
Open Research Online
The Open University’s repository of research publications
and other research outputs

A Prolog toolkit for formal languages and automata
Conference or Workshop Item
How to cite:

Wermelinger, Michel and Dias, Artur Miguel (2005). A Prolog toolkit for formal languages and automata. In:
Proceedings of the 10th annual SIGCSE Conference on Innovation and Technology in Computer Science Education,
27-29 Jun 2005, Caparica, Portugal, ACM.

For guidance on citations see FAQs.

c© 2005 ACM

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/1067445.1067536

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1145/1067445.1067536
http://oro.open.ac.uk/policies.html

A Prolog Toolkit for Formal Languages and Automata

Michel Wermelinger
Computing Department

The Open University
Walton Hall, Milton Keynes MK7 6AA, UK

http://mcs.open.ac.uk/mw4687

Artur Miguel Dias
Departamento de Informática
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

amd@di.fct.unl.pt

ABSTRACT
This paper describes the first version of P� (read “P flat”), a
collection of Prolog predicates that aims to provide a peda-
gogical implementation of concepts and algorithms taught in
Formal Languages and Automata Theory (FLAT) courses.
By “pedagogical implementation” we mean on the one hand
that students should be able to easily map the implementa-
tion to the mathematical definitions given in lectures, and
on the other hand that the toolkit should provide a library
for students to implement further concepts and algorithms.
In both cases the goal is to make students more confident
in defining and manipulating the various kinds of languages
and automata at a level beyond the one provided by visual
simulators of automata. As such, P� is not intended to re-
place but rather complement existing graphical tools. We
believe the declarative, non-deterministic, and interactive
nature of Prolog helps in building an executable specifica-
tion of FLAT concepts and definitions that can be actively
extended and explored by students, in order to achieve the
stated goal.

Categories and Subject Descriptors
F.1.1 [Computation by Abstract Devices]: Models of
Computation—Automata; F.4.3 [Mathematical Logic and
Formal Languages]: Formal Languages—Classes defined
by grammars or automata, Operations on languages; K.3.1
[Computers and Education]: Computer Uses in Edu-
cation—Computer-assisted instruction; K.3.2 [Computers
and Education]: Computer and Information Science Edu-
cation—Computer science education

General Terms
Algorithms, Languages, Theory

1. INTRODUCTION
Formal languages and automata theory (FLAT) lies at the

very core of Computer Science. It provides the foundations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’05, June 27–29, 2005, Monte de Caparica, Portugal.
Copyright 2005 ACM 1-59593-024-8/05/0006 ...$5.00.

for defining and processing all sorts of languages (program-
ming languages, command languages like bash, query lan-
guages like SQL, data description languages like XML, etc.),
for text searches based on regular expressions, for modelling
communication protocols, and for model-checking such spec-
ifications, to name just a few widely used applications. It is
therefore essential for students to have a good understanding
of the concepts and algorithms provided by FLAT. However,
the mathematical nature of the subject often constitutes a
hurdle to students.

Several simulators for different kinds of automata (like fi-
nite automata, push-down automata and Turing machines)
have been developed and described in the literature (see [1]
for a survey). Although their exact functionality and avail-
able features differ, they all aim at providing a visual envi-
ronment in which students can define automata and watch
their step-by-step execution for a given input. These tools
greatly help students to understand how the automata work,
and aid them in developing and debugging automata for ac-
cepting a given language. However, all these tools are mainly
“black boxes” that provide a fixed set of automata and op-
erations (like minimization) upon them. The student is not
expected to study or extend the source code.

We believe that a further (and possibly deeper) under-
standing of FLAT could be obtained if the tool to be pro-
vided adhered to the following pedagogical principles:

Adaptability Due to the minor variations among textbooks,
instructors should be able to easily adapt the tool to
the notation and formal definitions they have adopted
for their classes.

Extensibility To reinforce learning by doing, students should
be able to extend the tool by implementing further
parts of FLAT.

Adequacy The implementation of the various FLAT con-
cepts and operations should follow their formal defini-
tions as closely as possible.

Flexibility The tool should allow for an unconstrained ex-
ploration of the various FLAT concepts.

The adaptability and extensibility principles entail that
the tool’s source code should be available. The flexibility
principle can be best implemented by providing a library of
FLAT concepts, their definitions and operations, instead of
a “closed” application with a fixed user interface, because
a library allows students to combine operations in unfore-
seen ways to solve exercises or implement new functionality.

