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Abstract

Consider a projector-camera setup where a sinusoidal

pattern is projected onto the scene, and an image of the ob-

jects imprinted with the pattern is captured by the camera.

In this configuration, the local frequency of the sinusoidal

pattern as seen by the camera is a function of both the fre-

quency of the projected sinusoid and the local geometry of

objects in the scene. We observe that, by strategically plac-

ing the projector and the camera in canonical configuration

and projecting sinusoidal patterns aligned with the epipolar

lines, the frequency of the sinusoids seen in the image be-

comes invariant to the local object geometry. This property

allows us to design systems composed of a camera and mul-

tiple projectors, which can be used to capture a single im-

age of a scene illuminated by all projectors at the same time,

and then demultiplex the frequencies generated by each in-

dividual projector separately. We show how imaging sys-

tems like those can be used to segment, from a single image,

the shadows cast by each individual projector – an applica-

tion that we call coded shadow photography. The method

is useful to extend the applicability of techniques that rely

on the analysis of shadows cast by multiple light sources

placed at different positions, as the individual shadows cap-

tured at distinct instants of time now can be obtained from

a single shot, enabling the processing of dynamic scenes.

1. Introduction

In computer vision, many active illumination techniques

employ projector-camera systems to facilitate the extraction

of useful information from scenes. These approaches usu-

ally rely on the careful choice of an illumination pattern to

be projected onto the objects. The captured image is a func-

tion of the projected pattern and its interaction with the ob-

jects in the scene; as the projected pattern is known, it is

possible to exploit this information to recover properties of
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(a) (b)

Figure 1. The frequency of observed patterns is sensitive to the ge-

ometry of the scene. (a) Vertical stripes projected from a projector

placed at the left hand side of the camera. Notice the different

frequencies on the two slanted planes (left and right), and curved

lines on the penguin; (b) By projecting horizontal stripes, the fre-

quency of the observed patterns is geometry-invariant.

the imaged scene. Figure 1(a) illustrates this point. It shows

objects imaged under the illumination of a projector placed

at the left hand side of the camera. The projector sends ver-

tical white stripes to the scene, but the observed patterns in

the image vary according to the local orientation of the ob-

jects. Their local frequencies are useful cues for recovering

surface orientation.

In this work, we follow an opposite direction. Rather

than exploiting variations in the projected patterns due to

depth and orientation changes, we show how a projector-

camera setup can be built in a way that the imaged patterns

are the same across the scene, no matter what the geom-

etry of the objects is (see 1(b)). Our method is based on

a strategic alignment of the projector-camera configuration,

and on a particular choice of the projected patterns. The

technique is derived from a key observation from the epipo-

lar geometry of two cameras, and the fact that a projector

can be understood as a dual of a camera, sharing the same

geometric characteristics [12].

We then demonstrate the usefulness of this property for

demultiplexing frequencies of patterns simultaneously pro-

jected by multiple projectors. In this process, the goal is

to, given a single image of a scene illuminated by multiple

projectors, be able to determine the patterns and frequencies

observed at a given region of the image. Consequently, the

demultiplexation of patterns allows us to infer which projec-
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tors are casting shadows along a given region. As the ob-

served frequency is invariant to the geometry of the objects

in the scene, the complexity of the demultiplexing process

is greatly decreased, since the frequencies to be searched

for are fixed and known.

As an application for the frequency demultiplexing

scheme, we propose a technique called coded shadow pho-

tography. It determines a segmentation of the imaged scene,

where the image is partitioned according to the shadows

cast by the multiple projectors, allowing us to query, for a

given region, which projectors are casting shadows over it.

We describe a proof-of-concept implementation of a coded

shadow photography setup, and present experiments that

show how the choice of system parameters affects the re-

sults.

