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Let G = (N, E) be an undirected graph. We present several new techniques for 
partitioning the node set N into k disjoint subsets of specified sizes. These techniques 
involve eigenvalue bounds and tools from continuous optimization. Comparisons with 
examples taken from the literature show these techniques to be very successful. 

1. Introduction 

Let G = (N, E) be an undirected graph with node set N = { 1 ..... n }, edge set E 

and edge weights {c(e) : e ~ E}. (If the graph is unweighted, then we assume c(e) = 1 

for e E E.) A common problem in circuit board and microchip design, computer 

program segmentation, floor planning and other layout problems is to partition the 

node set N into k disjoint subsets Sl ..... Sk of specified sizes ml > m2 > ... > mk, 
Z k 

j=lmj = n, so as to minimize the weight of  edges connecting nodes in distinct 

subsets of the partition. We refer to an edge, which connects nodes in distinct subsets 

of  the partition, as being cut by the partition. A recent survey on the graph partitioning 

problem and further related problems is contained in [21]. 

There are several possibilities to model graph partition problems. The polyhedral 

approach relies on linear programming. In this approach, variables are introduced on 

the edge set E, leading to a linear objective function. The hard part consists in finding 

linear descriptions of  those edge sets which correspond to (feasible) partitions, see 

e.g. [6]. In the present paper, we do not pursue this approach but use a model based 

on the node set of  the graph. In this case, the description of partitions is straightforward, 

but the objective function will turn out to be quadratic. 

The main contribution of  this paper will be a theoretically and practically 

efficient procedure to deal with the quadratic objective function under suitable relaxations 

of the feasible region. 
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Introducing variables on the node set, we obtain a quadratic 0 - 1  program as 

follows, see e.g. [3]: 

Let X E R ~xk with the columns 

Xj = (XIj X2j.. .  Xnj) T 

being the characteristic vector for the set Sj, j = 1 ..... k, i.e. 

1 i f  i E S j,  

xij = 0 if i ~ Sj.  

We denote by A = (aij) the weighted adjacency matrix for G, i.e. aij denotes the 

weight of  the edge connecting nodes i and j, and otherwise aij = 0. Moreover, we 

assume without loss of generality that G has no loops, thus aii = O, i = 1 ..... n. Since 

G is undirected, the adjacency matrix is symmetric. We observe that 

n 

1 ~ 2 arsXrjXsj = I x f A x j  (1) 
2 2 

r = l  s = l  

is the total weight of edges with both endpoints in Sj. Moreover, the nonnegative 

integer matrix X defines a partition if and only if its elements satisfy the transportation 

problem constraints 
t l  

~ i = l  X i j  = m j ,  j = 1 . . . . .  k ,  

E~=I Xij = 1, i = 1 . . . . .  n. 

To minimize the weight of  edges cut in a partition, we can maximize the weight of  

edges not cut. Our problem becomes 

(P) maximize 

subject to 

½ tr XTAX 

X u  k = u n , 

X T u n  = m ,  

X is a 0, 1 matrix. 

Throughout, tr denotes trace, uj E •J is the vector of ones, and m = (m t . . . .  mk) T 

is the ordered vector of specified sizes. Moreover, M : = diag(m) E R k×k. We will use 

the Frobenius norm for matrices, i.e. IIAII2 = trAXA. 

For a given partition X, we say that T=  (tij) E ~nx, represents the partition X 

if 

1 if nodes i and j belong to the same subset, 
t i j  = 

0 otherwise. 
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Then each partition is identified with a matrix T. Note also that by definition 

T = X X  T and M = x T x .  

Thus, 

IITlt2 = l l g l l  2. 

Note that 

IIA - Y[I 2 = IIA II z + II Yl] 2 - 2 tr A T  

-- IIA I12 + lIMIt 2 - 2 tr AT ,  

and 

tr A T  = tr A X  X T = tr XT AX. 

Therefore, an equivalent formulation to (P) is the best matrix approximation 

problem 

(F) min{ IIA - TII: T represents a partition}. 

The formulation (P) is very similar to the quadratic assignment problem, QAE 

Continuous optimization techniques are employed in [16, 17, 28] to find bounds for 

the QAE In particular, a projection technique is used in [17] to eliminate the linear 

constraints on the row and column sums of X. An iterative improvement of QAP 

bounds, based on "reductions", is presented in [28]. In this paper, we extend the 

continuous optimization techniques from [17,28] to the graph partitioning problem. 

The paper is organized as follows. This section is concluded with an overview 

of  existing results for the graph partitioning problem that are relevant in the present 

context. 

In section 2, we formulate the main mathematical tools to derive our bounds. 

In section 3, we extend the projection technique from [17] to (P) to get an equivalent 

program (EP), where the constraints on the row and column sums of  X are implicitly 

satisfied. The program (EP) is the key to several new bounds. These will be presented 

in section 4. We also discuss several special cases where the bound can be further 

strengthened. 

In section 5, we exploit the concept of diagonal perturbations to improve the 

bounds. We use an iterative improvement technique to find the best perturbations. 

Section 6 shows how to find feasible solutions using information from the bounding 

techniques. 

We conclude with some numerical experiments in section 7, both on published 

data and on randomly generated graphs. We are able to solve smaller problems 

(n < 20) to optimality in many cases using the new bounds. In general, the best upper 

bounds proposed in this paper constitute a substantial improvement over the existing 

bounding rules. A substantial computational study using the bounds developed in this 

paper is contained in [11]. 
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1.1. OVERVIEW OF PREVIOUS RELATED RESEARCH 

In [2, 10], spectral information of A is used to bound the objective function of 

(P). Boppana [4] considers graph bisection, i.e. m I = m2 = n/2, and improves the 

eigenvalue bound from [10] for this special case. The papers [5, 29] describe branch 

and bound approaches to solve the partitioning problem in the case k = 2 and for 

general weighted graphs. Both methods seems to work only for extremely thin graphs 

(average degree not more than 4). 

