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Introduction 

 

“Models do not explain history, but they may tell us where to look.” 

Bowles (2004) 

 

“All reasonable ecological models of closed systems are non-linear.” 

Murdoch et al. (2003) 

 

“Think Non-Linearity” 

A theoretical ecologist’s t-shirt1 

 

 Complexity marks human behavior.  We live in huge societies with an intricate 

division of labor.  We employ a vast array of technologies in virtually every ecological 

system in practically every corner of the planet.  The biological foundation of our 

behavior is a metabolically expensive brain whose full complexity remains largely 

beyond the ken of science.  Moreover, human culture stands as the world’s most intricate 

system for transmitting behavior extra-genetically.  It leads to rapid evolution and 

prodigious behavioral diversity across societies.   

 The social sciences all take complex human behavior as their object of study.  In 

spite of this commonality, the various disciplines go about their respective studies with 

little communication across disciplinary boundaries.  The chasm between the social 

sciences and biology has been even harder to bridge than the chasms among the social 

sciences.  In addition, in spite of the fact that mathematics has proven its value countless 

times as a language for confronting complexity, the social sciences, with the notable 

exception of economics, have developed as the least mathematical of the sciences.  The 

quantitative skills of many social scientists do not extend beyond static linear statistical 

models, and the proliferation of postmodernism has further eroded the role of 

mathematics in the social sciences. 

                                                 
1 Our experience with this t-shirt is through Alan Hastings, a theoretical ecologist at UC Davis who from 
time to time proceeds through the day with the above admonition emblazoned across his torso.   
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 Happily, we do not have to choose, nor could we, between words and quantities.  

We can have both poetry and equations.  We can have both rhetoric and deduction.  In an 

applied setting both typically have their uses.  The most mathematical treatment of a 

problem requires some discussion, even persuasion, and a little math in turn can often 

provide a degree of precision simply beyond the reach of words.  Together, words and 

mathematics allow us to travel freely from the intuitive and the compelling to the precise 

and the counterintuitive, and then back again to boot.  More practically, decades of 

experience in other sciences suggest that math is just what we need as scientists to 

discipline our thinking when phenomena get complex.  Nothing about human behavior 

recommends a crucial difference or even the legitimacy of a wholly non-mathematical 

approach for the social sciences.      

 Here we summarize several of our views on the integration of theory and 

empiricism in the study of human behavioral complexity.  We review recent research that 

both illustrates and played a role in the development of our thinking.  Several themes 

figure prominently.  First, human behavior is complex, and mathematically this 

complexity translates into the need for an increased emphasis on nonlinear dynamical 

models.  We can derive a simple taxonomy of mathematical models by focusing on two 

orthogonal dimensions.  Models can be linear or nonlinear, and they can be static or 

dynamical.  Static linear models are the simplest models to understand, but also have the 

most limited potential to summarize complex phenomena.  This limitation, in conjunction 

with the widely recognized complexity of human behavior, further emphasizes the likely 

problems associated with the fact that many social scientists do not have technical skills 

extending beyond linear statistical models.  At the other end of the spectrum, nonlinear 

dynamical models have the greatest potential to summarize complex phenomena.  The 

combination of nonlinearity and dynamical feedbacks has an extraordinary potential to 

yield complex behavior with few variables.  Indeed, as May (1974, 1976) first showed, 

one-dimensional nonlinear difference equations with a single parameter can exhibit a 

staggering array of behaviors from steady states to chaos.  If we have an interest in 

complexity, the mathematical reality is that nonlinear dynamics can take us far beyond 

the offerings of static linearity. 
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 Second, empiricism is essential.  Mathematics invites a deductive approach, but 

math without empiricism, especially in a high-dimensional nonlinear environment, 

represents simply an abundance of logical possibilities.  As ecologists Burnham and 

Anderson (2002: 20) put it, “we believe that ‘truth’ (full reality) in the biological sciences 

has essentially infinite dimension, and hence full reality cannot be revealed with only 

finite samples of data and a ‘model’ of those data.  . . . We can only hope to identify a 

model that gives a good approximation of the data available.”  Although this humility in 

the face of complexity is a lesson that would also serve social scientists well, we will 

draw additional lessons from Burnham and Anderson.  Our primary lessons pertain to 

their methods for fitting models to data and choosing the best model among a set of 

candidate models.  Model fitting and model selection are essential because, even though 

behavioral phenomena may be high-dimensional, we cannot necessarily justify thinking 

about them this way.  The best model, given finite data, will generally be much simpler 

than the exceedingly complicated reality we know is “out there.”  The phenomena in 

question, the data at hand, and the models under consideration all matter in our selection 

of the best model. 

The cognitive-module hypothesis of Tooby and Cosmides (1992) illustrates the 

problem.  No doubt the human brain and the problems it has to solve have “essentially 

infinite dimension.”  Tooby and Cosmides, plausibly enough, posit hundreds or 

thousands of cognitive modules that, via their interaction with the environment, govern 

human behavior and its variation within and across societies.  Unfortunately, we currently 

have no way to assess the validity of this idea.  Although the hypothesis that we have 

many cognitive modules rests on a typically verbal theory, thinking about it as a possible 

basis for integrating theory and empiricism suggests some of the problems likely to arise.  

Consider a single behavioral response variable measured in many different societies.  

Initially we have no basis for excluding some modules and including others with respect 

to an effect on the response.  Consequently, an exceedingly simple version of the 

cognitive-module model would be a linear regression with a dummy variable for each 

module.  Such a regression is no doubt only one of many possible approaches left 

unspecified by a verbal theory.  Nonetheless, we take it as our benchmark.  Putting aside 

the significant problem of how to identify the modules and code which ones are active 
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versus inactive, to say nothing of variable levels of activation, the resulting model would 

involve estimating an intercept and for each module a coefficient.  Under thousands of 

modules, the dimensionality of the system would be unruly, to say the least.  Any such 

model would severely overfit the data relative to other candidate models.  Indeed, leaving 

aside the possibility of a model with hundreds or thousands of variables, a model with 

only tens of terms representing only a relative handful of modules may fit the data on 

hand extremely well, yet utterly fail to predict any new data we collect. Specifically, 

assuming we even had enough data to estimate the parameters, the estimates would 

probably be so imprecise as to lack all meaning.  Alternatively, and as a different kind of 

problem, a model with too many terms can spuriously fit the error in a necessarily finite 

data set and potentially give apparent statistical support to a highly misleading model. 

Anyone can overfit data using linear regression and similar techniques. Many biologists 

and social scientists are in the habit of collecting large data sets in the hopes of finding 

statistically significant relationships between independent and dependent variables. This 

is called data dredging. If you collect a large number of independent variables, you will 

not be disappointed by the fits you get. Even so, you are likely to discover that a 

colleague who collects a parallel set of data will not replicate your fit, but will report a 

quite different structure. First chocolate causes cancer, then it protects. 

The great irony is that in practice many social scientists, especially outside of 

economics, rely on static, linear, and relatively low-dimensional models to analyze data.  

Often they merely set up a test that potentially rejects a null model in favor of a proposed 

alternative.  If the dimensionality of the alternative happens to be too low, but the 

alternate still fits better than the null, such an approach will lead to underfitting.  Any 

number of additional models might fit the data as well or better.  Tooby and Cosmides 

(1992), for example, have studied a well known logical task in which subject 

performance improves, relative to an abstract version of the problem, when the task is 

framed in terms of identifying the violation of a social rule.  The rejected null in this case 

is that subjects perform equally well on any task with the same logical structure 

regardless of how the problem is framed.  Tooby and Cosmides take rejection of the null 

as support for a cognitive module that evolved among ancient hunter-gatherers and is 

dedicated to detecting the violation of social norms.  Alternative models might be that 
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social life creates the module by reinforcement or that culturally transmitted strategies 

play a role in superior performance.  We certainly know in general that innate 

characteristics, individual learning, and cultural transmission interact to improve 

performance in various types of decision making.  We expect that the best-fitting, low-

dimensional model for a given data set will typically include terms that represent more 

than one of these three causal elements.  Thus the verbal theories Tooby and Cosmides 

propose and the mathematical methods they employ in data analysis are fundamentally at 

odds.  The grand strategy sounds like overfitting; the actual practice sounds like 

underfitting.    

Evolutionary psychologists no doubt realize that one cannot fit a model, for 

example, that has 100 variables when one only has 99 data points.  A model with 15 

variables can also overfit, however, or even a model with 1 or 2 variables.  As Forster and 

Sober (1994) argue, philosophers of science long contended that a pure empiricist would 

derive a model that fit every data point perfectly, but practicing scientists do not do so 

because they value simplicity, an extra-empirical concern.  Modern statisticians have 

aimed for a principled form of parsimony that steers between the intimidating complexity 

of the phenomena we study and the distressing limitations of the data we can bring to 

bear on them. The key insight is that data include both a signal and noise. Thus simplicity 

is not an extra-empirical desideratum; we definitely do not want to fit every data point 

exactly for, if we do, we shall fit the noise as well as the signal.  We need to discriminate 

between the signal and the noise as we walk a line between underfitting by ignoring 

important components of the signal inherent in the data and overfitting by paying 

attention to the stochastic features unique to the particular sample of data available 

(Forster and Sober 1994). 

