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SUMMARY

This paper presents a �nite element method for incompressible multiphase �ows with capillary interfaces
based on a (formally) second-order projection scheme. The discretization is on a �xed Eulerian grid.
The �uid phases are identi�ed and advected using a level set function. The grid is temporarily adapted
around the interfaces in order to maintain optimal interpolations accounting for the pressure jump
and the discontinuity of the normal velocity derivatives. The least-squares method for computing the
curvature is used, combined with piecewise linear approximation to the interface. The time integration
is based on a formally second order splitting scheme. The convection substep is integrated over an
Eulerian grid using an explicit scheme. The remaining generalized Stokes problem is solved by means
of a formally second order pressure-stabilized projection scheme. The pressure boundary condition on
the free interface is imposed in a strong form (pointwise) at the pressure-computation substep. This
allows capturing signi�cant pressure jumps across the interface without creating spurious instabilities.
This method is simple and e�cient, as demonstrated by the numerical experiments on a wide range of
free-surface problems. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multiphase �ows occur frequently in nature and engineering practice. Nevertheless, they still
pose a major research challenge from both, theoretical and computational points of view.
The present study proposes a �nite element splitting technique for a direct simulation of
multi�uid �ows, based on the Eulerian approach. In order to maintain optimal interpolation
rates, however, we also adapt the grid locally around the free boundaries. Based on the
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pioneering works of Osher and Sethian [1] and Unverdi and Tryggvason [2], the most popular
techniques use �xed Cartesian grids using the �nite di�erence method (FDM). The reader
is referred to Reference [3, 4] for recent reviews on the so-called front capturing and front
tracking techniques. The former approach includes the level set and the volume-of-�uid (VOF)
methods that can be combined for optimal numerical e�ciency [5]. Commonly, the density
and viscosity jumps and the surface tension (a Dirac delta function) are regularized/smoothed
across the interface in order to facilitate the application of FDM discretizations (e.g. Reference
[6]). The interface is no longer sharp but has a �nite thickness. It su�ers of at least two obvious
drawbacks. Firstly, the regularization/smoothing must be over a few grid cells, resulting in a
requirement for a high grid resolution. Secondly, such regularization is only �rst order accurate
in space [7], and inherently reduces the accuracy of any formally higher-order schemes when
the singularities are signi�cant.
Most �nite element methods (FEM) for free boundary problems are based on the so-called

Eulerian-Lagrangian approach. The reader is referred to Reference [8] and the references
therein for a brief recent review of the works with this method. One of the most recent
attempts was conducted by Pillapakkam and Singh [9] to study the bubble hydrodynamics in
viscoelastic two-phase �ows. However, the approach they formulated is a direct extension of
the level-set method in the �nite di�erence context. Another direct application of the level set
method was formulated by Quecedo and Pastor [10].
The most important advantages of the FEM with respect to multi�uid �ows are: (i) it

allows for an easy local �tting of the grid to the interfaces and therefore for an optimal
interpolation of the velocity and pressure; (ii) it allows for an easy and accurate incorporation
of the surface tension avoiding the need of regularization of the Dirac delta function there.
This surface force, however, leads to a pressure jump across the interfaces that cannot be
optimally approximated on �xed Eulerian grids. Even if the pressure is eliminated from the
system, using for example a penalty method [11] or the streamline function/curl projection
method [12], this di�culty still remains. Moreover, the former method usually leads to a badly
conditioned linear system, and therefore, to a poor e�ciency for unsteady problems, while the
latter one is very ine�cient when generalized to three-dimensional problems and encounters
di�culties in the enforcement of the boundary conditions. The authors [13] have presented a
3D �nite element technique based on a dynamic basis enrichment for pressure and velocity
and using P2 − P1 elements. The local correction of the approximations leads to a signi�cant
improvement of the mass conservation properties of the algorithm. In the present paper, we
extend the second-order (in time) projection scheme of Kim and Moin [14] to multiphase
incompressible �ows. The resulting technique can be considered as a compromise between
the arbitrary-Lagrangian–Eulerian (ALE) approach and the �xed grid, Eulerian approach. It
possesses the major approximation advantage of the former one, temporarily �tting the grid
to the boundary at each time step, but avoids the need of regriding. The local grid adaptation
captures the discontinuities of the pressure, and the velocity derivatives. It also facilitates the
imposition of the pressure boundary conditions at the interface, at the pressure computation
substep of the projection scheme. The adaptation is much easier if �rst-order elements are
used and therefore we applied a stabilized �rst-order approximation for both, the pressure and
velocity.
The rest of the paper is organized as follows. In Section 2 we present the mathematical

model and a discussion about the interface capturing. The discretization procedure is presented
in Section 3, including the time splitting, spatial discretization procedure and the enforcement
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of the boundary conditions. The algorithms for the curvature computation and local grid adap-
tation are also described. The method is validated in Section 4 using available experimental
data and convergence tests. The conclusions are summarized in Section 5.

