
A Proof Engine Approach to Solving Combinational Design
Automation Problems

Gunnar Andersson, Per Bjesse, Byron Cook
Prover Technology

{guan,bjesse,byron}@prover.com

Ziyad Hanna
Intel Corporation

ziyad.hanna@intel.com

ABSTRACT
There are many approaches available for solving combina-
tional design automation problems encoded as tautology or
satisfiability checks. Unfortunately there exists no single
analysis that gives adequate performance for all problems
of interest, and it is therefore critical to be able to combine
approaches.

In this paper, we present a proof engine framework where
individual analyses are viewed as strategies—functions be-
tween different proof states. By defining our proof engine
in such a way that we can compose strategies to form new,
more powerful, strategies we achieve synergistic effects be-
tween the individual methods. The resulting framework has
enabled us to develop a small set of powerful composite de-
fault strategies.

We describe several strategies and their interplay; one of
the strategies, variable instantiation, is new. The strength
of our approach is demonstrated with experimental results
showing that our default strategies can achieve up to several
magnitudes of speed-up compared to BDD-based techniques
and search-based satisfiability solvers such as ZCHAFF.

Categories and Subject Descriptors
B.6.3 [Hardware]: Logic Design—Design Aids

General Terms
Algorithms, Design, Verification

1. INTRODUCTION
As many combinational design automation problems are

NP- or coNP-hard, one fundamental approach to their solu-
tion is to model the problems as propositional logic formulas,
and to apply proof methods to decide whether the formulas
are tautologies or not.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2002,June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006 ...$5.00.

However, there exists a plethora of techniques for dis-
charging propositional proof conditions, including (but not
limited to) the DPLL method [5], St̊almarck’s method [11],
Binary Decision Diagrams [2], and rewriting. Each proof
technique has a particular characteristic in terms of space
and time behavior, sensitivity to the size of the system, and
the particular domain it will work the best for. As a result,
it is not unusual to combine techniques in different ways
when solving particular classes of combinational design au-
tomation problems.

At Prover Technology, we develop and maintain a plug-
in proof engine that is used to solve combinational logic
problems in design automation tools. This proof engine,
PROVER CL, is delivered with default composite analyses
for a number of domains.

As developers and maintainers of PROVER CL, we need
to experiment with new variations of the default analyses so
that we can keep them updated. We also need to develop
new analyses that work well in new problem domains, and
on problems with particular characteristics. It is thus impor-
tant that our framework is constructed in such a way that
(1) we can get the maximum amount of synergy between
the individual methods, and (2) we can construct composite
analyses with a minimum amount of effort.

In this paper, we present an approach to addressing these
issues that we have been developing for several years—initial
results were reported in early 2000 [4].

Our approach builds on two key ideas. First of all, we
structure our proof engine in such a way that we view indi-
vidual proof techniques as strategies; that is, functions be-
tween different proof states. Second, we define our strategies
to be compositional in the sense that they can be combined
in any order to form more powerful proof-search strategies.

As our experimental results indicate, the resulting compo-
sitional approach allows us to get synergy effects that pro-
vide order of magnitude speedups compared to individual
analyses such as the ZCHAFF [8] search method, and state-
of-the-art BDD-based analyses.

2. RELATED WORK
What we describe in this paper is an industrially proven

framework for creating composite analyses for arbitrary com-
binational design automation problems (as opposed to just
test pattern generation, for example). Our framework is
carefully structured in such a way that any analysis from a

large set can be composed in any order. We are not aware of
any previous attempt to come up with such a general frame-
work for solving problems in all of the many subdomains of
combinational design automation.

However, a number of previous approaches to solving prob-
lems in particular subdomains of combinational design au-
tomation can be viewed as composite strategies in the sense
that we will present. This is especially true in the domain of
combinational equivalence checking, where combinations of
BDDs, SAT and rewriting have been suggested by a number
of different researchers [3, 6, 7, 9]. The most compelling ex-
ample is probably the filter-based analysis for combinational
equivalence checking that was proposed by Jain and cowork-
ers in [7]. In this paper, the overall analysis is a sequential
composition of a small set of filters. Each filter inspects a set
of conjectured equivalences, and selects a few of them that
it tries to prove using some technique. The filter-based anal-
ysis is hence a particular simple composition of individual
analyses, each of which we can see as a strategy.

