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Introduction 

Mapping of multivariate data onto low-dimensional manifolds for visual in- 

spection is a commonly used technique in data analysis. The discovery of mappings 

that reveal the salient features of the multidimensional point swarm is often far 

from trivial. Even when every adequate description of the data requires more 

variables than can be conveniently perceived (at one time) by humans, it is quite 

often still useful to map the data into a lower, humanly perceivable, dimension- 

ality where the human gift for pattern recognition can be applied. 

While the particular dimension-reducing mapping used may sometimes be in- 

fluenced by the nature of the problem at hand, it seems usually to be dictated 

by the intuition of the researcher. Potentially useful techniques can be divided 

into three classes: 

1) Linear dimension-reducers, which can usually be usefully thought 

of as projections. 

2) Non-linear dimension-reducers that are defined over the whole 

high-dimensional space. (N o examples seem as yet to have been 

seriously proposed for use in any generality.) 

3) Non-linear mappings that are only defined for the given points -- 

most of these begin with the mutual interpoint distances as the 

basic ingredient. (Minimal spanning trees,2 and iterative algor- 

ithms for non-linear mappings, 374 are examples. The literature of 

clustering techniques is extensive. *I 

While the non-linear algorithms have the ability to provide a more faithful 

representation of the multidimensional point swarm than the linear methods, they 

*See References- 1 and 2 and their references for a.reasonably extensive bibli- 
ography on clustering techniques. 
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can suffer from some serious shortcomings; namely, the resulting mapping is often 

difficult to interpret; it cannot be summarized by a few parameters; it only exists 

for the data set used in the analysis, so that additional data cannot be identically 

mapped; and, for moderate to large data bases, its use is extremely costly in 

computational resources (both CPU cycles and memory). 

Our attention here is devoted to linear methods, more specifically to those 

expressable as projections (though the technique seems extendable to more general 

linear methods). Classical linear methods include principal components and linear 

factor analysis. Linear methods have the advantages of straight-forward inter- 

pretability and computational economy. Linear mappings provide parameters which 

are independently useful in the understanding of the data, as well as being de- 

fined throughout the space, thus allowing the same mapping to be performed on 

additional data that was not part of the original analysis. The disadvantage of 

many classical linear methods is that the only property of the point swarm that 

is used to determine the mapping is a global one, usually the swarm's variance 

along various directions in the multidimensional space. Techniques that, 'like 

projection pursuit, combine global and local properties of multivariate point 

swarms to obtain useful linear mappings have been proposed by Kruskal. 5,6 Since 

projection pursuit uses trimmed global measures, it has the additional advantage 

of robustness against outliers. 
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Projection Pursuit 

This note describes a linear mapping algorithm that uses interpoint dis- 

tances as well as the variance of the point swarm to pursue optimum projections. 

This projection pursuit algorithm associates with each direction in the multi- 

dimensional space, a continuous index that measures its %sefulness" as a pro- 

jection axis, and then varies the projection direction so as to maximize this 

index. This projection index is sufficiently continuous to allow the use of 

sophisticated hill climbing algorithms for the maximization, thus increasing 

computational efficiency. (In particular, both Rosenbrock7 and Powell principal 

axis8 methods have proved very successful). For complex data structures, several 

solutions may exist, and for each of these the projections can be visually in- 

spected by the researcher for interpretation and judgment as to their usefulness. 

This multiplicity is often important. 

Computationally, the projection pursuit (PP) algorithm is considerably more 

economical than the non-linear mapping algorithms. Its memory requirements are 

simply proportional to the number of data points, N, while the number of CPU 

cycles required grows as NlogN for increasing N. This allows the PP algorithm 

to be applied to much larger data bases than is possible with nonlinear mapping 

algorithms, where both the memory and CPU requirements tend to grow as 8. 