Recently, interior point methods have also been proposed to obtain bounds for 

graph bisection, see [19, 20]. Judging from these paper, it appears that the eigenvalue 

approach of the present paper is superior to interior point techniques applied to graph 

bisection. 

A different type of partitioning problem consists of separating the node set into 

just two sets (of arbitrary cardinalities), so as to maximize the total weight of the 

edges cut (max-cut problem). In [8,9,22,25, 25], eigenvalue related techniques for 

this problem are analysed. The absence of cardinality constraints seems to make this 

problem easier to handle than the general partitioning problem studied in this paper. 

Yet another type of partitioning problem consists of separating a graph by 

removing vertices (rather than cutting edges). Eigenvalue related techniques to derive 

bounds on the minimum size of "vertex separators" are investigated in [18, 27]. The 

latter paper also contains computational experiments on bisection problems arising 

from real-world applications. 

Several articles are devoted to finding "good" partitions using spectral information 

from A. In [1], the formulation (F) is used and a transportation problem is proposed 

to find a feasible X. The transportation costs are determined by the (pairwise orthogonal 

and normed) eigenvectors of A, corresponding to the k largest eigenvalues. The 

formulation (P) is used in [3]. Therein, A is shifted by a diagonal matrix D so that 

A + D is positive semidefinite. Then the Cholesky decomposition of A + D is used 

to improve a given partition. 

Finally, a survey on various aspects of the graph partitioning problem and 

further references are contained in chapter 6 of [21]. 

EXAMPLE 1 

We will illustrate our results, as we progress through the paper, on the following 

example from [10], see also [1]. The graph is unweighted and has 20 nodes. We 

partition it into two equal parts, i.e. ml = m2 = 10. The edges are represented in 

table 1. We point out that the cardinality IEI = 51. This provides a trivial upper 

bound on the number of edges not cut by any partition. 

2. Preliminaries 

We first present some notation and basic results. We let Ok, t (or 0 when the 

meaning is clear) denote the set of k x l orthogonal matrices, i.e. Q E Ok, t if Q'rQ = I. 
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Table 1 

Edge set of example 1. 

Node Connections to 

1 7, 12, 13, 14, 15, 16, 17 

2 12, 17, 18, 20 

3 5, 11, 13, 14, 18, 19, 20 

4 6,9 

5 7, 9, 10, 12, 16, 19 

6 16, 18, 20 

7 8,9,11,16 

8 15, 18 

9 11, 15, 19 

11 14, 17, 18, 20 

12 14 

13 18, 20 

14 16, 18, 20 

16 t8 

17 18 

18 20 

The vector of  ones is ul = (I . . . . .  1) ar E g~t. I f  the meaning is clear, we omit  indicating 

the subscript to indicate the dimension,  r(K) = Kul is the vector of  row sums of  a k x 1 

matrix K, while s(K) = u~Kui is the sum of  all the elements of  K. We denote  by 

m = (ml . . . . .  mk) the vector of  specified sizes of  the partition and assume without  loss 

of  generality that m is ordered nonincreasingly. We let the (positive) diagonal  matrix 

M = diag(m), while for a given matrix M, diag(M) denotes the vector formed f rom 

the diagonal  of  M. We denote the eigenvalues of  a symmetric  n × n matrix A by 

&l(A)  ~ ... ~ &n(A). 

The set of  matrices sat isfying the transportation constraints of  (P) forms an affine 

space o f  matrices and is denoted by %: 

% = {X E •n×k . X u  k = un , X T u n  = m}. 

The set o f  nonnegat ive matrices is 

(2) 

N = {X E g~,~xk . X > 0 elementwise}. 

The feasible set of  matrices for (P) is 

F = {X ~ ~ n x k  : Xi j is 0 or 1 } f3 ~.  (3) 
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LEMMA 2.1 

The feasible set satisfies 

Proof  

F = ~ 71 )¢ (7 {X E R n×k • x T x  = M} 

= % 71 3¢ 71 {X E R n×k • t r X T X  = n}. 

We prove only that the second set on the fight is contained in F. (The rest is 

clear from the definitions.) We see that 

X E ,]~, X u k = u n ::~ 0 <- x i j  < 1 ~ x~  < x i j .  

T XUk n implies X2j = Xij , Vi,  j .  [] Hence, n = t rXTX < s(X) = u n = 

The above lemma suggests several relaxations of the constraints of  the graph 

partitioning problem (P). First, the relaxation to X E % 71 N corresponds to Quadratic 

Programming. Note that A is in general indefinite, since G has no loops, so the 

(global) maximum is difficult to find. Relaxing to X E {X E RnXk: X T X =  M} leads 

to the eigenvalue bound derived in [10], see also theorem 2.2 below. 

In this paper, we strengthen the eigenvalue bound by maximizing over 

X E { X  E [~n×k . x T x  = M }  71 ~ .  

One of the main tools is the following basic result from matrix analysis, see 

e.g. [28]. 

