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1. Introduction 

The Loewner Conjecture was motivated by the study of umbilic points on surfaces 

and by  various other geometrica! investigations concerning the qualitative theory of dif- 

ferential and integral operators (see especially Loewner [8]). Let  u be a real analytic function 

on the disk D, x ~ +y~ < 1; wi th  2 ~  = ~ + / ~ ,  think of the iterates ~ u of ~ on acting u as 

vector fields on D. 

L o E w ~ v . ~  CONJECTURE (about 1950). 

I / t he  vector/ield n a~ u, u E C a (D, R), n >~ 1, has an isolated zero at the origin, then the index 

o/ ~ u at the origin is not greater than n. 

For n = l  this conjecture follows directly from standard techniques in differential 

equations (see Lefschetz [6]). For n =2 it is the key lemma required for a proof of the 

Caratheodory Conjecture (see Hamburger [3, 4], Bol [1], Klotz [5]). 

CARATHEODORY CONJECTURE. Every convex real analytic imbedding o / S  ~ in E 2 

has at least two umbilic points. 

With a proof of the Loewner Conjecture for n = 2  the work of Hamburger together 

with standard more recent work in differential geometry will show that  every real analytic 

immersion of S ~ in E 8 has at least two umbilic points so that  the convexity condition is in 

fact irrelevant. 

The main difficulty in the proof of these conjectures occurs because the multiplicity of 

the zero of the vector field may be arbitrarily large; with standard conditions of genericity 

imposed the proofs of the Loewner Conjecture become relatively trivial. However, possibly 
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with n = 1 excepted, present day methods using approximation from the generic cases are 

nowhere near adequate. In fact a proof including the non-generic cases describes con- 

straints on the limits of the generic cases. Thus, for example with n = 1, a proof of the 

Loewner Conjecture implies tha t  if the gradient Vu has an isolated zero at the or i~n and 

u is the limit of Morse functions v then the sum of the indices at the zeros of the vector 

fields Vv which approach the or ion  must be less than or equal to 1. 

Geometrically, for n ~3,  the Loewner Conjecture is related to generalizations of the 

Caratheodory Conjecture concerning the existence of higher order singularities on surfaces 

immersed in higher dimensional Euclidean spaces (Little [7]). 

Because of the complexity of previous methods for n = 2  (and even n ~  1) and because 

other substantial difficulties occur for n ~ 3 a very different approach seemed required. In  

this paper in the early part, the first six sections, we make a thorough qualitative study 

of ordinary differential operators with constant coefficients (which is closely related to the 

action of ~ on homogeneous polynomials); in the later part  we develop a perturbation 

theory which extends the qualitative study to the partial differential operators involved 

in the Loewner Conjecture. I t  is however the detailed geometric study in the early par t  

tha t  makes the perturbation extension tractable. 

We will prove the Loewner Conjecture in a sharpened form involving the linear fac- 

tors of the first "consequential" homogeneous polynomial in the expansion of u; this 

sharpened form apparently gives new information even when n = 1. 

For uEC~(D, R) let u=up+... +uq+... be the expansion into forms (=homogeneous 

polynomials) uq of degree q. We may assume that  none of the forms uq is anihilated by the 

operator 0 n Let  Lku p be the number of real linear factors of up of multiplicity at least k. 

(note tha t  Lk~v>~Lk+lUp). 

The principal results of this paper are contained in the following pair of theorems. 

THI~ORI~M. Given ueC~'(D, R) so that the vector /idd O~u has an isolated zero at the 

origin choose the/orm % in the expansion o] u with lowest degree such that ~ up ~= 0 and then 
n 

the index, ~o~U, o] the vector ]ield at the origin satis]ies the inequality: 

(a) ]or n<~p<~2n-1, 

~oO~u <. n -  (L x % +.. .  + L~_,+l up) + (L,+1% +.. .  + Lpu~), 

(b) /or 2n<~p, 

~oO~ u <. n -  (Lxu p +.. .  + L.up) + (L~+lUr + . . .  + L2.up). 

Since u is real, Ozu is the complex conjugate of ~zu and one has the equivalent 
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DUAL THEOREM. Craven u E C~ D , R) so that the vector field ~ u has an isolated zero at 

the origin, choose the /orm up in the expansion o/ u with lowest degree such that a~u r 4: O. 

Then the index, ~oa~u, o/ the vector field at the origin satisfies the inequality: 

(a) for n ~ p  ~ 2 n -  1, 

s o ~ U ~ - -  n + ( L l  U ~ + . . .  + Lp_ n+l up) - (L~+I up + . . .  + L2,u~), 

(b) [or 2n <.p, 

~o~u>~ - n +  (L1% + ... + L ~ % ) -  (L ,+l% + ... + L~,up). 

Under the same hypotheses one also has, by  simple degree considerations, tha t  

n 
] ~ 0 ~ u ]  ~ p -  n, 

and I~o~U[ <~ p - n .  

When p ~ 2 n  these imply the Loewner Conjecture and with p ~ 2 n - 1 ,  the inequalities 

(a) are independent of these inequalities. When p ~ 2 n  the inequalities (a) imply these 

in equalities. 

Before proceeding a few examples may  be helpful. 

Example 1. Let u = (zS)" so tha t  u has no real linear factors (i.e., of the form az + 55) 
n 

and then a~u =n!  z ~ which has index ~0 =n. 

n y 
Example 2. Let u =  (z+5) n so that  L l u = . . .  = L n u = n  and Ln+lu=O and then ~ u = n .  

which has index ~0 = 0. 

Example 3. Let u = (z + ~)~ + (higher order terms) and then L 1 up =. . .  = L ~  u~ = 1 so 

tha t  by  the theorem 

Example 4. Let  u = (z +5)~(iz-iS)n(zS) n + (higher order terms) and then Ll U p ... 

L~% =2,  L n + l U  p = ... = i 2 n u  p = 1 so tha t  by  the Theorem 

n 
~ o a ~ U . ~ n -  2 n = n = O .  

In  the following we will actually prove the Dual Theorem since the inequalities 

involved in the proof tend to take a more intuitive form. 

2. Preliminary notation and definitions 

All mappings, manifolds and structures are real analytic. The theory is built on the 

oriented Euclidean plane E which will often be identified with the complex line C. Let  D 

be the closed unit disk in E about  the origin and S 1 the naturally oriented circle tha t  bounds 
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D. Let P be the real projective line thought of as the bundle of non.oriented lines through 

the origin of E, where E induces the orientation and real analytic structure on P; thus P is 

parameterized by the angle measured from a fixed line and taken modulo ~. 

One of the most useful technical devices involved is called the projective winding 

number of a mapping in C~(S 1, E). First we define the mapping *: E -  {0}-~P, v~-->v*, where 

v* is the line through v and the origin. For ~ E C~(S 1, E) define the multiplicity [unction 

$: SI-~Z, 0~->~uc(0 ) (or simply ju(0) when the dependence on ~ is clear), where/z~(0) is 

the order of the first non-vanishing derivative of $ at  0. So juc(0 ) is simply the multiplicity 

of the zero of ~ at 0 and we have ~(~)(0) 4=0. Next, define ~*: SI-~P, 0~->[$(~)(0)]*; the map- 

ping ~* is seen to be real analytic. Finally, the projective winding number of ~ about the 

origin is defined as one half the topological degree of the mapping $*: SL~P; it is denoted 

by oJ* ~. Note that  ~o~ is defined whether or not ~ passes through the origin, that  it  takes 

half integer values and that, when $ is never zero, it is the usual winding number. 

The following explicit formulas for ~o*C are not difficult to derive from standard 

sources and will be taken as known. The derivative of (.) --arg ~* with respect to 0 is 

1 ~(~ A ~(~+1~ 
(arg ~*)'= 

/z+ 1 I]r ~ ' 

here and throughout this paper v A w denotes the signed area det (v, w). 

From differential degree theory (see e.g. Milaor [8]), for any v that  is a regular value 

of r (i.e. r =v* only if (arg r 4=0 or C* does not hit v*) one has 

w~r = �89 Z {sgn [(arg r 1r = v*}. 