Since the mappings are linear, they have the advantages of straightforward 

interpretability and convenient summarization. Also, once the parameters that 

define a solution projection are obtained, additional data that did not participate 

in the search can be mapped onto it. For example, one may apply projection pur- 

suit to a data subsample of size Ns. This requires computation proportional to 

Ns log Ms. Once a subsample solution projection is found7 the.entire data set 

can->be:projected onto it (for inspection by the researcher) with CPU requirements 

simply proportional to N. 
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When combined with isolation, 9 projection pursuit has been found to be an 

effective tool for cluster detection and separation. As projections are found 

that separate the data into two or more apparent clusters, the data points in 

each cluster can be isolated. The PP-algorithm can then be applied to each 

cluster separately, finding new projections that may reveal further clustering 

within each isolated data set. These sub-clusters can each be isolated and the 

process repeated. 

Because of its computational economy, p rejection pursuit can be repeated 

many times on the entire data base, or its isolated subsets, making it a feasible 

tool for exploratory data analysis. The algorithm has so far been implemented 

for projection onto one and two dimensions; however, there is no fundamental 

limitation on the dimensionality of the projection space. 

The Projection Index 

The choice of the intent of the projection index, and to a somewhat lesser 

degree the choice of its details, are crucial for the success of the algorithm. 

Our choice of intent was motivated by studying the interaction between human 

operators and the computer on the PRIM-9 interactive data display system. JJ This 

system provides the operator with the ability to rotate the data to any desired 

orientation while continuously viewing a two-dimensional projection of the multi- 

dimensional data. These rotations are performed in real time and in a continuous 

manner under operator control. This gives the operator the ability to perform 

manual projection pursuit. That is, by controlling the rotations and viewing 

the changing projections, the operator can try to discover those data orienta- 

tions (or equivalently projection directions) that reveal to him interesting 

structure. It was found that the strategy most frequently employed by researchers 

operating the system was to seek out projections that tended to producemany very 

small interpointldistances while; at.:-the--same':Jtime3: maintaining the overall spread 

of -the ;d,ata. *Such.strategies will, for instance, tend to;concentrate the points 

into clusters while, at the same time, separating the clusters. 
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The P-indexes we use to express quantitatively such properties of a projection 

axis, 2, can be written as a product of two functions 

I (2) = s(g) d(i;) (1) 

where s(E) measures the spread of the data, and d(E) describes the "local density" 

of the points after projection onto 2. For s(e), we take the trimmed standard 

deviation of the dtta from the mean as projected onto e; 

s(t) = -1 

$l-P)N 

i 
ti=pN 

(q. i; - Xkj2 / (l-2P)Ni 
/ i 

where (2) 

(1-P)N 

I Xk = 
i=pN 

TFi.l? / (l-2p)N. 

Here N is the total number of data points, and ?i (i=l,N) are the multivariate 

vectors representing each of the data points, ordered according to their pro- 

jections xi . 2. A small fraction, p, of the points that lie at each of the 

extremes of the projection are omitted from both sums. Thus, extreme values of 

??i * e do not contribute to s(g), which is thus robust against extreme outliers. 

For d(e), we use an average nearness function of the form 

N N 

d(E) = c c 
i=l j=l 

f(rij) l(R-rij) 

where r ij = 1 zp-?j.q 

(3) 

and l(T)) is unity for positive valued arguments and zero for negative values. 

(Thus, the double sum is confined to pairs with 0 5 r.. < R.) The function f(r) 1J 

should be monotonically decreasing for increasing r in the range r 5R, reducing 

to zero at r=R. This continuity assures maximum smoothness of the objective 

function, I(S). 
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For moderate to large sample size, N, the cutoff radius, R, is usually chosen 

so that the average number of points contained within the window, defined by the 

step function l(R-r..), is not only a small fraction of N but increases much more 
1J 

slowly than N, say as log N. After sorting the projected point values, ?i * 2, 

the number of operations required to evaluate d(E) [as well as s(6)] is thus about 

a fixed multiple of N log N (probably no more than this for large N). Since sorting 

requires a number of operations proportional to N log N, the same is true of the 

entire evaluation of d(c) and s(E) combined. 