2. PROBLEM FORMULATION

We consider a two-dimensional �ow domain � that contains two di�erent Newtonian �uids
�1 and �2, with constant densities (�1, �2) and viscosities (�1, �2). The �uids are assumed
to be homogeneous, immiscible and incompressible, and separated by an interface �. In each
single-phase domain, the �uid motion is governed by the Navier–Stokes equations which, in
a Cartesian coordinate system x=(x; y) with the y-axis pointing opposite to gravity, read

�i
Dui
Dt

= �i∇2ui −∇Pi; in �i (1)

∇ · ui =0; in �i ; i=1; 2 (2)

in the time interval t ∈ [0; T ]. Here the hydrodynamic pressure P=p+�gy is the total pressure
p minus the hydrostatic pressure, u=(u; v) is the velocity and g is the acceleration due to
gravity. The total derivative in an Eulerian reference frame is D=Dt= @=@t + (u · ∇). Let us
de�ne �=�1 ∪ �2 and �= @�1 ∩ @�2. We consider the case of droplets or bubbles in a
viscous liquid and therefore we suppose that @�2 ∩ @�=?.
We assume Dirichlet boundary conditions on @�, ui|@� = ub. Using the classical hypothesis

that the surface tension is proportional to the mean curvature � of �, we have the following
boundary conditions on �:

[P − (�n) · n]= ��+ [�]gy (3)

Here, �=�[∇u+(∇u)T] is the deviatoric stress, [·] represents the jump between the limiting
values from the two sides of �, n is the unit vector normal to the interface pointing towards
the interior of �2, and � is the coe�cient of surface tension. The mean curvature is �=∇·n.
For the purpose of the projection scheme introduced below, it is more convenient to split the
condition (3) as given by

[P] = ��+ [�]gy (4a)
[
�
@u
@n

]
=0 (4b)

This splitting introduces a splitting error at the free boundary whose implications are not
studied yet. It deserves a careful analysis that is beyond the scope of this paper. Note, how-
ever, that in the context of a projection scheme, it is very di�cult to implement (3) exactly
because the major goal of the projection schemes is to split the pressure and velocity problems
and therefore these conditions are almost exclusively used in the literature when projections
schemes are employed (e.g. Reference [15]). Also, Equations (4a) and (4b) are not equivalent
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to (3) but they do enforce it. The split set of boundary conditions determines the properties
of the solution around the interface. The total pressure is discontinuous across �, due to the
surface tension if � �=0 and/or the buoyancy if [�] �=0. The normal derivatives of the velocity
across � can be discontinuous if [�] �=0 on �.
The �uid properties (�i; �i) are identi�ed using a continuous indicator function � that

satis�es

D�
Dt
=0 (5)

Following the concepts of the pseudo-concentration by Thompson [16] and the level set
function by Osher and Sethian [1], it is convenient if the �uid interface � corresponds to the
zero level set �=0, so that

x∈




�1 if �(x)¿0

� if �(x)=0

�2 if �(x)¡0

(6)

The normal direction to � is given by n=∇�=|∇�| at �=0. It automatically takes care of
merging and breaking of the interface. The present method di�ers from the level set method
in the �nite di�erence context, where � must be a signed distance function over the entire
time period T (see Reference [3]). Here, this is unnecessary because we use the level set
function only for identi�cation of the front and the di�erent phases.

3. DISCRETIZATION

3.1. Time splitting

For the time discretization we use a classical splitting of the operators involved in the Navier–
Stokes equations. Starting at time level n∈ [0; N ] where T =N�t, the linearized fractional
substeps are summarized as

ũi = uni −�t[ 32 (uni · ∇)uni − 1
2 (u

n−1
i · ∇)un−1i ] (7a)

�iu∗i = �iũi +
1
2 �t�i∇2(uni + u

∗
i ); u∗i |@� = un+1b + �−1i ∇�ni |@� (7b)

�iun+1i = �iu∗i −∇�n+1i ; ∇ · un+1i =0; n · un+1i |@� = n · un+1b (7c)

Here, ũi is the convected velocity, u∗i is the intermediate velocity and �i is an auxiliary
variable related to the pressure. Note that the advection substep (7a) and the di�usion substep
(7b) can, in general, be uni�ed in a single advection-di�usion substep. However, in the
present method, as it will become clear below, the spatial discretization of (7a) and (7b) are
performed di�erently and therefore we prefer to keep the two substeps separated. Moreover,
the convection of the level set function �, the Cauchy problem for a scalar, can be done in a
manner akin to that of ũi, which makes it nearly computationally free. Equation (7c) clearly
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implies that

∇ · (�−1i ∇�n+1i )=∇ · u∗i (8)

subject to an equivalent boundary condition ∇(�n+1i − �ni ) · n|@� =0. The actual pressure,
which is not explicitly computed during time integration, is related to �i via

Pn+1i =�n+1i =�t − 1
2 �∇ · u∗i (9)