The view of strategies that we adopt in this paper is sim-
ilar to the notion of tactics and tacticals [10] developed for
LCF-style theorem provers in the early 1970s. The ideas
behind tactics and tacticals have since proved to be fruit-
ful enough that most theorem provers for first order and
higher-order logics use variations on this approach.

In essence, our contributions in this paper are (1) to take
the research from the higher-order domains and apply it in
the domain of completely automated correctness proofs for
combinational logic, (2) to describe how some classical proof
methods and a novel method for simplifying SAT problems
can be viewed as strategies, and (3) to present our expe-
riences and some experimental results that illustrate the
power of the approach.

3. PRIMITIVE STRATEGIES
The core problem that we are interested in solving is as

follows. Given a propositional logic formula φ, we want to
decide whether this formula is a tautology—that is, we want
to decide whether the formula evaluates to true for all as-
signments to the variables in φ. We solve this problem by
trying to prove φ using a reductio ad absurdum argument,
where we use a combination of different analyses to check
whether the negation of the formula is unsatisfiable.

We model individual analyses as strategies; that is, as
functions

f : (PState× Parameters)→ ([PState]× Res)

that take a proof state and some parameters, and return
a list of new proof states together with information about
the result of the analysis. The result is one of the values
Sat, Unsat, and Indet, and we require that all strategies
return Indet precisely when the returned list of proof states
is nonempty.

A proof state contains a number of objectives Obj1 . . . Objk,
and a set of current-time assumptions Asmpt. The objectives
are formulas, and the assumptions are equivalence classes of
negated and unnegated subformulas of the objectives.

Intuitively, a proof state represents the problem of decid-
ing whether there is an assignment to the variables in the
objectives that (1) makes all the formulas in each assump-
tion equivalence class evaluate to the same value, and that
(2) makes all of the objectives evaluate to true. We model
the situation at the start of the overall proof search as a

proof state that contains no assumptions together with the
single objective ¬φ; this represents the notion that we want
to prove that φ is a tautology by deciding whether there is
a model of the negation of φ.

Now, assume that AllSat is a mathematical function that
decides problems represented as proof states. A strategy is
correct if it fulfills two criterias:

1. If the list of returned proof states l is empty, then the
returned outcome agrees with the result of AllSat(p).

2. If the list of returned proof states l is nonempty, then
AllSat(p) holds precisely when AllSat(p2) holds for
some proof state p2 in l.

We require that all strategies in our framework are correct.
There are a number of additional properties of strategies

that we can define as follows. Assume that the strategy strat
is given the proof state p and returns the list of new proof
states l together with the evaluation result res. The call to
the strategy strat is

• decisive if l is an empty list.

• refining if l is a singleton list containing the original
proof state with some extra assumptions.

• splitting if l is a list of length at least 2.

Most strategies are decisive in some cases, refining and split-
ting in others. However, if we want to guarantee that we
can solve our top level goal, we need to construct an overall
strategy that always is decisive.

Let us now consider how three previously known and one
novel algorithm for satisfiability solving can be cast as strate-
gies in our framework.

3.1 St̊almarck’s saturation method
St̊almarck’s saturation method is an algorithm for propo-

sitional proof [11] that has been applied to solve a variety of
problems in software and hardware verification.

An application of the saturation algorithm takes three pa-
rameters as input: (1) a set of formulas φ1, . . . , φn, (2) an
equivalence relation over negated and unnegated subformu-
las of the set of formulas, and (3) a number k, called the
degree of saturation. Given these inputs, the saturation al-
gorithm generates an extension of the equivalence relation
that provably must hold if the original equivalence relation
holds. The key idea in the saturation algorithm is to extend
the relation with new equivalences that can be inferred from
the original relation using short proofs. A proof is k-short
if not more than k simultaneous assumptions are needed in
the Dilemma [11] proof system.

Saturation is normally used for generating propositional
proofs by contradiction: We first construct an equivalence
relation where the negation of the formula is put in the same
class as the value True, and then apply the saturation algo-
rithm. If the formula is provable, there will exist a degree
of saturation for which the resulting equivalence relation is
contradictory, in the sense that the values True and False
are in the same equivalence class.