Finally, we believe the adequacy principle, which supports
adaptability and extensibility, is best achieved through an
executable specification. Being a specification, it would be
close enough to the abstract mathematical and formal con-
cepts so that it could be studied by students. Being ex-
ecutable means that students would also have the ability
to execute the automata, helping them solve FLAT exer-
cises. An executable specification could therefore help stu-
dents make the bridge between the abstract mathematical
and formal concepts and their realization into the definition
and automatic processing of various kinds of languages.

We have started to develop such an executable specifi-
cation, choosing Prolog as the implementation language.
Crookes [2] already argued for the use of Prolog to imple-
ment automata for educational purposes:

• The specification can be directly executed, acting as a
simulator.

• The tracing facilities of Prolog can be used to single-
step the execution without any additional program-
ming effort.

• Prolog predicates only express logical relationships be-
tween their arguments, often allowing for a “reversible
execution” that can be used for multi-purpose simula-
tors, e.g., to find the starting state that would lead to
a given end state.

• The conciseness of the implementation in Prolog (when
compared to a procedural or object-oriented version)
allows one to present the complete code to students,
rather than just an outline.

Note that the first and last arguments are related to the
adequacy principle, and the third one is related to the flex-
ibility principle. We add the following advantages of using
Prolog for our purposes:

• Non-deterministic automata can be implemented in a
straightforward way, further shortening the gap be-
tween the mathematical definitions and their imple-
mentation.

• The interactive nature of Prolog interpreters allows
users to quickly execute operations or query for cer-
tain relationships and obtain immediate feedback, thus
supporting the active exploration of FLAT concepts by
students.

• The ability to define new operators provides support
for syntactic constructs that are close to the notations
used in FLAT.

• The ability to construct and unify complex term struc-
tures supports a recursive style of programming that
is close to the structural induction style of definitions
and proofs used in FLAT.

Note that the third argument supports the flexibility prin-
ciple, while the others support the adequacy principle.

We have started to develop P� (read: “P flat”), the Pro-
log Formal Languages and Automata Toolkit, a library of
predicates to define and manipulate various kinds of lan-
guages and automata. The current version handles regu-
lar languages and push-down automata, but the latter are
not described in the paper due to space constraints. P� is

available from the first author’s webpage. The distribution
includes the Prolog source, a tutorial, some examples taken
from [4], and the exercises suggested in this paper. P� is
implemented in SWI-Prolog (www.swi-prolog.org), a freely
available implementation of Prolog with pre-built binaries
for Linux, Windows and Macintosh. However, the toolkit
should be portable with little or no modification to other
Prolog interpreters, as care has been taken to avoid predi-
cates that are specific to SWI-Prolog.

It should be noted that there is a very sophisticated Pro-
log implementation of finite state automata [6], including
their visual rendering in a variety of formats. However, it
was built for research in natural language processing, and
its size and complexity make it hardly usable for education
purposes. Moreover, our ultimate goal is to cover most of
the topics in typical FLAT courses, not just finite automata.
On the other end of the scale, very simple implementations
of some kinds of automata are readily available in Prolog
textbooks and the computer science education literature [2,
3, 5], but they are mostly intended for illustration or miss
some important characteristics for education purposes (like
checking that the automaton is well-defined).

We also would like to point out that P� is not intended
to compete with or replace existing visual automata simula-
tors, but rather to complement them. In fact, it has been ar-
gued that using “multiple simulators with contrasting views
for the same automaton can provide profound insights into
FLAT concepts”1 [1]. We believe that adding P� to the
toolchest of FLAT educators can provide additional insights
into the concepts and algorithms used to define and operate
on formal languages and automata. One possible effective
usage of such tools is to introduce automata informally via
simulators and then present the mathematical concepts and
formal definitions with the help of P�.

The following sections provide an introduction to P�, pre-
senting its main predicates and their rationale, and suggest
some exercises. The running example is the definition of the
language of binary words with an even number of 1’s. The
file given in the appendix is part of P�’s distribution and
will be referred throughout the text. We assume the reader
is moderately familiar with Prolog and FLAT.

2. SYMBOLS AND ALPHABETS
Making a chemical analogy, symbols are the atomic con-

stituents of languages. As such, in P� symbols are repre-
sented by atomic terms (atoms, strings and numbers). An
alphabet is a finite set of symbols. Usually, sets are repre-
sented in Prolog by lists. However, in the spirit of shortening
the gap between the formal concepts and their implementa-
tion, P� adopts the usual curly braces. This also facilitates
the distinction between alphabets and words (see the next
section), contributing to the overall clarity of the executable
specification.