THEOREM 2.1 

L e t A = A  T be n x n ,  B = B  T b e k x k a n d  s u p p o s e k < n .  Then 

max{tr A X B X  z • x T x  = Ik } 

= max ~ ,  &i(B)]L¢(i)(A) " ¢ • {1 . . . . .  k} ~ N injective . 
i=1 

Suppose in addition that the maximum on the right is attained for injection cp. Then 

the maximum on the left is attained for X = U1 U~, where 

UT AUI = diag(~,Oo)(a) . . . . .  &¢(k)(a)), u T u I  = Ik, 

and 

UT BU2 = diag(~,~(B) . . . . .  ~,k(B)), UTz U2 = lk. 
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Remark 

The above formulation is not the one commonly  seen in the literature. The 

classical "Hoffman-Wielandt"  inequality is formulated for normal matrices with 

k = n and the above optimization is replaced by an inequality. Ky Fan's theorem 

allows k < n, but B = Ik is assumed. Finally, John von Neumann considers a more 

general version with A and B arbitrary and a bilinear objective function. A recent 

summary on all the above-mentioned variations of the Hof fman-Wie land t  inequality 

is contained in [24]. The present formulation seems to be the "right" generalization 

of the classical Hoffman-Wielandt  inequality in the context of graph optimization 

problems, see also [18]. 

The proof of this theorem follows easily from e.g. [28]. A full proof is also 

contained in [18]. In the present application, the matrix B will always be positive 

semidefinite, so that the best injection ~ can be given explicitly, using "maximal 

scalar products". 

COROLLARY 2.1 

Then 

Under the conditions of theorem 2.1, assume that B is positive semidefinite. 

k 

max{tr AXBXT " xT  x = Ik } = E ~'i(B)&i(A)- 
i=1 

We conclude this section with an eigenvalue based upper bound o n  [Euncutl, 
the weight of edges not cut by any partition. This bound was proposed by Donath 

and Hoffman in 1973 and is the starting point of the present paper. The validity of 

this result follows immediately from the above corollary. This derivation is different 

from the one contained in [10]. 

THEOREM 2.2 [10l 

Let A and m describe a graph partitioning problem. Then 

Proof 

IEu,cu, I < max {½tr XT AX " X T X =  M} 

k 

= m a x { ½ t r M Y T a y :  y T y =  I ,}  = 1 Emj~j(a)" 
j = l  

(4) 

Feasible partitions X clearly satisfy XTX = M, so the inequality is obvious. The 

first equality follows by setting X = YM 112, and the second equality follows from the 

corollary. Here, we also use the nonincreasing order of m. [] 
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EXAMPLE 1 (continued) 

In table 2 and figure 1, we summarize the various bounds for example 1 in 

detail. Table 2 contains the relevant eigenvalue information and the upper bounds. 

Since AI(A) = 6.0429 and )L2(A) = 3.1375, we get an upper bound of 45.9019 using 

theorem 2.2. Thus, no partition leaves more than 45 edges uncut. The corresponding 

maximizers X are represented graphically in figure 1. Ideally, half the components 

Table 2 

Upper bounds for IE~utl in example 1. The eigenvalues 

given are the two largest of A for theorem 2.2 and of 

,4 for the remaining bounds. 

Bound Eigenvalues 

Theorem 2.2 45.9019 6.0429 3.1375 

Corollary 4.1 42.1269 3.3254 2.1946 

Lemma 5.3 38.5516 2.6103 2.6103 

141 i 
1.2 

1 o ' - ~  

0.8 ,.:J L_:~ .._ .:;f : ".'f 

0.6 

04 ! 
0.2 

0 

-0.2 ~- ::' 

-0"40 5 1'0 15 20 

Figure 1. Sorted eigenvector components for the various bounds of table 2. Ideally, half 

the components should be 0, the other half equal to 1. The dash-dotted line corresponds 

to theorem 2.2, the dashed line to corollary 4.1, and the solid line to lemma 5.5. Note 

that the eigenvector corresponding to lemma 5.3 is quite close to a partitioning vector. 

of an eigenvector should be 0 and the other half be 1. The sorted eigenvector 

components for/~I(A) are plotted as a dash-dotted line in figure 1. Since about half 
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of its components are around 0.5, we conclude that the maximizer X does not give 

any clue on how to obtain a good feasible partition from X. 

3. Projection of (P) 

We now project the feasible set of the problem (P) onto the linear manifold 

defined by the contraints %. We do this by eliminating the constraints % while 

simultaneously maintaining the trace structure of the objective function and the 

orthogonality properties of the constraints. This structure allows us to still apply the 

eigenvalue bounds. This extends the projection technique in [17] for the QAP. 

We define 
- 

m " ~  ~ ~ . . . ~  

We let P and Q be orthogonal matrices with 

Clearly, both V and W are not uniquely determined. The characterizing condition for 

V and W are 

v T v  = I n - l ,  VTun = 0, and similarly w T w  = I k - l ,  w T ~  = 0. 

The results derived in the subsequent sections will not depend on the specific choice 

of the representation for V and W. Note that VV T is the orthogonal projection on 

{un }±, while W W  T is the orthogonal projection on {~}±. The following lemma contains 

a parametrization of the set % that is crucial in deriving improved bounds for graph 

partitioning. 

LEMMA 3.1 

Let P, Q and M be as above. Suppose X is n x k, Z is (n - 1) x (k - 1), and X 

and Z are related by 

[ 1  0 t Q T M ' / 2  (5) 
X = P  0 Z 

Then 

(a) X ~ %. 

(b) X E ,~ ~ V Z W  T >. - i u n i T .  

(C) x T X  = M c:~ Z E O(n_I)x(k_I). 

