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ABSTRACT

Prony's method is a simple procedure for determining the values of para-

meters of a linear combination of exponential functions. Until recently,

even the modern variants of this method have performed poorly in the presence

of noise. We propose a simple procedure for estimation of the signal para-

meters in the presence of noise. This procedure is very close in form and

assumptions to Prony's method. However, in preliminary tests, the performance

of the method is close to that of the best available, more complicated, approaches

which are based on maximum likelihood or on the use of eigenvector or singular

vector decompositions. Acsir
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I. Introduction

Nearly two hundred years ago Prony developed a simple procedure for de-

termining the values of parameters of a linear combination of exponential

functions fromuniformly spaced samples [1]. Today "Prony's method" is

usually taken to mean the least squares extension of the method as presented,

for example, by Hildebrand E2].

A short record of a data sequence y(n), n - l,2,...N, is assumed to

be composed of uniformly spaced samples of a sum of exponential signals, x(n),

and measurement noise w(n). That is,

y(n) - x(n) + w(n) for n = l,2..N (1)

where
H

x(n) - £ a(k)(C(k))n (2)
k-1

N > 2M (3)

C(k) - exp(s(k)) (4)

The values of the signal parameters a(k) and s(k) for K - 1,2,...,M are

unknown complex numbers. Often the value of M is unknown also. However, let

us initially assume that the value of M is known.
Following the derivation of Hildebrandr2 ye note that the signal x(n)

satisfies a linear, homogeneous difference equation with constant coefficients

M

Z b(k) x(n-k) a 0 for M < n < N (5)
k=O

where

b(O) - 1 (6)

The roots of the prediction-error-filter polynomial B(a) provide the values of

,r-,. ** s*a * '. ,1' . , ,,,', '* .. *.. aL . .. ." .. . . . .. s , " , " - , - ."- -'. -. "; " ," ''. "'' - -
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the exponent parameters C(k), and hence s(k):

M -k
B(s) E b(k)z

k-0

- [-C(k)z"J (7)

k 1

Hildebrand explicitly considers noisy data and specifies Prony's method

by the following three steps:

(1) Using the method of least squares, minimize the approximation error

N H 12

A a Z b(k) y(n-k) + 4 ) 8
nXM+l k-i l 1  8

by best choice of the coefficients b(k)[ 3 0 For N > 2M and for noisy data

the solution will be unique with high probability. However, if the resulting

set of normal equations is singular, then the pseudo inverse of the coefficient

matrix can be used to choose the minimum norm solution.

(2) After the M values of 9(k) are determined, the roots of the pre-

diction-error-filter polynomial, B(Z), are found, using S(O) - 1.

A M M A -l
B(z) "Z b(k)z -k  i (I - C(k)Z " ) (9)

k"0 kml

.4 A

The corresponding exponent values, s(k), can then be found from formula (4).

(3) Having determined the values C(k) for k a 1,2,...,,M the error in

approximating the observed data by a linear combination of exponential signal

components then becomes linear in the M values of a(k):

M n
e(n) - y(n) - Z a(k) [P(k)] for n - 1,2,...N (10)

k1 U
.4

d

The H estimates, a(k), can be determined by minimizing the summed,

magnitude-squared error-

4 _' 4 .~ .-- a,. . ., ... -c-& - " ." ,"-". "" " "" ""-"- "" ". . .•. . . .
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Z Z Z a(k) i n (11)
n-l k-l

It is well known that the errors in signal parameters which are estimated

by Prony's method can be discouragingly large L2,41 . For insight into this

phenomenon we recomend calculation and study of the Cramer-Rao (CR) bounds

for the variance of the error in the estimated parameters and comparison of

the threshold of estimation of the Prony method with that of the maximum like-

lihood method. E7,8,9,10]. By the threshold of estimation, we mean the value

of signal-to-noise ratio (SNR) at which the variance of an estimation error

begins to depart very rapidly from the corresponding CR-bound value.

As another example of the application of Prony's method consider the

problem of estimating the parameters of a zero-mean, autoregressive, moving

average(ARMA) stationary random sequence from estimates of its covariance

values. Various investigators have recognized that, after a finite number of

lags, the true underlying covariance values satisfy a linear, homogeneous,

difference equation with constant coefficients 111,12,13] That is, after

a finite number of lags, the estimated covariance sequence can be represented

as a linear combination of exponentials (i.e. the true, underlying covariance

sequence which satisfies the homogeneous difference equation) plus measure-

ment noise. This measurement noise may be only the error sequence in estimating

the covariance values from a finite observation of the ARMA sequence. Part

of it might also be due to additive noise in the observation of the ARMA

sequence. Some of these ideas have been restated by Cadzow 14, 15].

II. Zrony Methods for Noisy Data

In previous and related work, we have shown how one can extend the threshold

of estimation of Irony's method to much lower values of SNR and how one can

V , . . . ..........
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improve parameter estimation at values of SNR above this threshold[S,9,10,11,16-22f

The major source for these improvements is the use of information about the

rank, M, of a matrix of signal covariance values or a matrix of samples of

the signal. If there is no prior information about this rank, it is estimated

from the data using singular value decomposition (SVD). The most important

computational step is a preprocessing step, before application of Prony's

method. A prediction order L which is larger than the value ofH is chosen.