Projections onto two dimensions are characterized by two directions 2 and 

conveniently taken to be orthogonal with respect to the initially given co- 

ordinates and their scales). For this case, equation (2) generalizes to 

s(l& = s(6) s(X) 

and r.. becomes r 
l/2 

I-J ij = [(qa - Zj.l?' 

(2a) 

(34 

in equation (3). 

Repeated application of the algorithm has shown that it is insensitive to 

the explicit functional form of f(r) and shows major dependence only on its 

characteristic width 

f(r)dr. 
0 

-1 
R i R 

! 
rf(r)rdr 

r 
r= 1 I 

i J 

f(r)rdr 

0 0 

(one dimension) (4) 

, 

(two dimensions) . (44 
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It is this characteristic width that seems to define ltlocal" in the search for 

maximum local density. Its value establishes the distance in the projected sub- 

space over which the local density is averaged, and thus establishes the scale 

of density variation to which the algorithm is sensitive. Experimentation has 

also shown that when a preferred direction is available, the algorithm is re- 

markably stable against small to moderate changes in ?, but it does respond to 

large changes in its value (say a few factors of two). 

The projection index I(??) [ or I(s,x) for two-dimensional projections] 

measures the degree to which the data points in the projection are both concen- 

trated locally (d($?).,large),~while, at8~thesame:time, 'expanded globally (s(E) large). 

Experience ‘has,.-shown--thatcprojectiops:thatr‘ihave,:this'property.'1o~a large degree 

tend.-:8to-be,'those;that:are,most interesting:torresearchersL~-~;Thus;~~it,seems natural 

to pursue-those'projections;that-maximize this index. 

One-Dimensional Projection Pursuit 

The projection index for projection onto a one-dimensional line imbedded in 

an n-dimensional space is a function of n-l independent variables that define the 

direction of the line, conveniently its direction cosines. These cosines are the 

n components of a vector parallel to the line subject to the constraint that the 

squares of these components sum to unity. Thus, we seek the maxima of the P- 

index, I(s), on the (n-l)-dimensional surface of a sphere of unit radius, Sn(l), 

in an n-dimensional Euclidean space. 

One technique for accomplishing this is to apply a solid angle transform 

(sAT)~~ which reversibly maps such a sphere to an (n-l)-dimensional infinite 
z. 

Euclidean space E 
n-l 

(-co,co).(see appendix). This reduces the problem from 

finding the maxima of I(s) on the unit sphere in n-dimensions, to finding the 

equivalent maxima of I[SAT('$)] in En-'(-co,co). This replacement of the con- 

strained optimization problem with a totally unconstrained one, greatly increases 
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the stability of the algorithm and simplifies its implementation. The variables 

of the search are the n-l SAT parameters, and for any such set of parameters there 

exists a unique point on the n-dimensional sphere defined by the n components 

of ii. 

The computational resources required by projection pursuit are greatly 

affected by the algorithm used in the search for the maxima of the. projection 

index. Since the number of CPU cycles required to evaluate the P-index for N 

data points grows as NlogN, it is important for moderate to large data sets to 

employ a search algorithm that requires as few evaluations of the object function 

as possible. It is usually the case that the more sophisticated the search al- 

gorithm, the smoother the object function is required to be for stability. The 

P-index, I(e), as defined above, is remarkably smooth, and both Rosenbrock 12 
and 

Powell principal axis 13 search algorithms have been successfully applied without 

encountering any instability problems. For these algorithms, the number of 

objective function evaluations per varied parameter required to find a solution 

projection has been found to vary considerably from instance to instance and to 

be strongly influenced by the convergence criteria established by the user. 

Applying a rather demanding convergence criteria, approximately 15-25 evaluations 

per varied parameter were required to achieve a solution. (Stopping when the 

P-index changes by only a few percent seems reasonable. A convergence criteria 

of one percent was used in all of our applications.) 