The mass conservation, as demonstrated by the numerical examples, is satisfactory, although
the convection is solved in a non-conservative form. As claimed by Kim and Moin [14],
this scheme is second-order accurate in time for the velocity. Actually, it can be shown (see
Reference [17]) that, in case of a single-phase �ow, this scheme is equivalent to the so-called
rotational form of the pressure correction scheme whose analysis is presented by Guermond
and Shen [18]. In case of multi�uid �ows, however, the splitting of the boundary condition
(3) and an arti�cial interface condition on � that will be discussed below will deteriorate the
time accuracy of the scheme.
An optimal spatial approximation for multi�uid problems can be achieved only if the in-

terpolants for pressure and velocity have the same singularities across the interface as the
pressure and velocity themselves. It is clear from point of view of the interpolation theory
that at least one order of convergence will be lost if the points of discontinuity of a piecewise
continuous function are not guaranteed to be points of discontinuity of a piecewise linear
interpolant. Li and Lai [19] developed an incremental projection scheme with the immersed
interface method in the �nite di�erence context and reported second-order accuracy (in L∞
norm) for a certain free-surface problems with a constant density and viscosity ([�]= [�]= 0).
To the best of our knowledge, this is the only scheme claimed to be second order (in space).
Note that if the scheme is incremental then the pressure Pn from the previous time step will
be involved in computing the intermediate velocity at time level n+1. However, unlike in the
case of single-phase �ows, if the point x moves at the time step n+1 from one of the phases
into the other then the pressure prediction Pn at x will be O(1) away from the pressure at
level n + 1 there. This is because the jump of the pressure across the free boundary is in
general a non-zero O(1) function with respect to the time step and the grid size. This will
certainly deteriorate the splitting error of the scheme and may result in the development of
instabilities around the free boundary. Unfortunately, this problem is not addressed explicitly
in the literature. We conjecture that in order an incremental scheme to achieve a higher than
�rst-order accuracy in time (for the velocity), in case of multiphase �ows on Eulerian grids,
it is necessary to take as a pressure predictor in a given point x the previous level pressure at
the foot of the characteristic originating at this point. This may also shed some light on the
development of high-order incremental schemes for single phase �ows. The present form of
projection involves the inconvenience of the boundary condition on the intermediate velocity
given by the second equation of (7b). It requires computing explicitly the gradient of � on
@� which is a discontinuous function in the �nite element context. Therefore, we project it
onto the space of u∗ as discussed in Section 3.3. This projection makes the scheme equivalent
to one of the stabilized schemes discussed by Codina [20] and therefore allows for the use
of an equal (�rst in the present case) order approximation for the pressure and velocity. The
incorporation of the internal boundary conditions on � will be discussed in the next section.
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3.2. Weak formulation

The weak formulation of (7a) is quite straightforward and therefore we present only the
formulations of the split generalized Stokes problem (7b), (7c) and (8), with the special
treatment for the interfacial boundary conditions.
Let us choose the test functions v for the velocity from H 1

0 (�) (the Sobolev space of
functions with square integrable spatial derivatives and vanishing on @�). Then summing the
Galerkin formulations in �i (i=1; 2) we obtain the following weak formulation of (7b):∫

�
[�(u∗ − ũ) · v+ 1

2 �t�∇(u∗ + un): ∇v] d�=0 (10)

Here it is convenient to de�ne

�=�i; �=�i; �=�i ; u∗= u∗i and ũ= ũi in �i (i=1; 2)

Note that the surface integral that appear after the integration by parts of the second-order
terms is equal to zero along � because of (4b) which is applied to the intermediate
velocity u∗.
Since � is discontinuous across �, we cannot derive such a uni�ed weak formulation for

Equation (8). Therefore, we derive two formulations (one for each subdomain) and apply the
internal boundary conditions (4) for the pressure after the spatial discretization is performed
(as explained below). Choosing the test functions for the pressure qi ∈H 1(�i), multiplying the
�rst equation of (7c) by ∇qi, integrating the velocity terms by parts and taking into account
the second equation of (7c) we end up with

∫
�i
�−1i ∇�n+1i · ∇qi d�= −

∫
�i
∇ · u∗i qi d� +

∫
@�i
�−1i ∇�n+1i · nqi ds; (i=1; 2) (11)

The pressure related quantities �n+1i are discontinuous functions and cannot be used for im-
posing the boundary condition onto the next intermediate velocity u∗. Therefore, we project
them (via an L2 projection) onto a subspace of H 1(�i). This is done by multiplying the �rst
equation of (7c) by the test functions for the velocity v and integrating over �i. Summing
the two equations (i=1; 2) we obtain

∫
�
�(un+1 − u∗) · v d�= −

∫
�1

∇�n+11 · v d�−
∫
�2

∇�n+12 · v d� (12)

Note that the integrals in the right-hand side cannot be uni�ed as a single integral over �
because �n+11 and �n+12 generally do not match on the internal boundary �. This additional
projection step which is clearly equivalent to an L2 projection of the (generally) discontinuous
gradients of �n+1i onto a subspace of H 1(�i), is actually proposed by Codina [20] to stabilize
a set of projection methods (with respect to the pressure). With it, the present projection
scheme becomes identical (at least in case of a single-phase �ow) to one of the stabilized
projection schemes analysed by Codina [20] who proved that if the time step is chosen to
be su�ciently large this scheme should not generate spurious pressure modes if equal-order
pressure–velocity approximation is used. The numerical tests with two-phase �ows, presented
below, showed that the stability of the scheme is preserved in this case as well.
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FE METHOD FOR INCOMPRESSIBLE MULTIPHASE FLOWS 7