The information theoretic criterion originally proposed by Akaike (1973) and 

summarized in Burnham and Anderson provides a formal approach to this problem. The 

central concept is information loss.  Models lose information intrinsic to data because 

they are not true; they are models.  Given a set of candidate models, however, we would 

like to identify the model estimated to lose the least amount of information about the 

processes that generated the data.  We cannot know absolutely how much information 

any given model loses because we do not know truth, but estimating the relative 
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information loss turns out to be straightforward.  In addition, a deep relationship exists 

between minimizing information loss and optimizing the trade-off between underfitting 

and overfitting.  This relationship is captured beautifully by Akaike’s (1973) Information 

Criterion (AIC), the centerpiece of Burnham and Anderson’s (2002) thoughts on optimal 

model fitting.  We discuss the details below. 

Importantly, we justifiably fuss a great deal about the benefits of both Akaike and 

nonlinear dynamics, perhaps even to the extent that they may seem related.  AIC and 

nonlinear dynamics, however, are conceptually distinct.  One can easily calculate AIC 

values for linear models or nonlinear static models from the standard output of common 

statistical software. Burham and Anderson give the recipes.  A shift toward AIC would be 

an improvement over today’s standard practice in most of the social sciences.  

Nonetheless we suspect that AIC and nonlinear dynamics should often go hand and hand 

in the social sciences.  A move toward nonlinear dynamics would improve the set of 

models under consideration, while a move toward Akaike and information theory would 

improve the tendency for practicing scientists to select useful models.         

As our third theme, we promote disrespecting disciplinary boundaries.  The study 

of human behavior was compromised throughout the 20th Century by the divorce of the 

social sciences from biology and from each other.  Each of the social sciences has its 

strengths (economics, deductive theory; psychology, experimental methods; 

anthropology, a grip on human diversity; sociology and political science, an appreciation 

of social institutions), but each would benefit from borrowing methods, theories, and data 

from the others.  We are after all talking about the behavior of only a single species.  

As unfruitful as the divorces among the social sciences have been, the divorce 

from biology has been at least as disastrous.  In principle all the social sciences should be 

sub-disciplines of biology with porous boundaries both vertically and horizontally.  

Although we are happy to hail the complexity of human behavior from the front row, 

nothing about complexity implies that ideas and explanations drawing on biology are 

inappropriate or even that they can be overlooked.  Indeed, ecology and evolution have 

long been at the vanguard with respect to the study of complexity.  In this vein we 

provide a taste below of how evolutionary ecologists are doing some of the most exciting 

current research integrating theory and empiricism in complex environments.  A growing 
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number of social science researchers are crossing the various disciplinary divides and 

using ecology, evolutionary biology, game theory, and economic concepts, broadly 

conceived, with no shame and to good effect.  Their numbers ought to increase. 

We organize the remainder of the paper in the following way.  We begin by 

reviewing three examples of how nonlinear dynamics figure in the study of human 

behavioral diversity.  The first example is an innovative study using experimental 

economics to chart cultural variation across societies (Henrich et al. 2004).  An ostinato 

throughout this paper centers on the tendency of nonlinear dynamics to yield different 

systems that evolve in different, historically contingent ways under the same set of causal 

mechanisms.  We find this a compelling line of inquiry with regard to formalizing the 

study of history and the macroevolutionary consequences of cultural evolution.  To 

pursue such a line of inquiry, however, we need to document cultural diversity.  

Anthropologists, of course, have made considerable strides toward this objective.  Most 

of this work has been qualitative.  The experimental economic study we review 

represents a significant methodological development in what we refer to as quantitative 

ethnography, a useful and even necessary supplement to more conventional ethnographic 

genres.  The second example pertains to the rise and fall of agrarian societies as a 

problem in nonlinear dynamics (Turchin 2003).  This study takes us directly to the heart 

of the matter; it shows how the mathematics of nonlinear dynamical systems can produce 

precise insights simply unavailable via strictly rhetorical methods.  The final example 

initiates a discussion of some of the distinctive challenges likely to arise in experiments 

designed to study learning.  We focus in particular on nonlinear social learning and an 

associated incipient research program that merges the methods of experimental 

economics with gene-culture coevolutionary theory (Baum et al. 2004; McElreath et al. in 

press; Efferson et al. submitted).  We continue with two sections on the methodological 

tools we find especially promising with regard to integrating theory, nonlinear dynamics, 

and empiricism in the social sciences.  We focus on the work of Cushing et al. (2003), a 

group of ecologists whose research on the population dynamics of flour beetles represents 

the state of the art in experimental nonlinear dynamics.  We round out our survey by 

discussing the use of information theory (Burnham and Anderson 2002) in data analysis.                   
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Experimental Comparative Ethnography 

 

“The obvious question at this point was: were the Machiguenga results anomalous in 

some fashion?  Or, were they an indication of some substantial amount of cultural 

variation lurking outside the student-subject pools of the world’s universities?” 

Henrich et al. (2004) 

 

“After these games it was clearly evident from the comments of participants that many 

made the association between this game and the institution of harambee.” 

Ensminger (2004) 

 

 The use of experimental methods in economics has exploded in the last three 

decades.  In this short period of time, experiments have demonstrated that many of the 

key assumptions typical of economic theory in the Walrasian tradition are wrong.  

Loosely put, we can characterize this tradition as one of decision-making based on 

constrained optimization in a world with stable, exogenous, self-regarding preferences 

and non-strategic interactions.  Moreover, although resources are scarce, ideal social 

institutions and complete, fully enforceable contracts are somehow freely available under 

Walrasian assumptions (Bowles and Gintis 2000; Bowles 2004).  Among other findings 

at odds with the Walrasian tradition, experiments have shown that people exhibit 

contingent, endogenous, and other-regarding preferences.  Kagel and Roth (1995) and 

Camerer (2003) provide extensive reviews of this research.  One particularly consistent 

finding is that people exhibit preferences over the social characteristics of different 

outcomes.  Under these social preferences, people do not simply care about their own 

payoffs.  They also care about the distribution of payoffs among individuals in some 

relevant reference group.  Correspondingly, players consistently sacrifice absolute 

payoffs to influence the distribution of payoffs in the group. 

In addition to many experiments designed strictly to measure social preferences, 

public goods games have also received substantial attention.  Public goods are goods that 

are rival in the sense that more for one necessitates less for another.  But unlike private 

goods, public goods have some characteristic that makes excluding those who did not 
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contribute to the production of the good impractical or even impossible.  Thus an 

incentive to free-ride is present: enjoy the public good provisioned by others.  In the 

limit, however, no one contributes in any way, and the public good is not produced.  The 

orthodox prediction from economic theory is that in all periods all players contribute 

nothing to the provision of the public good.  The basic reasoning is straightforward.  One 

would rather contribute nothing and possibly free-ride on others in lieu of contributing 

only to be exploited by free-riders one’s self.  In public goods experiments, however, 

players typically contribute about half of their endowment to the public good in the first 

period, but contributions decline steadily in subsequent periods.  The experimenter can 

often prevent this tendency for contributions to unravel by introducing an institution like 

the punishment of non-contributors.  Such an institution tends to stabilize average 

contributions at nearly all of a player’s endowment (Fehr and Fischbacher 2004; Fehr and 

Fischbacher 2003; Fehr and Gächter 2002), a fruitful situation with respect to both 

individual payoffs and social efficiency. 

 As is the case in psychology, the pool of subjects in experimental economics 

exhibits a heavy bias toward university undergraduates in Europe, North America, and 

Japan.  Thus no matter how many times researchers confirm a particular result, one is left 

wondering to what extent experiments have tapped human universals as opposed to the 

comparatively homogeneous culture of university undergraduates in the world’s OECD 

countries.  To address this question, a group of anthropologists, psychologists, and 

economists recently undertook a remarkable study (Henrich et al. 2004) to conduct some 

classic economic experiments in small-scale societies around the world.  The most 

complete data in the study come from the ultimatum game, and these data serve to 

illustrate some central points. 

 The ultimatum game is a simple game that taps social preferences.  It involves 

two players, a proposer and a respondent.  The experimenter provides a quantity of 

money, and the proposer has to propose a division of the money between herself and the 

respondent.  The experimenter then presents the offer to the respondent, who can either 

accept or reject.  If the respondent accepts, both players receive the specified amounts.  If 

the respondent rejects, neither player gets anything.  To control for interpersonal effects, 

the experimenter typically mediates the interaction so that neither the proposer nor the 
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respondent ever sees, talks to, or knows the person with whom she plays.  The Walrasian 

prediction is that, if offered any money at all, the respondent’s choice is between some 

positive amount of money and nothing.  Because some money is better than no money, 

the respondent will always accept a positive offer.  The proposer, anticipating this 

behavior, will offer the smallest positive amount2 with no fear of rejection.  

Experimentalists have conducted variations of the ultimatum game thousands of times.  

The basic results among university undergraduates are highly regular.  The most common 

offer is generally 40-50 percent of the total.  Respondents rarely reject such offers, but 

they frequently reject offers less than approximately 20 percent (Camerer 2003).  