In order to be useful as a tool for exploratory data analysis on data sets 

with complex structure, it is important that the algorithm find several solutions 
-a 
?-,.,. 
i; that represent potentially informative projections for inspection by the re- 

r. searcher. This can be accomplished by applying the algorithm many times with 

different starting directions for the search. Useful starting directions in- 

clude the larger principal axes of the data set, the original coordinate axes, 

and even directions chosen at random. From each starting direction, Es, the 
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* 
algorithm finds the solution projection axis, c 

S’ corresponding to the first 

maximum of the P-index uphill from the starting point. From these searches, 

several quit-e-distinct solutions often result..F Each-of.,these ,projections ,can 

then be examined_to determine their usefulness! in-datainterpretation. 

In order to encourage the algorithm to find additional distinct solutions, 

it is useful to be able to reduce the dimensionality of the sphere to be searched. 

This can be done by choosing an arbitrary set of directions, {8,}m,, m < n, 

which need not be mutually orthogonal, and applying the constraints 

It” i=o -G i = 1,m (4) 

on the solution direction E*. Possible choices for constraint directions might 

be solution directions found on previous searches, or directions that are known 

in advance to contain considerable, but well understood, structure. Also, when 

the choice of scales for the several coordinates is guided by considerations out- 

side the data, one might wish to remove directions with small variance about the 

mean, since these directions often provide little information about the structure 

of the data. The introduction of each such:eonstraint?directidn reduces,:by+one 

the number of search variables, and thus increases the computational efficiency 

of the algorithm. 

The algorithm can allow for the introduction of an arbitrary number, m < n, 

of non-parallel constraint directions. This is accomplished by using Householder 

reductions14 to form an orthogonal basis for the (n-m)-dimensional orthogonal 

subspace of the m-dimensional subspace spanned by the m constraint vectors 

I’il~=l’ The n-m-l search variables are then the solid angle transform param- 

eters of the unit sphere in this (n-m)-dimensional space. The transformation 

from the original n-dimensional data space proceeds in two steps. First, a 

linear dimension reducing transformation to the (n-m)-dimensional complement 

subspace, and then the nonlinear SAT that maps the sphere, Sn(gi), to E p-?$). 
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Two-Dimensional Projection Pursuit 

A 
The projection index, I(g,&), for a two-dimensional plane imbedded in an 

n-dimensional space is defined by eqns 2a, 3 and 3a. This index is a function 

of the parameters that define such a plane. Proceeding in analogy 

with one-dimensional projection pursuit, one could seek the maximum of I($,;) 

with respect to these parameters. The data projected onto the plane represented 
A* 

by the solution vectors, It" and t , can then be inspected by the researcher. 

Another useful strategy is to hold one of the directions (for example 2) 

constant along some interesting direction, and then seek the maximum of 
h 

with respect to & in? -l(s), the (n-1)-d* imensional subspace orthogonal 

This reduces the number of search parameters to n-2. The choice of the 

I&G 
to I?. 
constant 

direction, 2, could be motivated by the problem at hand (like one of the original 

or principal axes), or it could be a solution direction found in a one dimensional 

projection pursuit. 

A third, intermediate, strategy would be to first fix 2 and seek the maxi- 

mum of 1(2,x) in 'En-'(s), as described above. Then, holding l fixed at the 

solution value Z+, vary G in ‘Zn-l(X*) seeking a further maximum of I(%?,T). This 

process of alternately fixing one direction and varying the other in the orthog- 

onal subspace of the first, can be repeated until the solution becomes stable. 

A* 
The final directions R* and & are then regarded as defining the solution plane. 

This third strategy, while not as completely general as the first, is computationally 

much more efficient. This is due to the economies that can be achieved in com- 

puting I($?,:), k nowing that one of the directions is constant and that 2-z = 0. 