Finally, we point out that this method can be employed

to extend the applicability of techniques that rely on the

analysis of shadows cast by multiple light sources placed

at different positions. Those methods usually take multiple

pictures of the scene at different instants of time, with only

one light source being triggered during the capture of each

image. This often brings limitations for scenes with mov-

ing objects. Coded shadow photography can be employed

to obtain the shadows cast from multiple projectors with a

single shot, enabling the processing of dynamic scenes. As

an example, we present an experiment where we apply the

multiflash algorithm for finding occlusion boundaries [13]

having as input the shadows obtained using our method.

1.1. Contributions

The main contributions of this work are:

• We propose a projector-camera setup for which the

imaged frequency of a strategically chosen projection

pattern is invariant to the orientation and depth of ob-

jects in the scene;

• A frequency demultiplexing scheme based on the

aforementioned setup;

• An application of the frequency demultiplexing

scheme for segmenting shadow regions from a single

image captured under the illumination of multiple pro-

jectors. We call this coded shadow photography.

1.2. Organization

This paper is organized as follows: we begin by review-

ing related work in Section 2. In Section 3, we show how a

projector-camera setup for which the imaged frequency of

projected patterns is invariant to the scene geometry can be

achieved. In Section 4, a frequency demultiplexing scheme

based on a multiprojector setup is presented. In Section

5, we introduce the coded shadow photography technique,

which employs our setup to demultiplex, from a single im-

age, the shadows cast by multiple projectors at the same

time. We also present experiments that demonstrate how

various system parameters impact the results. In Section 6,

we describe an application that could benefit from a coded

shadow photography scheme: occlusion boundary detec-

tion using multiflash imaging. Finally, in Section 7 we dis-

cuss possibilities and limitations of the method, and in 8 we

present our conclusions and directions for further research.

2. Related Work

Many computational photography methods have ex-

ploited the variation of capture parameters (such as expo-

sure [3], focus [20], aperture [5], and viewpoint [15]) to

extract information from scenes and/or produce a new en-

hanced photograph. More recently, great attention has been

devoted to techniques that process images by coding these

parameters. Examples include coded exposure for motion

deblurring [11], coded aperture for passive depth estima-

tion [8], and coded viewpoint for active 3D reconstruction

[17].

More related to our approach, coded structured light

techniques have been studied for a long time in computer vi-

sion. Temporal coding methods [10, 6] exploit time-varying

patterns of projected light to recover depth with high qual-

ity, but are not suited for dynamic scenes. Spatial coding

methods [18] handle object motion by utilizing a coded light

pattern that varies spatially. However, innacurate results are

produced at depth discontinuities, as local surface smooth-

ness is assumed. Spatial-temporal coding [2, 19] combines

the advantages of both approaches, assuming object motion

coherence. Viewpoint coding [17] relies on multiple cam-

eras for coding structured light, allowing excellent depth re-

construction results without making any spatial or temporal

continuity assumptions about the scene. Our approach is

related to these methods in the sense that we also project

coded structured light onto the scene. However, we deal

with a different problem – how to keep the frequency of the

pattern invariant across object orientation and depth varia-

tions, facilitating frequency demultiplexing when multiple

projectors are used at the same time.

Coded illumination through multiflash imaging [13] was

proposed for the detection of occlusion boundaries in com-

plex scenes. The approach is based on strategically posi-

tioning flashes to cast shadows along depth discontinuities

in the scene. By detecting the shadows, occlusion bound-

aries can be reliably marked. This approach is not capable

of handling dynamic scenes well, as the illuminants are trig-

gered at different instants of time. In contrast, our frequency

demultiplexing technique allows us to code the shadows in

the spatial domain, thus being suitable for occlusion bound-

ary detection in motion.

Most frequency analysis approaches in computer vision
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are related to shape from texture methods [14]. These tech-

niques take advantage of the texture/frequency variation in

the scene due to perspective distortions in order to extract

the shape of surfaces. Active techniques [7] that project

patterns with fixed frequencies and analyze their variation

across the image have also been proposed for depth recov-

ery. Our approach takes the opposite path: rather than ex-

ploiting the projected frequency variation due to depth and

orientation changes, we show how the frequency can be

made invariant across the scene – a property that can be

very useful in other applications, as discussed in this paper.