3.3. Spatial discretization

The spatial discretization is performed on a �xed, Eulerian �nite element grid (reference
grid) which, however, is locally re�ned (re�ned grid) at each time step so that the interface
� is always aligned with element faces i.e. it never crosses the interior of a �nite element
at any given discrete time instant tn. An element on the reference grid that intersects with
the interface and is to be reconnected to construct the re�ned grid is called a front element.
Details of the local re�nement are given later. The velocity space is approximated by means
of a P1 approximation on the re�ned grid. Equation (7a) as well as the equation for the
indicator � (5) are discretized on the reference grid while (7b) and (7c) are discretized on
the re�ned grid. Let 	a be the P1 shape function for the velocity and 	a for the pressure
corresponding to a point a, the weak formulation (10) reads

∫
�
[�(u∗h − ũh) ·�a + 1

2 �t�∇(u∗h + unh): ∇�a] d�=0 (13)

Here, u∗h is the discrete velocity subject to the external boundary condition u
∗
h = u

n+1
b +

�−1∇�n1;h. Since ∇�n1;h is discontinuous across the element faces we use its L2 projection
already computed in the step (12).
As already mentioned, we discretize �n+1i using the same grid and basis 	a as the one

used for the discretization of u∗. The discrete versions of (11) in each phase then read (again
the subscript h denotes a discrete quantity)

∫
�1
�−11 ∇�n+11;h · ∇	a d�=−

∫
�1

∇ · u∗1	a d� +
∫
@�1
�−11 ∇�n+11;h · n	a ds

+
∫
�
�−11 ∇�n+11;h · n	a ds (14a)

∫
�2
�−12 ∇�n+12;h · ∇	a d�=−

∫
�2

∇ · u∗2	a d� +
∫
@�2
�−12 ∇�n+12;h · n	a ds

−
∫
�
�−12 ∇�n+12;h · n	a ds (14b)

Note that if at t=0; ∇�01;h·n=0 on @� the �rst surface integral in the right-hand side of (16a)
will be equal to zero at any further time level. We have already one boundary condition on
� for this set of equations, following from (4a). Since these are the Galerkin formulations of
two Poison equations (in �1 and �2, respectively) we need two boundary conditions to close
the problem and the most convenient form for the second condition is [�−1∇�h · n]= 0 on �
because it would eliminate the interfacial integrals in the right-hand side of (14a) and (14b)
if the two formulations are summed. This condition is certainly arti�cial but it is unavoidable
in the context of projection schemes. Since u∗h is continuous across �, it follows from the
�rst equation of (7c) that this condition is equivalent to assume that the normal component
of un+1h is continuous across �. The implications of this condition are not studied although it
is widely used (sometimes quite implicitly) in combination with projection schemes.
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Let us consider one interface node denoted by J . The equations of the discrete systems
(16a) and (16b) that correspond to this node are

∑
I ∈NJ

�n+11;I

∫
�1
�−11 ∇	I · ∇	J d�= −

∫
�1

∇ · u∗1; h	J d� (15a)

∑
I ∈NJ

�n+12; I

∫
�2
�−12 ∇	I · ∇	J d�= −

∫
�2

∇ · u∗2; h	J d� (15b)

NJ are all the nodes linked to J through the elements containing J , including J itself. Now
we impose the internal boundary condition (4a), which appears to be a periodic-like boundary
condition for these formulations. It reads

�n+12;h |� =�n+11;h |� + [�] (16)

where [�] is given by

[�]=�t(��+ [�]gy� + 1
2 [�∇ · u∗h ]):

Provided that we can compute [�] pointwise as explained in the next section, we can impose
this condition after summing (15a) and (15b) which yields

∑
I ∈NJ

(
�n+11; I

∫
�1
�−11 ∇	I · ∇	J d� +�n+12;I

∫
�2
�−12 ∇	I · ∇	J d�

)

= −
∫
�
∇ · u∗h	J d� (17)

Note that in this equation, some of the nodes in NJ will be on � and therefore we will have
two values �1;I and �2;I for the pressure related quantity �, corresponding to the two �uids
in �1 and �2. We can eliminate (condense) one of these values using condition (16), say
�2; I , and thus the discrete equation corresponding to the node J becomes

∑
I ∈NJ

�n+1I

∫
�
�−1∇	I · ∇	J d�= −

∫
�
∇ · u∗h	J d�

− ∑
K ∈N�J

[�]K
∫
�2
�−12 ∇	K · ∇	J d� (18)

where N �J is the subset of nodes in NJ that belong to � from �2. This procedure is the same
as the one used to impose periodic boundary condition for the pressure.
Likewise, we can obtain the discrete formulation for (12):∫