(Using similar criteria for choosing the cutoff radius as that used for one- 

dimensional projection pursuit, and sorting the projected values along the constant 

direction, allows 1(6,x) to b e evaluated with a number of operations proportional 

to N log N.) 

As for the one-dimensional case, the two-dimensional P-index, I(%?,:) is 

sufficiently smooth to allow the use of sophisticated optimization algorithms. 

Also, constraint directions can be introduced in the same manner as described 

above for one dimensional projection pursuit. 
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Some Experimental Results 

To illustrate the application of the algorithm, we describe its effect upon 

several data sets. The first two are artifically generated so that the results 

can be compared with the known data structure. The third is the well known 

Iris data used by Fisher-l5 and the fourth is a data set taken from a particle 

physics experiment. For these examples, f(r) = R-r, for one-dimensional pro- 

jection pursuit (eqn 3), while for two-dimensional projection pursuit (eqn 3a), 

f(r) = R2-r2. In both cases R was set to ten percent of the square root of the 

data variance along the largest principal axis, and the trimming (eqn 2) was 

P = .05. 

1) Uniformally Distributed Random Data 

To test the effectofprojection pursuit on artificial data having no pre- 

ferred projection axes, we generated 975 data points, randomly, from a uniform 

distribution inside a lb-dimensional sphere, and repeatedly applied one and two- 

dimensional projection pursuit to the sample with different starting directions. 

Table 1 shows the results of 2% such trials with one-dimensional projection pur- 

suit where the starting directions were the 14 original axes and the 14 principal 

axes of the data set. The results of the two-dimensional projection pursuit 

tr&als were very similar. 

The results shown in Table 1 strongly reflect the uniform nature of the 14- 

dimensional data set. The standard deviation of the index values for the starting 

directions is less than one percent, while the increase achieved at the solutions 

averages four percent. Also, only two searches (runs 13 and 14) appeared to con- 

verge to the same solution. The angle between the two directions corresponding 

to the largest P-indices found (runs 19 and 21) was 67 degrees. The small in- 

crease in the P-index from the starting to the solution directions, indicates 

that the algorithm considers these solution directions at most only slightly 

better projection axes than the starting directions. Visual inspection of the 

data projections verifies this assessment. 
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2) Gaussian Data Distributed at the Vertices of a Simplex 

The previous example shows that projection pursuit finds no seriously pre- 

ferred projection axes when applied to spherically-uniform random data. Another 

interesting experiment is to test its effect on an artificial data set with con- 

siderable multidimensional structure. Following Sammon, 
4 

we applied one-dimensional 

projection pursuit to a data set consisting of 15 spherical Gaussian clusters of 

65 points, each centered at the vertices of a lb-dimensional simplex. The variance 

of each cluster is one, while the distance between centers is ten. Thus, the 

clusters are well separated in the l&dimensional space. Figure la shows this 

data projected onto the direction of its largest principal axis. (For this sample, 

the largest standard deviation was about 1.15 times the smallest.) As can be seen, 

this projection shows no hint of the multidimensional structure of the data. In- 

spection of the one and two-dimensional projections onto the other principal axes 

shows the same result. 

Using the largest principal axis (Fig. la@ as the starting direction, the 

one-dimensional PP algorithm yielded the solution shown in Figure lb. The three- 

fold increase in the P-index at the solution indicates that the algorithm con- 

siders it a much better projection axis than the starting direction. This is 

verified by visual inspection of the data as projected onto the solution axis, 

where the data set is seen to break up into two well separated clusters of 65 and 

910 points. 

In order to investigate possible additional structure, we isolated each of 

the clusters and applied projection pursuit to each one individually. The results 

are shown in Figures lc and Id. The solution projection for the 65 point isolate 

3. 
*.a showed no evidence for additional clustering, while the 910 point sample clearly 
i. 

separated into two subclusters of 130 and 780 points. We further isolated these 

two subclusters and applied projection pursuit to each one individually. The 

results are illustrated in Figures le and l-f. The solution for the 130 point 

subcluster shows it divided into two clusters of 65 points each,while the 780 

point cluster separates into a 65 point cluster and 715 point cluster. 
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Continuing with these repeated applications of isolation and projection pursuit, 

one finds, after using a sequence of linear projections, that the data set is 

composed of 15 clusters of 65 points each. 