3. Geometry-Invariant Frequency Projection

Consider a setup composed by a perspective camera and

a perspective projector, which projects a sinusoidal pattern

f(x, y) = h
2
[1 + cos(ω1x + ω2y)] onto the scene, where

ω1 and ω2 denote the angular frequencies of the sinusoid,

in radians per pixel, and h is the amplitude of the mask (in

our experiments, h was set to 255, as we used 8-bit images

to represent the masks). As motivated in the introduction,

surfaces in the scene can have many possible orientations

(for example, tilted planes and curved objects) and can be

at different depths. In general, due to these variations the

sinusoidal patterns observed in the image captured by the

camera may differ from the projected pattern in frequency

and phase, as in Figure 1(a). As we will discuss in Section

4, this variability can be a nuisance in some applications.

We exploit a particular epipolar geometry case to over-

come this issue. Consider two perspective cameras pointing

at the same direction, having parallel optical axes orthog-

onal to the baseline, which is aligned with the horizontal

coordinate axis. This configuration is known in the stereo

vision literature as the canonical configuration [4]. For this

arrangement, the epipolar lines are parallel, and a row in

one of the image planes corresponds to the same row in

the other image plane. Figure 2(a) illustrates this. If we

replace one of the cameras by a perspective projector, the

same result holds, since a projector has the same geometry

[12]. Thus, if we project horizontal patterns from a pro-

jector aligned with the camera along the horizontal coor-

dinate axis, each projected horizontal line will be imaged

at the same horizontal line in the camera. Therefore, the

frequency of the observed sinusoidal patterns will be insen-

sitive to variations in the shape of the objects. In practice,

if the camera and the projector have different resolutions

or different focal lengths, the size in pixels of the imaged

lines can differ from the size of the projected lines, but the

frequency of the observed sinusoidal pattern is still inde-

pendent of the geometry of the objects in the scene.

The above reasoning suggests that a projector-camera

setup for which the frequency of the observed patterns is

geometry-invariant can be built by strategically choosing

two elements:

• Projector-camera alignment. The projector should

be placed in the same plane as the camera, such that

they point at the same direction and their optical axes

are parallel;

• Projected patterns. Patterns parallel to the direc-

tion of alignment between the camera and the projec-

tor should be projected. For example, for a projector

placed to the left or to the right of the camera, it is best

to project sinusoids with ω1 = 0 (horizontal stripes);

for a projector placed above or below the camera, it is

preferable to use vertical patterns (ω2 = 0).

By designing a setup with those properties, the frequency

of the observed patterns will be invariant to the geometry of

objects in the scene, as in Figure 1(b).

4. Frequency Demultiplexing

Let us now consider the problem of frequency demul-

tiplexing in a multi-projector, single-camera setup. Sup-

pose that all projectors send a distinct sinusoidal pattern

onto the scene at the same time, and the goal is to analyze

the frequencies of observed patterns in the image taken by

the camera in order to determine the regions being illumi-

nated by each individual projector. In general, variations in

the observed frequency due to the geometry of objects in

the scene make it very difficult to detect which frequency

came from which projector. On the other hand, if we use

the geometry-invariant setup described in the previous sec-

tion, then the complexity of the problem is greatly reduced,

as the observed frequencies are fixed and known. A ba-

sic setup for this purpose would consist of a camera and

multiple projectors placed in the same plane, such that each

projector-camera pair satisfies the conditions described in

the previous section. Also, the frequencies of the sinusoids

should be distinct among the projectors that share the same

direction of camera-projector alignment. Figure 2(b) illus-

trates an example of a setup that meets these requirements,

by projecting sinusoids with frequencies of π and π/2 radi-

ans per pixel.

Given the single image captured using multiple projec-

tors, and the frequencies of the observed patterns, the objec-

tive is to, for each projector pi, determine the image regions

that contain sinusoids with the frequency imprinted by pi.