An alphabet is defined by a fact alphabet/2, as illus-
trated in line 1 of the appendix. The first argument must
be a unique Prolog ground term and the second argument is
a set expression (rather convoluted in the example). Predi-
cate alphabet symbols/2 computes the set of symbols cor-
responding to an arbitrary set expression. In particular,
this can be used to check if the alphabets were defined as
intended. For our example, line 2 outputs {0,1}.
1Words already emphasized in the original.

Students can also define total orders over alphabets’ sym-
bols, by asserting facts of the form alphabet order(Name,

Alphabet, List) stating that order Name defines the sym-
bols denoted by expression Alphabet to be ordered as given
by List. Lines 4 and 5 of the appendix provide examples.
Notice that different orders (with distincts names) can be
defined for the same alphabet, the aim being to allow stu-
dents explore the impact of different alphabetic orders on
the ordering of words (shown in the next section).

The toolkit provides predicate check declaration/1 to
check for mistakes in declarations, writing the error mes-
sages to the screen. A quick way to check all declarations is
to leave the argument uninstantiated as done in line 26. In
general, the predicate will check that the declared name is
a unique ground term. Additionally, for alphabet declara-
tions, P� will check that the expression in the second argu-
ment of alphabet/2 is indeed a set expression and it warns
the user if the expression denotes the empty set, which is
not a very useful alphabet. As for alphabet order declara-
tions, check declaration/1 verifies that the second argu-
ment is an alphabetic expression and that all its symbols
appear in the given list. For the example in the appendix,
line 6 causes message Error in wrong: [1, 2] is not a

permutation of all symbols.

3. WORDS
A word is a sequence of symbols, and is therefore very nat-

urally represented in Prolog by a list, the empty list denoting
the empty word. In FLAT, a symbol is also considered to
be a word (of length 1), and therefore P� allows s to be a
shorthand for [s], if s is a symbol.

P� provides two operators on words: W1 * W2 for the
product (concatenation) of two words and W^N for the N -th
power of word W (i.e., its N -fold concatenation). If N is
-1 then W is reversed. Predicate compute word/2 calculates
the value (i.e., word) of such an expression. For example,
lines 8-9 output [0,1,0,1,0,1,1]. Notice that the opera-
tors are Prolog’s pre-defined multiplication and exponenti-
ation operators for integers; as such, their associativity and
precedence allows us to process word expressions without
any additional programming effort to parse them:

compute_word(_ ^ 0, []).

compute_word(E ^ N, Wn) :- N > 0, M is N-1,

compute_word(E, W), compute_word(W * W^M, Wn).

These two clauses follow directly the recursive mathematical
definition (w0 = ε, wn+1 = w · wn, where ε is the empty
word), making the implementation easy to understand.

The ability to interact with the Prolog interpreter allows
the use of compute word and alphabet symbols as “calcu-
lators” for word and alphabet expressions with immediate
feedback, helping students to understand the involved con-
cepts (alphabets, words, intersection, concatenation, etc.)
and gain confidence with the corresponding notations. In-
structors can change P� to adapt it to the notational con-
ventions used in their courses. Fundamental changes (like
not using lists for words) will obviously require modifica-
tions throughout the toolkit, but small changes (like using
a term of the form rev(W) instead of W^(-1)) can be eas-
ily accomodated. Another possible change is to require the
second argument of compute word/2 to be instantiated: this
means that the predicate could only be used to check if the

student’s answer is correct, not to compute the answer on
the student’s behalf.

Programming exercises involving the implementation of
new or the extension of existing predicates are also a good
way to foster the understanding of the mathematical con-
cepts and their formal definitions. For example, instructors
could ask students to extend the power operator to arbi-
trary negative integer exponents, with the intuitive mean-
ing w−n = (wn)−1, or to implement a predicate to check
whether two word expressions are equivalent.

P� includes a predicate word alphabet/2 that, like many
others in the toolkit, can be used in two ways: on the one
hand, it can check whether a given word is over a given al-
phabet (i.e., is formed from symbols of that alphabet); on
the other hand, if the word argument is a variable, the pred-
icate can systematically generate through backtracking all
words over the given alphabet, in increasing length. For ex-
ample, word alphabet(W, bits) succeeds successively with
W=[], W=[0], W=[1], W=[0,0], etc.

