this is an essential 

calculation with any method which aims to provide an accurate 

solution to a problem of this semi-infinite type. 

It is possible that.far from a stationary point, better progress 

can be made for some problems by incorporating a procedure for finding 

the solution of a discretization of the original problem. This 

remains to be seen, but whether as a method in its own right, or as a 

safe and effective second phase for a method of the two-phase variety, 

we believe that an algorithm such as the one described in this paper 

has an important role to play in the numerical treatment of semi

infinite programming problems. 
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