Gabor filters [1] can be used to detect regions where a tex-

ture with a specific frequency is present. If p1, p2, . . . , pn

are the n projectors, let ωobsi
be the observed frequency

of the sinusoid from projector i. Create n Gabor filters

Gi tuned to detect frequencies ωobsi
, i ∈ {1, . . . , n}. Let

S be the grayscale image taken using a single shot. For

i ∈ {1, . . . , n}, compute Hi, the result of applying the filter

Gi to the image S. The filtered images Hi should have low

values in regions where the frequency ωobsi
is not present.
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Figure 2. Geometry of the capture setup. (a) correspondence between epipolar lines in the canonical stereo configuration, considering

perspective cameras; (b) sample configuration with a camera and four projectors; (c) experimental table-top prototype; (d) the scene being

imaged.

We observe that the problem of segmenting the regions

depending on the present frequencies can be understood as

a general texture segmentation problem, where the textures

being searched for are known a priori (patterns that can be

decomposed into a sum of sinusoids, where one of the sinu-

soids has frequency ωobsi
). We have described a detection

algorithm using Gabor filters, but more sophisticated seg-

mentation methods suitable for this task could be applied.

5. Coded Shadow Photography

The solution to the frequency demultiplexing problem

from the previous section can be interpreted as a shadow

segmentation procedure, where the goal is to determine the

regions that are in shadow for each individual projector,

starting from a single image captured while all projectors

simultaneously cast shadows. The frequency of each sinu-

soid is a code that allows us to identify regions illuminated

by each projector, and the geometry invariance property fa-

cilitates the shadow demultiplexing process. We call this

application coded shadow photography.

In order to demonstrate the ideas, we present experi-

ments carried out using a proof-of-concept setup. We have

built a table-top prototype of the capture setup using a four-

megapixel Canon G3 digital camera and two Mitsubishi

PK20 pocket projectors (native resolution of 800x600 pix-

els). The projectors have been placed to the left and to the

right of the camera, with a camera-projector baseline dis-

tance of roughly 17cm. Figure 2(c) shows a picture of our

setup, and Figure 2(d) shows the scene being imaged. The

objects are at a distance of about 1.2m from the camera,

some of their surfaces are curved, oblique occlusion bound-

aries are present, and a few objects occlude other objects.

In order to demonstrate the geometry-invariance property

while avoiding frequency variations due to scene albedo, a

scene for which the albedo is locally constant in most places

was chosen (see Section 7 for a discussion on the effects of

texture and possible alternatives to address them).

5.1. Proofofconcept

To illustrate the entire shadow demultiplexing process,

consider the image in Figure 3(a), captured using our setup.

It shows a color image of a green eraser in front of a

yellow background. Figure 3(b) shows the same image

in grayscale. The left projector projects a sinusoid with

frequency (ω1 = 0, ω2 = π) rad/pixel, while the fre-

quency for the right projector is (ω1 = 0, ω2 = 2π/3)

rad/pixel. Notice that only one of the patterns is present in

the shadowed regions, while both patterns appear in other

regions. As mentioned in Section 3, the frequencies of the

observed sinusoids may differ from the frequencies of the

projected sinusoids, due to differences in resolution and fo-

cal length of the projectors and the camera. For a given pro-

jector, if a frequency ωprojected is projected, a frequency

ωobserved = k · ωprojected is observed. The observed fre-

quency can be determined by taking a picture of a blank

sheet of paper under the illumination of that projector only,

locating a cycle of the sinusoidal pattern and then counting

the number of pixels spanned by the cycle. The new fre-

quency ωobserved will be equal to 2π
#pixels

. An alternative to

counting the number of pixels is to have a predesigned filter

bank tuned to detect a few sample frequencies, run the im-

age through the filters in the filter bank, and choose the fre-

quency that corresponds to the filter of maximum response.

For the imaging setup used to capture the image in Figure

3(a), the observed frequencies that correspond to the pro-

jected frequencies of π and 2π/3 are approximately 4π/7
and 8π/21, that is, the multiplicative factor k is roughly

4/7.