Given a total order on symbols of an alphabet, predicate
lexically ordered/3 can check whether two given words
are ordered according to the lexical order. The lexical order
is the generalization of the usual dictionary order to arbi-
trary alphabets and symbol orderings. The predicate can
also be used in a generative mode. For example,

?- lexically_ordered(W, [1,0], O).

W = [], O = _ ;

W = [1], O = _ ;

W = [1,0], O = _ ;

W = [1,1|_], O = down;

W = [0|_], O = up;

No

The first three answers reflect the fact that w ≤ w′ if w is
a prefix of w′, whatever the total order of the symbols. The
fourth answer says that any word starting with 11 comes
before 10 if bits are ordered in descending way, and the last
answer says that when the order of bits is 0 < 1 then any
word beginning with 0 comes before 10.

Finally, P� provides predicates to deal with the concepts of
prefix, suffix and subword. Those predicates can be used also
in checking and generative modes. For example, prefix(W,
[0,1,1]) will successively generate all prefixes of 011.

We believe that the ability, due to unification, for sev-
eral predicates to check given answers or generate answers,
not only is helpful for students but can also be useful for
instructors to have more dynamic lectures, in which the ex-
position of a topic is mingled with the execution of various
examples, seeking answers from students before showing P�’s
results. In particular, students can be stimulated in lectures
or through exercises to explore concrete examples that will
lead them to answer generic questions like: is there a short-
est or longest suffix for any given word? Do any two given
words always have a common prefix? When is the lexical
ordering independent of the symbol order?

4. LANGUAGES
A language is a set of words over the same alphabet. The

user fact language(Name, Alphabet) declares Name to be
a language over the given alphabet. User facts of the form
in language(Word, Name, Boolean) state if Word belongs
to language Name or not, depending on the Boolean value.

Lines 11-13 illustrate these predicates. The (counter-) ex-
amples provide a way to test actual definitions for language
Name. P� supports the Extreme Programming principle
of writing tests first, because we believe that starting with
(counter-)examples helps thinking about special cases right
from the beginning, leading to a better understanding of
the informal language description given in the exercise and
to language definitions (automata, regular expressions, etc.)
that are more likely to be correct.

Predicate check declaration/1 can be used to detect
various mistakes: the alphabet of the language is not a
valid alphabet expression; there is not at least one (counter-
)example, in particular the special case of the empty word;
the test word is not over the language’s alphabet; the third
argument of in language is not a boolean; the first argu-
ment is not a word. For the example, line 26 will display for
lines 12-14:

Warning in evenL: no test case for the empty word

Error in evenL: no is not a boolean test result

Error in evenL: 10 is not over given alphabet

The suggested next step is for the student to provide
one or more direct definitions of the language, by writ-
ing unary predicates that succeed only if the given word
(over the language’s alphabet) belongs to the language. The
user fact predicate(Name, Alphabet) asserts that predi-
cate Name/1 takes as argument a word over Alphabet. Lines

16-17 provide an example, where occurs/3 is a P� predicate
to check or compute the number of times a symbol occurs
in a word.

Calling test definition(Definition, Language) tests
Definition with the (counter-)examples for Language. It will
report any positive test words that have been rejected and
any negative test words that have been accepted. For the ex-
ample, the call in line 18 doesn’t report any errors. The stu-
dent can try out further words, by calling accept(Definition,

Word).
It is possible to write expressions over languages. The

basic operands are literal sets of words, names of alphabets
(an alphabet is a language because a symbol is a word of
length one) and of language definitions. Operators include
the set operators (because languages are sets), the Kleene
star (^*), the positive closure (^+), the product and power

operators. P� enforces a clear distinction between a defini-
tion (like a predicate, regular expression or automaton) and
the language accepted by such a definition. Therefore, in
language expressions one must write lang(D) and not sim-
ply D to represent the language accepted by D.

Predicate word language/2 can be used to check if a given
word belongs to a language given by an expression, or to gen-
erate all such words. In the latter case, the predicate calls
language alphabet/2 to compute the alphabet expression
corresponding to the given language expression, and then
generates and tests all words over the obtained alphabet
using word alphabet/2. This means that word language/2

will enter an infinite loop even for finite languages, as it
doesn’t know when to stop generating further words. For ex-
ample, word language(W, -lang(evenP)/\bits^2) will gen-
erate all binary words of length two not accepted by evenP/1.
This is a finite language, but after succeeding with W=[1,0]

and W=[0,1], the predicate will enter an infinite loop if a
further answer is asked for.