Two-dimensional projection pursuit could equally well be applied at each 

stage in the above analysis. This has the advantage that the solution at a given 

stage sometimes separates the data set into three apparent clusters. The dis- 

advantage is the increased computational requirements of the two-dimensional 

projection pursuit algorithm. 

3) Iris Data 

This is a classical data set first used by Fisher 
15 and subsequently by many 

other researchers for testing statistical procedures. The data consists of measure- 

ments made on 50 observations from each of three species,. (,one-*quite d'iffereat than 

the other two) of Iris flowers. Four measurements were made on each flower and 

there were 150 flowers in the entire data set. Taking the largest principal axes 

as starting directions, we applied projection pursuit to the entire four-dimensional 

data-+set#.:The result for two-dimensional projection pursuit is shown in Figure 2a. 

As can be seen, the data as projected on the solution plane shows clear separation 

into two well defined clusters of 50 (one species) and 100 (two unresolved species) 

points. The one-dimensional algorithm also clearly separates the data into these 

two clusters. However, this two-cluster separation is easy to achieve and is 

readily apparent from simple inspection of the original data. 

Applying the procedure discussed above, we isolate the 100 point cluster 

(largest standard deviation was about six times the smallest) and re-apply pro- 

jection pursuit, starting with the largest principal axes of the isolate. Figure 

2b shows the data projected onto the plane defined by the two largest principal 

axes. Here the data seem to show no ppparent clustering. 

One dimensional projection pursuit, starting with the largest principal 

axis, was unable to separate this isolate into d-iscerncble clusters. Figure-2c 

shows the results of two-dimensional projection pursuit starting with the plane 

of Figure 2b. This solution plane seems to divide the projected data into two 

discernible clusters. One in the lower right hand quadrant with higher than 
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average density seems slightly separated from another, which is somewhat sparser 

and occupies most of the rest of the projection. In order to see to what extent 

this apparent clustering corresponds to the different Iris species known to be 

contained in this isolate, Figure 2d tags these species. As can be seen, the 

two clusters very closely correspond to the two Iris species. Also shown in 

Figure 2d are some level lines of(the projection onto the same plane of) Fisher's 

linear discriminant function L3, ?, for this isolate calculated by using the known 

identities of the two species. In this example, the angle between the direction 

upon which this linear discriminant function is a projection, and this plane, is 

a little more than 45’. 

The projection pursuit solution can be compared to a two-dimensional pro- 

jection of this isolate that is chosen to provide maximum separation of the two 

species, given the a priori information as to which species each data:lpoint-repre- 

sents. Figure 2e shows the isolate projected onto such a plane whose horizontal 

coordinate is the value of Fisher's linear discriminant for the isolate in the 

full four-dimensional space, ?, while the vertical axis is the value of a similar 

Fisher linear discriminant in %'(?), the three-dimensional space orthogonal to 

$+ . I4 (Ift.~t&dI!Wk&l;lin3 y&ria-nceJ'- were; spherica>! iAn,.-&'& ih~t&~ly~~gi~e.n- c&r&,nate 

system, this vertical coordinate would not be well defined, since the centers of 

the two species groups would coincide inz3(?). While we may feel that the 

vertical coordinate adds little to the horizontal one, linear discrimination 

seems to offer no better choice of a second coordinate, especially since we 

would like this view also to be a projection of the original data -- a projection 

in terms of the original coordinates and scales -- as all two-dimensional pro- 

jection pursuit views are required to be.) A comparison of Figures 2d and 2e 

shows that the unsupervised projection pursuit solution achieves separation Of 

the two species equivalent to this discriminant plane. Since these two species 

are known to touch in the full four-dimensional space, 
2,4 it is probably not 

possible to find a projection that completely separates them. 
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4) Particle Physics Data 

For the final example, we apply projection pursuit to a data set taken from 

17 a high energy particle physics scattering experiment . In this experiment, a 

beam of positively charged pi mesons, with an energy of 16 billion electron volts, 

was used to bombard a stationary target of protons contained in hydrogen nuclei. 