Researchers have carefully varied experimental protocol to unpack the motivations 

behind these behaviors.  The general consensus seems to be that respondents, seeing a 

low offer as unfair, respond by rejecting because rejection is the only available means of 

punishing proposers.  Proposers, in turn, make offers based on some mix of a concern for 

fairness and a strategic desire to avoid a rejected offer.  To develop an economic theory 

consistent with such findings, a handful of researchers have developed novel utility 

functions for use in economic analysis (Fehr And Schmidt 1999; Bolton and Ockenfels 

2000; Charness and Rabin 2002; Bowles 2004). 

 The researchers in the Henrich et al. study all had considerable field experience 

working among at least one small-scale society somewhere in the world.  In all the study 

encompassed 15 societies, 12 countries, and 4 continents plus New Guinea. Their key 

result, in stark contrast to the highly regular play of university undergraduates, 

documented a previously uncharted degree of variation in participant behavior.  The 

extremes from the ultimatum game data illustrate.  The Machiguenga of Peru are at one 

end of the spectrum.  Social interactions among the Machuguenga are primarily at the 

family level.  Until recently, the Machiguenga lived as highly mobile familial bands of 

subsistence foragers and horticulturalists.  Although their lives are increasingly settled, 

social interactions continue to be primarily with close kin, and cooperation beyond the 

kin group is extremely rare.  They also exhibit little concern for social disapproval, and 

                                                 
2 The conventional theory does not make a strong prediction at the boundary when the proposer offers zero 
to the respondent.  Technically, the respondent is indifferent to accepting or rejecting.  One can assume that 
respondents always accept when indifferent with any probability in the interval [0,1].  Any specific 
assumption is arbitrary.   
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until recently did not have personal names (Henrich et al. 2004b, Henrich and Smith 

2004).  Congruent with this ethnographic sketch, Machiguenga proposers offered little in 

the ultimatum game.  The most common offer was 15% of the total.  Moreover, even 

though offers were low, respondents rarely rejected low offers.  Only 1 out of 10 offers 

equal to or less than 20% of the total was rejected.  At the other end of the spectrum are 

the Lamalera whalers of Indonesia.  Whaling among the Lamalera is by necessity a 

highly cooperative activity.  A clear division of labor and a highly elaborate system of 

social norms characterize the capture of whales and the careful distribution of whale meat 

(Alvard 2004).  Among the Lamalera, the modal offer was 50%, the mean offer was 57%, 

and virtually the entire distribution of offers was at 50% and above.  Alvard (2004) had to 

fabricate low offers, an atypical procedure in experimental economics, to get any data on 

rejection rates.  The Lamalera rejected his sham low offers.   

Two other groups that produced some fascinating results are the Au and Gnau of 

Papua New Guinea.  In both of these societies, people value generosity.  To refuse a 

feasible request brings social sanctions, especially if one repeatedly does so.  Unsolicited 

generosity is also possible, but acceptance brings a tacit and nebulous obligation to 

reciprocate in the future (Tracer 2004).  In keeping with these ethnographic details, Au 

and Gnau proposers, like the Lamalera, exhibited a notable tendency to offer more than 

50% of the total.  Unlike Lamalera respondents, however, Au and Gnau respondents 

often rejected such offers.  Conventional Walrasian assumptions simply provide no basis 

for interpreting such results.  If Ultimatum play among university undergraduates was 

initially surprising, these results from the Au and Gnau are absolutely stunning. 

 A net result of the Henrich et al. study is that culture matters.  Although most 

people might agree with this idea in the abstract, showing that culture matters and 

demonstrating how it matters is quite a different undertaking.  Henrich et al. (2004b) 

provide a careful statistical analysis that quantifies the explanatory importance of cultural 

variation in the full cross-cultural data set, but an anecdote from the study illustrates the 

same conclusion well.  The Orma, a group of Kenyan pastoralists, have an institution 

called harambee.  It is a village-level institution for collecting funds to provide public 

goods like a new school building.  When Ensminger (2004) played the public goods 

game among the Orma, they immediately dubbed it the “harambee” game.  Moreover, 
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the institution of harambee is progressive in the sense that wealthier members of the 

community are expected to contribute more than poorer members.  In the public goods 

game, Ensminger found the same pattern.  Wealthier participants contributed more to the 

public good in the experiment than poor participants.   

In essence, the experimental environment is not neutral with respect to the norms, 

interpretations, and cultures of participants.  Although some experimentalists will no 

doubt see this finding as problematic because it implies a lack of experimental control, a 

more optimistic interpretation would see culture as, in effect, a treatment.  Comparing a 

cultural treatment to an acultural control group might be impossible, but researchers can 

of course compare play in one culture to play in another culture.  To view the matter 

another way, if researchers can show that play in experimental games consistently 

corresponds to salient cultural variables, then experimental economics has the potential to 

become invaluable as a methodological tool in comparative ethnography, a technique for 

measuring the macro-evolutionary consequences of cultural transmission.  Experimental 

economic games in essence offer the possibility of a theory-driven, quantitative 

ethnographic map of human cultural variation.  Such a map would bring anthropology 

and economics, perhaps the two most distant of the social sciences, closer together and 

probably bring psychology, political science, and sociology into the fold along the way.  

After all, 17 researchers participated in the Henrich et al. project.  They included a 

thorough mix of anthropologists, economists, psychologists, and evolutionary ecologists.  

When was the last time you saw that in the social sciences?  We take the Henrich et al. 

project as exemplary in this regard.  Many important questions await attention along the 

boundaries between disciplines.  A few years ago, one might have asked what such a 

collection of 17 researchers would have found to do together.  Remarkably, tellingly, and 

perhaps unsurprisingly, the answer now seems obvious.   

 

Historical Nonlinear Dynamics 

 

“Mathematical modeling is a key ingredient in this research program because quantitative 

dynamical phenomena, often affected by complex feedbacks, cannot be fully understood 

at a purely verbal level.”  
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Turchin (2003) 

 

“Thus, our task  . . . is to translate various postulated . . . mechanisms into models, 

determine whether these models are in principle capable of generating second-order 

dynamics, and, if so, derive testable predictions from them.” 

Turchin (2003) 

 

“I attempted mathematics, and even went during the summer of 1828 with a private tutor 

(a very dull man) to Barmouth, but I got on very slowly.  The work was repugnant to me, 

chiefly from my not being able to see any meaning in the early steps of algebra.  This 

impatience was very foolish, and in after years I have deeply regretted that I did not 

proceed far enough at least to understand something of the great leading principles of 

mathematics, for men thus endowed seem to have an extra sense.” 

Darwin’s Autobiography 

 

 Evolutionary ecology has recently played a prominent role with regard to some of 

the big questions in the study of human history.  Diamond (1997), for example, examined 

how seemingly irrelevant details such as the orientation of continental axes and the global 

distribution of wild big-seeded grasses could have contributed to the eventual rise of the 

European colonial powers.  He recently followed with an analogous approach to the study 

of societal collapse (Diamond 2005).  Additional research has employed human 

evolutionary ecology to focus on questions related to the rise of agriculture (Richerson et 

al. 2001), the path-dependent nature of history (Boyd and Richerson 1992), the evolution 

of complex social institutions (Bowles 2004, Richerson and Boyd 2005), and the 

dynamics of technological innovation and diffusion (Henrich 2001, 2004). 

The theoretical ecologist and history buff Peter Turchin recently joined this 

tradition with his book on the rise and fall of agrarian empires (Turchin 2003).  Many 

historians have asked why historical agrarian societies often grew into vast empires only 

to collapse eventually.  These single oscillations represent the empirical regularity 

historians seek to explain.  Many of their theories posit endogenous mechanisms that 

drive the imperial rise and fall.  In short, effects related to expansion itself eventually 
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yield collapse; collapse does not come from completely outside the system.  Virtually all 

of this traditional historical theorizing is nonmathematical.  In this setting an exclusive 

reliance on rhetoric carries a huge methodological risk.  Simply put, Turchin’s 

overarching point is that, if the task is to explain single oscillations via endogenous 

mechanisms, the mathematics of nonlinear dynamics must play a role.  Without 

exogenous variables driving the system, a linear model only produces monotonic 

dynamics.  Variables either rise or fall through time.  A system that rises and then falls is 

not possible.  Thus the endogenous expansion and decline of agrarian empires is 

inherently a problem in nonlinear dynamics.  Further, strictly verbal arguments are 

dubious for two reasons.  First, verbal assumptions that seem precise often support 

multiple mathematical formulations, and the differences matter.  If an assumption 

happens to be sufficiently precise to support only one mathematical expression, our 

hypothetical historian is probably engaging in the difficult, bizarre, and completely 

unnecessary task of verbal mathematics.  Even Darwin, who is especially notable for his 

lucid intuition unaided by mathematics, knew keenly the limitations of strictly verbal 

inquiry, as the quote at the top of this section reveals.  Second, because we cannot all be 

Darwin, human intuition is in general spectacularly unreliable at inferring the aggregate 

dynamics of variables in a nonlinear system.  One could thus spend considerable time 

with a verbal theory that appears plausible but when translated into the language of 

nonlinear dynamics simply cannot produce the hypothesized result.  If the verbal theory 

supports an alternative formulation that does produce the hypothesized result, one can ask 

no more.  Math has done its job, at least for the moment, and we’re off and running. 