In the present context, we are interested in constructing
a strategy that we can use to process problems represented
as proof states. The approach we take is to construct a
wrapper around the saturation procedure that takes a proof
state as argument together with a saturation degree. From

the proof state, we construct an initial equivalence relation
from the assumptions Asmpt, and add the formula Obj1 ∧
. . . ∧ Objk to the class containing True. We then apply
the saturation algorithm to the equivalence relation, with
the given degree of saturation, and compute the strategy
result in the following way: If the result of the saturation
is contradictory, we return the result ([], Unsat). If the
equivalence relation is noncontradictory, and all variables in
the formula are in the equivalence classes containing True
and False, then we return the result ([], Sat). Otherwise
we return ([PState′], Indet), where PState′ is the original
proof state augmented with assumptions corresponding to
the resulting equivalence classes. Our saturation strategy is
thus either decisive or refining.

3.2 DPLL
The Davis-Putnam-Loveland-Logemann algorithm [5] is a

popular search-based satisfiability method. The DPLL pro-
cedure takes as input a formula in Conjunctive Normal Form
(CNF). A CNF formula is a conjunction

∧n
k=1 Ck, where

each clause Ck is a disjunction
∨mk
i=1 li of literals—negated

or unnegated variables.
The DPLL procedure attempts to find a satisfying valu-

ation for the variables in the CNF formula by recursively
selecting a variable x and case-splitting on its value. If ei-
ther of the problem instances where x is set to true or false
is satisfiable, then the whole problem must be satisfiable.
Equivalently, if none of the instances are satisfiable, then
the whole problem is unsatisfiable.

A naive implementation of the DPLL procedure that only
uses case splitting to search for a satisfying assignment is
theoretically both sound and complete. However, it is rarely
computationally feasible to apply it to real life formulas as
too many case splits will be required to decide satisfiabil-
ity. As a consequence, most DPLL implementations use a
number of optimizations.

One of the most important optimizations is the generation
of conflict clauses. Whenever it is detected that the cur-
rently explored partial assignment makes some clause evalu-
ate to false, it is possible to find a subset of the partial assign-
ment which is the reason for this conflict. Assume for exam-
ple that this subset is the valuation (x := 0, y := 1, z := 0).
If the set of clauses at hand is satisfiable, we know that none
of its models can contain this particular subvaluation. We
can express this piece of information as a constraint—a con-
flict clause—of the form x ∨ ¬y ∨ z. Now, as this clause is
a consequence of the satisfiability of the CNF formula, it is
sound to add it to our set of clauses, where it will restrict
the remainder of the search.

Let us now consider how to make a strategy out of the
DPLL procedure. Our strategy takes a proof state and
a timeout value as arguments, encodes the proof state in
clausal form, and runs our DPLL implementation on the re-
sulting CNF formula. If the algorithm terminates without
timing out, then we can decide the problem at hand. How-
ever, even if our search times out, valuable information will
have been generated in the form of conflict clauses that we
can use to augment the proof state we return. There are a
number of choices for how we can do that. Here, we go with
the simplest possible solution, and investigate the generated
conflict clauses to see if we have any clauses containing a
single literal. If so, then we add a new assumption for each
one literal clause in such a way that the variable is forced

to the value indicated by the literal. Just as in the case of
the saturation strategy, the DPLL strategy is hence either
decisive or refining.

3.3 BDD-based cut
A standard approach to deciding the satisfiability of a

propositional formula is to construct its Binary Decision Di-
agram (BDD) and check whether there is at least one path
from the BDD’s top node to the constant node True. How-
ever, it is often not feasible to build BDDs for complex for-
mulas. We therefore adopt the ideas in [1] and construct our
BDD-based strategy in such a way that the user can set a
limit on the size of the formula that we build a BDD for.

We define the construction depth of a node in a parse
tree to be the number of nodes between it and the root of
the tree. Hence, the root of a parse tree has construction
depth 0. Our BDD strategy takes a proof state as argument
together with a construction depth k, and makes a cut in the
parse tree for Obj1∧ . . .∧Objk at depth k. Assume that this
cut intersects the nodes Node1 . . . Nodek. We substitute fresh
variables Var1 . . . Vark for each of the intersecting nodes, and
build a BDD for the top node of the resulting simplified
parse tree.

If the cut depth of the parse tree is equal to or greater
than the maximum construction depth of a variable in the
original formula, then the resulting BDD allows us to decide
the problem represented by our proof state. However, if the
parse tree is cut at a lower level, what do we know?