�
�(un+1h − u∗h) ·�a d�= −

∫
�1

∇�n+11;h ·�a d�−
∫
�2

∇�n+12;h ·�a d�

of which the right-hand side can also be rewritten similar to (18):∫
�
�(un+1h − u∗h) ·�J d�= −

∫
�
∇�n+1h ·�J d�− ∑

K ∈N�J
[�]K

∫
�2

∇	K ·�J d� (19)
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For the purpose of pressure condensation, we need to evaluate the jump [�] pointwise in all
the nodes on the boundary. This includes the hydrostatic jump [�]gy�, the interface curvature
� and the divergence correction term 1

2 [�∇ · u∗h ] that generally does not vanish if [�] �=0. We
project the correction term ��= 1

2[�∇ · u∗h ], which is also needed when retrieving the global
pressure (9), using the following least squares approximation:

(��;h;	a)�i =(
1
2 �i∇ · u∗h ;	a)�i (20)

in each of the subdomains �i. Here (: ; :) denotes the usual L2 inner product. By lumping the
mass matrix we can localize this to the interface nodes only. Note that the so-computed veloc-
ity divergence will be discontinuous across the interface because we solve the two problems
in (20) separately.

3.4. Interface curvature

The pressure condensation technique introduced above requires also an explicit pointwise
computation of the curvature of the interface �. There are several methods that can be used
for this purpose. Some authors use smoothing techniques such as the cubic spline interpolant
method [21], for example. These techniques, however, are quite sophisticated if applied to
three-dimensional problems and therefore we use directly the zeroth level set of � for capturing
of � i.e. we �nd all points y on the edges of the front elements such that �(y)=0. Then the
curvature of an arbitrary level set is given by

�(x)=∇ · n�=∇ · ∇�(x)
|∇�(x)| ; for x∈� (21)

Probably the easiest way to compute the pointwise curvature is to approximate it using the
following least squares approximation

∫
�
�h	a d�= −

∫
�
∇	a · n� d� +

∫
@�
n� · n@�	a ds (22)

where n� and n@� are the unit normal directions of the level sets and the external boundary,
respectively. n� is constant in case of linear triangular �nite elements. Note that the right-hand
side term of (21) is integrated by parts in (22). The last term of above equation is to be
determined from the so-called contact angle condition that should be enforced when a contact
point/line exists or this term should vanish for a closed surface. Similarly to the convection of
level set functions (see Reference [22]), this mass-matrix problem can also be localized within
the neighbourhood of the interface by lumping of the mass matrix. We resolve the curvature
on the reference grid while the curvature on the interface (i.e. in the intersection points y) is
interpolated when reconnecting the front elements. The accuracy of the calculation of interface
curvature is evaluated in Table I by placing a unit circle (R=1) at the centre of a 4× 4
square using subsequent re�nements of right angle triangles. The curvature approximation
is clearly second-order accurate. This technique works reasonably well up to moderate sur-
face tension. However, for large surface tension some sort of smoothing was necessary and
we used the simple inverse area-weighted averaging as recommended by Gresho and Sani
[23, p. 938].

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:1–19



10 T. CHEN, P. D. MINEV AND K. NANDAKUMAR

Table I. Calculation of interface curvature: a unit circle (R=1) placed at the centre of a 4× 4 square
discretized by right triangles.

Reference Intersection Mean value Standard
grid points (+1) deviation ||E(�)||1 ||E(�)||∞
21× 21 62 1:064× 10−2 1:301× 10−2 1:502× 10−2 3:238× 10−2

41× 41 134 2:719× 10−3 3:027× 10−3 3:520× 10−3 8:117× 10−3

81× 81 270 7:434× 10−4 7:041× 10−4 8:593× 10−4 2:101× 10−3

161× 161 542 1:952× 10−4 1:689× 10−4 2:135× 10−4 5:280× 10−4

Rate / / / 4.1 3.9

3.5. Element re�nement around the front

There are at least three di�erent ways to introduce new degrees of freedom for both, the
velocity and the pressure around the interface so as to account for their singularities there.
These are:

(a) Construction of polygonal (with more than 3 sides eventually) elements by incorporat-
ing the intersection points into the front element nodes, resulting in a time-dependant
mapping and non-standard element basis [24]. This technique is rather elaborate and
has only been applied to 2D solid-particle �ows where the domains are �ctitious inside
the particles. Its extension to 3D is also nontrivial.

(b) Dynamic enrichment of the element basis while keeping the standard mapping for
the front elements [13, 25]. This method works on the permanent grid and does not
require any reconnection of the front elements if the interface is represented by a set
of Lagrangian surface markers/patches. The elemental basis is enriched to be com-
patible with the discontinuities of the pressure and the velocity derivatives. Due to
these singularities at the interface, the Gaussian quadratures may not provide enough
accuracy for the integration in the front elements and over the surface elements, and
therefore one needs to use adaptive lower-order Newton–Cotes quadrature. Neverthe-
less, the dynamic basis enrichment can be used for 3D higher-order (Taylor–Hood)
elements where the reconnection of the front elements is quite a demanding task.