Similar to the Cauehy formula for the usual winding number, one has 

r ~" = ~n j :=  (arg ~-*) ' 

3. The group ~ and the semigroup $ 

We will define a group ~ and a semigroup $ and two actions of the group which arc 

central to the entire approach. The "algebraic" action is defined in section 4; it describes 

the geometry of the Euclidean algorithm and of the Sturm theory for separating pairs of 

polynomials. The "differential" action is defined in section 5 and includes the action of 

V ~ on forms as a special case. 

Let, as usual, R[x] be the ring of real polynomials and E[x] the (free} R[x]-module 

spanned by a positive basis, el, e~ in E; thus E[x]--(~el+fle~l~, tiER[x]}. We will often 

think of E[x] and R[x] as subsets of the spaces of mappings C~(R, E) and C~(R). 
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On  R[x] • E we define (g, v) = (8, w) if and only if there exist real a a n d  b, note both 

zero, so that  av =bw and b~o~ =a~fl, (i.e., b~o~(x) =a~fl(x)). I t  follows with a little computation 

that  this is an equivalence relation and we note 

( 0 , 0 ) = ( / ~ , w ) ~ f l = 0  or w = 0 ,  
and, for g 4 0  and v :~0, 

a 01 
Let ~(v) be the set {(g, v)]~ E It[x]} together with the binary relation 

(~, v)(a, v)=(a+f l ,  v), 

both definitions making sense for equivalence classes. Each O(v) is then an abelian group 

with the identity represented by (0, 0)--(0, v) and inverse by (~, v) -1 = ( - ~ ,  v). Note, with 

v ~:0, w ~:0, that  O(v)= ~(w) if and only if v and w are dependent over R ( ~ v  A w=0).  

The group ~ itself is defined as the (finite) free product of the abelian groups O(v) 

and thus, for every GE ~ -  {I} there is a unique sequence of groups O(v~) and elements in 

the O(v~) represented by (a~, v~) so that  G is the (reduced) product 

G = (0~n, Vn)  . . .  (gl ,  Vl) w h e r e  a j # 0  a n d  Vj+lAV/:~:0.  

The number of factors in the (reduced) product is called the length of G. 

There is a "constant coefficient" subgroup ~0 c ~ which is important. I t  is defined in 

the same way but  we begin with the equivalence relation on R • E instead of It[x] • E. 

Thus each element in ~ 0 -  {I} is represented by the (~edueed product) 

G = (an, vn) ... (al, Vl) where ajER, aj+0,/1+1AVj:~:0. 

The semigroup S c ~ is simply the set 

reduced products 

S = (con, v,) ... (~1, vl) where 

containing the identity I = ( 0 ,  0 ) a n d  the 

~>~0, a j+0,  vj+ 1A vj+0. 

This too makes sense for equivalence classes since ~/>0, g 4 0  and (a, v)--(fl, w) imply that  

fl>~0 and f l*0 .  

We also have the important "constant coefficient" semigroup S0 = S N ~0 which con- 

rains the identity and the reduced products 

S = (an, vn) ... (al, Vl) , aCER, ar  v]+ 1AV]:~:O. 

PROPOSITION 1. S N S-I={/} and So N S~I={I}.  
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Proo/. If (xz, Vm) ... (z% vi)=(ft. ,  w,) . . .  ( ~ 1 ,  Wl) where m > l  and all fl~<0 and a~>0, 

then m = n  and 0 < x ~ = f l t < 0  a contradiction. This proof works for both semigroups S 

and S0. 

PR 0 P 0 S ITI 0 N 2. The group ~ is generated by S and S-1; the same is true/or ~o and So. 

Proo 1. Consider G = (~ ,  v~) ... (c% vl)E ~ of length n (so aj #0  and vj+l A vj #0). If an 

~ changes sign write 

(~k, vk) = ( a ~ -  ~ + 2, v~) ( - ~ + 2 a~ - 2, v~), 

where then the left factor is in S and the other is in S -1. If ak does not change sign, leave 

the factor (~k, v~) unchanged. 

Given an 

~-->(:r v)~, by 

4. Algebraic action of ~ on E[x] 

(~, v), in the abelian group ~(v), define the operator (~, v): E[x]-~E[x], 

or, in less explicit notation, 

[(a, v)~](x)- $(x) +xa(x)(v A $(x))v, 

(a, v)~  = ~ + x a ( v  A $)v.  

This makes sense for the equivalence classes and is easily seen to be an action of the abe- 

lian group ~(v) on E[x] wherein (0, 0)~=~ for all ~ and (fl, v)[(~, v)~]=(o~+fl, ~) for all ~. 

We have then defined, by composition, the action of the whole group ~ on E[x] and, 

analogously, the actions of S, ~0 and S0. 

P a o e o s i T i O ~  3. (A geometric /arm o/ the Euclidean algorithm.) For any LEE[x]; 

(a) there exists a GE ~, a monic polynomial ~oeR[x] and a vector v0eE such that ~=Go~oVo; 

(b) G, ~o and v o are uniquely determined; (c) ~ is the monic polynomial o/highest degree 

that divides $. 

Proo/. Given ~ choose a positive basis el, e~ so that  $=P1el+P2% with P~fiR[x] and 

deg P l < d e g P 2 = d e g  ~. By the Euclidean algorithm we have the existence of Q~ and Pj  

such that  

PJ = Qt PJ+, -P~+,, j = 1 ..... p, 

with deg PJ+I < deg Pj  and Pp+2 = 0 (the minus sign for the remainder is a useful conven- 

tion). We write this in the form 
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P~ 0, "'" ~ , ~ : 0  /" 

Choose ~ 6 R[x] and a k 6 R so tha t  Qp_ k+l = x ~  + a k, k = 1 . . . . .  p, and let ~o = P,+, ;  we 

have then 

(:) 
i 

('o ('o (a' 0 o . ,o .  
Let  T(ak) be the linear transformation represented by  

0 ) "  

Then we have from the above 

r = (~p, e l ) T ( a ~ )  ... (~1, e l ) T ( a l ) ~ o e r  

Before proceeding further, we need the following identity for linear transformations T 

with det T = 1; namely, 
(a, Tv) = T(a, v) T -1. 

To derive the identity we compute 

(a, Tv) ~ = ~ + a(Tv A ~) Tv = ~ + a(Tv A T T  -1~) Tv 

=~ +a(v A T- I~)Tv  = T[T- l~  +a(v A T-l~)v] 

= T(a, v) T-I~, 

Let  Tk = T(a~) .., T(ak) and we rewrite ~ in the form 

= (:r el) T~ ( ~ : i ,  el) T~ -1 ... T~(~,, e,) T ~ I T I ~ e l ,  

which, using the identity just derived, gives 

:= ( ~ ,  e l ) , ( ~ l ,  T~el)-. (ar T ~ I ) ~ T l e l ,  

This completes the proof of par t  (a); the proofs for parts (b) and (c) are omitted since they 

follow directly form this form and the Euclidean algorithm. 

Next  we take  as known the notion oi the Cauchy Index  of a polynomial w e C[z]; it is 

defined as �89 where #+[#-] is the number  of roots in the open upper  [lower] complex 

4--732906 Acta mathernatica 131. Imprim% le 18 Octobre 1973 
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half plane. Write w =P1 + iP2, Pj E R[z] and, using the Qk as defined in the proof of Propo- 

sition 3, define SGN Qk to be equal to • 1 if deg Qk is odd and sgnQk( + ~ )  = • 1 and to be 

equal to 0 if deg Q~ is even. The following result is known (see e.g. [2], pages 205-208). 

PROPOSITION 4. The Cauchy Index o/wEC[z] is given by 

� 89  = �89 QI+ . . .  + s g n  Q~). 