Figures 3(c-d) show the output of the application of two

Gabor filters to the image in 3(b), tuned to detect the fre-

quencies 4π/7 and 8π/21. The intensities are normalized

to be in the [0, 1] interval, where darker regions indicate

lower response. In order to segment the shadow regions, we

applied a simple thresholding operator to the Gabor filter

outputs, by selecting the pixels with response values lower

than 0.15. The segmented regions are shown in Figures 3(e-

f). However, the regions are noisy, even for other thresh-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Shadow decoding. (a) color image of an eraser, cap-

tured using two projectors, one to the left and one to the right;

(b) grayscale version of (a); (c) normalized output of the Gabor

filter tuned to detect the frequency of the left projector (darker val-

ues indicate lower response); (d) normalized output of the Gabor

filter tuned to detect the frequency of the right projector; (e) re-

gions of low response in (c); (f) regions of low response in (d); (g)

segmented shadows for the left projector, by considering only the

pixels in (e) that have a large difference between their intensities

in (c) and (d); (h) same as (g), for the right projector.

old values. Another interesting observation is that, in the

shadow regions for one of the projectors, the filter response

for the other projector is usually much higher. By filtering

the results from Figures 3(e-f) by selecting only the pixels

with a large difference between the responses of both Ga-

bor filters, the detection was much more robust, as shown in

Figures 3(g-h). In the result, if a given pixel had responses

R1 and R2 in Figures 3(c-d), it was considered as a pixel

with large difference between the responses of the Gabor

filters if |R1 − R2| > 0.45.

5.2. Effects of Capture Parameters

In this section, we evaluate how changes in some of the

capture parameters impact the final results. Variations in

the camera-projector baseline distance lead to changes in

the size of the shadows, and can cause shadow detachment

for thin objects. Figure 4(a) shows an image captured using

a 17cm baseline, using frequencies of π rad/pixel on the left

projector, and 2π/3 rad/pixel on the right projector. Fig-

ure 4(b) displays the segmented shadows. We repeated the

experiment by placing the projectors on a shorter baseline

(12cm), and on a longer baseline (22cm). Figures 4(c-d)

show the results for the 12cm baseline, while Figures 4(e-f)

show the results for the 22cm baseline.

Overall, the segmentation is very good, except for the

jaggedness near oblique and curved occlusion boundaries.

This is due to the use of Gabor filters to detect the shadow

regions. These filters require a spatial support in the vertical

direction in order to detect a given frequency, leading to res-

olution loss near discontinuities in frequency (which appear

on oblique and curved edges for horizontal patterns). On

the other hand, the segmentation contours are very accurate

near vertical occlusion boundaries, as they are not affected

by these complications. For the shorter baseline, there is

a noticeable increase in failures in the segmentation of the

shadows of the triangular object. This is due to the shorter

baseline distance, that results in relatively narrow shadows

cast by these occluding edges. This reduces the size of the

region that contains only the frequency of a single projec-

tor, making the detection more difficult for the Gabor filter.

Another interesting observation is that with the increase in

baseline, the shadows cast over the orange ear plugs begin

to detach, but are still captured by our method.

Another important parameter is the frequency of the pro-

jected sinusoids. We carried out a set of experiments by us-

ing different frequencies on the right projector, while keep-

ing the left projector fixed with a frequency of π rad/pixel.

The baseline was 17cm, and we used the frequencies of

π/2, π/3 and π/4 rad/pixel on the right projector. Figure 5

displays the results. As the frequency decreases, the resolu-

tion of the shadow contours near curved and oblique occlu-

sion boundaries is considerably reduced, due to the spatial

support requirement of the Gabor filters. This suggests that

it is best to use the highest possible frequencies.