Conversely, if X ~ %, then there exists Z such that the representation (5) holds. 
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Proof  

First note that expanding (5) yields 

] T vZWTMI/2 
= - unu k m + X n (6) 

Now observe that, since VTun = 0, we obtain 

Similarly, 

XTun = 1 M u t u T u  n + M I / 2 w z T v T u  n = Mut  = m. 
tl 

1 T 
Xun = n UnUk Muk + vZWT Mll2uk = Un, 

because wTMll2uk = 0. Thus (a) is proved. By (6), we can write 

1 Un~TMI/2 1/2 X = n + vZWTM 

Thus 1 
X E ,if ¢=~ VZW T >_ - --Un-m T, 

tl 

because multiplying with the positive diagonal matrix M -1/2 does not change the 

inequality. Finally, note that 

E' °I'T[' 
x T  X = M c=~ Q 0 Z T P 0 Z 

because P and Q are orthogonal. To conclude, suppose X E %. Then 

pT XM-II2Q = [ I 0 1 
0 VTXM-1/2W " [] 

If we substitute the parametrization (6) for X in the objective function of 

problem (P), we obtain an equivalent formulation of the partitioning problem in the 

Z-space. 

[ 1 u T . .  vZWTMI/2 tr X TAX = tr( I MUk uT + M I / 2 w z T v T ) A ~ n  nUklla + ) 

1 T T 2 2 z T V T A u  uTM3/2W 
= t r  - ~ ( u  n A u n ) ( u  k M  u k ) +  n n k 

+ ( W T M W ) Z  v (V TAV)Z]  

- ,  ] - 7  s (A ) s (M2)  + tr zT,4z  + 2 z T V T r ( A ) r T ( M 3 / 2 ) W  . 
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Translating the feasibility conditions on X to the appropriate conditions 

on Z, derived in the lemma, we obtain the following program (EP) in the variable 

Z • [~(n-l)x(k-1), which is equivalent to the original graph partitioning problem (P): 

(EP) maximize tr {½ iClZT AZ +1  zTVT r(A)rT (M3/2 )W} + 2_~ s(A)s(M2 ) 

subjectto ZT Z = I, 

VZW T > _ I Un-~T. 

Throughout this paper, we use the notation 

A = V T A V ,  M =  wTMW. 

Summarizing, we have shown that (P) is indeed equivalent to (EP). 

THEOREM 3.1 

Suppose X and Z are related by (5). Then Z solves (EP) ¢=> X solves (P). [] 

We conclude this section with a more technical aspect. The projection technique 

was based on the decomposition given in lemma 3.1. This technique can be generalized 

using the singular value decomposition of X. Suppose that U E Ok,t and V ~ Ond are 

orthogonal matrices satisfying 

XU = VZ, xTv = UZ, 

for some matrix Y. E ~l,l Let P and Q be square orthogonal matrices with P = [VV], 

Q = [UU].Then 

and 

or 

x x T v  = XU y, = VZ 2, 

x T x u  = x T v z  = UZ 2 

pTXQ = 
" v T x u  v T x u  -] 

VTxu V xUJ 

I Y~ 0 QT. 
X = P 0 v T x u  

We therefore get a decomposition of X which becomes particularly nice if X is 

orthogonal, for then both E and V TXV must also be orthogonal. 
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4. Bounds for (P) 

Using the equivalent program (EP) instead of the original problem (P), we 

obtain new bounds for (P). First note that due to the elimination of the constraint %, 

we have a linear term in the objective function of (EP), while (P) has a purely 

quadratic objective function. Maximizing (EP) over orthogonal Z is in general difficult, 

because the linear term does not allow a direct application of the bound from theorem 2.2. 

Therefore, we treat the quadratic and linear part separately. The quadratic part is 

bounded using theorem 2.2, while maximizing a linear function over the constraints 

(P) is equivalent to a (bipartite) transportation problem, and so can be handled 

directly. 

THEOREM 4.1 

Let A and m describe a graph partitioning problem. Assume that the nodes are 

numbered such that r(A)= (rl(A) ..... rn(A)) x is in nonincreasing order and define 

P0 := 0 and the partial sums pj : =  Y~i=lmi and Rj(A) "= ~i=pj_l+ll~J ri(A), j = 1, .... k. 

Then 

k-I 1 k I 
tEuncutl <- Z /q'J(A)~LJ (1~4) + -- Z Rj(A)mj s(A)s(M2). (7) 

j = l  r/ j = l  2n2 

Proof  

The quadratic term in (EP) is bounded independently of the linear term by 

theorem 2.2, contributing the first summand in (7). To bound the linear term of (EP), 

we observe 

1-trVTAun = l t r A u n  u T M ( M X T  - - I  MukuT) 

= l__n tr {r(A)r T (M)X T } - ~ s(A)s(M 2 ). 

It is easy to verify that due to the ordering of r(A) and m, the transportation problem 

max{tr r(A)rT (M)X  T • X G_ F} 

has optimal value Z~_-IRj(A)mj. (Take the partition where nodes 1 ..... m I belong to 

SI, nodes ml + 1 ..... ml + m2 belong to $2, etc.) Summing all the terms completes the 

proof. [] 

We point out that in general there will not be a matrix X for which the bound 

is attained, because we maximize two terms independently. In the following three 

special cases however, we are able to treat the objective function as a whole. 
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COROLLARY 4.1 

Under the conditions of theorem 4.1, assume that ml . . . . .  m k (i.e. partition 

into k blocks, each of size n/k) .  Then 

I Euncutl <- max  tr X T A X  " X E ~ ,  x T x = -~ I = ~--~ 

Moreover, the bound is attained for 

k- I  
Zj  (A)  + 1 s (A) .  

j = l  

1 T 4. [-~ VZW T ' X =  -~ UnUk 

where Z =  (zl ..... Zk- l )  ~ 0 contains the eigenvectors zj corresponding to ~j(fil). 