Consider the paths in the generated BDD that end up at
the True terminal. Each such path represents a valuation
of a subset of the original variables and internal nodes that
guarantees that the top node becomes true. Note that such a
path may or may not correspond to a satisfying assignment:
Given a set of values for internal nodes in the formula, we
can not be sure that there exists an extension of the assign-
ment to the original variables that generates this particular
combination of internal values. However, we do know that if
there exists a satisfying assignment, then it will be covered
by one of the paths to True. We therefore define our BDD
strategy to be splitting when it is not decisive by letting it
generate one derived subproblem for each path to True in
the following way.

Assume that we have a path to True that encodes the as-
signment (Var1 := 0, Var2 := 1, Var3 := 0), and that Def (x)
is an operator that returns the formula that is assigned
the name x. Then the new proof state that we generate
to represent the derived subproblem contains the objectives
¬Def (Var1), Def (Var2) and ¬Def (Var3), together with the
previous assumptions.

3.4 Variable instantiation
The previous strategies are all based on previously known

algorithms. We now present variable instantiation, one of
the many in-house strategies that we have developed.

Let us define two formulas to be equisatisfiable if one is
satisfiable precisely if the other is satisfiable. Now, assume
that we want to check the satisfiability of a formula φ that
contains the variable x. Also assume that we know that φ is
equisatisfiable with the result of substituting the value val
for every occurrence of x in φ. Then it clearly suffices to
check the instantiated, simpler, formula for which there are
only half as many assignments possible.

We can decide whether it is safe to instantiate a given vari-

able as follows. Consider the case where we want to know
whether it is safe to instantiate x in φ with the value True.
If φ(x:=True) is satisfiable, it is clear that φ is satisfiable.
However, in order to safely be able to set x to True, we also
need to know that φ is unsatisfiable when φ(x :=True) is
unsatisfiable. We can check whether this holds by trying to
prove the formula φ(x:=False) → φ(x:=True): The prov-
ability of this formula implies that if φ(x:=True) is unsat-
isfiable, then there can be no models at all for φ, regardless
of the value of x.

Let us now consider how to construct a strategy based on
variable instantiation. Our variable instantiation strategy
takes a proof state containing a set of objectives Obj1 . . . Objk
as input, and a set of assumptions Asmpt. For each variable
that is not in the equivalence classes of True and False we
apply variable instantiation in the following way.

Assume that the current variable under consideration is
x. To check whether x can be set to True, we construct
a new proof state containing the original assumptions, and
the single objective

¬(

k∧
i=0

Obji(x:=False) →
k∧
i=0

Obji(x:=True))

We then invoke some fast but potentially incomplete strat-
egy, say saturation of degree 0, and check the result. If the
result is Unsat, then it is safe to set x to True. If not, we
check whether it is safe to set x to False in the same way.
Once we know that we can set a variable to some value, we
substitute this value in all the original objectives and as-
sumptions and move on to the next variable. If there are no
variables left after an iteration over the variables, then we
have solved the problem. Otherwise we return the result-
ing proof state together with the result Indet. The variable
instantiation strategy is thus decisive or refining.

4. COMPOSING STRATEGIES
The primitive strategies in Section 3 are all carefully de-

signed to behave in a similar fashion: They take a parameter
as argument that directly or indirectly controls how much
time will be spent on the problem, and then apply some
analysis to the given proof state. This analysis either de-
cides the problem given the resource bounds, or generates
one or more simpler problems.

However, so far we have no way to compose the individual
analyses to form new, more powerful, analyses. We now
explore this.

Recall our definition of individual strategies as functions

f : (PState× Parameters)→ ([PState]× Res)

that takes a proof state and some parameters Parameters as
inputs. In the case of the saturation strategy, the single pa-
rameter is the saturation degree, and in the case of the DPLL
strategy the parameter is the cutoff time. Informally, the
way we will do composition is to allow Parameters to also
contain an analysis to use if the problem is indeterminate
given the resource constraints. After the post-processing
analysis has been applied to every generated subproblem,
the primitive strategies computes the overall result as fol-
lows. If one of the subproblems is diagnosed as satisfiable
by the post-processing analysis, then the overall problem is
satisfiable. If all are contradictory, then the overall problem
is contradictory. Otherwise the result is indeterminate.