As the experiments demonstrate, the main source of in-

nacuracies in the detected shadows is due to the resolution

loss imposed by the Gabor filter near frequency discontinu-

ities. We performed an additional experiment by reducing

the resolution of the output of the Gabor filter (by Gaus-

sian filtering and then subsampling) before executing the

shadow detection step. This helped to reduce the number of

inaccuracies, with the cost of decreasing the resolution of

the final output. Figures 6(a-b) show the results of subsam-

pling by factors of 2 and 4, respectively. The images are

rescaled to the original size in order to be displayed. Sim-

ilarly, we performed another experiment by smoothing the

output of the Gabor filters using a circular averaging filter

(pillbox) of radius 5 before detecting the shadows. The re-

sults are shown in Figure 6(c). Notice that the contours are

very smooth and free of gaps, at the expense of creating a

curvy appearance.

6. Application: Single-Shot Multiflash Photog-

raphy

The multiflash technique for occlusion boundary detec-

tion [13] uses multiple flashes placed close to the camera,

at different locations. A collection of images is acquired,

where, for each individual image capture, one of the dif-

ferent flashes is triggered. The algorithm then performs

shadow detection in each of the captured images. From

the detected shadows and prior knowledge about the rela-

tive camera-light placement, the location of the occlusion

boundaries is computed. We refer the reader to [13] for

more details on multiflash imaging.
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(a) (c) (e)

(b) (d) (f)

Figure 4. Multibaseline experiment. (a) image captured with a baseline of 17cm; (b) segmented shadows for the image in (a); (c) image

captured with a baseline of 12cm; (d) segmented shadows for the image in (c); (e) image captured with a baseline of 22cm; (f) segmented

shadows for the image in (e).

(a) (c) (e)

(b) (d) (f)

Figure 5. Experiment with varying frequencies. (a,c,e) images captured with a frequency of π/2, π/3 and π/4 on the right projector,

respectively; (b,d,f) zoom to the spherical object with superimposed shadows for (a), (c), and (e). Notice the decrease in accuracy near the

sphere’s contours as the frequency is reduced.

(a) (b) (c)

Figure 6. Effects of reducing resolution. (a) shadows detected from a lower resolution version (subsampled by a factor of 2) of the Gabor

filter outputs; (b) shadows detected from a lower resolution version (subsampled by a factor of 4) of the Gabor filter outputs; (c) result

obtained by smoothing the Gabor filter outputs using a circular averaging filter (pillbox) of radius 5 before detecting the shadows.

The method usually produces high quality results for

static scenes, but the detection of depth edges in scenes with

moving objects is a challenging problem that remains unre-

solved. Since there is movement during the time interval
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between two consecutive captures, the occlusion boundary

locations (along with the corresponding shadows) change

from image to image. Therefore, it is difficult to reli-

ably find shadow regions, as the images contain misaligned

features. Even if a high-speed camera with synchronized

flashes is used, it is still not possible to assume that the oc-

clusion boundary locations will coincide in the sequentially

captured images.

As shown in the previous section, the coded shadow pho-

tography setup can be applied to find shadows from multiple

illuminants (projectors) from a single shot, at the expense

of resolution. This would enable the use of multiflash pho-

tography for moving objects or a moving projectors-camera

setup. As it is known that at least three light sources are

necessary to cast shadows along all possible orientations

of occlusion boundaries in a general scene [16], we built

a setup with four projectors, as in Figure 2(b). We captured

an image of a scene and applied the shadow demultiplexing

algorithm to segment the shadow regions. In the presence

of four projectors, we first process the image to filter out

either horizontal or vertical frequencies, and then use the

same algorithm as before in both resulting images. The oc-

clusion boundary algorithm from [13] was then applied to

the detected shadows, in order to find the location of depth

edges. Figure 7 shows the results.

7. Discussion

Overall, the experiments show that the frequency demul-

tiplexing scheme can be successfully applied. The geome-

try invariance property greatly decreases the complexity of

the problem, and this reflects in the simplicity of the pro-

posed method. In practice, obtaining a perfect alignment of

the camera-projector pairs can be difficult. However, our

experiments were performed using approximately aligned

projectors arranged manually, and we were still able to ob-

tain good results.