Pr oo f  

By substituting M = ( n / k ) l  in (EP) and using the expansion of the linear term, 

contained in the proof of theorem 4.1, we get 

l tr xTAX = ~k tr I Z T A Z  + 1 tr r ( A ) r  T (M)X T - - -  

n 

1 s ( A ) s ( M 2  ). 
2n 2 

Now note that X E % implies 

n T T 
r T ( M ) X  T = -~u k X = 

Thus, the linear term is constant: 

T 
U n • 

Finally, we have 

1 tr r ( A ) r  T (M)X T 
n 

1 n 
= -- -- s (A) .  

n k 

n 2 
s ( M  2 ) = k --£y. 

Bounding the quadratic term again by theorem 2.2 and summing the remaining 

(constant) terms proves the upper bound. The upper bound for the quadratic term is 

attained for Z containing the (normalized and pairwise orthogonal) eigenvectors 

corresponding to the first k -  1 largest eigenvalues of A. X is recovered using (6). [] 

EXAMPLE 1 (con t inued)  

Xl('4) = 3.3254. Using corollary 4.1, we obtain 

IEu,cut] <- 4 ~l(fi') + 1 s (A )  = 42.1219. 
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Thus, no partition leaves more than 42 edges uncut. Note also (see table 2) that the 

largest eigenvalue of ,4 is simple and so the maximizer Z is unique up to multiplication 

by - 1. It produces a matrix X where already several components  are either close to 

0 or close to 1, see the dashed line in figure 1. 

It is worth mentioning that the bound from corollary 4.1 is equivalent to the 

bound proposed by Boppana [4] in the case k = 2. We leave it as an exercise for the 

interested reader to establish this equivalence. Boppana's bound, however, does not 

seem to allow a generalization to k > 2. 

COROLLARY 4.2 

Under the conditions of theorem 4.1, assume that un is an eigenvector of A 

with eigenvalue t. (This occurs, for instance, if the underlying graph is t-regular.) 

Then 

I Euncutl < max { l tr X T AX • X E ~, x T x = M } =  

Moreover, the bound is attained for 

k - I  
1 t z: (A)z i + s(M 2 ). 

j = l  

X 1 T v Z W T M I / 2  = -- UnU k M + 
II 

where Z =  Ul U2 T and U2 E On-l,k-I diagonalizes /~/and Ul E On-l,k-I contains the 

eigenvectors corresponding to the k -  1 largest eigenvalues of A. 

Proof  

We first show that in this case the linear term in (EP) vanishes. We have, as 

in the proof  of theorem 4.1, 

t t r ( u Y M  ) ( X v u  n ) _  t s ( M 2 )  = t t r ( m T m )  -- t s ( M 2 )  = O. 
n I'l ll n 

The upper bound for the quadratic term is attained for Z = Ul Uz v where U2 ~ O 

diagonalizes M, and U1 E O contains the eigenvectors corresponding to the k - 1  

largest eigenvalues of ,4. X is recovered using (6). [] 

In the previous two cases, we were able to strengthen theorem 4.1 because in 

these cases the linear term in the objective function of (EP) was constant for all 

feasible X. We conclude this section with a nontrivial extension of theorem 4.1 in 

the case k = 2, i.e. partition into two blocks (of possibly different sizes). 

COROLLARY 4.3 

Under the conditions of theorem 4.1, assume that k = 2. Then 
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IEuncutl < - max { l t r  X r  A X  • X E % , x T x  = M }  

where 
= max{zTCz + cTz + const • ZTZ = 1}, 

Z E ~ n - I ,  C = --nl mlm2 ~, c = m2 - ml VT Aun, const = ~ s (A)s (M 2). 
n 2n 2 

Proof 

From (EP), it is clear that the matrix Z = z E R n-I and A~/is a scalar. Note 

further that by the definition of W, we can set 

Thus, 

1 T w-- (- 4m7  ) 

i~l = WT M W  = _2 mlm2. 
n 

The quadratic term in (EP) therefore simplifies to zTCz, and the linear term simplifies 

to cTz. []  

We point out that the (global) maximum of 

{zTCz + cTz + const ' zTz = 1} 

can be calculated efficiently, see [12-14,23].  The main computational steps involve 

finding the eigenvalues of the symmetric matrix C and the largest zero of a rational 

function, see [13,23] for details and computational experiments. The maximizing z 

can be recovered using the eigenvectors of C. 

5. Diagonal perturbations to improve the bounds 

It is a trivial observation to note that loops in a graph (i.e. edges joining some 

i E V to itself) are not cut by any partition. Therefore, adding "weighted loops" to 

our graph, i.e. replacing A by A + diag(d) for some d E R n does not affect the graph 

partitioning problem, see also [3, 10]. To be more specific, we will first show that 

adding a multiple of the identity to A not only leaves the graph partitioning problem 

unchanged, but also all the bounds described so far. 

LEMMA 5.1 

Let A and m describe a graph partitioning problem. Let A ( a ) " = A  + a l  for 

some a E •. Then 
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tr X T  A X  = tr X T  A ( a ) X  - a n ,  V x  " x T  X = M.  (8) 

Moreover, the upper bounds from theorem 2.2 and from section 4 gives the same 

result when applied to the left-hand side and to the right-hand side of (8). 