Five hundred examples were recorded of those nuclear reactions in which the final 

produets were a proton, two positively charged pi-mesons, and a negatively charged 

pi-meson. Such a nuclear reaction with four reaction products can be completely 

- described by 7 independent measurables*. This data can thus be regarded as 500 

points in a seven-dimensional space. 

The data projected onto its largest principal axis is shown in Figure 3a, 

while the projection onto the plane defined by the largest two principal axes is 

shown in Figure 3c. (The largest standard deviation was about eight times the 

smallest). One-dimensional projection pursuit was applied starting with the largest 

principal axis. Figure 3b shows the data projected onto the solution direction. 

The result of a two-dimensional projection pursuit starting with the plane of 

Figure 32 is shown in Figure 3d. 

Although the principal axis projections indicate possible structure within 

the data set, the projection pursuit solutions are clearly more revealing. This 

is indicated by the substantial increase in the P-index, and is verified by visual 

inspection. In particular, the two-dimensional solution projection shows that 

there are at least three clusters, possibly connected, one of which reasonably 

separates from the other two. Proceeding as above, one could isolate this cluster 

from the others and apply projection pursuit to the two samples separately, con- 

=: tinuing the analysis. 

CQ * -I- + For this reaction, zbf pt +pzl n2 n-, the following measurables were used: 

x1 = /A2(?c, 37;) ni), x2 = P2& + x3 = V2(P, 4, x4 = P2(C g> x5 = P2(P, q, 

x6 = p2(??, ?(;> -p,), and X7 = P(P, fli, -P,). Here, p2(A, B, * C) = (EA f EB f EC)' 

-(FA + FB 2 FC)' and y2(A, -t- B) = (EA k EB)2 - (FA 5 ?B)2, where E and? represent 

the particle's energy and momentum respectively, as measured in billions of electron 
volts. The notation (a2-represents the inner-product ?s?. The ordinal assignment 
of the two n'lS was done randomly. 
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Discussion 

The experimental results of the previous section indicate that the PP algo- 

rithm behaves reasonably. That is, it tends to find structure when it exists in 

the multidimensional data and it does not find structure when it is known not to 

exist. When combined with isolation, projection pursuit seems to be an effective 

tool for the detection of certain types of clustering. 

Because projection pursuit is a linear mapping algorithm, it suffers from 

some of the well known limitations of linear mapping. The algorithm will have 

difficulty in detecting clustering about highly curved surfaces in the full dimen- 

sionality. In particular, it cannot detect nested spherical clustering. It can, 

however, detect nested cylindrical clustering where the cylinders have parallel 

generators. 

Projection pursuit leaves to the researcher's discretion the choice of 

measurement variables and metric. The algorithm is, of course, sensitive to 

change of relative scale of the input measurement variables, as well as to highly 

nonlinear transformations of them. If there is no a priori motivation for a 

choice of scale for the measurement variables, then they can be independently 

scaled (standardized) so as to all have the same variance. In the spirit of 

exploratory data analysis, the researcher might employ projection pursuit to 

several carefully selected non-linear transformations of his measurement variables. 

-, 
For example;-transformations'-to various-spherical polar coordinate:representations 11 

would enable projection pursuit to detect nested spherical clustering. 

Frequently with multidimensional data, only a few of the measurement 

variables contribute to the structure or clustering. The clusters may overlap 

in many of the dimensions and separate in only a few. As pointed out by both 

Sammon' and Kruskal' , those variables that are irrelevant to the structure or 

clustering can dilute the effect of those that display it, especially for those 

mapping algorithms that depend solely on the multidimensional interpoint distances. 