 As Turchin demonstrates, a shift to a nonlinear dynamical theory in history can 

yield immediate payoffs.  For example, we know from other disciplines such as 

theoretical ecology that oscillations require delayed feedbacks.  As a consequence, before 

we derive our first set of equations for the rise and fall of agrarian empires, we already 

know our system must have some kind of delay.  We simply cannot obtain the required 

boom and bust otherwise.  To demonstrate, let ( )x t  be a variable that denotes imperial 

scope as a function of time, and let ( )( )txfx =�  be some dynamical model.  The simplest 

approach to endogenous expansion and decline implies 0>∃ x  such that 
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( ) 0>⇒< xfxx  and ( )( ) 0<⇒> txfxx .  In other words, when scope is large it 

gets smaller, and when scope is small it gets larger.  The boundary between large and 

small is x , the unique non-trivial steady state.  Although such a model can produce both 

expansion and decline endogenously, it cannot produce even a single oscillation.  When 

scope is above its steady-state value, the negative feedback is immediate.  An oscillation 

requires overshoot, and overshoot requires a delay in feedback.  Essentially, some 

mechanism has to be in place such that, even though x  continues to be the steady-state 

value, scope declines only after xxxx >∆+>  for some sufficiently large x∆ .  Because 

of the delayed feedback, imperial scope continues to expand for a while even though the 

empire is larger than the sustainable steady state.  Consequently, when the negative 

feedback finally does take hold, it does so with a vengeance because the society is 

overextended.  The society does not just decline; it crashes suddenly while at the height 

of its power.  Without such a mechanism, theory can provide no basis for understanding 

the boom and bust of an agrarian empire.  One way to delay a feedback is to introduce an 

additional variable that mediates the effect.  Expanding our system to include two 

variables, assume 

 

( )yxfx ,=�  

(5) 

( )yxgy ,=� , 

 

where 0>xg  and 0<yf .  In this system x has a positive effect on y, which has a 

negative effect on x, thus further indicating that x has a negative effect on itself via y.  If 

this process of mediated effects produces a sufficiently long delay, oscillations result.  

The delay has to be long enough, however, and this fact accentuates the importance of 

relative temporal rates of change in nonlinear dynamics. 

Turchin applies exactly this kind of reasoning to geopolitical theories of imperial 

collapse.  Geopolitical theories postulate several relationships between variables, but one 

negative feedback loop in particular has the potential to yield endogenous decline.  An 

empire’s success in war increases its territory.  Territorial increase further increases the 
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difficulties of governing the far reaches of the empire, which via the resulting logistical 

burden decreases the empire’s success in war.  Turchin argues, however, that this 

mediated negative feedback loop is not sufficient by itself to generate the boom and bust 

cycle he’s looking for because the relative time scales are not right.  Consequently, his 

mathematical model of geopolitics does not produce oscillations.  In fact it reduces to a 

single ordinary differential equation in the end.  Once again experience with nonlinear 

dynamics from other disciplines immediately tells us that such a system cannot oscillate.  

A one-dimensional system must have a delay to oscillate (Murdoch et al. 2003).  Turchin 

(2003: 19) concludes, “The feedback loop involving logistic loads . . . should operate 

without an appreciable time lag.  For example, the effect of distance . . . is instantaneous: 

as soon as territory is conquered, the boundary moves away from the center, and the state 

immediately incurs the higher costs of projecting its power to the new boundary.” 

Turchin essentially follows with his own pursuit of the appropriate lag for the rise 

and fall of agrarian empires, and he places a particular emphasis on the effectiveness of 

collective social action as structured by ethnicity.  As he acknowledges, the durability of 

his specific models remains a question for the future.  Any model with the right kind of 

lag can produce a single oscillation.  Turchin’s argument that logistic loads operate 

without a significant lag, for example, may one day prove wide of the mark.  

Nonetheless, by insisting on the language of nonlinear dynamics he raises the precision of 

the debate and demonstrates the usefulness of formal techniques in even traditionally 

non-mathematical territory like history.  In the specific matter of agrarian empires, 

Turchin’s use of nonlinear dynamics takes us to the center of the problem with an 

efficiency that verbal arguments typically do not achieve.  Namely, in a closed system the 

boom and bust of a characteristic agrarian empire requires a negative feedback that 

operates with a sufficiently long lag.  Thus, in spite of the complexity that certainly 

characterizes the historical rise and fall of empires, the conclusion still follows.  If a 

society booms and busts, either the system is not closed in some critical way, or a 

negative feedback operates with a sufficiently long delay. 

More generally Turchin exemplifies the pervasive significance of relative time 

scales in nonlinear dynamic systems.  The dimensional analysis of such systems (Nisbet 

and Gurney 1982; Gurney and Nisbet 1998) is an extremely useful but underexploited 
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analytical method that, among other advantages, formalizes the importance of relative 

time scales.  If we slightly modify the notation of (5) and explicitly note the presence of 

two parameters, a and b, that are proportional to [time] -1 and have the same units, the 

system is 

 

( )ayxf
dt
dx ;,=  

(6) 

( )byxg
dt
dy ;,= . 

 

Dimensional analysis stems from Buckingham’s (1914) π Theorem, and the central idea 

comes naturally.  Empirical phenomena do not depend on the units of measurement.  A 

given woman is a particular height regardless of whether we measure her in centimeters 

or inches.  Thus quantities with units, as in absolute temporal rates, cannot control the 

dynamics of system (6).  If, however, we define χxx ˆ= , ψyy ˆ= , and τtt ˆ= , where χ , 

ψ , and τ  are pure numbers without units, simple algebra shows that (6) is equivalent to 

the non-dimensional system 

 

( )ayxf
x
t

d
d ;,

ˆ
ˆ

=
τ
χ  

(7) 

( )byxg
y
t

d
d ;,

ˆ
ˆ

=
τ
ψ . 

 

Such an exercise typically results in the conclusion that the non-dimensional parameter 

a/b controls (6) and by extension (7).  This conclusion is a direct consequence of the fact 

that relative time scales matter.  Technically, a/b is a quantity with a unitless component 

[time] / [time].   

     

Experimental Nonlinear Learning 
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“Most of the research on learning and evolution is theoretical, but it is unlikely that 

theorizing alone will explain how people learn without the input of empirical regularity 

and careful testing.” 

Camerer (2003) 

 

“[I]mitation is most compelling when players are symmetric, and not at all sensible when 

players are asymmetric.     . . . Imitation of successful players who are similar is probably 

a heuristic way of moving toward strategies with high forgone payoffs.” 

Camerer (2003) 

  

 Linear social learning, as we now define it, occurs when individuals adopt a 

particular behavior via learning from conspecifics with a probability equal to that 

behavior’s frequency in the population.  For example, assume two alternative behaviors, 

0 and 1, are present, and denote the behavior of individual b in period t by ,b tc .  Call the 

frequency of behavior 1 in a period tq .  Linearity means that for each b one can on 

average summarize the social learning process with the following proposition: 

 

P cb,t+1 =1( )= qt . 

 

In essence the probability a given individual adopts behavior 1 in the next period is equal 

to the proportion of the population exhibiting that behavior in the current period.  

Linearity is important because social learning, if linear, simply reproduces the existing 

structure of the population from one period to the next.  The aggregate dynamics of 

behavior are neutral with respect to linear social learning.  In this case changes in tq  

cannot arise from social learning, but only from other processes like chance or individual 

learning. 

 The importance of linearity also points toward the importance of nonlinearity.  If 

one cannot summarize social learning with the above proposition, the mechanics of social 

learning generate endogenous evolutionary dynamics at the population level and can do 
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so quite apart from properties intrinsic to the behaviors in question.  The distinction 

between linear and nonlinear social learning is central to gene-culture coevolutionary 

theory and its hypothesis that humans use cognitive biases that structure social learning 

(Boyd and Richerson 1985; Richerson and Boyd 2004; Boyd and Richerson 2005).  

Specific biases are essentially hypotheses about the form of nonlinear social learning. 

 A basic difficulty underlies the empirical study of social learning.  We would like 

to know if social learning is linear or nonlinear, and we would like to know how social 

learning, if nonlinear, deviates from linearity.  The difficulty arises from a common 

property of nonlinear dynamical systems.  Small changes can have big effects.  The 

consequences of this fact for the empiricist are substantial.  To illustrate with a whimsical 

example, imagine a population of nonconformists who deviate from linear social learning 

by exhibiting a tendency to adopt the least common behavior in the population.  We can 

model nonconformity as 

 

 ( ) ( ) ( )( ){ }, 1 1 1 1 1 2b t t t t t tP c q q q q qλ λ+ = = + − + − − , (1) 

 

where λ  is a parameter that weights the relative importance of linearity and 

nonconformity.  We can make the nonconformist tendency arbitrarily small by letting λ  

approach 1.  As long as 1<λ , however, no matter how close to 1 it is, the long-term 

aggregate behavior of the system is completely different from the linear case in which 

1=λ .  In the linear case, the system never moves.  For any value of tq  the system stays 

at that value forever3.  In the nonlinear case, in contrast, no matter how weak the 

nonconformity, the system has 3 steady states at 0ˆ =q , 1ˆ =q , and 2/1ˆ =q .  The steady 

state at 2/1ˆ =q  is globally stable.  In other words, given enough time and any mixture of 

behaviors, our theoretical population of nonconformists must end up with half the 

population exhibiting behavior 0 and half exhibiting behavior 1.  Once this state obtains, 

it persists forever.  More to the point, a seemingly trivial deviation from linearity at the 

individual level does not necessarily have trivial consequences at the aggregate level. Our 

                                                 
3 We ignore the other forces that could cause changes in order to focus on the critical difference between 
linear and nonlinear social learning. 
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example is similar to a classic result from population genetics. Even when selection is 

weak at the individual level, populations respond rather rapidly on times scales of a 

relatively few generations.  