We note next  that  for w E C[z] we can write, with e 1, e~ a positive basis, Pt + iP~ = w, 

PiER[z], and then S=Plel+P~e2. If we think of ~ as a mapping from R to E (PieR[x]) 

it follows directly that  oJ~ is the Cauchy Index of w. Also, with the polynomials ~k as in 

the proof of Proposition 3, we define sgn ~k =SGN Qk (whence sgn ~k is equal to + 1 if 

deg ~k is even and sgn ~r + oo) = _+ 1 and sgn ~ =0  if deg ~k is odd). Let  Roo be the 1 point 

compaetifieation of R which is naturally isomorphic to P and, for SeE[x], define eo*S as 

the topological degree of the mappings ~*: Roo-~P. Also analogous to the formulae at  the 

end of section 2, 1s 
w~ r = ~ [arg r 

Putt ing these facts and Proposition 4 together we have 

PROPOSITION 5. Given SeE[x] ,  ~=Plel+P2e2 and S=(%,  v~) ... (~1, vl)~0v0, one has 

(a) o~*~ = - �89 a i  + . . .  + sgn a~), w/th 

(b) w = P1 + iP~. 

The Cauchy Index o[ w = �89 - #-) =eo~S. 

Classically, with P~eR[x], one says that  P2 separates P1 positively [negatively] if 

deg P1 = 1 + deg P~, the roots of P t  and P~ are all real and simple, the roots of P2 separate 

(interlace) the roots of P1, and the product of the highest coefficients is positive [negative]. 

To have a more geometric definition we define, for SeE[x]: ~ is positively [negatively] se- 

parating if there exists a positive basis e 1, e2 of E so that,  with S =Plel  +P2w~, P2 separates 

P1 positively [negatively]. We can now state the principal properties of the algebraic 

action of So on E[x]. 

PROPOSITION 6. (Characterization o[ the algebraic action o] $o). The [ollouring con- 

d/t/ons on S e E[x] are equivalent: 

(a) S is positively [negatively] separating; 

(b) there exist8 an Se$0[$o]  , v0eE such that S=SVo (i.e. : l ~ e R  ~ j > 0 [ ~ j < 0 ]  and 

:l vj+~ A v j ~ O ~ S  =(o~, v~) ... (~1, Vl)aoVo); 
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(c) eo*~---- - �89 deg ~ [�89 deg ~]; 

(d) there is a positive basis e~, e~ o / E  so that with ~=Pxe~ +P,e , ,P~R[x] ,  the polynomial 

w =P1 + iP~ has all o/i ts  roots in the open lower [upper] hall plane. 

Proo/. We prove (a)~(b), (b)~(c) and (c)~(d); the proofs are given only for positive 

separation since the other case is completely analogous. 

First, (a)~ (b). There is a positive basis e~, e~ of E so that,  with ~=P~ex+P~.e~, P~ 

separates P~ positively. We write 

P1 = Q1P~ -Pa  

and will show next that /)8 separates P~ positively. For, since deg P1 = 1 + deg P~, we have 

Ql=ax+a  with a, a ~ R  and ~>0.  Let e~ be the roots of P~, Cn_~>...>c~ and let bl, b~, ba 

be the leading coefficients of P~, P~, Pa. Then 

and so 

sgn Pl(c~) = - sgn  P3(ci) = ( - l )  t sgn b 1 = ( - 1 )  t sgn b2, 

sgn P3(cx) = ( - 1 )  ~+1 sgn b 2. 

This shows that  P3 has n - 2 simple roots interlacing those of P2 and that  b 2 b 8 > 0 so that  

P3 separates P~ positively. The proof can now be completed by induction. For using the 

notation as before, we have ~=(~n, vn) ... (~1, Vl)~oVo and have shown that  ~nER, an>0, 

and that  (an_l, Vn_l) ... (~1, vl) is separating. Continuing we have that  all the asER, a j > 0  

and thus ~ = Sv o with S E S0. 

Second, (b)~(a). Write ~=(~n, vn)... (al, Vl)Vo with a jeR,  xj>0.  As in the previous 

paragraph we have P1 =Q1P2-P3 and note that  the identities there also establish that  if 

P3 separates Pa positivelyl then P2 separates PI positively. Again the proof is completed 

directly by induction on the degree of $. 

Third, (b) ~(c). From Proposition 5(a) we have that  co*~ = -�89 at + ... +sgn an), but 

all of the ~nER and thus have even degree and, since every aj>0; ,  o ~ =  -�89 deg ~'. 

Fourth, (c) ~(b). Given ~ we write by Proposition 3, ~ = ( ~ ,  v~) ,.. (al, vl) ~v0, atER[x]. 

But from Proposition 5(a) and our hypothesis we have 

-co*~ = �89 deg ~ = �89 a l +  ... +sgn ~) ,  

which, since deg ~1+ . . .+deg ~ + p = d e g  ~, implies deg a j = 0  for all ] (thus ajER) and 

sgn aj > 0 and thus that  ~ = Sv 3 with S E S0. 

Fifth, (e)o(d). From Proposition 5(b) we have o~*~=�89 So, since (b)o(e), 
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�89189  But  of course #++#-~<deg~ and since #§ = # + + # -  if an d 

only if #+ = 0 and #- = deg ~, the proof of Proposition 6 is comulete. 

5.  D i f f e r e n t i a l  a c t i o n  o f  ~ o n  C ~ ( S Z ,  E )  

There are interesting actions of the group ~ on many spaces but  four our purposes 

here we need only the action of the "constant coefficient" subgroup ~o C ~ on the space 

C~(S 1, E) of real analytic mappings from th e  circle to the plane. 

Given (a, v)E ~0 (so aER, veE)  define the operator 

(a, v): C~(S 1, E) -* C(~ 1, E), ~-> (a, v)~, 

by ( a , v ) ~ = ~ + a ( v h ~ ' ) v ,  ~' d~ 

note that  this operator makes sense for our equivalence classes since (a, v)~ = (b, w)~ for 

all ~ if and only if (a, v)= (b, w). I t  follows directly that  we have defined an action of the 

abelian group ~o(v) on C~(S 1, E) for clearly (0, v)~=(0, 0)~=~ for all ~ and also 

(b, v) (a, v) ~ = ~ + a(v A ~) v + b(v A ~') v + ba(v /~ ~ )  (v h v) v 

=~ +(a+b)(v  h~')v = (a+b, v)~ 

for all ~, And, since ~0 is the free product of the abelian groups O0(v), we have in fact de- 

fined an action of the whole group ~0 simply by composition of the actions of the abelian 

groups 00(v). 

Recalling the definition of the multiplicity function p in section 2, we state the first 

of the four properties of th e action of ~ 0 -  

PROPOSITION 7. (Effectiveness of the action.) I / O e  ~o and G~ --~ [or all ~ eC~(S ~, E), 

then G = I. 

Proo]. Choose ~ such that  (~u~)(00) = n = length of G;: now if n >~ 1, ~(00)=0 and, with a 

short computation, 

(G~) (0o)= a n...al(vn A Vn_l) ... (V2A Vl)$(n)(00) :~=0, 

which contradicts the assumption that  G~--~. So n = 0 and G = I .  

P R O e O S I T X O ~ 8. (Concerning the multiplicities of zeros.) Given G E ~o, O ~ (an, %)... 

( a l , v a )  , o/length n>~l and given ~EC~~ l, E) and OES x such that ~*(0) 4v , ,  then 

(a) (ju~) (0) = m >~ n ~ (#G~) (0) = m - n, 

(b) (/~) (0) -- m < n -  1 * (/~G~) (0) ~< n ~ m  - 1 .  
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Proo/. For part  (a) suppose first tha t  the length of G is 1 and so 

G~ =~  =al(V 1 A ~')Vl, 

and by hypothesis (/~)(0) =m>~l; thus we have at 0, 

(G()(m-1)(O) = ((m:-l~(O) §  1 A ( (m) (0 ) )v i  = al(V 1 A ({m}(O))Vl. 

Further, v 1A ((m)(o)~0 since ~*(0)4=v I and so the above implies tha t  (pG() (0 )<~m-  1. 

But (G()tk)(O) =0 for k~<m--2 and so ( l ~ G ( ) ( O ) - m , !  as we needed to show. We have also 

shown that  (G()*(O) =v~ and since v* 4=v* for G of length ~>2 the proof of part  (a) follows 

by induction on the length of e .  