In order for every strategy to be able to use any other
strategy to post-process indeterminate results, we need to
settle on a standardized strategy interface. We define the
type StratI of strategy instances to be the type of functions
of the form

finst : PState→ ([PState]× Res)

and provide a trivial strategy instance triv that takes a
proof state ps and returns ([ps], Indet). We can now modify
the signature of our example primitive strategies to take a
post-processing strategy instance as an additional argument:

sat : (PState× Degree× StratI)→ ([PState]× Res)

cut : (PState× Level× StratI)→ ([PState]× Res)

dpll : (PState× Time× StratI)→ ([PState]× Res)

inst : (PState× StratI× StratI)→ ([PState]× Res)

In the case of the variable instantiation strategy, this results
in two strategy instance arguments. The first is used to
decide instantiation safety, and the second is used for post-
processing.

As things stand, the only strategy instance we can provide
for post-processing is the trivial strategy instance triv, and
this is not very interesting. However, it is easy to turn a
strategy into a strategy instance by wrapping it in a func-
tion that provides particular parameter values (including the
strategy instance that is to be used for the proof states re-
sulting from an indeterminate result). We can hence achieve
sequential composition by using appropriate wrappers and
triv to chain together individual strategies from the bottom
up.

As an example, assume that we are interested in writing
a composite strategy instance that applies DPLL for a hun-
dred seconds only. We can do this by writing a wrapper that
passes dpll the given proof state together with the value 100
and the strategy instance triv. After the DPLL invocation
has finished, the wrapper takes the result from the DPLL
strategy, and returns it. The resulting composite strategy
instance can then be used to build a new strategy instance
that first does a BDD cut on construction depth 20, and
then applies DPLL to the resulting problems for a hundred
seconds:

dpllI(ProofState) :=
return dpll (ProofState, 100, triv)

cutDpll(ProofState) :=
return cut (ProofState, 20, dpllI)

Note that we are not restricted to constructing strategy
instances that are static in the sense that they always ex-
ecute a set of strategies in a particular order, without any
flexibility. We are writing the wrappers ourselves, so it is
simple to construct strategy instances that examines the re-
sult returned from a strategy and acts based on the out-
come. For example, assume that we want to use a BDD cut
to generate a list of new problems, and apply dpll for some
period of time on the results that fulfill some predicate, and
saturation on the others. The flexibility of our framework
makes this easy to do by providing an appropriate instance
wrapper in the call to cut.

In our framework, we can thus construct complex com-
posite analyses with a few lines of programming. However,

Instance PROVER CL (s) ZCHAFF (s)
c1355 0.3 2.4
c1908 bug 0.0 3.2
c1908 0.0 3.5
c2670 bug 0.2 0.0
c2670 0.1 1.8
c3540 bug 1.0 0.0
c3540 1.0 51.6
c432 0.0 0.1
c499 0.1 4.5
c5315 bug 1.7 1.1
c5315 0.8 46.4
c6288 4.2 [>60 min]

c7552 bug 2.2 0.4
c7552 2.2 84.5
c880 0.1 1.4

Table 1: ISCAS’85 benchmark results

when we are experimenting with different compositions (for
example, when developing default analyses), it is desirable to
avoid writing code and recompiling altogether. To address
this issue, we have developed a domain specific language for
describing composite strategy instances, which we interpret
using a command line tool called CAPTAIN PROVE. This
tool takes a formula as an argument, together with a text
file that describes a strategy instance that it should apply
to decide provability of the formula. Internally, CAPTAIN
PROVE constructs an initial proof state, and then applies
the described instance.

A simple description of a composite analysis in our strat-
egy language looks as follows:

cut 10.

instantiate (dpll 10.).

sat 1.

dpll 100.

This strategy first does a cut at level 10. The resulting
proof states are then refined by instantiation, where DPLL
for ten seconds is used to decide whether a variable can be
instantiated. Next, saturation of degree one is performed,
followed by a hundred seconds of DPLL.

5. EXPERIMENTAL RESULTS
In order to demonstrate the power of the strategy ap-

proach, we have run three sets of experiments. Our objective
is to demonstrate that the synergy effects between the many
analyses that we combine can generate order of magnitude
speedups, compared to individual techniques.