5. REGULAR EXPRESSIONS AND FINITE
AUTOMATA

Besides writing language definitions directly in Prolog,
one can define a regular language by a regular expression
or a finite automaton.

P� allows the usual notation of regular expressions built
from symbols, the empty word, the empty set, and the
union, concatenation and closure operators. Regular expres-
sions can be given a name (lines 20-21), which can then be
used in further expressions or as an argument to predicates
(line 22). As usual, check declaration/1 can be called to
detect mistakes in the declaration. Regular expressions can
be tested with accept/2 and test definition/2, too, re-
ducing the number of predicate names the student has to
memorise. In our example, line 22 will display “Error in

evenRE1: [1, 0, 1, 0, 1, 1] should be accepted” be-
cause evenRE1 requires the second 1 of a pair to be followed
by the first 1 of the next pair.

Predicate re simplify/2 simplifies a regular expression
according to simple equations like E+E = E, E ·E∗+ε = E∗

or E · ∅ = ∅. These can be straightforwardly translated to
clauses, using Prolog’s term unification:

re_simplify(E + E, F) :- re_simplify(E, F).

re_simplify(E*E^* + [], F) :- re_simplify(E^*,F).

re_simplify(_ * {}, {}).

A possible exercise is to add further simplifications, e.g.,
E + s = E if symbol s is accepted by expression E. One
might also ask students to extend the notation in order to
allow for words within regular expressions, e.g., to write
[a,b,c]^* instead of (a * b * c)^*.

A finite automaton is declared by a fact fa(Name, I, Ts,

Fs), where I is the name (a Prolog ground term) of the
initial state, Fs is the set of final state names, and Ts is
the set of transitions. A transition from state S1 to state
S2 via symbol S is given by a term of the form S1/S/S2 .
In non-deterministic automata it is possible for S to be the
empty word [] and to have multiple transitions for the same
state/symbol pair. We do not require transitions for all pairs
of state and symbol, i.e., the “error state” and its transitions
can be left out. Notice that the states and alphabet of an
automata are not explicitly given, to speed up the writing of
automata definitions, but they can be computed by auxiliary
P� predicates.

Lines 24 and 25 illustrate an automaton definition. The
call in line 26 will check if there is no transition for the initial
state, not all states are reachable, there are no final states,
or there is no transition for a given state/symbol pair. In
this case, the messages are:

Warning in evenFA: no final states

Warning in evenFA: undefined transition for old/0

Warning in evenFA: undefined transition for odd/1

Error in evenFA: unreachable states {old}

As for alphabets, languages, and regular expressions, it
is possible for the user to build expressions over finite au-
tomata. The allowed operators over automata are union,
complement, intersection, closure, minimisation and deter-
minisation (which is implicitly called by the minimisation
and complement operators). This helps students to quickly
build complex automata from simpler ones. Predicate re fa/2

translates a regular expression to an expression (with the

same structure) over automata, replacing each symbol of the
regular expression by an automaton that just accepts that
symbol. The predicate compute fa/2 evaluates an automata
expression and returns the term representing the resulting
automaton. This predicate generates new states whenever
necessary, their names being sX where X is a unique integer
obtained by calling Prolog’s gensym/2 predicate. The com-
putations of the deterministic and minimal automata don’t
introduce any new names. Instead, the names of the result-
ing states are sets of names of the original states, thus show-
ing clearly which states of the original non-deterministic or
non-reduced automaton have been merged. If a more succint
representation is sought, one can use rename fa/2 to rename
all states of an automaton using fresh atomic names.

Predicates accept/2 and test definition/2 can also be
used with finite automata. To see which states are gone
through for a particular word, predicate fa consume(F, S1,

W, S2, P) succeeds if automaton F goes through path P (a
list of states) from state S1 to state S2 to consume word
W. Notice that S1 doesn’t have to be the initial state of F.
In fact, only F and W have to be instantiated upon call-
ing the predicate: it will return through backtracking all
possible paths that consume the word. To avoid any infinite
loops, there should be no cycles in the automaton that don’t
consume any symbol.