 If an evolutionary social scientist wanted to study nonconformity, what should she 

do?  She could try to measure nonconformist deviations from linearity at the individual 

level with carefully designed behavioral experiments, but nonconformity can be 

arbitrarily small and still have the same aggregate consequences given enough time.  

Reaching the steady state takes longer as nonconformity gets weaker, but the equilibrium 

prediction does not change.  Consequently, nonconformity can be too weak to measure at 

the individual level but nonetheless present and thus important at the aggregate level.  

The alternative empirical approach would involve a study of aggregate dynamics.  In this 

case theory predicts the system should tend toward ˆ q =1/2.  Unfortunately, the model 

 

(2) 
 

makes exactly the same prediction, as do numerous other models we could imagine.  

Transitional dynamics can vary.  Model (2), for example, takes one period to reach its 

steady state from any initial condition, whereas model (1) can take anywhere from few to 

several periods.  Nevertheless the fact remains that overlapping predictions among 

models at the aggregate level weaken the empiricist’s ability to understand what she 

observes. 

 Fitting models derived from first principles to empirical data provides a partial 

solution.  This method is firmly established in the experimental economics literature on 

learning (e.g. Camerer and Ho 1999), and Camerer (2003) reviews much of the literature.  

The objective is to identify the model among a set of models that fits the data at hand 

best.  The data in this case take the form of a sequence of behaviors or choices in an 

economic experiment.  Questions of particular interest concern how people learn 

individually and socially.  In other words, imagine participants in a setting where they 

know some behavior is optimal, but they do not know which behavior it is.  Perhaps 

payoffs involve a random component, and thus a short sequence of choices does not 

reliably reveal the optimal choice.  Alternatively, the problem may be difficult because 

participants face a large number of options but only a limited opportunity to choose.  

P cb, t = 1( )= 1/ 2
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Such a situation is kind of like subsistence farming.  Choices matter with respect to crop 

yields, but at one or two crops a year any given farmer simply cannot try all the 

alternatives available to him.  Should he plant his seeds on March 15 or March 25?  

Should he plant his traditionally favored landrace of corn in his most distant field, 

another variety in his second most distant field, and beans in his near field, or should he 

consider some other combination?  When considering all orthogonal behavioral 

dimensions, the resulting space is impossibly large for one farmer to explore.  In essence, 

all experiments of learning are like our farmer.  When any given player does not know 

what to do, how does she explore the relationship between the behavioral and payoff 

spaces facing her? 

 Experiments and model fitting offer a controlled approach to this question that 

holds considerable promise.  Experimenters can control the information available to 

players through time and, in conjunction with subsequent model fitting, examine how 

people use private and culturally transmitted information.  Moreover, this method can 

shed light on the crucial matter of whether information use is linear or nonlinear and what 

the effects are with respect to aggregate behavioral dynamics and cultural evolution.  One 

can also incorporate contingent biases or biases that change through time.  All such 

principles can inform the derivation of a model to fit to a data set. 

In the early days of cultural evolutionary theory (e.g. Cavalli-Sforza and Feldman 

1981; Boyd and Richerson 1985), the question of how to develop an associated empirical 

program remained largely unaddressed.  Recently, however, an incipient research 

program combining cultural evolutionary theory and experimental economics (Baum et 

al. 2004, McElreath et al. in press, Efferson et al. submitted) has begun to address some 

of the basic questions in cultural evolution.  We contend that not just some but every 

general theoretical point in cultural evolutionary theory can be addressed, at least in part, 

with an appropriate economic experiment that controls the flow of individual and social 

information through time as each player makes a sequence of decisions.    

Model fitting should play a critical although not exclusive role in such an 

enterprise.  Model fitting, in essence, allows the researcher to take theoretical models 

summarizing the consequences of dynamically updated private and social information 

and fit them to the data.  Once models have been fit to a given data set, one can identify 
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the model that fits best.  The epistemological assumption is that the best fitting model 

best summarizes the behavioral consequences of dynamically updated information.  We 

say much more about this method below, but here we point out that in complex 

behavioral situations such a model is never right.  It can, however, be better than other 

models under consideration.  Our suspicion is that the better models will carry critical 

nonlinearities  pertaining to the use of social information.  Critical nonlinearities, in turn, 

imply that the structure of social learning almost certainly matters, that success today can 

yield endogenous collapse tomorrow, or that success today might yield disproportionately 

greater success tomorrow, and that behavioral, economic, and institutional dynamics 

involve a certain erratic flair that presents the scientist with unique but surmountable 

difficulties.                

 

Experimental Nonlinear Dynamics 

 

“[I]n nonlinear systems one should not necessarily expect data to be simply ‘fuzzy’ 

versions of some attractor.  Instead, one is likely to see dynamics that are mixtures of 

attractors, transients, and even unstable entities.”  

Cushing et al. (2003)  

 

“One of the features of nonlinearity is that responses are not (necessarily) proportional to 

disturbances.” 

Cushing et al. (2003) 

 

 Now assume our population of social learners from above is infinitely large, and 

thus we can ignore individual choice probabilities and model changes in tq  directly.  In 

particular, posit dynamics that change deterministically according to some weighted 

combination of linearity and conformity4, 

                                                 
4 A model such as (3) cannot be fully deterministic in a finite population.  Feasible values of tq  will form a 

lattice in the sense that, in a population of size N, the variable tq  can only take N + 1 different values.  

Model (3) places no such restrictions of the possible values of tq , and thus it can only be approximately 
deterministic if N is finite.  In a nonlinear experimental environment, one should not trivialize this 
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 ( ) ( )( ){ }12111 −−+−+=+ tttttt qqqqqq λλ . (3) 

 

In short, with probabilityλ  individuals maintain their current probability of adopting 

behavior 1 in the next period, while with probability λ−1  individuals exhibit a tendency 

to select the most common current behavior in the next period.  If 1λ < , in the long run 

this system will persist in one of only three states.  If the initial frequency of behavior 1 

in the population is less than one half, the long-run frequency is 0ˆ =q .  If the initial 

frequency is greater than one half, the long-run frequency is 1ˆ =q .  Lastly, if the initial 

frequency is exactly one half, then it will remain so indefinitely.     

 This enumeration of steady states, however, glosses over their stability properties.  

Models (2) and (3) have the same steady states, but their stability properties are exactly 

the opposite of each other.  Under the conformity model, (3), the steady states 0ˆ =q  and 

1ˆ =q  are locally stable.  They are attractors in the sense that, if the system starts 

sufficiently close to the attractor, the system moves toward the attractor.  For example, if 

we start with an initial value at 0=t  of 2.00 =q , the system tends toward the 0ˆ =q  

steady state through time.  An initial value of 8.00 =q , in contrast, means the system 

tends toward the 1ˆ =q  steady state.  The steady state 2/1ˆ =q , however, is unstable.  For 

any value of ε±= 2/1tq , where 0>ε , the system moves away from the steady state 

2/1ˆ =q  no matter how small ε .   

 In a deterministic world of infinite populations and perfect predictions, this 

distinction causes no practical problems.  One need only characterize the steady states 

and initial conditions, and all falls into place.  Alternatively and more realistically, 

imagine a setting where model (3) yields highly accurate but not perfect predictions.  In 

this case the residual variation is small, and for many purposes the deterministic model 

(3) might serve admirably.  In effect the deterministic signal is so strong relative to any 

remaining effects, which we may choose to model stochastically, that few interpretive 

                                                                                                                                                 
distinction as it can prove critical to understanding the predictive power of a model (see Cushing et al. 
2003, ch. 5).  For present expository purposes, our assumption of an infinitely large population, among 
other advantages, allows us to ignore lattice effects.  
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problems arise.  If given several replicate data sets with initial conditions ε−= 2/10q  for 

some small 0>ε , we recognize some probability that a given time series will tend 

toward 1ˆ =q  rather than 0ˆ =q .  But as long as ε  is not too small, and as long as 

determinism is strong enough, we nonetheless expect the time series to tend toward 0ˆ =q  

in general.  In other words, in the long run we expect dynamical data to be “fuzzy” 

versions of some appropriately modeled deterministic attractor.   