P r o o f  

The equality (8) is obvious. Therefore, any bound obtained by maximizing 

over x T x  = M will be unaltered by the change in A. The only open case is theorem 4. I 

because there we maximize two terms independently. 

We first point out that 

A ( a )  = ]t + a l n - 1 ,  

s ( A ( a ) )  = s ( a )  + a n ,  

Rj  ( A ( a ) )  = Rj  ( A )  + a m  j ,  

1 
t rY4  = tr  M - l tr m 2 = n - - s ( m 2 ) .  

n n 

The last relation follows using WW T = I - ~ ~ T .  Let us denote by E P B ( A )  

the eigenvalue bound of theorem 4.1 applied to the matrix A. Bounding the right-hand 

side in (8), we obtain 

1 
E P B ( A ( a ) )  - ~ a n  

= I ~., Xj ( ,A(a)))~j  ( M )  + 1 ~ Rj  ( A ( a ) ) m j  
2 n 

1 1 
s ( A ( a ) ) s ( M  2 ) - -~ a n  

2n 2 z 

1 1 1 
= -~ '~ ]~j (A) ,~j  (IVI) + -~ ot ~_~ ]~j (l~l) + --n E Rj ( A ) m j  

1 ~ 2 
+ - a  ~ . m ,  - - -  

n ~ J -•n 
1 

1 s ( A ) s ( M  2)  - a s ( M  2)  - -~ a n  
2n 2 

| 

= E P B ( A )  + 2 a ( t r  M - 

= E P B ( A ) .  

-•n 
1 

In tr M 2 ) + In a s ( M 2  ) - a s ( M 2  ) - -2 a n  

[] 

As mentioned above, a general perturbation of the main diagonal of A does 

not affect the edges cut by a partition. This has been pointed out and used by several 

researchers in the past. 
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LEMMA 5.2 [3, 10] 

For d E R n, let A(d) = A + diag(d). Then 

for all partitions X. 

tr XT A(d)X = t r  xT  A x  q- s(d) 

If  d is arbitrary, then ~,j(A(d)) will in general be different f rom ;~j(A) + dj, so 

the upper bounds may vary with d. In view of lemma 5.1, it is sufficient to consider 

perturbations d that sum up to 0. Then the graph partitioning problems with matrices 

A(=A(0)) and A(d) are identival and we may choose any A(d) where s(d)= 0 to 

derive an upper bound. 

In the following, we focus on the special case of corollary 4.1, even though 

the techniques can be extended to the general case (but become more complicated).  

Let 

,4(d) :=  ,4 + vTdiag(d)V 
and 

k - I  

g(d) "-- ~ Zj (/~(d)). 
j = l  

Donath and Hoffman [10] point out that 

k 

~_~ 3,j(A + B) 
j = l  

is a convex function of B for A fixed, provided both A and B are symmetric. Therefore, 

g(d) is convex. Moreover, using theorem 4.6 in [7], it is easy to verify that g(d) is 

differentiable for all d such that 

Note also that under the assumption s(d) = 0, it is easily shown that 

lim g ( d ) =  ,,o. (9) 
tldll~** 

The above discussion is summarized as follows. 

LEMMA 5.3 

Suppose m = (n/k)uk. Then 

I 1 IE..c.,l_< s ( A ) + m i n  ~ -  ~ A j ( A + V T d i a g ( d ) V ) : d E R n , s ( d ) = O  . 
j=l  

(10) 
[] 
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We point out that the minimum is attained because of (9). We now address the 

question of differentiability of g(d) in more detail. Suppose first that ~,i(A(d)) is 

simple with normalized eigenvector xi, then 

~i(f~(d)) = x T v  T A + ~ d r e r e  T Vx  i 

~dj r = 1 J 

= x V i V T e j e f V x i  

=(e~ .Vx i )  2, V j = l , . . . , n .  (11) 

Here, ej denotes thej th  canonical unit vector. Otherwise, an element of the eigenspace 

has to be chosen properly, see theorem 5.1 in [15], to provide the differentials. In 

the general case, (11) still provides a subgradient. 

In summary, the function g(d) to be minimized is convex and we can provide 

a subgradient for any d. So applying techniques from nonsmooth optimization applied 

to convex functions, it is possible to find the best possible upper bound in (10). We 

used the BT method proposed in [30] to carry out the minimization. 

EXAMPLE 1 (continued) 

The results for the iterative improvement of our example are summarized in 

table 3. As a stopping criterion, we tested whether an e-subgradient of norm less than 

0.001 was found. This occurred after 45 iterations. We observe that after only a few 

iterations, we already have a very good upper bound and most of the iterations are 

spent finding a subgradient of small norm. Moreover, it turns out that at the final 

Table 3 

Subgradient improved upper bound for example 1. The first column indicates 
the iteration and the second column the corresponding upper bound. The last 
column contains the norm of an e-subgradient for g(d) found at the given iteration. 

Iteration Bound Norm 

1 42.13 1.065 

5 38.80 0.323 

10 38.6I 0.085 

15 38.57 0.068 

20 38.56 0.028 

25 38.56 0.012 

30 38.56 0.008 

35 38.55 0.004 

40 38.55 0.006 

45 38.55 0.0007 
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perturbation d, the largest eigenvalue has multiplicity larger than 1, see also table 2; 

therefore, g(d) is nondifferentiable for this d. This coincides with the experiences 

reported in [7]. Finally, we point out that the maximizer X, producing the bound, is 

already very close to a 0, 1 matrix, see the solid line in figure 1. 