To illustrate the use of the previously mentioned pred-
icates, and to show how a library of operations can sup-
port the flexibility and extensibility principles, the appendix
shows how to implement a predicate mpp/3 that computes
the maximally processed prefix of a word that failed to be
accepted by a regular expression. Calling mpp(evenRE1,

[1,0,1,0,1,1], P) succeeds with P=[1,0,1,0], showing that
the problem is in accepting the second pair of 1’s. Predicate
mpp/3 first converts the regular expression to a minimal au-
tomaton and obtains its initial state. Through backtracking,
it seeks for a prefix P of the test word that can be consumed
starting in the initial state (but not necessarily leading to
a final state) but such that there is no other prefix P2 > P
that can also be consumed.

6. CONCLUDING REMARKS
This paper introduced P�, a library of Prolog predicates to

help students understand FLAT concepts in a complemen-
tary way to the visual obervation of automata behaviour, as
supported by existing graphical automata simulators [1]. P�

aims at being an intuitive executable specification of FLAT
concepts that is close to the mathematical notation and for-
mal definitions used in FLAT texts, thus helping students
to understand the theory and its application to defining and
processing languages. Furthermore, being a library of pred-
icates instead of a closed application, P� supports the active
exploration and extension by students (or instructors, to

adapt P� to the particular notation or automata variants
used in their courses). We have chosen Prolog because its
declarative, non-deterministic, interactive nature, and the
adequacy provided by unification and user-defined operators
suit the above mentioned aims, as illustrated in the paper.
However, there hardly is a perfect programming language
for any given purpose, and Prolog is no exception. For some
definitions, a functional approach might lead to even clearer
specifications.

In future work we will extend P� with further FLAT con-
cepts (like context-free grammars and Turing machines) and

provide predicates that convert P�’s to FSA’s representation
of automata to use its graphical output capabilities [6]. We

also plan to test P� on other Prolog platforms, and to report
on classroom experience in a future paper.

We thank the anonymous reviewers for their insightful and
challenging comments that helped us improve the paper.

7. REFERENCES
[1] C. I. Chesñevar, M. L. Cobo, and W. Yurcik. Using

theoretical computer simulators for formal languages
and automata theory. SIGCSE Bulletin, 35(2):33–37,
2003.

[2] D. Crookes. Using Prolog to present abstract machines.
SIGCSE Bulletin, 20(3):8–12, 1988.

[3] J. L. Hein. A declarative laboratory approach for
discrete structures, logic, and computability. SIGCSE
Bulletin, 25(3):19–25, 1993.

[4] L. Monteiro. Formal languages and automata. 298
slides, Univ. Nova de Lisboa, 2003. In Portuguese.

[5] L. Sterling and E. Shapiro. The Art of Prolog. MIT
Press, 2nd edition, 1994.

[6] G. van Noord. FSA utilities: A toolbox to manipulate
finite-state automata. In Automata Implementation,
LNCS 1260. Springer Verlag, 1997.

APPENDIX
1 alphabet(bits, {}+{0,1}-{2}).

2 :- alphabet_symbols(bits, S), writeln(S).

3

4 alphabet_order(up, bits, [0,1]).

5 alphabet_order(down, bits, [1,0]).

6 alphabet_order(wrong, bits, [1,2]).

7

8 :- compute_word([0,1]^2*[1,1,0]^(-1), W),

9 writeln(W).

10

11 language(evenL, bits).

12 in_language([1,0,1,0,1,1], evenL, true).

13 in_language([1], evenL, false).

14 in_language(10, evenL, no).

15

16 predicate(evenP, bits).

17 evenP(W) :- occurs(1, W, N), 0 is N mod 2.

18 :- test_definition(evenP, evenL).

19

20 regexp(evenRE1, 0^* * (1 * 0^* * 1)^* * 0^*).

21 regexp(evenRE2, (0^* * 1 * 0^* * 1)^* * 0^*).

22 :- test_definition(evenRE1, evenL).

23

24 fa(evenFA, even, { even/0/even, even/1/odd,

25 old/1/even, odd/0/odd }, {}).

26 :- check_declaration(_).

27

28 mpp(RE, W, P) :- re_fa(RE, FA),

29 compute_fa(min(FA), MFA),

30 fa_initial(MFA, I), prefix(P, W),

31 fa_consume(MFA, I, P, _, _), \+ (

32 prefix(P2, W), prefix(P, P2), P \= P2,

33 fa_consume(MFA, I, P2, _, _)).