 But what if residual variation is large?  This difficulty is intrinsic to high-

dimensional systems.  Many phenomena involve dozens, hundreds, or even thousands of 

relevant causal variables.  As scientists, however, we need to restrict the set of variables 

under consideration in some way.  Given a particular data set, restricting the set of 

explanatory variables increases the residual variation.  In a static linear environment, this 

increased residual variation may not hamper insight.  A linear trend can remain a linear 

trend even in the face of substantial increases in residual dispersion.  In a dynamical 

nonlinear environment, however, small changes can have big effects.  In model (3), for 

instance, 49.0=tq  yields a prediction about the future state of the system that is wildly 

different from the prediction under 51.0=tq .  As a consequence, if residual variation is 

large enough, one essentially loses the ability to predict if one only focuses on 

deterministic attractors.  This difficulty is intrinsic to high-dimensional nonlinear 

dynamical systems.  High dimensionality ensures that a tractable and thus typically low-

dimensional model leaves a noteworthy amount of residual variation.  Nonlinear 

dynamics, in turn, ensure that small differences, like those due to residual variation, can 

yield disproportionately large differences in future dynamics.  Together, these two forces 

suggest that empirical time series need not be “fuzzy” versions of a deterministic attractor 

even if this attractor derives from a model that summarizes important deterministic forces 

in the empirical system. 

 Consider, for example, the hypothetical time series in figure 1.  An unconsidered 

focus on the attractors of (3) would lead us to conclude this model is fundamentally 

incompatible with the hypothetical data in the figure.  As a strictly deterministic model, 

conformity (i.e. model (3)) offers no basis for making sense of such a time series.  As 

discussed earlier, conformity implies that when aggregate dynamics are near qt =1, the 
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system moves toward 1, not away from it.  In figure 1, however, aggregate dynamics 

reach qt =1 only then to move away and end up, of all places, at qt = 0.  Whatever figure 

1 is, it’s not simple deterministic conformity.  We could, however, alternatively treat (3) 

as a conditional expectation for a nonlinear stochastic model.  For example, assume we 

model the probability that in the next period 1+tA  out of N individuals will choose 

behavior 1, conditioned on the frequency of 1 in the current period, tq .  Then our 

stochastic nonlinear dynamical model with conditional predictions takes the form 

 

 ( )tt qAP |1+  ~ binomial ( ) ( )( )( )Nqqqq tttt ,1211 −−−+ λ . (4) 

 

This model, although stochastic, preserves the structure of (3) under conditional 

expectations in the following sense, 

 

[ ] [ ] ( ) ( )( )12111| 11 −−−+== ++ ttttttt qqqqAE
N

qqE λ . 

 

The difference in terms of confronting data (e.g. figure 1) with models, however, is 

fundamental.  Unlike the deterministic model (3), under model (4) stochasticity can move 

the system away from one of the two attractors.  Moreover, under the right circumstances 

the system can end up near the unstable steady state at 2/1ˆ =q .  If so, this unstable entity 

can affect the dynamics of the system transiently as in figure 1.  The issue here is that, 

although the unstable steady state is unstable, it is still a steady state.  In effect, the forces 

pulling the system toward either of the two attractors are weaker here.  Consequently, 

transients can result.  Strictly speaking, transients are any dynamical behavior that is not 

final (Hastings 2004).  Here we focus on temporary dynamics that occur when the system 

lingers near an unstable steady state because the forces pulling it away are weak.  In this 

case, one can show that as λ  increases the deterministic forces drawing the system away 

from 2/1ˆ =q  grow weaker for any value of qt .  Near the unstable steady state, these 

forces can indeed be arbitrarily small, and this fact will protract the transient dynamics in 

the vicinity of the unstable steady state.  Equipped with these ideas, the time series in 
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figure 1 is at least interpretable under the deterministic forces summarized by model (3).  

When we embed these nonlinear deterministic forces in a stochastic model as in (4), we 

can tentatively conclude conformity effects are compatible with the data.  Initially the 

system tends toward the attractor at 1ˆ =q , but subsequent stochastic effects place the 

system near the unstable entity, 2/1ˆ =q , which in turn affects dynamics transiently as 

tq lingers near 1/2 under the potentially weak forces attracting the system to other steady 

states.  At some point the system enters the basin of attraction for 0ˆ =q  and escapes the 

transiently negligible effects of conformity near the unstable steady state.  Deterministic 

conformity forces come to dominate again, and the system tends toward the attractor at 

0ˆ =q .  To see this possibility, however, we have to consider determinism and 

stochasticity together.  Dynamical nonlinear determinism produces a complex landscape 

of attractors and unstable entities.  Stochasticity adds uncertainty on top of this landscape 

and so destabilizes trajectories but correspondingly gives us a means of interpreting 

otherwise evasive patterns. 

 In practical terms, these kinds of nuances are intuitive.  We recognize that the 

deterministic model (3) yields a sharp distinction between 49.0=tq  and 51.0=tq , but 

we can also imagine the response of an actual group of 100 conformists with two 

alternative behaviors.  If, for some reason, they end up with 49 out of 100 choosing 

behavior 1 at a given point in time, and if they know this fact, we still would not be 

surprised if the system moved to 100 out of 100 choosing behavior 1 instead of 0 out of 

100.  A large, probably extremely large, number of unconsidered forces affecting 

decision making could produce this outcome even if conformity is important.  Under 

some degree of conformity the probability the system will move toward 0 is greater than 

the probability it will move toward 100.  No matter how small this tendency, if we could 

replicate the precise situation above enough times, we could detect the effects of 

conformity simply by counting replicates.  Nonetheless, as stochasticity becomes more 

important as we substitute low-dimensional systems for high-dimensional reality, and as 

threshold effects enter the fray due to nonlinear feedbacks, the number of necessary 

replicates becomes impractically large.  The crux lies here; the dynamical interaction of 
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nonlinearity, determinism, and strong residual stochasticity presents unique problems to 

those who would integrate theory and empiricism in the evolutionary social sciences. 

 Interestingly and not coincidentally, population biologists face the same 

difficulties.  Recently a group of ecologists and applied mathematicians, Jim Cushing, 

Robert Costantino, Brian Dennis, Robert Desharnais, Shandelle Henson, and Aaron King 

(collectively known as “The Beetles”), have developed a provocative set of tools for 

integrating theory and empiricism in experimental nonlinear stochastic environments.  

They study the population dynamics of the flour beetle, Tribolium castaneum, and their 

task is a demanding one.  Specifically, beetles in the genus Tribolium exhibit a taste for 

eating conspecifics, and this cannibalistic tendency creates strong nonlinear interactions 

between the different stages in the life cycle.  The resulting range of dynamical behaviors 

in controlled laboratory environments runs from simple steady states to chaos and in 

between includes an exotic and surprising collection of intermediate dynamical regimes.  

Cushing et al. (2003) summarize a decade’s worth of research to develop and use a single 

low-dimensional model to predict, qualitatively and quantitatively, the myriad dynamical 

regimes they observe in their experimental Tribolium populations.  Their achievement is 

stunning.  Figures 2 and 3 reprint two of the figures in their book.  The figures summarize 

some of their results, offer a comparison between the predictions of their model and the 

observed population dynamics, and finally stand as two of the most remarkable figures 

we have encountered in the ecological literature.  This kind of predictive accuracy rarely, 

if ever, happens in ecology, and it is a testimony to how far a sustained research program 

in experimental nonlinear dynamics can go.   

 With regard to the study of human evolutionary ecology, and in particular a 

nascent experimentalism in cultural evolution (Baum et al. 2004, McElreath et al. in 

press, Efferson et al. submitted), the importance of Cushing et al. (2003) is primarily 

methodological.  Many of the methodological implications also apply more broadly.  

History, for instance, may indeed be one damn thing after another, but experimental 

Tribolium populations substantiate the importance of theory in such a world.  The 

achievement of Cushing et al. is impressive largely because they have become so adept at 

analyzing and even predicting the behavior of a system with such elusive patterns 

complicated by history.  Although they limit themselves to beetle dynamics in the 



 29

laboratory, they proceed with equal facility whether facing transient dynamics, simple 

dynamics like a stable steady state, or chaos, the hallmark of dynamical complexity.  Far 

from dismissing the study of flour beetles as irrelevant in the social sciences, we take 

their work as a challenge to behavioral scientists of all kinds.  Additionally, we take the 

work of Cushing et al. as pointing toward the methodological potential of stochastic 

nonlinear dynamics.  The study of human behavior has all the hallmarks of a discipline in 

need of stochastic nonlinear dynamics as a central part of its methodological repertoire.  

Many variables interact through time at different rates, and the result is often large 

residual variation, evanescent patterns, thresholds, and without the discipline of applied 

mathematics a seemingly inexplicable procession of one damn thing after another.  We 

describe some of the key methods of Cushing et al. below and discuss their implications 

specifically with regard to the experimental study of social learning and cultural 

evolution.          

 

Low-dimensional models from first principles.  Many phenomena in biology and the 

social sciences are high-dimensional in the sense that even simple systems involve more 

causal variables than we would like to address.  As a consequence, a key question, and 

one that will figure prominently in our discussion of model selection below, is the 

question of how to find a suitable low-dimensional surrogate to examine high-

dimensional phenomena.  All else being equal, in nonlinear stochastic settings a 

mechanistic model can typically do more with less than a corresponding 

phenomenological model.  Loosely put, a mechanistic model is one derived from specific 

assumptions about how the system works.  It is based on ideas about the mechanisms that 

govern the phenomena in question.  A phenomenological model, in contrast, is not based 

on specific assumptions about the system but rather on the fact that one can always use 

certain kinds of mathematical functions to summarize data without any real regard for the 

processes that generated the data.  Standard statistical approaches such as linear 

regression provide examples of phenomenological models that should be familiar to most 

social scientists. Phenomenological models, though they bring the advantage of flexibility 

across various applications, also bring important costs.  In particular, as observed time 

series become more complex, phenomenological models typically require an increasingly 
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opaque array of nonlinear terms to capture the variation.  In the limit, one can end up 

with a senseless model that does an admirable job of summarizing observed variation.  