For part  (b) we proceed directly for any given n ~> 1. Let  G = (a,, v,) ... (al, Vl) be of 

length n and define G~=(ak, v~)... (al, vl). We are given ( /z()(O)=m<~n--1 and (*(0)4=v* 

so, by part  (a), 

(#Gm~)(O) = m - m  = O, (i.e. (Gra~)(O) 4=0), 

and als0 (Gm()* (O)=vm (=~v*+l). 

Using the fact that  

(Gm+l~) (0) = (Grn~)(0) +am+l(Vm+ 1 A Grn~'(O))Vm+l, 

we see that  (Gm+l~) (0)4=0 and thus that  (#Gm+l~) (0)=0. 

We need a t  this point  the following lemma: If ( /~) (0)=p  and G has length 1 (no 

restriction on ~*(0)), then (/~G~) (0) < p  + 1. Assuming this for the moment we have by using 

it over and over, 

(#Gm+~$) (0) <- 1 

(pGn ~) (0) < n - m + l, 
as we needed to show. 

To prove the lemma, we consider the following cases: 

(i) ~*(0) . v * ;  

(ii) ~*(0) = v*, and (G~)(~}(0) ~= 0; 

(iii) ~*(0) = v*, and (G~)(~'~(O) = O. 

For (i), if p ~ l ,  part  (a) implies ( i zG~)(O)=p-1;  if p = 0 ,  then ~(0)#0, ~(0)Av#0 

and thus (G~)(O)=~(0)+a(v A ~'(O))v#O i so in either ease (#G~)(O)<~p. For (ii), we have of 

course that  (#G~) (0) ~<p immediately. For (iii) we have ~(~)(0) ~0,  v A ~(v)(0) =0  and 

(G()(~')(O) = ~ ( 0 )  +a(v A ((~+l)(O))v ' 0, 

when vA ~(P+I}(0) ~=0. Thus~ f rom 
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(Gt)(~+l)(0) = t '~+l~(0) +a(v A t '~+~)(0))v 

we see that  (G~)(n+I)(0)4:0 which means that  (/tGt)(0)~<p+l. The proof of the lemma 

and therefore of Proposition 8 is complete. 

PROPOSlTIOS 9. (Alianment at zeros.) I / G = ( a , ,  v,) ... (a 1, Vl) has/ength n>~l and i/ 

0 E S 1 and ~ E C~ 1, E) are such that t*(O)4:v*, (ixt)(0)>~ n, then 

* 
(Gt)*(0)  = vn. 

Proo/. (By induction on the length n.) For n = 1, we have Gt = t + al(vl A ~') Vl, (ixt) (0) -- 

m/> 1 and v 1 A time(0) ~=0, so 
(Gt)(k~(O) =0,  k<~m-2,  

and (Gt)(m--i)(0) = al(V 1 A ~(m}(O))~)14:0. 

So (Gt)*(O) =v* as we needed to show and further, since v* v* 4: ~ 4=... 4:v* and since (/,Gt)(0) >~ 

(/*~) (0) - 1 (by Proposition 8(a)) the proof can be completed by induction. 

In the next proposition a special property of the differential action of the semigroup 

So is studied. Let #A denote the number of elements in the set A. 

PROPOSITIOI~ 10. (Monotonicity of o)* under the action of So-) 

Given S E t  o o/ length 1, i.e. S=(a ,  v) with a > 0  and v4:0; given ~EC~(S 1, E), then 

~* S t  >~:wff ~ + ~ # {01 (~St) (0) = (~t) (0) - 1) + �89 # {01 (~S~) (0) = (~t) (0) § 1}. 

Proof. To simplify notation let S t  =~, /xt  =/x and/,~=/~. We first show that  the Circle 

is the disjoint lmion of three sets A, B, and C, where 

A = {0 I/~(0 ) =/x(0)- 1}, i.e., multiplicity of zero decreased by 1, 

B = {0 [/~(0)=/x(0)+ 1}, i.e., multiplicity of zero increased by 1, 

C = { {0 [~(0) =/*(0)}, i.e., multiplicity invariant. 

That A, B, and G are pairwise disjoint is obvious; that  their union S 1 is seen as follows. 

Let/x(0) =m, and since 
~'~ = t 'k~ + a(v A t ' k+ l ) )v ,  

it follows that  
~{k'(O) = 0  for k<~m-2  

and thus that /~(0)>~m-1.  To complete the argument all we need to show is that  ~(0)~< 

+ 1; we show,  + 1 the=  (0) = + 1. W i t h  #(0i  + 1 we  have  

0 = ~ ) ( 0 )  = t'~)(O) + a ( v  A t'~+l)(0))v. 

Thus, since t(m~(0) 4:0, it follows that  ~(m+x~(0)4:0 and then that/~(0) ~<m + 1. 
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We define two more sets, the inverse images of v* under ~* and ~*, respectively: 

w = {o1~*(o) = v*} ( = { o l ~ ( ~ , , ( o )  A v = o} ) ,  

= {01~*<o) = v*} (={o1~+(o)A v = o}) .  

The idea of the proof is to compar e the two sums 

w* ~ = �89 ~ sgn [arg ~*]' (0) 
W 

eo*~ = �89 Z sgn [arg ~*]' (0) 
# 

on the intersection of W and t~ r with the sets A, B and C. 

First we establish three facts; that  A N W and B N W are empty and that  C N W = 

on#. 

A N W is empty. We have ~u(O) =/~(0) - 1 so that,  with m =/~(0), ~(m~(O) ~:0 and ~m-l~(O)~=0; 

we also have, since OE W, that  ~("~(0):5 v=O. Thus, 

~r ~r + a(v A ~cm'(O))v = 0 

which shows that  ~(0)~> m contradicting the assumption that  0 E A. 

B N ~l r is empty. We have/~(0) =/*(0)+ 1 so that,  with/~(0) =m, ~ ) ( 0 ) = 0 ,  ~r 

we also have t h a t  ~(m+l}(O) A V =0. Thus 

0 = ~'*)(0) = ~(m~(o) +a(v A ~(m+l~(O))v, 

which implies that  v A ~(m+l~(O) #0.  But from the equation 

~(ra+l)(0) 2_ ~(m+i)(0) =a(v A ~[~+~))v 

we obtain 
v ^ ~('+a)(0)  = v A ~Cm+n(0), 

and thus that  v A ((re+l)(0) ~:0 which contradicts the assumption that  0 E W. 

C fl W = C  N W. We have/~(0) =/~(0)=m. From 

~(m)(O) = ~(m)(O) +a(v A ~(m+x~(O))v 
we obtain 

v A ~(~)(0) - v A ~ ( ~ ( 0 ) ,  

which shows, for 0 E C, that  0 E W if and only ff 0 E W. 

The above three facts show that  
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( o ~ - - ( ~  ~ sgn[arg~*] ' (0)~�89 ~ sgn[arg~*]'(0) 
an~" Bnw 

+ �89 ~ {sgn [arg ~*]' (0) -- sgn [arg ~*]' (0)}. 
C N W=Cn ~t 

We proceed by estimating these three sums. 

S u m  on A f l  I~ r. We have/~(0) = m  ~ 1,/~(0) --m - 1 and ~(m-1)(O) A V =0. So 

0 :~ ~(m--1)(0) = ~(m--1](0) +a(v  A ~(m~(O))v -~ a(v A ~(m)(O))v 

implies v A ~(m~(o) :4: O. Thus 

~(ra--i)(0) h ~(m)(O) = [a(v/~ ~(m](O))v] A [~(m)(0) +a(v~(m+i)(O))v] 

= a [ v  A ~(m)(0)]2 > 0, 

and then [arg ~*]'(0) > 0. 

The sum on A f] ]~r is therefore computed and we have 

Z sgn [arg ~*]' (0) = # (A N 1~). 
Aa~ 

S u m  on B f] W.  We have/~(0)=m>~0, ~ ( 0 ) = m + l  and ~{m~(0)AV=0. Since ~{m~(0) =0  

we have 
0 = ~{m}(O) A ff(m+l)(O) = ~(m)(O) A ~(m+l](O) +a[v A ~(m+l)(O)]l 

and also 0 = ('m)(0) --- ~['~(0) +a[v  A ~!m+l)(O)]v. 