In the first two sets of experiments, we solve problems
from the public benchmark collections ISCAS’85 and Satlib.
The two suites represent different classes of design automa-
tion problems: The ISCAS’85 suite contains combinational
equivalence checking problems, and the Satlib suite consists
of bounded model checking problems. In the experiments,
we compare the result from PROVER CL’s default analyses
against results from ZCHAFF [8], a state-of-the-art DPLL
solver. The version of PROVER CL we are using here is ver-
sion 4.1α10. All measurements for the public suites are done
on a 1.5 GHz P4 with 2 GB of memory, running Red Hat
Linux 7.1.

Instance PROVER CL (s) ZCHAFF (s)
ibm-1 0.5 2.5
ibm-2 0.0 0.0
ibm-3 0.8 0.9
ibm-4 1.2 4.3
ibm-5 0.2 0.4
ibm-6 5.2 14.6
ibm-7 0.2 0.2
galileo-8 7.0 92.3
galileo-9 8.6 140.2
ibm-10 7.1 404.2
ibm-11 3.5 34.8
ibm-12 16.4 165.4
ibm-13 7.4 10.1

Table 2: SATLIB benchmark results

In the third set of experiments we present results that
have been generated in-house at Intel. Here we compare the
performance of PROVER CL version 4.1α9, ZCHAFF, and a
BDD-based tool developed internally at Intel. The measure-
ments for this suite were done on a 1 GHz PIII with 1 GB
of memory, running Red Hat Linux 6.2.

A note on strategies used in the experiments: For the IS-
CAS’85 and Intel experiments, we use the default strategy
for combinational equivalence checking. For the Satlib ex-
periments, we use the default strategy for bounded model
checking. These default strategies were not devised to work
well on these particular examples, and no changes to the
default parameters were made in any of the experiments.

ISCAS’85
The ISCAS’85 suite consists of 15 combinational equivalence
checking problems. Here, the objective is to show that all
output signals from a pair of circuits are equivalent. One of
the circuits in the pair is the original ISCAS’85 circuit and
the other circuit is an optimized version. Due to erroneous
optimizations, it may be the case that the optimized circuit
is not equivalent to the original circuit.

We have run the experiments as follows. Using PROVER
CL, we verify that individual pairs of outsignals from the cir-
cuits are equivalent. The time given for each circuit is the
total time for deciding equivalence for every single outsignal.
For ZCHAFF we use the CNF files produced by João Mar-
ques da Silva. Each CNF file corresponds to the problem of
deciding whether the conjunction of individual equivalences
for the outsignals is true or not. Note that this is an easier
problem than that solved by PROVER CL.

We present the results in Table 1. As can be seen, it is
hard to say anything about the relative performance of the
engines for trivial examples that take less than a few sec-
onds. However, for problems that take more than a couple
of seconds, the trend is uniform: PROVER CL is one or more
orders of magnitudes faster than ZCHAFF. Moreover, not
only is PROVER CL always the faster engine, but the distri-
bution of runtimes is also more uniform than for ZCHAFF.

Satlib
The Satlib benchmark suite contains 13 industrial model
checking problems from IBM and Galileo (a telecommuni-
cation hardware manufacturer). Here, the objective is to
decide whether there exists a run of a particular length from

Problem PROVER CL (s) ZCHAFF (s) BDDs (s)
1 0.1 18.3 [> 107 nodes]

2 0.1 0.8 [> 107 nodes]

3 0.2 222.6 [> 107 nodes]

4 0.9 49.9 [> 107 nodes]

5 0.1 9.5 [> 107 nodes]

6 0.1 0.3 [> 107 nodes]

7 0.8 [>60 min] [> 107 nodes]

8 9.9 101.5 [> 107 nodes]

9 0.3 15.5 [> 107 nodes]

10 450.2 [>60 min] 110.0
11 2.8 [>60 min] [> 107 nodes]

12 139 232.5 [> 107 nodes]

Table 3: Intel benchmark results

the initial states of a circuit that ends up in a state violating
a design invariant. For all of the problems, there exists such
a run.