(c) Local grid adaptation/reconnection (e.g. Reference [11]). In this method the front
elements are re�ned so that the interface is always aligned with some element faces.
Then the piecewise the singularity of the velocity derivatives is automatically enforced
and using the pressure condensation mechanism proposed above one can enforce the
singularity of the pressure. Moreover, exact (Gaussian) numerical integration can be
used. The alignment/re�nement of 2D triangular elements is quite an easy task and
we discuss it below. The reader is referred to Reference [25] for the tetrahedron-
partitioning algorithm developed for crack growth problem without regriding, although
it was motivated by the need for an accurate numerical integration when implementing
a similar enrichment of (b). The re�nement of 3D higher-order elements is a more
challenging task and the method discussed in (b) may be a better choice.
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Figure 1. Reconnecting the front elements (pressure is double valued at D and E).

The identi�cation of the front elements is quite straightforward because in such elements
the level set function � would have a di�erent sign in two of the vertices. The position of the
zero level set can be determined using the linear �nite element interpolant of � in the given
front element. It is quite clear then (see Figure 1), that if the front triangle is intersected
by a line so that exactly two of its sides are intersected, it can be subdivided into exactly
three triangles without a violation of the connectivity rules for a �nite element triangulation.
Since this is the most common situation, it is algorithmically simpler if we do not allow the
intersection to occur through a vertex of the front element and then this would be the only
possible situation left (we assume that the reference grid is �ne enough, so that the interface
cannot intersect all the three sides of the triangle). This restriction is enforced in the following
manner. If the distance between the zero level set point on some of the sides of the triangle
and one of the vertices is smaller than a preset minimum allowed distance, �=O(h2), than
this point is �ctitiously moved away from this vertex (without resetting the values of �) on
a distance �. This mechanism introduces an O(h2) error in the approximation of the zeroth
level set which is consistent with the overall accuracy of the method.
The extension of this re�nement algorithm to 3D requires taking into account more possi-

bilities for the intersection of � with the edges of the front elements. It will be presented in
a forthcoming paper.

3.6. Implementation details

The implementation of the algorithm described above is a non-trivial task because of the
introduction of dynamic (temporary) degrees of freedom around the interface �. They are
stored separately from the degrees of freedom associated with the reference grid nodes. The
matrices are also dynamically partitioned so that only the coe�cients corresponding to the
nodes in the front elements are recomputed at each time step. The overall algorithm proceeds
as follows:

(a) Solve the pure convections for velocity ũ and level set function �n+1 on the reference
grid;
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(b) Identify the front elements and compute interface curvature � (localized in front ele-
ment nodes only) on the reference grid based on the advected �n+1;

(c) Reconnect the front elements to construct a new re�ned grid, interpolate un, ũ and �
at the intersection points. Compute the ‘pressure’ jump [�] and condense the pressure;

(d) Solve the problems for un+1 and �n+1 on the re�ned grid;
(e) Reload the velocity and pressure vectors and go to the next time level.

In all cases when the mass matrix is to be inverted, we used the lumped version of this
matrix that greatly reduces the computational cost. Note that in case of �rst-order elements
(used here) the mass lumping through inexact integration is equivalent to row-summing of
the matrix. The mass lumping does not spoil the spatial accuracy of the method in case of
�rst-order elements.

4. NUMERICAL RESULTS

4.1. Front reconnection/re�nement test

Before applying it to multi-phase �ows, we tested the proposed method, especially the front
element reconnection, on a well-known single-phase problem, the lid-driven cavity �ow. We
set �=0; �1 =�2 = 1:0 and �1 =�2 = 1=Re, where Re=40 is the Reynolds number based on
the upper-lid velocity and cavity length. The unit cavity is subdivided into a grid of right
triangles with 312 nodes. In the �rst case we resolve the steady �ow without reconnection
(on the reference grid only). In the second case we initially place a circular curve (properly
initializing �) in the middle of the cavity and perform the re�nement around this (advected)
�ctitious interface at each time step. The two results are compared in Figure 2 that shows
the reference/re�ned grids and velocity contours. At t=2:0, when the front has undergone a
severe deformation the results are essentially the same.