This last equation, since ~(m)(0):~0, implies that  v A ~(m+l)(O)4:0 and then, with the first 

equation, that  
c(m)(o) A c(m+a)(O) = --a[v A c(m+l}(O)] 2 < O, 

which means that  [arg ~*]'(0) < O. 

So the sum on B n W is also computed and we have 

sgn [arg ~*]' (0) = - # (B f~ W). 
Bfl W 

S u m  on C f) W = C  fl IV. We have/t(0) =~(0)=m>~0, ~(m)(o) A v = 0  and ~(m~(o) A v=O. 

First we compute 

~(m~(0) A ~(m+~(0) = [ ~ ) ( 0 )  +a(v A ~(~+1)(0))] A [~m+~)(0) +a(v A ~m+'~(O))v] 

= ~m~(O) A ~+~' (0 )  +a[v ^ ~(m+l)(O)]~ 

= [~(m)(0) +Oa(V/~ ~(m+l)(O))v] A ~(m+l)(0). 
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Since ~(m)(0) A v =0  this shows m a t  ~im~(0) A ~(m+l~(0) =0  ff and only if ~(m+l)(0) A V =0,  and 

this if and 0nlY if ~(m)(0) A ~(m+l)(0) =0.  We write C as the disjoint union of C~ and C 2 and 

have then the two cases to consider: 

C 1 = {0 ] [arg ~*]'(0) + O, [arg ~*]'(0) =l= O} 

and 02 = {0] [arg ~*]'(0) = [arg ~;]'(0) = 0}. 

Sum on Cx f3 W=C~ f3 ~V. We have ~(m'(0) A ~{m+l}(0) =#0 and ~(m'(o) A~(m+l)(0) 4 0 .  A 

few lines above we obtained 

(~m~(0) A ~(~+1)(0) = ~(~(0) A ~m+i)(0) +a[v  A $(~+~(0)] 2 

which implies that  
sgn [arg ~*]'(0) ~> sgn [arg ~*]'(0). 

Thus ~ sgn [arg ~*]' (0) - sgn [arg ~*]' (0)/>0. 
CIfl W 

Sum on C 2 fl W = C~ N ~V. We have as on C1 that  #(O)=p(0)= m >~ 0, ~(m~(o)A v = 0 and 

~(m)(o) A v =0; but  here we also have ~(m~(O) A $(m+l)(O) =~(m~(0) A ~(m+n(0) =0.  In  this case a 

more delicate local study is required. To  facilitate this we will make use of the following 

which is a simple extension of the sum formula which allows for non-regular values. 

LEMMA: Define 

0 i /  [/z(arg ~*)] (0) is even and positive 

e~(O)= +_1 i/  [p(arg~*)](O) is odd and sgn[arg~*](J')(O) = _+1. 

Then co* ~ = �89 ~.(~=,,s~ (0). 

Next, supposing 0 fi C2 N W to be 0 = 0 we write ~ locally in the form 

~(O)-(aoO'n +...)v+(boOP § v A w =  1, 

where, since ~(m)(o)/~V=~(m-I-1)(O)Av=O, it follows taking aobo:#O 

compute 

and 

that  p>~m§ We 

(~ A ~')(0) =aobo( p - m ) O  'n+v-! 4-  

(v A ~) (0) -- bo Ov + ... 

(v A ~') (0) - pbo Op-I § ... 

(v A ~U)(0) = p ( p "  1)0P-2+... 

(~ A ~')(0) - (~  A U)(0) +a[v A U(0i] z-a[v A ~(0)] [v AU(0)] 
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=-- aobo(p - m) 0 '~+~-1-4- .., + b~pO ~p-2 + . . . .  (**) 

Thus, since r e + p - 1  < 2 p - 2  (we have p ~>m+2), the local behavior of $ and ~ are the 

same in the sense of the lemma; i.e., 

e~(O)=e~(O) for OEC2N W. 

So if we interpret this part  of the sum formulas in the extended sense of the lemma we 

have 
[~  (0)-  ~(0)] = o. 

C2flW 

We have shown, adding up the inequalities obtained, that  

~*~-~*~>~�89 n ~)+�89 n W), 

which completes the proof of Proposition 10. 

PROPOSITION 11. Given SE So o/length n, S = (a., v~) ... (a 1, Vs), and given ~E C~(S 1, E) 

such that ~(0) =0  only i/ ~*(0) #v*,  then 

co*St >~co*~ + �89 (/x~) (0)] I ~(0 ) = 0) + �89 I (S~) = 0, (g~) (0) ~ n - 1}. 

Proo/. If  we take note of two facts, the proof can then be given by induction on the 

length of S. First we note (using assumption that  ~(0)=0 ~ * ( 0 ) # v * )  that  

Af l  l]z={01~(0)=0 and ~*(0)r 

as is seen in the proof of Proposition 10 concerned with the sum on A N W. Second, because 

of Proposition 9, we have that  (al, Vx) ~ satisfies the hypothesis of this Proposition; so we 

can induct until the number of factors is equal to either n or the multiplicity of ~ at  0. 

Using Proposition 8, we see that  if (/~S~) (0) = p  and ( / ~ ) ( 0 ) ~ n - 1 ,  then there had to be 

at  least p steps of the type 

(ag, vk) ... (al, ?)l)~F--~(ak+l, Vk+l) ... (a l ,  ~)1)~, 

where 0 is in B N W. 

COROLLARY. C~iven ~6S0 0/ l e~h  n, S=(an,  vn) ... (al, Vl), and given ~EC~(S 1, E) o/ 

the/orm ~=/v0, /GC~(~,  R), voEE, VoA vl ~=0 , then 

oJ*S~/> �89 [n, (~/)(0) I/(0 ) = 0) + �89 (0)1(S/%) (0) = O, (l~/)(0) <<.n- 1). 

Proo/. Since / is real and v 0 A v 1 =~0 the hypotheses of Proposition 11 are satisfied, 
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6. Relation between the actions of So and a~" 

Next we study the relation between the action of ~ on real forms (=  homogeneous 

polynomials) uoECv(D, R) and the differential action of the semigroup S0 on ~EC~(S1, E) 

where ~ =/qv o with/q(O) ---uq(c0s 0, sin 0) and v0EE. 

In this and later sections the dependence of the various symbols on the order n of the 

differential operator 0~ will often be suppressed since n may be considered as fixed through- 

out. Also we will often make the formal identification between E and C by choosing a 

positive basis el, e 2 and identifying (el, e2) with (1, i); e.g., we will write, for eEC, vEE, 

simply c = v  ( C - E )  meaning, with v=ae l+be  2, that  Re c = a  and Im c=b.  

Let Q, 0 be polar coordinates on C, z = x  + iy = ~e *~ e w we have the standard operator 

identities 
O~ = z2~ = �89 + iy) (0~ - i2u) = �89 - i20). 

One establishes by induction the operator identity 

z " ~ = [ e ~ - ( n - 1 ) ] . . . [ ~ - l ] e ~ ,  n>>-l. (1) 

The action of 0w on a form uq is given by 

~wUq = �89 a - -  i ~ o u q )  

and thus the action is that  of an ordinary differential operator in d/dO with constant coef~ 

ficients. 

With ~q/q(O) ~Uq(q COS O, ~ sin 0) and ~ =d/dO we compute directly from (1) 

n--1  

z "~uq  = 2 - ' q  q 1-[ [ ( q -  2a) - /0] /q .  (2) 
affiO 

Define the operator 1)4 by 

Then (2) may be written 

n - i  

Lq(8) - 2 -n 1-I [(q - 2 a) - /~ ] .  (3) 
a~0 

zn~n  u ~ ~q T, t 
v z  q ~ ~q lq"  

Note that  L e, as a polynomial in C[~], has all of its roots in the open lower half plane 

when q ~ 2 n - 1 .  When n ~ q ~ 2 n - 2  it turns out, as we shall see, tha t  some roots appear 

as conjugate pairs and all the rest are in the open lower half plane. This indicates tha t  the 

actions of Lq on/q  is, with C-~ E, closely connected to ' the  action of an S E $0 on fqvo, v E E. 