We conclude this section with a perturbation of the main diagonal of A that 

allows an application of corollary 4.2. 

THEOREM 5.1 

Let A and m describe a graph partitioning problem. Let 

and 

Then 

1 
di : = - s(A) - ri (A) 

n 

A(d)  = A + diag(d). 

1 
IEu, c,tl < -~ 

k-I 1 
~_~ 2.j (A(d))&j (iV1) + - -  s ( A ) s ( M  z ). 

2n 2 
j = l  

Moreover, the bound is attained for 

X 1 T v Z W T M I / 2  = - UnU k M + 
n 

where Z =  Ul U2 T, and U2 E Ok-l ,k-I  diagonalizes M and U1E O,-ld,-I  contains the 

eigenvectors corresponding to the k -  1 largest eigenvalues of A(d). 

Proof 

First note that s(d) = 0. Moreover, by the definition of d, u n is an eigenvector 

of A(d)  with corresponding eigenvalue (1/n)s(A). The result now follows using 

corollary 4.2. [] 

6. Finding a closest feasible solution 

Our bounding techniques find approximate solution matrices X which in general 

are not feasible for (P). We now present several procedures for finding feasible 

solutions Y using the information from X. One approach consists of looking for a 

feasible Y that is as close as possible to X. Alternatively, we propose to use X to 

linearize the objective function in (P) to derive good feasible solutions. 

6.1. CLOSEST IN FROBENIUS NORM 

Suppose that the matrix X obtained from our relaxation procedure satisfies 

x T x  = M, but is not a 0, I matrix. We want to find a feasible matrix Y for (P) which 
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best approximates X in Frobenius norm. Note that feasibility implies y T y  = M as 

well. Therefore, 

I I x  - Eli  2 = I l x l l  z + II Ell z - 2 t r X  TY  

= 2tr M - 2tr  X T Y. 

We can now find the best feasible approximate to X in Frobenius norm by solving 

the following transportation problem in the variable Y E l~"×k: 

min{- t r  x T y  : Y E F}. 

Since the sum of the elements of Y is n, note that the objective function is equivalent 

T _ x)T y. This latter function has an ll norm quality. to tr( 1 unu k 

We point out that this idea is also (implicitly) used by Barnes [1] to derive 

feasible solutions. Barnes uses the appropriately normalized eigenvectors corresponding 

to the largest eigenvalues of A for X. It is clear that the above model works for any 

X, as long as X T X  = M. This approximation model has, however, the disadvantage 

that the structure of the problem, i.e. A, is not used and one just tries to find a feasible 

Y closest to X. Therefore, it only makes sense if X is already "very close" to an 

optimal partition. 

EXAMPLE I (continued) 

If we solve the above transportation problem with the X corresponding to the 

bound from lemma 5.3, then we obtain the feasible solution 

S 1 = { 1 , 2 , 3 , 1 1 , 1 2 , 1 3 , 1 4 , 1 7 , 1 8 , 2 0 } ,  S 2 = N \ S l  

of value 38. Comparing with the bounds in table 2, we conclude that this partition 

is already optimal, because the upper bound from lemma 5.3 also becomes 38 after 

rounding down. We point out that this solution can also be obtained by simply 

rounding the maximizer X to the nearest integers, see figure 1. 

6.2. LINEAR APPROXIMATION 

Expanding the objective function at X, we obtain 

tr yT  A y  = tr XT  A X  + 2tr X T  A ( y  - X )  + t r ( Y -  X)T  A ( y  - X) .  

If we use the linear approximation, we get the transportation problem in Y: 

max{tr X T  A y  : Y E F}. 
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If A is positive definite, then the weighted Frobenius norm 

II All2 (X  - Y)II 2 = II A l12X II 2 + II A t/2 y tl2 _ 2tr XTAY, 

i.e. the above problem is equivalent to the weighted Frobenius norm approximation 

problem if we ignore the quadratic term in Y. 

Barnes et al. [3] use a feasible X and try to improve it. They propose a diagonal 

perturbation that changes A to a positive semidefinite matrix and then set up a 

transportation problem to find a better partition Y. A careful analysis of  their objective 

function shows that it corresponds precisely to the linearized model above. Their 

model makes essential use of semidefiniteness and feasibility of X. Our model shows 

that both these assumptions are not necessary. It raises the interesting question, 

however, to maximize the above model over all diagonal shifts. This will not be 

pursued further in this paper. 

7. Computational results 

In this section, we first present computational experiences for the various new 

bounds on small graphs that have been previously used in the literature. We use the 

following graphs described in table 4 and note that G2 is our running example 1. 

Table 4 

Graphs from the literature. 

Name I VI I EI Source 

G1 20 55 [10], table 2 p. 425 

G2 20 51 [t0], table 3 p. 425 

G3 20 46 [7], table 1 p. 52 

G4 21 48 [3], figure 2 p. 305 

In table 5, we summarize the results in the case of partitions into sets of  equal 

size. Comparing the last two columns, we see that the feasible solutions obtained are 

in fact optimal for all graphs except G3. The solution of G3 is at most "one edge 

off" from optimality. 

Table 5 

Partitioning into k sets of equal size. 

G1 2 47.13 45.65 42.85 42 

G2 2 45.90 42.13 38.55 38 

G3 2 37.71 35.54 34.22 33 

G4 3 47.98 47.19 45.47 45 

Graph k Thm 2.2 Cor. 4.2 Lemma 5.3 Feas. X 
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Next, we investigate our bounds for the weighted graph from [5, p. 67]. This 

graph has 40 nodes and ml = m2 = 20. Two sets C1 and C2 of edge costs are given 

in [5]. The underlying graph is 3-regular. According to the authors, the costs CI and 

C 2 are drawn uniformly from { 1 ..... 10}. We examine the following three variants VI, 

V2 and V3 for this problem: 

V l: all edge costs are 1, 

V2: use Cl for the edge costs, 

V3: use 6"2 for the edge costs. 