We have run the experiments as follows. The Satlib bench-
marks are only available as pregenerated conjunctive normal
form formulas optimized for CNF solvers like ZCHAFF. Un-
fortunately, PROVER CL operates best on formulas in full
propositional logic; the conversion to CNF destroys valuable
structural information. Since our objective is to compare
performance on design automation problems, this situation
is very troublesome—we can only do a partial translation
back to full propositional logic for PROVER CL (this trans-
lation takes negligible time). Nevertheless, as can be seen in
Table 2, PROVER CL outperforms ZCHAFF on all examples.

Intel benchmarks
The ISCAS and Satlib benchmark suites are relatively easy
both for ZCHAFF and PROVER CL. We now consider another
set of benchmarks where this is not the case.

The Intel problem set contains twelve combinational equiv-
alence checking problems. Here, the objective is again to
check that an optimized and an unoptimized version of a
net behave the same. In ten of the cases, there is a bug, and
in two cases the two nets are equivalent.

The experiments have been run as follows: We compare
the performance of PROVER CL, ZCHAFF, and a BDD-based
method developed internally at Intel. The problem instances
are generated in full propositional logic for PROVER CL, and
in clausal form for ZCHAFF. In the experiments, a timeout
of one hour is used for all methods. For BDDs, we also abort
when ten million BDD-nodes have been built.

We present the results in Table 3, where problems 8 and 9
are the two equivalent pairs of circuits. As can be seen,
the BDD-based method runs out of memory in all but a
single case. However, for the example where it finishes, it is
the fastest method. ZCHAFF is always slower than PROVER
CL, and times out in three cases. PROVER CL completes all
benchmarks (in all cases except two in less than ten seconds),
and performs between one and several orders of magnitude
better than ZCHAFF on examples that are not trivial for
both methods.

6. CONCLUSIONS
In this paper, we have taken an idea that has proven fruit-

ful in other domains—semi-interactive theorem proving in
rich logics—and transferred it to the domain of propositional

proof search, with the aim to speed up combinational design
automation problems. We have introduced the underlying
ideas, presented some particular strategies, one of which is
new, and discussed how they are integrated in Prover Tech-
nology’s combinational proof engine plug-in PROVER CL.

The end result of the research we have presented here
provides three important benefits. First of all, many of the
users of our technology need state-of-the-art performance
without modifying parameters, and we provide this in our
default strategies. Second, the customizability of our engine
makes it possible for power users to construct analyses that
are tuned for the particular set of in-house problems that
need to be solved. Third, for many customers, it is vital
that our tool makes it easy to expand the existing set of
strategies with new analyses.

Ongoing and future work includes to add more primitive
analyses to the current set of basic building blocks, as they
become known. Up to now, every time we have expanded
our set of primitive building blocks, we have been able to ex-
tend the range of our default strategies substantially. More-
over, we are continuing development of default analyses for
new problem domains.

7. REFERENCES
[1] D. Brand. Verification of large synthesized designs. In

Proc. Int. Conf. on Computer Aided Verification,
1993.

[2] R. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Trans. on Computers,
C-35(8):677–691, Aug. 1986.

[3] J. R. Burch and V. Singhal. Tight integration of
combinational verification methods. In Proc. Int.
Conf. on Computer Aided Verification, 1998.

[4] K. Claessen and G. St̊almarck. A framework for
propositional proof strategies. Technical report,
Chalmers University of Technology, Computing
Sciences Dept., January 2000.

[5] M. Davis, G. Logeman, and D. Loveland. A machine
program for theorem-proving. Communications of the
ACM, 5(394–397), 1962.

[6] S.-Y. Huang and K.-T. Cheng. Formal Equivalence
Checking and Design Debugging. Kluwer Academic
Publishers, 1998.

[7] J. Jain, R. Mukherjee, and K. Takayama. An efficient
filter-based approach for combinational verification.
Fujitsu Scientific and Technical Journal, 36(1):17–23,
2000.

[8] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an efficient SAT solver.
In Proc. 39th Design Automation Conference, 2001.

[9] V. Paruthi and A. Kuehlmann. Equivalence checking
using a structural SAT-solver, BDDs, and simulation.
In Proc. Int. Conf. on Computer Design, 2000.

[10] L. Paulson. Tactics and tacticals in Cambridge LCF,
1979.

[11] G. St̊almarck. A system for determining propositional
logic theorems by applying values and rules to triplets
that are generated from a formula. Swedish Patent
No. 467 076 (approved 1992), US patent No. 5 276 897
(1994), European Patent No. 0403 454 (1995).