To make this connection precise we first show 

PROPOSITION 12. The operator Lq /actors, Lq=Nq2e,  where 2~ is an operator with real 

coe//icients, in the~/ollowing way (we always suppose q >~n): 
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(a) /or q <~ 2 n -  2 and q even, 

Nq(a)--::(--i)~n-q-lq~"[(q--2a)--i0], o/ order q - n +  1, 
o=0 

~..(a)~-a VI [ ( q - 2 a ) ~ + ~ ] ,  o/order 2 n - q - l ;  
a=~(q+2)  

(b) /or q < . 2 n -  2 and q odd, 

q--n 

N~(O)--2- ' ( - i )  2~-q-11-I [ ( q - 2 a ) - / 0 ] ,  o / o r d e r  q - n +  1, 
o~O 

n - 1  

~q(O)=-O 1-I [ ( q - 2 a ) ~ + ~ ] ,  o/:order 2 n - q + l ;  
a=�89 

(c) [or2n- l<~q  
n--1 

Nq(O) = 2 -~ 1-I [(q-- 2a) - /~ ]  = Lq(0), o/order n, 
o=0 

2q(a)=l, o/order O. 

Proo[. The proof is a straightforward computation and is omitted. 

At this point a few more definitions will be useful. Given S = (am, vm)... (al, vl) E So with 

length m ( - v j  A vj+ 14= 0) and a w eE call S initially independent of w if v* 4=w* ( --v 1A w 4=0) 

and c a l l s  terminally independent of w if v*4=w*. Given a polynomial ~ in C[x] (or E[x]) 

define ~*(oo) to be the line 

~* (~o) = lira [ ~(~) 1" 
�9 . n  LIr " 

I .~le~ 

PROPOSITION 13. Given Lq, as in (3), there exists a unique pair, SqE$0 and wqEE, 

such that, with Lq =Nq2q as in Proposition 12, 

(a) /or algebraic action (Lq, NqEC[8]I 2qGR[~], SqwqEE[~]), and C=E,  

(al) Lq = N q,~q = Sq ~tq wq,/ength o! Sq = min [q - n + 1 ~ n], 

(as) Sq is initially independent o/wq, 

(aa) Sq is terminally dependent on Lq(oo); 

(b) /or di//erential action on/eCo'(S 1, It) and C--E, 

L,,t = N,~.~t = ,~(~.d)w~, lor aU 1. 

Proo/. Part  (ax) follows immediately from Proposition 6 and this together with the 

definition of the differential action of So gives part (b). Write Sq in (reduced) form, Sq = 

(am, Vm) ... (al, v 1) where vj A vj+ 14=0, and then, again by Proposition 6, we have 
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deg Nq = deg Sq~qwq = deg Sqw e + deg ~tq. 

But  if Sq were initially dependent on wq we would have, since then (al, vl) ~ q = ~ q ~  that  

d e g  S q ~ q W q  < deg N, 

a contradiction. Par t  (a~) is proved. 

Par t  (aa) follows immediately from part '(al)  and the proof of Proposition 13 is com- 

plete. 

At this point, note that  the action of ~ on uECo~(D, R) can be written, t3 -E ,  

q=p q=p q ~ p  q=p  

This is to say that  alg action of the Nq on C[~] is equivalent to algebraic action of S on 

El0]. They are not! One can find polynomials w E r ~ EELS] with w = ~(C = E) and a n  2Vq 

such that  

Now r So~'- 

The point is that  Nq operates on real polynomials in the same way as S0 operating on real 

polynomials times a fixed vector. I t  is now seen, that  in this sense, the proof of the Theo- 

rem is reduced to the study of perturbations of this form slate 

~ 0 ~ u =  lim co* ~ ~qSq~Jewe. 
o. -~0 q=p  

7. Preparation for perturbation 

PROPOSITIOn 14'. (A simple 'reduction of multiplicities). Given L~ and/q and OE5 a, 

it/oUows that 
(#Lq/q) (0) <.q - n .  

Proo/. The proof is' given using the fact that  O'~uq =TqLJq and that each real linear 

factor (of form az + 5~) of a'~uq corresponds to zeros of Lq/q a t  some 0 and 0 +~.  Let  

q 

uq= ~. C~z~'5 q-~, c~EC, 
o=0 

where cq_~ = c-~ (so that  uq is real). Then 

Zn  ~ q 

n .  q=n  

and so znDnuq can have no more than q - n  real linear factors which shows in particular 

tha~; for every 0, (/xi~/q)(0) <.q-n .  
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PROPOSITION 14 ~. 

Given (gtq) (0) >1 n then (~Ldq) (0) = (glq) (0) - n. 

Proo/. As above  suppose a linear factor  of uq, corresponding to  0, 0 + ~  for/q,  is az + 5 i .  

Then,  with (g/q)(O)=m 
uq = (az + 5~)mv, deg v = q - m. 

A direct  computa t ion  of znO~uq(=Lq/q) gives the  proof. 

PROPOSITION 15. (Alignment a t  zeros.) 

I /(g/q)  (0)>~ rain [q - n  + 1, n] then, with C - E ,  

[(Ldq) (0)]* = [ ( S ~ h w ~ ) ( 0 ) ] *  = [( - i ) ' ] *  
for all q( >1 n). 

Proo/. We know f rom Proposi t ion 13 (aa) and  Proposi t ion 9 t h a t  a l ignment  for  all q 

is with L* (co); and L* (o~) = [ - i ']*. 

The  nex t  result  describes a ve ry  special and impor t an t  p rope r ty  of the  fo rm of the  

per tu rba t ions ,  as displayed jus t  before Proposi t ion 14; the  ones we mus t  s tudy.  

P R O P O S I T I O N 16. (Monotonleity propert ies  of the  project ive derivat ive.)  

For 0 ES 1 and (g[q) (0) =m >~n, 

n ( q -  n+  1) 
[arg (Lq/q)*]' (0) (m - n + 1)" 

Thus  the  value of the  project ive der ivat ive  (q ~>n, m ~> n) is a lways positive, depends only 

on the  order n in ~ ,  the  mult ipl ic i ty  of the  zero a t  0, m, and on the  (homogeneous) degree 

of the  form uq. As a sequence it  is s tr ict ly increasing in q and  str ict ly decreasing in m. 

Proo[. First  we note, direct ly f rom the definition, t h a t  the  project ive der iva t ive  of a 

curve ~ E C~(S 1, E) is invar ian t  if the  curve is mult ipl ied by  any  real funct ions g E C~(S 1, R). 

Nex t  we normalize b y  choosing 0 = 0  and write / near  0 = 0  as/(0)-Omg(O) where g(O)4=0; 

then, near  0 =0 ,  

n--1 

2nLq[ = 1-I [(q - 2a)  - / ~ ]  Omg 
o = 0  

= ( - i)" [0rag] ('~ + ( - i ) ' - l n ( q -  n + 1) [0rag] ('-1~ + . . .  

m! 
Om-n+ l g ' (0) "~ o(Om-n+ l ) ] 

= ( - i ) n [ ( ~  Om-~g(O)~ ( m s  1)l 

+ ( - i )n-Sn(q-  n + 1) [0~-'+Sg(0) + o(0=-'+1)] 

= (_i) , ,_~ m! Om_n{[n(q_n+l)g(O)]O+[(m_n+l)g(O)+ff,(O)O]i+O=_n+2h(O) } 
( m - n +  1)! 
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we have after factoring out by 

( - 1)~-lm! 0m_ . 
( m - n +  1)! 

the form, 
~(0) = [n(q-n + 1)g(O)]O + [(m-n + l )g(O) +g'(O)O]i +02R(O). 

To simplify notation we write ~(0)=AO + [B + CO] i +02R(O) and then compute the projec- 

tive derivative of ~ at 0 = 0. In complex form the projective derivative is 

[arg ~*]' = Im ~ ~ 

So [arg ~*]' = Im [AO - (B + CO) i + O~ R] [A - COi + ORx] 
(AO) ~ + (B + CO) ~ 

which at  0 = 0 establishes Proposition 16: which at 0 = 0 establishes Proposition 16: 
A q - n + 1  

[argO*]'(0)= = n m _ n + l .  

8. Localization and perturbation 

In this section we will often make use of the hypotheses of the Dual Theorem: that  aznU 

has an isolated singular point at the origin and that  up is the lowest order form such that  

ff'uv #O. 