Single-shot coded shadow photography is a promising

technique for use in dynamic scenarios. Although the

scenes used in the experiments are static, this is merely due

to the limited luminance of the pocket projectors we used,

requiring an exposure time of 1/6 second during the im-

age capture. Using brighter projectors would enable the use

of shorter exposure times. Vision and graphics techniques

such as multiflash imaging and relighting could be applied

to scenes with moving objects, due to the single-shot char-

acteristic of the method.

In our experiments, we observed that the spatial sup-

port requirement of Gabor filters can lead to resolution loss,

causing jaggedness at the contours of the segmented re-

gions. Also, small shadows can be missed for the same

reason. However, more sophisticated texture segmentation

approaches, such as the one proposed in [9], might miti-

gate this problem. In applications where large resolutions

are not essential, subsampling or smoothing the output of

the Gabor filters before segmenting shadows can be a vi-

able alternative, as suggested by our experiments. As the

sensor and display technologies evolve, higher resolutions

are achieved in cameras and projectors. Our method would

directly benefit from those improvements, producing higher

quality results.

The experiments demonstrate the usefulness of the ge-

ometry invariance property, and the technique works well

in scenes with locally constant albedo. Although the pres-

ence of textured objects can introduce variations in the fre-

quency of the observed patterns, this limitation still can

be addressed in some situations. In the presence of high-

frequency texture, the frequency of the projected patterns

could be decreased at the expense of resolution. Also, while

objects with high-frequency texture can cause problems in

the visible domain, they may have constant albedo in the

infrared domain. This suggests that the use of infrared pro-

jectors with an infrared camera might help to address this

issue.

As other active illumination methods in computer vision,

coded shadow photography is not suitable for use in outdoor

environments, when the sun is much brighter than the pro-

jected light. Specular reflections can also cause problems,

due to the saturation of the captured patterns. The patterns

may not be visible due to low albedo of objects in the scene,

but the use of brighter projectors would attenuate this issue.

8. Conclusions and Further Research

In this paper, we have proposed a projector-camera setup

technique for which the imaged frequency of a strategically

chosen projection pattern is invariant to the geometry of

the objects in the scene. We have shown the usefulness of

this configuration for demultiplexing frequencies projected

by multiple projectors at once, and proposed an application

called coded shadow photography, which is able to recover

shadows cast by individual projectors from a single image

captured under the illumination of multiple projectors. Fi-

nally, we have applied the technique to obtain single-shot

occlusion boundary detection using multiflash imaging. As

our technique detects shadows from a single image, it may

be applied to dynamic scenes.

This work also paves the way for further research top-

ics. We presented an algorithm for single frame processing,

but, when video data is available, one could use space-time

consistency [19, 2] to combine information from multiple

frames, in order to improve the results. Also, the feasibility

of projecting other types of patterns might be investigated.

The capture setup is strategically built in a way that the

geometry of the surfaces being imaged does not distort the

frequency of the projected patterns, in order to facilitate the

detection. Following the opposite path, if we choose pat-

terns that exhibit changes on slanted and curved surfaces,

2088



(a) (b) (c)

Figure 7. Using coded shadow photography for single-shot depth edge detection. (a) original image, captured under the illumination of

four projectors; (b) shadow detection results; (c) depth edges extracted using the multiflash algorithm.

then the amount of distortion could be exploited to recover

the orientation of surfaces in the scene. Indeed, shape from

texture methods analyze variations in texture present in ob-

jects in order to recover their geometry [14]; the use of pro-

jectors would enable the generation of textures over texture-

less objects, allowing for shape from texture techniques to

be applied with the objective of recovering 3D geometry.