4.2. Curvature-driven �ow

The next test case is the so-called equilibrium state test. Consider a circular �uid particle in
another viscous �uid at rest, under a zero gravity condition. Even at non-zero surface tension
the circular shape of the particle should be preserved and the �uids should remain at rest no
matter how long we integrate the equations in time. This problem is much more demanding
than it appears at a �rst glance. It is particularly troublesome if an Eulerian method is used
to solve it. For strong surface tension or long time integration, a signi�cant loss of mass
may be accumulated in this case (see Reference [6]). We simulated the equilibrium state
of a circular bubble of a radius R=0:25 (constant curvature �=1=R) in a static �uid with
�1 =�2 = 1; �1 =�2 = 0:1; g=0, �=1 (Laplace number La=��R=�2 = 250). The unit square
domain � was meshed using 252 nodes and right angle triangles. The initial velocity and
pressure are set to zero. The system reaches the steady state instantly, right after the �rst
time step and the pressure becomes almost constant in each of the phases. The dimensionless
velocity measured by the capillary number Ca= ||u||∞�=� increases to O(10−5) but does not
grow in time. This, so-called ‘parasitic �ow’, is caused by the approximation of the curvature
of the interface. Note, however, that in dynamic problems, there will be an additional con-
tribution due to the splitting error of the projection schemes that deteriorates the incompress-
ibility of the velocity �eld. In spite of the piecewise-linear approximation of the interface, the
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Figure 2. Single-phase cavity-driven �ow test for the grid reconnection and skewness tolerance
(Re=40; t=2:0): (a) without front; and (b) with front reconnection; (1) reference/re�ned grids, (2)

u contours and (3) v contours. The dashed line indicates the initial shape.

magnitude of the ‘parasitic �ow’ is within an acceptable range, one order of magnitude lower
than in the front tracking method of Shin and Juric [26]. We used the same resolution to
resolve the problem as in this latter study. The reader is referred to References [4, 21] for
detailed discussions on this numerical phenomenon.
The next test problem that we considered is the so-called bubble relaxation test. At nonzero

surface tension and zero gravity conditions any �uid particle whose shape deviates from
circular (spherical in 3D) should recover the circular (spherical in 3D) static and stable
shape. An ellipse was initially placed at the centre of a unit square cavity discretized with
312 nodes and right angle triangles. The ellipse axes are 5=16 and 1=5, and its area is equal
to the area of a circle with a radius of 1=4. The �uid properties outside and inside the ellipse
are �1 =�2 = 1:0; �1 =�2 = 0:1; g=0. With �=1:0, which is considered to be a large surface
tension coe�cient, the �ow quickly reaches the equilibrium state. As shown in Figure 3(a), the
ellipse restores a circular shape within 30 time steps (�t=0:01). One of the instantaneous
velocity �elds is shown in Figure 3(b). At the 100th time step when the simulation was
terminated, the mass loss was less then 0.1%. The initial and equilibrium-state results are
presented in Figure 3. In Table II we present the results for the same problem obtained on a
series of successively re�ned grids. In order to eliminate the in�uence of the temporal error
we chose a very small time step �t=0:001. The results are analysed at t=0:2 when the
bubble shape is still elliptical. The relative errors (between two successive grids) measured
in various norms show slightly lower than quadratic convergence for both, the velocity and
the pressure. The level set function converges with the same rate. It is also seen that the use
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Figure 3. Relaxation of an initially elliptical bubble in a viscous �uid (�1 =�2 = 1:0; �1 =�2 = 0:1,
�=1:0; �t=0:01; 312 nodes): (a) front evolution; (b) velocity �eld at t=0:1; (c) the plot of � right
after the �rst time step; and (d) the equilibrium-state �. Initial shape �(x; y)= (16x=5)2 + (5y)2 − 1.

Table II. Convergence test for the relaxation of an initially ellipsoid bubble driven by
large surface tension, analysis at t=0:2 with �t=0:001.

Reference Change of
grid mass (%) ||E(u)||1 ||E(P)||1 ||E(u)||∞ ||E(P)||∞
21× 21 0.22 / / / /

41× 41 0.09 2:503× 10−2 6:458× 10−2 2:852× 10−2 1:864× 10−1
81× 81 0.02 7:166× 10−3 1:796× 10−2 8:028× 10−3 3:307× 10−2

Rate / 3.5 3.6 3.6 5.6

of L∞ norm for measuring pressure is problematic, since pressure is discontinuous across the
interface.
Another test is the relaxation of a more sophisticated star�sh-shaped droplet de�ned by the

level-set function

�(r; �)= r − 0:2 sin(5�)− 0:5; (06�62�)
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(a) t = 0.0

(c) t = 0.15

(b) t = 0.1

(d) t = 1.0

Figure 4. Relaxation of an initially star�sh-shaped droplet in an otherwise stationary
�uid (�1 =�2 = 1:0; �1 =�2 = 0:1, �=1:0, �t=0:005, e�ective grid size ∼= 1=40).

Initial shape �(r; �)= r − 0:2 sin(5�)− 0:5.

initially placed at the centre of a circular (R=1) domain. The parameter setting is �1 =�2
= 1:0, �1 =�2 = 0:1, g=0 and �=1:0. The domain is resolved with a general triangulation
of element size h∼=1=20 and �t=0:005. Prior to the front elements being reconnected at
each time step, we conducted an adaptive h-re�nement of the reference grid, which was done
by quartering the front elements and their immediate neighboring elements. The e�ective
element size near the interface was therefore he= h=2. Due to the large surface tension, the
interface quickly approached the equilibrium state with a small-amplitude oscillation around it.
The evolution of the interface and the adaptive h-re�nement are presented in Figure 4. Only
0:12% of mass loss was accumulated during the entire simulation and it occurred mostly
(0:08%) in the �rst few time steps. The same problem was solved by Li and Lai [19] using
the immersed interface method, except that they used a �ner uniform Cartesian grid (1602 in
a [2× 2] domain) and a much smaller surface tension coe�cient (�=0:05). Nevertheless, the
loss of mass they reported was 1.61%.