Mechanistic models, in contrast, derive from specific assumptions about causation.  They 

can be far less flexible and possibly even unique to the application at hand.  But if the 

phenomenon under study includes distinctive causal mechanisms, an analogously 

distinctive approach to models can take one to the heart of the mechanisms in a way that 

phenomenology cannot.   

Consider a person who rarely cooks but needs at least one knife in the kitchen.  

An 8” cook’s knife would be an obvious choice and would probably serve our reluctant 

cook admirably, even though it’s terrible for filleting fish and even worse for making 

rosettes out of tomato skins.  The reason it would serve admirably is because, in spite of 

its limitations, it is a flexible all-around design for a kitchen knife.  A professional chef, 

however, would find the same knife unacceptable in many situations.  A professional 

chef would want a large selection of knives so she can choose one suited to the present 

task.  Pure phenomenology in science is like a professional chef who only has an 8” 

cook’s knife.               

 

Conditional predictions.  Because small differences in parameter values and the values 

of state variables can yield large differences in dynamical behavior in stochastic 

nonlinear models, one needs some way to prevent even small errors in prediction from 

accumulating through time.  Nonlinearity increases the chances that, even if a model 

predicts well, compounding errors of this sort will lead to predictions that diverge wildly 

from the observed time series.  As a consequence, Cushing et al. (2003) rely exclusively 

on conditional predictions.  They take the state of the system in one time period as given 

by the actual observed state and predict one period forward only.  In essence, if N
t RX ∈  

is a vector of random state variables with expected values determined by NN RRf →: , 

predictions take the following form, 

 

[ ] ( )ttt xfxXE =+ |1 , 
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where tx  are the observed values of the state variables at t.  In essence, one uses the 

observed values at t – 1 to predict the values at t, and then one uses the observed values at 

t to predict the values at t + 1.  This resetting process continues recursively over the entire 

data set and allows one to estimate parameters in the model and make predictions without 

the potentially serious consequences of stochastic errors accumulating in a nonlinear 

environment through time.  The approach is similar to weather prediction.  Each day the 

weather services predict weather for the next seven days or so.  But the forecasting 

models are not run every seven days.  Rather every day fresh observations are fed into the 

model and a new forecast based on up-to-date data is computed.  In principle, one would 

predict forward in time as far as one reasonably could without accumulating errors due to 

nonlinear feedbacks.  A priori, however, this question can be difficult or impossible to 

address.   Moreover, the answer will often depend specifically on the current state of the 

system.  Thus single-period predictions represent a useful starting point, and Cushing et 

al. demonstrate just how far one can go with such predictions.     

 

Different deterministic entities and their effects.  As our exercise with figure 1 

demonstrates, when stochasticity is important in nonlinear empirical settings one cannot 

focus solely on the attractors of a given model.  Deterministic entities with different 

stability properties can interact with stochastic effects to yield time series with a 

historically contingent character.  In figure 1, for example, we imagined a population of 

conformists that ended up at qt =1.  Subsequently, stochastic effects placed the 

population near the unstable steady state at ˆ q = 0.5.  Additional small stochastic 

fluctuations accumulated and the system eventually entered the basin of attraction for 

ˆ q = 0.  This steady state is exactly where the population ended up, a steady state with no 

one exhibiting the behavior in question (i.e. ˆ q = 0).  Nonetheless, when a population is 

near the unstable steady state, the probability it will enter the basin of attraction for ˆ q =1 

is equivalent to the probability it will enter the basin of attraction for ˆ q = 0.  An otherwise 

identical population of conformists could thus end up with everyone exhibiting the 

behavior in question ( ˆ q =1).  The two populations would be identical in terms of how 

individuals make decisions, but the historical interaction of stochasticity and determinism 
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would produce two populations as far apart behaviorally as possible.  Cushing et al. 

(2003) repeatedly find evidence for this kind of historical contingency, and Boyd and 

Richerson (1992) discuss it specifically with respect to cultural evolution.  The solution 

for Cushing et al. is to model deterministic and stochastic forces together in ways rooted 

firmly in the biology of their study organism.  Moreover, once a given model is in place, 

they develop various model-specific approaches to examining the effects of different 

deterministic entities when stochasticity is important.  More generally, Cushing et al. 

(2003) do not average the time series from replicate experiments in search of average 

trends.  Although such a procedure may be useful in some situations, one must recognize 

the potential importance of history in a dynamical world, as our own, with a thorough 

mix of nonlinearity, determinism, and stochasticity.  Averaging loses the information 

inherent in history.    

 

Bifurcation experiments.  A bifurcation is a change in the deterministic attractor of a 

dynamical system as some parameter of interest changes.  Although Cushing et al. (2003) 

repeatedly emphasize the need to expand the study of nonlinear dynamical systems 

beyond the study of attractors, the fact remains that their core model is amazingly 

accurate at predicting the dynamics of experimental Tribolium populations.  Thus an 

analysis of attractors constitutes a crucial part of their general research program.  

Moreover, although removing data certainly requires some justification, one can remove 

transients from a time series if the particular task at hand requires a focus on attractors.  

In this regard Cushing et al. (2003) make effective use of what they call “bifurcation 

experiments.”  Essentially, given a model of an experimental situation, at least some of 

the parameters in the model will be under experimental control.  One can vary one of 

these parameters theoretically, and the result is a bifurcation diagram.  This diagram is a 

description of how the set that attracts the dynamical system changes as the parameter of 

interest changes.  One can then select appropriate values of this parameter from the 

bifurcation diagram to implement as different experimental treatments.  If the observed 

sequence of bifurcations matches the predicted sequence, the bifurcation experiment 

represents a severe and successful test of the theoretical model.  Figures 4 and 5 show the 

results from one of the bifurcation experiments described in Cushing et al. (2003) and are 
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some of the few figures from the ecological literature we find more impressive than 

figures 2 and 3.  As the figures show, their core 3-dimensional model has a remarkable 

ability to predict changes in the behavior of experimental Tribolium dynamics as some 

parameter, in this case the rate at which adults cannibalize pupae, changes.  We suspect 

that the experimental study of cultural evolution is a long way from the successful use of 

such a technique, but we would like to put it forward as an eventual goal.  Before such a 

goal can be realized, however, bifurcation analysis must become a central part of the 

theoretical study of cultural evolutionary dynamics.       

 

 

Model Selection and Minimized Expected Relative Information Loss 

 

“While there are no models that exactly represent full reality . . . , full truth can be 

denoted as f.” 

Burnham and Anderson (2002) 

 

“Truth, f, Drops Out as a Constant” 

Burnham and Anderson (2002) 

 

 Without empiricism, of course, models are not even models.  They’re just 

mathematics.  Once we accept the need for a link between models and empirical 

phenomena, we have the remaining question of how to select the best model.  This 

question has three parts.  First, how does one choose a set of models to consider?  One 

cannot select an unconsidered model as the best model; it is not under consideration.  The 

art of scientific research resides here, and science proceeds in part as an ongoing 

modification of the set of models under consideration.  This process is “art” in the sense 

that no formal criteria exist for specifying a set of models to use in data analysis.  Indeed, 

given that the set of potential models is probably infinite for problems of any complexity, 

the nature of such criteria is far from obvious.  The second part of finding the best model 

is specifying what “best” means.  Much of statistical theory implicitly or explicitly 

addresses this question, and consequently many formal criteria exist for identifying a best 
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model given a set of models under consideration.  The final part of the question centers 

on the technical details.  Once we have defined what we mean by a “best” model, we still 

have to settle the practical matter of how one can apply the criterion to actual data. 

 Here we focus on the definition of a best model.  Take a data set, x, that depends 

on some process.  Designate the process truth, and label it f.  The task is to make 

inferences about f given the nexus, x.  The procedure is to posit a set of R alternative 

models, gi , where i is an index in the set   1,…,R{ } and specifies one of the R models.  

Each model has a structure (e.g. functional form), ( )⋅ig , which includes a vector of 

parameters, θ , and for each set of parameter values the model predicts the values of x.  In 

essence, x (the data) contains information about f, and we use the ig  to model this 

information.  A given model also contains information, and this information depends on 

both the structure of the model and the specific parameter values used.  For example, the 

models gi x( )=1+ 2x  and gi x( )= −157,309 + 9001x  have the same structure, but they 

differ profoundly in terms of informational content because the parameter values are so 

different.   Because the models are models and not f itself, where f need not even be 

effable in mathematical or verbal terms, the ability of any given ig  to capture the 

information in x is invariably fragmentary.  Information loss is the inevitable result.  This 

information loss is readily quantified as the Kullback-Leibler (K-L) distance from ig  to f 

(Burnham and Anderson 2002).  The distance is directed in the sense that the K-L 

distance from a given ig  to f  is not the same as the distance from f to the same ig , a fact 

that merely indicates we cannot exchange truth and models.  A straightforward and 

intuitive criterion for model selection is to identify the model with the minimum K-L 

distance to f.  Equivalently, we seek the model with the minimum directed information 

loss. 