Finally, the codification and decodification scheme for

shadows proposed in this paper is an inspiration to the in-

vestigation of a technique for general multiplexing and de-

multiplexing of illuminants. In this paper, coded shadow

photography generates a binary (lit/non-lit) output for each

projector. However, a technique to recover the intensity of

the observed patterns (with gray-level / color output) would

allow us to decompose a single captured image taken using

N coded illuminants into N individual images with lower

resolution, as if they had been captured under the illumina-

tion of only one of the light sources. We envision the ap-

plication of this technique in future settings, when improve-

ments in the resolution of cameras and projectors could al-

low for the use of extremely high frequencies.

Acknowledgements

This work was supported in part by the National Science

Foundation under award number IIS-0535293. We used a

modified version of the Gabor filter code from retinal.

sourceforge.net in the experiments.

References

[1] A. Bovik, M. Clark, and W. Geisler. Multichannel texture

analysis using localized spatial filters. IEEE Trans. on Pat-

tern Analysis and Machine Intelligence, 12(1):55–73, Jan

1990.

[2] J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz.

Spacetime stereo: a unifying framework for depth from tri-

angulation. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 27(2), 2005.

[3] P. Debevec and J. Malik. Recovering high dynamic range ra-

diance maps from photographs. In SIGGRAPH / ACM Trans.

on Graphics, 1997.

[4] R. Hartley and A. Zisserman. Multiple View Geometry in

Computer Vision. Cambridge University Press, second edi-

tion, 2004.

[5] S. Hasinoff and K. Kutulakos. Confocal stereo. In European

Conference on Computer Vision (ECCV), 2006.

[6] E. Horn and N. Kiryati. Toward optimal structured light pat-

terns. Image and Vision Computing, 17(2):87–97, 1999.

[7] S. Lee, S. Lee, and J. Choi. Depth measurement using fre-

quency analysis with an active projection. In International

Conf. on Image Processing (ICIP), 1999.

[8] A. Levin, R. Fergus, F. Durand, and W. Freeman. Image

and depth from a conventional camera with a coded aperture.

SIGGRAPH / ACM Trans. on Graphics, 2007.

[9] W. Ma and B. Manjunath. Edgeflow: a technique for bound-

ary detection and image segmentation. IEEE Trans. on Image

Processing, 9:1375–88, Aug 2000.

[10] J. Posdamer and M. Altschuler. Surface measurement by

space encoded projected beam systems. Computer Graphics

and Image Processing, 18(1):1–17, 1982.

[11] R. Raskar, A. Agrawal, and J. Tumblin. Coded exposure

photography: Motion deblurring using fluttered shutter. SIG-

GRAPH / ACM Trans. on Graphics, 2006.

[12] R. Raskar and P. Beardsley. A self-correcting projector. In

IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 2001.

[13] R. Raskar, K. Tan, R. Feris, J. Yu, and M. Turk. A non-

photorealistic camera: depth edge detection and stylized ren-

dering using multi-flash imaging. SIGGRAPH / ACM Trans.

on Graphics, 2004.

[14] B. Super and A. Bovik. Planar surface orientation from tex-

ture spatial frequencies. Pattern Recognition, 28:728–743,

1995.

[15] R. Szeliski and H. Shum. Creating full view panoramic im-

age mosaics and environment maps. In SIGGRAPH / ACM

Trans. on Graphics, 1997.

[16] D. Vaquero, R. Feris, M. Turk, and R. Raskar. Characterizing

the shadow space of camera-light pairs. In IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), 2008.

[17] M. Young, E. Beeson, J. Davis, S. Rusinkiewicz, and R. Ra-

mamoorthi. Viewpoint-coded structured light. In IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), 2007.

[18] L. Zhang, B. Curless, and S. Seitz. Rapid shape acquisi-

tion using color structured light and multi-pass dynamic pro-

gramming. In Intl. Symposium on 3D Data Processing Visu-

alization and Transmission, 2002.

[19] L. Zhang, B. Curless, and S. Seitz. Spacetime Stereo: Shape

Recovery for Dynamic Scenes. In IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), 2003.

[20] L. Zhang and S. Nayar. Projection defocus analysis for scene

capture and image display. SIGGRAPH / ACM Trans. on

Graphics, 2006.

2089