Define ~n and Eq by 

so that  ( C -  E), 

~,,=zna:u + ~ QqLq/q= ~ ~qSq2Jqwq= ~ oqEq. (1) 
q ~ p  q = p  q •p 

The integral formula for the projective winding number of the curves ~ (~, - ) and the 

definition of the index of the vector field E ,  at  the origin gives 

~ 0 z ~ u = ~ 0 E  =l im . 1 ('~" ~, (~ , - ) ] ' .  (2) O~o E~ (Q, - ) = lim ~ J0 [arg * 
q--+0 Q--~0 

At each 0 with Ep(O)= 0 define the functional Vo by 

1 /.0+n 
VoEn = lim lim ~ | [arg ~*, (~, - )]', (3) 

h-+0 ~-~0 ~ J 0 - h  
(h>O) 

and we have by a straightforward limit computation that  

= Y { (0) = 0}  + (4) 
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The results of sections 6 and 7 give inequalities on oJ~E~; in this section we will derive 

inequalities on the perturbation term Y~{ Vo,~,, I Ep{O) = 0}. 

For E~,(Oj) =0 let x = O - 0 ~  and define 

_F~(x)-Eq(O,+ x), 

q = P  :. 

Formula (4) now takes the form 

~08.  = Z {voY; IE,(0,) = 0} + ~*E~. (6) 

In most of the following 0 s may be thought of as a fixed zero of E~ and, for notational 

simplicity, the dependence of the various terms on 0j will often be suppressed. 

From here on we suppose some familiarity with the elementary theory of algebraic 

curves, especially properties of the Newton Polygon (=-NP); see, e.g., [10]. Consider the 

expansion of a real analytic function g(~, x) about ~ =x  =0 with terms ax%P and let ((~, fl)}0 

be the set of all the integer points (a, fl) that  occur as exponents except for (0, 0). The 

Newton Polygon of the function g, N P  of g, consists of the finite sequence of lines s and 

the subset ( ( ~ ,  fin)} c ((~, fl)}0 such thai  

each line in s contains at least two points of ((a, fl)}0, (7a) 

each line in ~ separates the origin (0, 0) from the points in {(~, •)}0, not on that  line, (7b) 

with the equation of the ktn line, ekg +/~ =rk, sk>0, rk>0 , the lines in 1: are ordered 

so that  the sequence (ek} is increasing (and thus that  (rk} is increasing). '(7c) 

Thus the lines i n / :  and the points ((~a, fl~)} in the N P  satisfy: 

elae~+fl~=r 1 for q = l  ..... t 1. (8) 

. . . . . . . . .  , , , , , 

e~o:~,~fl,~ = %  f o r  a =~t,-1 ..... t,; 
where 

O<el< . . .<e~ ,  rl < . . . <  rs <0 ,  (8) 

a~ > . . .>  ato~0, p<f l l< . . .< f l , , .  

The reason for ordering the lines in 1: as in (Te) is that  the NP will be used to study the 

functional V 0 which involves an iterated limit with 5-+0 before h-~0. 

There exist rotations on C (which ' leave isrojeCtive winding nffmbers as well as Fo 

invariant) so that  for sufficiently small $ > 0 we have using (5) that  
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the imaginary axis (=i*) is a regular value of (~)*(~, - ) ;  (9a) 

with {(:r fl~)}, the points in the NP  of the function g = Re y~, (9b) 

Re F ~  (x) -= [ar + o(x)] x%, a~ 4: 0, 

Im F~, (x) = [br + o(x~~ x %, b~ # 0, y~ >~ 0; 

this means a choice of line, (i*) after rotation, so that  

(F~o)* (0) ~: i*. 

The following is a simple extension of the sum formula for ~o 0 as in section 2 where 

R~ =I t  U {~}  is the natural one point compactification of R so that R~ is real analytically 

diffeomorphic to S 1. The proof is omitted. 

PROrOSITION 17'. Let H(y) be a polynomial curve, H: R~C,  and v* a regular value 

eo~H = �89 ~ {sgn [arg H*]' (Y) I H* (Y) = v*, y fi R~}; 

(b) i/ v*~=H*(oo), 

r = �89 {sgn [arg H*]' (y)[ H* (y) = v*, y6R}.  

PROPOSITION 17". With ~= ~ ,  let v* be a regular value o/~*(Q, - )/orsu//iciently 

small Q > 0, then, 

V 0 ~  = lim lim �89 ~ {sgn [arg ~*(~, - ) ] '  (x) l ~*( e, x)=v*, Ixl <h}. 
h--+0 &-+0 

(h>0) 

Proo/. Using the Theorem of Rouchd there exists a truncation of ~ giving a poly- 

nomial ~ so that  V0 ~ = V0 ~. From Proposition 17', 

w~ ~ (~, - ) = �89 5 {sgn [arg ~* (~, - )]' (x) l ~* (e, x) = v*, x 6 It~ }. (10) 

From the definition of V0, 

VoYJn = Vo~ =lim ~(Q, - ) - ~ o ~  3(0, - ) ,  
Q-->0 

which together with (10) completes the proof. 

Define G~ and Oe with (~,  rio) chosen as in (9), by 

G~(~, x) = (a~+ ib~xV~)x%~ p~ a = 1 . . . . .  t s. 

5 -  732906 Acta mathematica 131. Imprim6 lo 19 Octobre 1973 

o/H*, then 

(a) i /  v* = 1t* ( ~ ) ,  
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tk  

( 7 ~ t k _  I 

PROPOSITION 18. 

rotation chosen as in (9) 

With {(=#, fie) the set o/l~dnts in the NP o I Re ~ = 0 and ugth a 

g8 

voY i = Vo V. o~,= Vo ~ O,. 
~  k ~ l  

Proo/. By (9 a) the imaginary axis is a regular value of (~J,)*. Using Proposition 17" 

we need only to show that  

where 

[VoY~]=lim lim�89 [ a r g q * ( Q , - ) ] ' ( ~ ) l R e 0 ( e , x ) = 0 ,  l~l<h}, (lla) 
h--~0 Q--->0 

(h>O) 

t .  

0 ~ 0  

g$ ts 

sgn [arg ~* (Q, - )]' (x) = - sgn ( ~ o:,,a,,x~o-Xo po) ( • b#xTo+~'ooP; ). 
o~1 o=1 

(11 e) 

But  the standard majorizing properties of the NP show that  on the real zero branches of 

T~a~x~ao B" =0 the signs involved in the sum above are exactly the signs of 

on the zero branches of Re y~ = O. 

Now, let x = y~ ,  and define the polynomial curves H~ by 

tk tk 

O'~Hk(O,y)-- ~ O~(Q,x)= ~ (a#+ibexV.)x%oP. 
a=tk--1 O~tk- -  1 

where we have used the equations t~ ~#+ f l#=r  k from the N P  for Re ~ = 0. We have 

established using this and Proposition 18 that  

tk 

k = l  k - - l  offilk--1 

PROPOSITION 19. With the H k as above, 

VoYt = ~ {nm ~tH,(e,  - ) -  �89 sgu [arg H~(e, - )]' (~)} .  
k = l  ~,----~ 0 

Proo/. Apply Proposition 17" to the polynomial curves 
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ts 

k = l  0=1 

where we are concerned with the real zero branches of 

ts 

Re 0 = ~ a , , x " e  p" = 0; 
affil 

the branches of lowest initial degree in ~ are of the form 

tl 

x = y ~,  + o(~ ~, ) where Re Hl  (y) = ~ a,r y% = O , y E R. 

But the real zero branches of the next  lowest initial degree are of the form 

x = y ~ , + o ( Q  ~.) where R e H z ( y ) = O ,  yER;  

and continuing this process we obtain the lowest terms of all the real zero branches; i.e., 

they are given by 

x =  y ~  + o (~) ,  k = 1 . . . . .  s, (13a) 

tk 

where ' R e l i c ( y ) =  ~ a,,ya,,=O, yER.  (13b) 
a f t k = l  

From Proposition 17' we have, for sufficiently small Q >0,  

eo*Hk (0, -- ) = �89 ~ (sgn [arg H* (e, - )]' (Y) I Re H(y) = 0, y e R~} 

= �89 ~ (sgn [arg H* (~, - )]' (y) I Re H(y) = 0, y E R} 

+ �89 sgn [arg H~ (e, - )]' ( ~ ) ;  

from the process in (13) we have for sufficiently small ~)>0 

voY~. = ~ y {sgn [arg H* (Q, - )]' (U) ] Re H~ (U) = O, y e a} .  
k = l  

These two facts together with Proposition 17" complete the proof. 