 Two problems present themselves.  The first is that we do not know truth, f, and 

thus we cannot calculate the Kullback-Leibler distance.  Although seemingly 

insurmountable, this problem turns out to be less of an obstacle than one might think.  

Consider the following heuristic.  Call the K-L distance from ig  to f the following, 
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( )( ) ( ) ( )( )θθ ||, xgIfIxgfD ii −= , 

 

where ( )fI  is the information intrinsic to truth, and ( )( )θ|xgI i  is the information 

intrinsic to the ith model under a data set, x, and a specific set of parameter values, θ .  

Now consider the K-L distance from another model, g j , with another specific set of 

parameter values, Θ, 

 

D f ,g j x |Θ( )( )= I f( )− I g j x |Θ( )( ). 
 

Although we cannot calculate either of these quantities because we do not know ( )fI , we 

can subtract one distance from the other to obtain 

 

D f ,gi x |θ( )( )− D f ,g j x |Θ( )( )= −I gi x |θ( )( )+ I g j x |Θ( )( ). 
 

Truth and the information intrinsic to truth drop out of the equation.  We are left only 

with quantities at hand, namely quantities related to the information intrinsic to the 

models given the data available and the specific sets of parameter values.  The 

compromise we make is that we say nothing about how far we are from truth in an 

absolute sense.  What we gain is that we can say which model is closest to truth, and we 

can say how much further away the other models are.  It’s as if Charles and Pete were 

standing at the tram stop at Bellevue in Zürich with Charles three feet to the south of 

Pete.  Neither of us would know how far we were from Cologne, but we would know that 

Charles was three feet farther than Pete.  To push the analogy, we would not even know 

if we wanted to go to Cologne.  Maybe the destination would be the more distant 

Copenhagen or perhaps only as far as Stuttgart.  Regardless, we would know the 

objective was to the north, and Pete would be three feet closer than Charles.   

 The second problem is that the data analyst has to estimate the parameters, θ , in 

any given ig  using the data, x.  Thus the distances above must be estimated distances 

because the informational content of any ig  depends on both the structure of the model 
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and the specific parameter values used.  The net result of addressing these two problems 

is Akaike’s Information Criterion (AIC).  Given a set of models under consideration and 

appropriate data, AIC allows one to identify the model in the set estimated to have the 

least information loss that must exist when one substitutes a model for unknown truth, f.  

In practical terms, AIC amounts to finding the model in the set most likely to fit the 

signal in the data as it penalizes models with more parameters in an appropriate fashion 

to prevent fitting the noise as well. In particular AIC optimizes the tradeoff between the 

competing objectives of reducing bias and reducing variance, the problems of 

underfitting and overfitting described in the introduction.  As one increases the number of 

parameters one estimates from a given amount of data, the estimates become less biased.  

In effect, the simpler one’s approach to the data (i.e. the fewer parameters estimated), the 

more likely one is to leave out an important consideration and arrive at a biased 

conclusion.  The solution is to estimate more parameters and thereby increase complexity 

by asking more questions, which reduces the tendency of the model to underfit the data.  

As one increases the number of parameters, however, the estimates become more 

uncertain.  Asking a fixed amount of data to answer a larger number of questions means 

the answers are less conclusive, a common indication of overfitting.  Empiricists 

consequently face a basic dilemma.  When should they stop asking questions of the data 

in hand?  AIC provides a remarkable answer.  The model that optimizes the tradeoff 

between reducing variance and reducing bias also has the least estimated information 

loss.  This conclusion is one of the most profound propositions of modern statistics.  It is, 

however, intuitive.  With regard to the magnitude of estimated effects, variance (i.e. 

uncertainty) and bias (i.e. systematic errors) represent the two basic forms of information 

loss in data analysis.  Unfortunately, one cannot reduce both variance and bias.  Reducing 

one increases the other.  Thus minimizing information loss should amount to optimizing 

the trade-off between reducing variance and reducing bias.  This conclusion is exactly 

what Akaike’s criterion tells us.  Burnham and Anderson (2002) provide an excellent 

survey of Akaike’s criterion, its derivative criteria, and their many advantages over 

traditional methods of data analysis rooted in hypothesis testing.             
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Conclusion         

 

 The key to this prolegomenon is our conviction that, to study human behavior as 

evolutionary social scientists, we should generally be prepared to give behavior a 

nonlinear dynamical representation.  Societies rise and fall, expand and contract (Turchin 

2003; Diamond 1997, 2005).  Technologies persist at low levels in a population only to 

spread suddenly and quickly (Henrich 2001).  Some countries grow rich, while others 

remain poor or get even poorer (Barro and Sala-i-Martin 2004; Bowles 2004).  

Residential neighborhoods segregate racially even as residents profess a desire for 

integration (Bowles 2004).  Success breeds success (Frank and Cook 1995), and people 

do not form social networks randomly (Henrich and Gil-White 2001; Watts 2002).  

Without nonlinear dynamics, one must often explain such phenomena exogenously.  

Neoclassical economics and human behavioral ecology, for example, make extensive use 

of static optimization.  Nonlinearities are pervasive in both theories, but without 

dynamics the effects of these nonlinearities do not feed back into the system.  Behavioral 

variation thus becomes a question of how exogenous shocks, exogenous preferences, or 

exogenous differences in the environment affect behavior.  Although exogenous forces 

may be important in some settings, and although static optimization may be a perfectly 

adequate theoretical framework in some settings, we suggest that economics and human 

evolutionary ecology would do well to tip the balance considerably more toward 

nonlinear dynamics.  Indeed, we suspect that many of the truly difficult questions will 

respond to no other treatment. 

 Nonlinearity, however, will place a greater burden on empiricism and increase the 

difficulty of integrating theory and data.  Our experience with nonlinear dynamics 

suggests to us that, with a few key nonlinearities in one’s model, all hell can effectively 

break loose and leave one with a model that supports a daunting array of outcomes.  The 

resulting theory can be illuminating, but the complexity and excess of the system require 

the authority of data.  Unfortunately, the technical demands will only increase, as will the 

need for new methods in all aspects of experimental design and data analysis (Bowles 

2004).  And so we call this paper a prolegomenon.  Virtually all the work to be done yet 

remains. 
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Figure 1 presents a hypothetical time series fundamentally incompatible with a 
deterministic conformity model but perfectly compatible with a stochastic conformity 
model based on conditional predictions.   
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Figure 2 shows the census data (open circles with lines) for the SS strain of Tribolium 
castaneum and the one-step conditional predictions (solid circles) derived from the 3-
dimensional model of Cushing et al. (2003).  The three stages of the life cycle shown are 
the larval (L) stage, the pupal (P) stage, and the adult (A) stage.  (Add later: From J. M. 
Cushing, R. F. Costantino, B. Dennis, R. A. Desharnais, and S. M. Henson.  2003.  Chaos 
in Ecology: Experimental Nonlinear Dynamics.  Academic Press.  Reprinted with 
permission from Harcourt, Inc.) 
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Figure 3 shows the census data (open circles with lines) for the RR strain of Tribolium 
castaneum and the one-step conditional predictions (solid circles) derived from the 3-
dimensional model of Cushing et al. (2003).  The three stages of the life cycle shown are 
the larval (L) stage, the pupal (P) stage, and the adult (A) stage.  (Add later: From J. M. 
Cushing, R. F. Costantino, B. Dennis, R. A. Desharnais, and S. M. Henson.  2003.  Chaos 
in Ecology: Experimental Nonlinear Dynamics.  Academic Press.  Reprinted with 
permission from Harcourt, Inc.) 
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Figure 4 shows some results from a bifurcation experiments in which pac , the rate at 
which adults cannibalize pupae, is being controlled.  As this rate increases, the 
deterministic attractor (solid circles/lines) of the 3-dimensional model of Cushing et al. 
(2003) changes.  Additionally, as the parameter is experimentally controlled, laboratory 
populations respond, and census data are also shown (open circles).  Beneath each plot is 
a corresponding plot (i.e. same parameter values) showing the deterministic attractor and 
predictions (open circles) based on a stochastic version of the model of Cushing et al.  
The three stages of the life cycle shown are the larval (L) stage, the pupal (P) stage, and 
the adult (A) stage.  (Add later: From B. Dennis, R. A. Desharnais, J. M. Cushing, S. M. 
Henson, and R. F. Costantino.  2001.  Estimating chaos and complex dynamics in an 
insect population.  Ecological Monographs.  2: 277-303.  Reprinted with permission from 
the Ecological Society of America.) 
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Figure 5 shows more results from the same bifurcation experiment shown in Figure 4.  
(Add later: From B. Dennis, R. A. Desharnais, J. M. Cushing, S. M. Henson, and R. F. 
Costantino.  2001.  Estimating chaos and complex dynamics in an insect population.  
Ecological Monographs.  2: 277-303.  Reprinted with permission from the Ecological 
Society of America.) 

 


