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Abstract

We give a simpler and shorter proof of Kesten’s result for the probabilities with which a
subordinator hits points.

1 Introduction

A subordinator is an increasing Lévy process. That is, a subordinator X = (Xt, t ≥ 0) is
defined to to be an increasing right-continuous random process with stationary independent
increments. We may write (for more background we refer the reader to [1])

Xt = dt +
∑

s∈[0,t]

∆Xs (1)

where d≥ 0 is the drift and ∆X = (∆X, t ≥ 0) is a Poisson point process with characteristic
measure Π. Clearly X0 = 0 and Π is supported on [0,∞) while if Π(0,∞) < ∞ then the
jump process

∑

s∈[0,t] ∆Xs is compound Poisson. Henceforth we will only consider strictly

increasing subordinators. That is, we exclude the pure (driftless) compound Poisson case
where the probability the subordinator hits points is the same as for the corresponding Random
Walk/Renewal process.
For all x ≥ 0 we define

τx := inf{t > 0 : Xt > x},

the time at which X passes above the point x.
For any open or closed interval A we let

P{X visits A} := P







∑

t≥0

1{Xt∈A} > 0







.
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For points x ≥ 0 we use the shorthand

px := P{X visits x} = P(Xτx
= x),

where the a.s. equivalence of {X visits x} and {Xτx
= x} holds by the a.s. strict monotonicity

of X. Note that p0 = 1.
To express the result we will also need the potential measure U ,

U(A) = E

(∫ ∞

0

1{Xt∈A}dt

)

where A ∈B[0,∞).
We give a new proof of the following Theorem.

Theorem 1 For any a.s. strictly increasing subordinator X:

(i) If d = 0 then P(Xτx
= x) = 0 for all x > 0;

(ii) If d > 0 then x 7→ px is strictly positive and continuous on [0,∞) and U(dx) ≡ d−1pxdx.

This result was first proved by Kesten [3] in a much more general setting. Namely, he deter-
mined when the probability a general Lévy process hit given points was positive. His proofs,
however, used relatively involved potential theory and were very lengthy. In [2] Bretagnolle
gave a streamlined proof of Kesten’s results, again based on potential theory. (See also [1] for a
version of the proof for the subordinator case.) Here, albeit in our simpler monotonic setting,
we give a still shorter, less demanding proof relying principally upon pathwise arguments.

2 Proof of Theorem 1

We define for any x > 0

{X jumps onto x} := {Xτx
= x > Xτx−}

and
{X jumps from x} := {Xτx

> x = Xτx−} .

Lemma 2 For any a.s. strictly increasing subordinator X:

(i) For any x > 0, px = limn↑∞ P{X visits (x − 1/n, x)};

(ii) If ∃x > 0 such that px > 0, then lim supε↓0 pε = 1.

Proof. (i) For an arbitrary integer m, let Xt = X1
t + X2

t where X2 consists of the jumps of
X larger than 1/m. ie.

X2
t =

∑

s≤t

∆Xs1{∆Xs>1/m}.

Thus X2 is a compound Poisson process with jumps at say times {tn} and of size {jn} (where
0 < t1 < t2 < ... and ∆Xtn

= jn).
For any x > 0, consider for given integer n

Vn := {X jumps onto x with the nth jump of X2}

= {τx = tn,Xτx
= x = Xτx− + jn}
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and

Wn := {X jumps from x with the nth jump of X2}.

Now since X1, {tn} and {jn} are independent we may first determine X1 and {jn} to find

Gn := {t : X1
t +

∑n−1
k=1 jk = x − jn}, and then notice

P(Vn|X
1, {jn}) = P(tn ∈ Gn) = 0

since Gn contains at most one point (by strict monotonicity) while tn has an absolutely con-
tinuous (Gamma) distribution.
Hence P(Vn) = 0, while by an analogous argument P(Wn) = 0. Thus, summing over n and
then m, we have

P{X jumps onto x} = P{X jumps from x} = 0, (2)

which implies

{X visits x}
a.s.
=

⋂

n≥1

{X visits (x − 1/n, x)}

and the claim follows by monotone convergence.
(ii) From (2), we see by stopping X on entry into (x − 1/n, x) that

px ≤ P{X visits (x − 1/n, x)} sup
y≤1/n

py.

Letting n go to ∞ and applying part (i) then gives the result.
Henceforth we shall make extensive use of the following two inequalities which both follow
readily from the strong Markov property applied at τy. For y < x we have

px ≥ pypx−y (3)

and

px ≤ pypx−y + 1 − py. (4)

Lemma 3 If for some x > 0, we have px > 3/4 then for all y ≤ x

py ≥ 1/2 +
√

px − 3/4.

We first show that px > 3/4 implies that

∀y ≤ x, py ∈ [0, 1/2 −
√

px − 3/4] ∪ [1/2 +
√

px − 3/4, 1]. (5)

Note that the most intuitive way to see why a statement similar to (5) (which is perhaps the
key step in our version of the proof) should hold is to argue as follows: assume px is large (ie.
‘close’ to 1) and then further assume for contradiction that there exists y < x such that py

is ‘close’ to 1/2. Then, considering the reverse process started from x, this would imply px−y

was small (i.e. replacing y with x − y in (4), px ≤ px−ypy + 1 − px−y ≈ 1 − px−y/2). But
then most times X visited y it would fail to hit x (ie. 0 ≈ 1− px ≥ py(1− px−y) ≈ py ≈ 1/2),
giving the required contradiction. Hence if px is close to 1 there are no y < x such that py is
close to 1/2.
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Proof. (of (5)) Suppose that we are given y < x. We may assume without loss of generality
that py < px (since otherwise the claim is automatic). Replacing y by x − y in (4) and
rearranging, we have

px−y ≤
1 − px

1 − py
. (6)

Hence px−y < 1 and so (replacing x − y by y in (6))

py ≤
1 − px

1 − px−y
,

while by rearranging (6)

1 − px−y ≥
px − py

1 − py
.