The measured data matrix or the matrix of estimated covariance values is re-

placed by a matrix of the prescribed rank, M, which is the best least squares

approximation to the given matrix. Other investigators have presented closely

related approaches [23-29].

In this work we advocate a simpler procedure which appears to provide

: the same desirable attributes to nearly the same extent. This procedure

consists of the following two steps:

(1) Use Prony's method on the given data, but with a prediction order

L which is larger than the maximum number of exponentials which are expected

in the signal. The result is a set of L exponentials which are candidates

for signal components.

(2) Out of the L exponential functions which are provided by the high-

order Prony calculation, determine the best subset of size M. A best subset

of M exponentials is one for which a linear combination of the M exponentials

-. best approximates the observed data using a least squares criterion. One

can cb)ck all of the (L) possible subsets of size M of the L exponential

functions to find the best combination.

A simpler approach to step 2 is to use the procedure of Hocking and

Leslie [301 a@ we have previously suggested In the procedure of
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Hocking and Leslie a best subset can usually be found without searching over

all possible subsets. Hocking and Leslie accomplish this by first solving

a related, but different, problem. They search for the basis functions

(exponentials, in our application) which contribute most to the summed magni-

tude-squared errors by their deletion. This provides an initial importance

ordering of the exponentials. Hocking and Leslie prove that the fitting

errors associated with these single-deletion sets provide convenient threshold

values of the error for recognizing the global optimality of a particular

combination of M exponentials being tested.

If M is not known apriori, an estimate of M, (M) can be found as follows.
A

Choose M - 1, and find the best subset of size unity that best fits the data.

Call the corresponding minimum error, E1. Then, choose M - 2 and find the best

subset of size two and the corresponding minimum error E2" Repeat the pro-

cedure until the rate of decrease of the error with increasing values of A

.1* is small, consistent with the modeling of broadband noise. The integer i

at which E. shows the significant drop in rate of decrease is taken as M.

We now give a simulation example.

III. Simulation Results

If the data is known to be composed of undamped sinusoids, as we assume

in this example, forward and backward prediction equations can be used

simultaneously to obtain extra prediction equations for Hildebrand's least

squares form of the Prony method [32,3303 .

A sequence y(n) consisting of two complex sinusoids and white, complex

Gaussian noise w(n) was generated using the formula below:

y(n) - a1e 1 a2ej(w 2n + 2 + w(n), n - 0, 1,2...24

Here a-I a2 
= 1, W 2n(0.52), w2 27(0.5) and j - 4- The variance of

-~ ~ .". , - i - ' - i..... . .
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2 2 2)
the real or imaginary part of w(n) is a2  SNR is defined as l loglO (a

The coefficients of the polynomial B(z) were found by solving

the forward-backward linear prediction equations as in ref. [35] in the

least-squares sense. L was chosen to be 12 (N/2). The 12 zeros of G(z)

were found and the best subset of 2 out of the 12 which minimized E in

formula 11 was computed. The frequency estimates of the two sinewaves,
A A
f I and f2 are the angles of the two chosen exponents (divided by 2r). This

simulation was repeated 500 times and the root mean square (RMS) value of the

frequency estimation error was computed at SNR values in the range of 30dB

to 7dB. They are given in Table 1 along with thd appropriate CR bounds and

SVD-method values which were taken from ref. (35). Comparing these figures

with those inL35], we note that the SVD-based methods are slightly better

in performance. This difference is due to the signal enhancement achieved by

SVD.

-* A

Figure 1 shows the minimum subset error % for different choices of M at
N 2

different SNR values. The value E at M f 0 is the data "energy" Z Y(n)

Note the clear drop in E at M - 2.

IV. Discussion and Conclusions

Ideally, to fit exponentials to a data sequence y(n), one has to mini-
U I M A Akj A A

size the error Z y(n) - Z a e with respect to ak 's and sk's
no k1 kk

simultaneously. This is a difficult problem even if the value of M is known.

, Instead, we find the exponents s(k) separately as is often done. However, we

have made use of the fact that, if the data is composed of exponentials and

noise, overestimating the degree L (> M) of the polynomial B(z) improves the

accuracy of the M signal-zero locations. Subsequently, we select the M4 out

of the L exponentials that best explain the data. The new procedure extends

the threshold of te forward-backward covariance method[32333@ and is

only slightly Jinaerior to SVD based methods (8,35).
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SRMean -Square Error CRB
dB

30 O.427xl10 3  0.31lx10-3

(SVD) 0.403 x 10o3(L *12)

20 0.1304102  0.984x1063

-2 Id-2

15 0.238410 0.175x1

12O3X107 -02

-2 0.7O.276x1

(SVD) 0.313 x 10-2  L L12)

10 0.417410 0.311x0

7 0.6014102 0.490x 0-2

TABLE 1: Mean square error of the frequency (f I) estimation

error vs. 4.NR. CRB stands for the Cramer-Rao bound which is

the lover bound on the standard deviation of the frequency

-estimation error for an unbiased estimator. The bias in the

frequency estimates was insignificant except at SNR - 7dB.

Below 7dB the man square error is large due to the presence

of outliers. For the proposed subset selection method the

prediction order is twelve (L - 12). For comparison, two values
of the error for the SVD method are provided [35]
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