In table 6, the results for the various bounds are summarized. Note that in the 

case of V1, the bound from lemma 5.3 hardly improves the classical bound of 

theorem 2.2. One reason for this may lie in the regular structure of the graphs, which 

contains many optimal partitions. We also point out that the bound from theorem 5.1 

in quite competitive with the subgradient improved bound from lemma 5.3 for the 

variants V2 and V3. The optimal solution values are from [5]. 

Table 6 

Three variants of a 40-node graph. 

Variant ~a~ Thm 2.2 Cor. 4.1 Lemma 5.3 Thm 5.1 Opt. 

V1 60 58.52 58.52 57.35 58.52 54 

V2 316 345~77 326.44 307.10 309.88 297 

V3 341 397.18 367.84 330.42 334.34 322 

To further examine the performance of these bounds, we generated a series of 

pseudo-random graphs of larger sizes. We generated five graphs, each of average 

degree 5 for n ~ {30, 40, 50}. The results are summarized in table 7. (Further 

computational results on much larger graphs are described in a companion paper 

[11].) 

The columns labeled "Thm 2.2" and "Thin 2.2 + impr." in table 7 represent the 

Donath Hoffman bound without and with diagonal perturbations to improve the 

bound. Comparing again the last two columns with the column of theorem 2.2 plus 

improvement, it turns out that new bounding rules constitute a significant improvement 

over the previously known techniques. The gap for the problem with 30 nodes is 

never larger than 2 edges, for problems with 50 nodes it never exceeds 5 edges. 

Moreover, the gap as compared to previously known bounds is typically reduced by 

about 30 to 50% on all problems considered. 

It seems more difficult to find good bounds if the block sizes m i are not equal. 

Since we have proposed several new bounding techniques also for this situation, we 

conclude this section with a numerical study of partitioning into sets of  different 



F. Rendl, H. Wolkowicz, Partitioning the nodes of a graph 177 

Table 7 

Partitioning of pseudo-random graphs into two blocks of equal size. 

n IEI Thm 2.2 Cor. 4.1 Thm 2.2 + impr. Lemma 5.3 Feas. X 

30 75 66.65 62.51 60.39 58.10 56 

30 75 72.51 65.58 62.31 59.77 58 

30 84 77.61 72.15 69.10 65.25 63 

30 73 67.43 62.47 60.45 58.06 56 

30 69 64.54 60.26 58.70 56.73 54 

40 110 101.23 93.84 90.57 87.17 82 

40 102 97.33 89.70 85.90 82.98 79 

40 102 102.93 95.81 90.26 87.52 86 

40 91 89.96 83.11 79.34 76.56 73 

40 I01 95.52 87.32 84.21 80.86 77 

50 139 128.17 118.17 114.71 110.43 105 

50 117 117.41 106.28 100.25 95.45 90 

50 123 117.51 108.57 104.12 100.86 96 

50 128 120.53 109.73 108.06 103.38 98 

50 138 126.97 120.56 115.22 112.47 108 

Table 8 

Partitioning G2 into two blocks of sizes m I and 2 0 - m  t. 

m I Thm 2.2 Thm 4.1 Cor. 4.3 Thm 5.1 

19 58.98 53.00 55.71 50.14 

17 56.07 52.98 53.20 48.82 

15 53.17 51.09 49.41 47.80 

13 50.26 47.64 45.87 47.11 

11 47.35 44.01 43.10 46.77 

sizes. We take the graph G2, or running example, and partition it into two blocks of 

different sizes. The numerical results are summarized in table 8. Since G2 has only 

51 edges, we conclude that in the case of "very unequal" block sizes, all bounds 

except theorem 5.1 fail. We have to note, however, that the bound in theorem 5.1 

does not improve after a diagonal perturbation, but all other bounds can be further 

improved in general. As ml decreases, the bound from corollary 4.3 turns out to be 

the favorite. 
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8. Summary and conclusions 

We have presented several new bounds for the graph partitioning problem The 

main mathematical tool was the variation of the Hoffman-Wielandt inequality used 

in corollary 2. I. As a second crucial ingredient, we used a parametrization of matrices 

X describing partitions that allowed us to constrain our relaxation to the subspace of 

matrices, having prescribed row and column sums (lemma 3.1). As a last important 

idea, we used the possibility of adding weighted loops to the graph to further strengthen 

the relaxations 

We presented two general new bounds (theorems 41  and 5 I) and studied the 

following special cases in more detail: 

• partitioning into blocks of equal size (corollary 4. I, lemma 53),  

• partitioning of regular graphs (corollary 42),  

• partitioning into only two blocks (corollary 4.3) 

Our approach allows some extensions If a partitioning of the node set is 

sought where the number k of subsets is prescribed, but the sizes m i of the sets can 

vary in some interval, 
h i < m i < li, 

then our bounds can still be used. One would have to consider the bounds as functions 

of the mi's.  If k is reasonably small, it is still feasible to optimize the resulting bounds 

as functions of the m i .  

Finally, we point out that substantial computational experiments together with 

implementation details using the bounds of the present paper are contained in a 

companion paper [11], and show that in most of the cases it is possible to obtain 

lower and upper bounds on equipartitions differing only by a few percentage points. 
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