Combining the last two inequalities we therefore have

py ≤
(1 − px)(1 − py)

px − py

and hence the quadratic inequality p2
y − py + 1 − px ≥ 0. Solving for py gives (5).

We have thus established that if px is large then there is an interval of values around 1/2 which
no py may take for y < x. Since from Lemma 2 (i) we have

py = lim
n↑∞

P{X visits (y − 1/n, y)} ≥ lim sup
z↑y

pz, (7)

we may show that py cannot ‘jump over’ this gap.

Proof. (of Lemma 3) Suppose that we have x > 0 such that px > 3/4 (and hence that (5)
holds). Now assume for contradiction that ∃ y < x such that py ≤ 1/2 −

√

px − 3/4. Define

g := sup{z ∈ [0, y) : pz ≥ 1/2 +
√

px − 3/4}

which is well-defined since at least p0 = 1. From (7) we see that pg ≥ 1/2 +
√

px − 3/4 and
hence in particular that g < y. But then by (3) and Lemma 2 (ii)

lim sup
ε↓0

pg+ε ≥ pg lim sup
ε↓0

pε ≥ pg

which implies (by (5)) that there must exist g′ ∈ (g, y) such that pg′ ≥ 1/2 +
√

px − 3/4.
Hence we have the required contradiction and the Lemma holds.

Lemma 4 Suppose there exists an x > 0 such that px > 0. Then

(i) limε↓0 pε = 1;

(ii) y 7→ py is strictly positive and continuous on [0,∞).

Proof. By Lemma 2 (ii) and Lemma 3 we have immediately that limε↓0 pε = 1. Positivity then
follows from the strong Markov property as py ≥ (py/n)n for all n ∈ N. To prove continuity on
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(0,∞) we reason as follows (using once again (3) and (4)):

lim sup
ε↓0

py+ε ≤ lim sup
ε↓0

(pεpy + 1 − pε) = py,

lim inf
ε↓0

py+ε ≥ lim inf
ε↓0

pypε = py,

lim sup
ε↓0

py−ε ≤ lim sup
ε↓0

py

pε
= py,

lim inf
ε↓0

py−ε ≥ lim inf
ε↓0

py + pε − 1

pε
= py.

Proof. (of Theorem 1) Consider the function

M(a) := E

(∫ a

0

1{X visits x}dx

)

=

∫ a

0

pxdx

for all a > 0, where the equality holds by Fubini’s theorem.
Now since X fails to visit precisely those points which it jumps over (or jumps from) we also
have

M(a) = E



Xτa
−

∑

t≤τa

∆Xt



 .

Thus using (1) and the fact that τa is the Lebesgue measure of the set of times for which X
is below a we have

M(a) = E(dτa) = dU(0, a]. (8)

Hence if d = 0 then M(a) = 0 for all a. Lemma 4 then implies that px = 0 for all x > 0.
If on the other hand d > 0 then there must exist an x > 0 such that px > 0. Hence, from
Lemma 4, x 7→ px is strictly positive and continuous. Moreover, for all a > 0 we have

∫ a

0

pxdx = d

∫ a

0

U(dx)

and thus pxdx is equivalent to dU(dx) on [0,∞).

NOTES

(i) If X is composed of a (positive) drift and a compound Poisson jump process then as may
be expected x 7→ px can be shown to be everywhere infinitely differentiable. Moreover, for all
X with positive drift (say for convenience d = 1) we have

lim
ε↓0

1 − pε

ε
= Π(0,∞).

To see this first assume that Π(0,∞) < ∞ and note that
limε↓0 P{‘The first jump of X’ > ε} = 1. Hence

lim
ε↓0

1 − pε

ε
= lim

ε↓0

1

ε
P







∑

t≤ε

∆Xt > 0







= lim
ε↓0

ε−1(1 − e−εΠ(ε,∞))

= Π(0,∞).
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Now assume Π(0,∞) = ∞ and then for any δ > 0 let Xt = X1
t +X2

t where X2
t =

∑

s≤t ∆Xs1{∆Xs<δ},
the sum of the jumps smaller than δ by time t. We have

lim
ε↓0

1 − pε

ε
≥ lim

ε↓0
ε−1

P(∆XTε
> δ)

= lim
ε↓0

ε−1
P(∆X1

T 1
ε

> δ)

= Π(δ,∞),

where the second line follows since Xtt
−1 a.s.

−→ d. Thus as δ is arbitrary we have

lim
ε↓0

1 − pε

ε
= ∞.

(ii) That limε↓0 pε = 1 when X has positive drift reflects the dominance of the drift process

over the jump process at small times. ie. It is related to the fact that Xtt
−1 a.s.

−→d as t → 0
(see for example [1] p.84). Indeed, from here we may argue

lim sup
x↓0

px ≥ lim sup
a↓0

a−1M(a)

= lim sup
a↓0

a−1
E

{

Xτa− −
∑

t<τa

∆Xt

}

≥ 1 − lim sup
a↓0

a−1
E

{

∑

t<τa

∆Xt

}

≥ 1 − lim sup
a↓0

a−1
E







∑

t≤ad−1

∆Xt1{∆Xt<1}







≥ 1 (by dominated convergence).
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