4.3. A rising gas bubble

At the end, we present a quantitative comparison for the motion of a cylindrical gas bubble
formed in a low-viscosity liquid with the experimental investigation by Walters and Davidson
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Figure 5. Evolution in time of a gas bubble in water (Re=1000, We=200,
Fr=1; �1=�2 = 816; �1=�2 = 64; �t=0:001).

[27]. De�ning the reference velocity U =(gR)1=2 where R is the initial bubble radius, we
have the Reynolds number de�ned by Re=�1UR=�1, Weber number We=�1U 2R=� and unity
Froude number Fr=1. The centroid of the bubble and its speed are computed by

xb=
∫
�2
x d�=

∫
�2
d� and vb=

∫
�2
u d�=

∫
�2
d�

The values of the parameters are Re=1000; We=200, �1=�2 = 816 and �1=�2 = 64, which
are similar to the experimental values in Reference [27]. The problem was solved in half of
the domain imposing symmetry boundary condition at axis of symmetry. In order to prevent
the bubble from leaving the computational domain we keep the bubble centroid �xed by
subtracting vb from the convection velocity in (7a). This idea is borrowed from the concept
of grid velocity in the ALE. Instead of monitoring xb, which should be �xed at the origin, the
characteristic trajectory of the centroid can be obtained by integrating vb in time. The boundary
conditions are no-slip for the vertical walls and open for the bottom. The computational
domain is [0; 312 ]× [−312 ; 312 ] with the bubble centroid at the origin, discretized by e�ective
101× 201 nodes and triangular elements.
The bubble evolution is presented in Figure 5. The formation of liquid tongue, skirt rolling,

pinch o� and spherical cap of the main bubble correlate well with the experimental pictures
taken by Walters and Davidson [27]. The pinch o� started at about t=4:42 in their experiment
(the 18th frame, 80 frame/s, R=2:54 cm). The timing of pinch o� also agrees with the
numerical investigations by Baker and Moore [28] and Sussman et al. [6] obtained with
di�erent methods. Details of the detachment of two small bubbles from the main one at
its lower edges are shown in Figure 6. In this case approximately 7% of the bubble mass
was lost, mainly due to the unresolved sub-grid e�ect during the stretching and pinch o�. If
these e�ects are not presented the scheme preserves the mass reasonably well. The distance
covered by the bubble centroid as a function of time is given in Figure 7, compared with the
experimental measurements and the potential theory of Walters and Davidson [27]. The entire
evolution of the velocity and the centroidal displacement are presented in Figure 8. After the
initial acceleration (t¡1) the velocity decelerates to a minimum at t ∼=3:0 and then starts to
increase until the detachment of two small bubbles.
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Figure 6. Pinch o� of a gas bubble in water, detachment and streamtraces (Re=1000,
We=200; Fr=1, �1=�2 = 816; �1=�2 = 64).

Figure 7. Initial motion of a cylindrical gas bubble in water: centroid displacement
(Re=1000; We=200, Fr=1; �1=�2 = 816; �1=�2 = 64).
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Figure 8. Time histories of velocity and displacement of the bubble centroid
(Re=1000; We=200; Fr=1, �1=�2 = 816; �1=�2 = 64).
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5. CONCLUSIONS

A 2D �nite element method for incompressible multi�uid �ows with capillary interfaces, based
on a formally second-order projection scheme has been formulated in this paper. Its simplicity
and e�ectiveness have been demonstrated for a wide range of free-surface problems. Extension
of the present method to 3D is rather straightforward because the 3D-reconnection technique
already exists. The �uid phases are advected and identi�ed using the level set function. Using
a front reconnection technique, the interfacial singularities are optimally approximated.
The least-squares method for computing the curvature enables the piecewise linear approx-

imation for the interface. With time splitting, the convection step, including that for the level
set function, is integrated over the permanent grid for a more relaxed restriction on numerical
stability. The success of the projection method for the remaining generalized Stokes problem
heavily relies on a proper pressure condensation. It will not only facilitate the ‘one-�eld’
solver, but also allows the pressure to instantly adjust itself to any signi�cant jump across an
interface due to the buoyancy and surface tension. The resultant convergence of pressure is
much faster than otherwise ignoring the jump. Numerical experiments have shown that such
an internal and implicit treatment of pressure will not lead to the spurious boundary layer
known for the classic projections due to the splitting error. The pressure Laplacian matrix
with a proper condensation for the jump is also a good preconditioner for the higher-order
Uzawa method. Nevertheless, as we have pointed out, in order that a second-order incremen-
tal scheme works better with the multiphase �ow, special care must be taken to insure that
the guessed pressure and the current pressure will not unphysically fall into di�erent phase
domains across a signi�cant jump.
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