It is easy to see that the projection pursuit algorithm does not suffer seriously 
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from this effect. Projection pursuit will automatically tend to avoid projections 

involving those measurement variables that do not contribute to data structure, 

since the inclusion of these variables will tend to reduce d(E) while not modi- 

fying s(2) greatly. 

In order to apply the PP algorithm, the researcher is not required to possess 

a great deal of a priori knowledge concerning the structure of his data, either 

for setting up the control parameters for the algorithm or.for interpreting its 

results. The only control parameter requiring care is the characteristic radius 

g defined in eqn. 4. Its value establishes the minimum scale of density variation 

detectable by the algorithm. A choice for its value can be influenced by the 

global scale of the data as well as any information that may be known about the 

nature of the variations in the multivariate density of the points. The sample 

size is also an important consideration since the radius should be large enough 

to include, on the average, enough points (in each projection) to obtain a 

reasonable estimate of the local density. These considerations usually result 

in a compromise,. r=-~' making $ as small as possible, consistent with the sample 

size requirement. Because of the computational efficiency of the algorithm, 

however, it is possible to apply it several times with different values for I. 

Interpretation of the results of projection pursuit is especially straightforward 

owing to the linear nature of the mapping. 

The researcher also has the choice of the dimensionality of the projection 

subspace. That is, whether to employ one, two or higher dimensional projection 

pursuit. The two-dimensional projection pursuit algorithm is slower and slightly 

less stable than the one-dimensional algorithm; however, the resulting two- 

dimensional map contains much more information about the data. Experience has 

shown that a useful strategy is to first find several one-dimensional PP solutions, 

then use each of these directions as one of the starting axes for two-dimensional 

projection pursuits. 
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APPENDIX 

This section presents the solid angle transform (SAT) that reversibly maps 

the surface of a unit sphere in an n-dimensional space, Sn(l), to an (n-l)- 

dimensional infinite Euclidean space, E 
n-l 

(-%4* This transformation is de- 

rived in Reference 11 and only the results are presented here. 

Let (X1,X2,. ..j :X!n)be the coordinates of a point lying on the surface of an 

n-dimensional unit.. sphere and (7 7 1' 2’” .?lnml) be the corresponding point in an 

(n-l)-dimensional unit hypercube E n-1(0,1). Then for -n.:even, the :transformaltion 

is 1 1 

'2i = [.~~ n:;i(n-21)l COS [sin-1,1i{(n-2i;I sin(2fly2i-l) 

(1 Ci. <n/2-1) 

b-f 
-1 xjn = n 2-1 ,1-/b-23 

-3 
sin(2Jrr] ) 

n-l . 
L j=l J 

X 
2i-1 = '2i cot (274 

2i-1) 

xn = 

x = 
n-l 

x 
2i = 

'2i-1 = 

(15i<n/2) , 

L j=l J 

n-3 

l/(n-2J> 

i I 

All 

j=l 2j 

(Tn-2 - 11,2_2)1’2 sin(2flVn-l) 

! 5: ?)2j 
l/C n-2j 11 

] cos [sin-1712i1/(n-2ig sin( 2nV2i-l) 

1 5 i 5 (n-3)/2 

X 2i cot (2l-q 
2i-1) IS i s (n-1)/2 . 
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The Jacobian of this transformation, 

Jn(l) = 2~7~ 42 > 

rc;, 

is a constant, namely the well known expression for the surface area of an 

n-dimensional sphere of unit radius. Adjusted by a factor of the (n-1)st root 

of J n, the transformation is volume preserving, one to one, and onto. The in- 

verse transformation can easily be obtained by solving the above equations for 

the q's in terms of the X-coordinates. The unit hypercube, E n-1(0,1), can be 

expanded to the infinite Euclidean space, E 
n-l 

(-co,oo), by using standard 8S. 

techniques, 
la 

specifically multiple reflection. 
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