9. The semigroupoid action 

Let ~ /be  the set of polynomial curves H, H: R-+C, such that  

HE ~ / ~  deg Re H~<I +deg Im H. 

We also write H = P + i Q  and 

P=poy~ '+ . . . pv ,  Q=qoy~+, . .+p~,  p0q0=~0, ~,~<1+~. 
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Define the following operators on 74; note tha t  some of the operators have domains tha t  

are proper subsets of :H but  tha t  each operator maps its domain into ~:  

I 

(i i for al, a~ER, ala~>O , define A(al, a2) by 

A (al, as) [P + iQ] = alP + ia~Q; 

(ii) for bER, q0+bp0>0 when ~ + 1 +~, otherwise for arbi trary b, define B(b) by  

B(b) [P-4- iQ] = P + i(bxQ +P);  

(iii) for ceR,  c>~0, define C(c) by 

C(c) [P + iQ] = (P + icQ') + iQ, 

(iv) for d e Z and d + (/xH) (0) >~ 1, define D(d) by 

D(a) [ P + iQ] = (P + iQ) ! f  . 

Given a polynomial curve H E ~ consider the orbit of H consisting of all polynomial curves 

T H  where T is a finite composition of the operators A, B, C, D; when an operator B or D 

is involved the polycurve on which it operates must  of course be in the appropriate domain 

of definition. 

PROPOSITION 20. For any HE~4 and T H  in the orbit o] H 

eoo T H  >1 tooH. 

Proo/. The proof is given for the operators of each type. For (i), we simply note tha t  

A(al, as) is a proper affine transformation on C(C=E) and tha t  r is invariant. For (ii), 

we take first a rotation so tha t  the real axis is a regular value of H* (although such a rota.  

tion need not leave ~ invariant  it is used only to compute * oJ0), and apply Proposition 17'. 

With I m  H(y)=P(y)=0,  yER,  

sgn [arg ( BH)*]'(y) = sgn P(y)Q'(y) = sgn [arg H*]'(y), 

so tha t  none of the signs, with y E R, is changed. But  the condition tha t  qo + bPo > 0 and the 

fact tha t  [arg H*]'(co) is invariant under rotations on C show tha t  sgu [arg (BH)*](c~) = + 1 

and so w* can only increase under the action of B(b). For (iii), apply Proposition 10 identi. 

lying the operator (a, v) there with (c, el), and then, with e l = l ,  e~=i, we have 

(c, el) [Pe 1 + Qe2] = Pe 1 + Q e  2 = c (e  1 A P'e 1 + Q'e2)  e 2 = (P + cQ') e 1 + Q e  2 = C(c) [P T iQ]. 

Finally, for (iv), the proof follows immediately from the fact tha t  the projective derivative 



PROOF OF L O E W N E R  AND C A R A T H E O D O R Y  C O N J E C T U R E S  6 9  

and therefore the projective winding number arc invariant under multiplication by real 

polynomials. 

PROPOSITION 21. For certain HE:~ any TH in  the orbit o / H  satisfies special in. 

equalities: 

(a) /or H = iQ, w~ TH >~ �89 # {y[ Q(Y) = O} >1 0; 

(b) /or H = P + i Q :  w~TH>~- �89  

Proo]. For (a), note that  w*iQ=O and apply Proposition 20. For (b), we first show that  

w* (P + iQ) >~ - �89 # {y[ Q(y) = o, y E R} - �89 

This follows immediately from Proposition 17' if the imaginary axis is a regular value of 

(P +iQ)*; if not, P +iQ can be arbitrarily closely approximated by P + i ~  so that  deg P = 

deg i 5, deg Q = deg ~, and so that  the imaginary axis is a regular value of (/~ + i~.)*. 

10. Some s l ~ i a l  perturbations 

Recall Proposition 19, 

V0~=V0~ ~ F~ = ~ {limeo:H~(~,-)-�89 
k = l  a - t k - - 1  k - -1  Q--)'O 

and also, from the proof, that  

tk 

Vo ~ F~o= lim eo~Hk(Q, - ) -  �89 sgn [argH:(Q, - )]' (oo) 
O=tk--1 q-->O 

so that  we have the alternate statement of Proposition 19 

PROPOSITION 19'. 
t k t~ 

k ~ l  a~tk--1 k = l  a~tk-- 1 

l~ow the semigroupoid Propositions of section 9 are especially useful under the special 

conditions (14) that  follow; using these conditions we will show that  the approximations 

in (9b) and thus the G~ as in Proposition 18 take a very special form. 

PROPOSITION 22. Let {(a~, fl~)} be the set o/points in the NP /or Re ~ = 0 .  I] 

(/~lD,)(Oj)>~n /or a=tk_l . . . . .  tk (14) 
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then 
t~ 

vo Y  io> 0. 
o=tk--1 

Proo/. U n d e r  the conditions (14) we know b y  Proposit ion 15 after  a rotat ion by  

( - i) ~ tha t  
(F~o)*(0)=I* for a=t~_~ . . . . .  t~, (15) 

and b y  Proposit ion 16 tha t  

n(f l~-  n + 1) 
[arg (F~~ ]' (0) = m -  n + 1 ' m = (/~o) (0~). 

Bu t  b y  Proposit ion 14 ", ~ =  m - n ,  so tha t  we have 

[arg (F~)*] '  (0) = n(f l~-  n + l) ~r  1 , a = t k - ~  . . . . .  t~. ( 16 )  

Referring to the approximation (9) we see tha t  (15) implies tha t  ~ >~ 1. Fur thermore  (16) 

then implies 
la~ 0 [ 

n ( f l ~ - n +  1 ) = [ a r g  (F~~ c~x~'o2 7~bax~~ ~ ~=~ - b ~ x ~ ' ~  ; 
~ + 1  a~ + box 2 ~ a~ x=o 

b u t  since the left hand side is never zero we have  ~a = 1 and thus, recalling the definition 

of G~ for Proposit ion 18, 

G~ (Q, x) = (a~ + ibex) x~,~ ~o, ac, # O, ba 4 0 .  

Note  also then, b y  a simple computat ion,  tha t  

[arg (~~ (0 )=  [arg G* ]' ( 0 )=  b~; 
act 

and also, since eko~+fl~= r~, tha t  

(17) 

n(n-- f la+ 1) --ne~o:a+n(rk--n+ 1) 

~ a +  1 ~ +  1 ' 
(IS) 

f o r  o ' = ~ k _  1 . . . . .  ~k. Gathering together (15, 16, 17, 18) we have 

t k 

Voa.~_l  F~o = lira co o* H~ (~, - ) - �89 sgn [arg H~ (~, - )]' ( cr ), 
~--~0 

(19 a) 

tk 

where ~T~Hk(~, y) = ~. (aa+ib~y~ ~k) y~'~ Gk(~, y~k) 
O*--tk_ 1 

(19b) 
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and b_z = - e ~ n o ~ + n ( r k - n +  1) for a=tk_ 1 . . . . .  t k. (19e) 
a~ aa + 1 

Note, using a proper affine transformation, it follows that  

lim * * * (Do H~ (q, - ) = Wo Hk (20)  
Q--~0 

where 
~k 

I:Ik(Y)= ~ (a~,+ibr 
a = l k _  1 

also from the assumption (14) we have 

[arg H* (q, - )]' (co) = + �89 (21) 

The next  step in the proof of Proposition 22 is to apply the semigroupoid Proposi- 

tions 20 and 21 (a). Let  
tk 

Q(y)=y ~ b~,ya, (22) 
a~$k--1 

and define the transformation T as in section 9 by T=A(a)B(b)C(c)where ,  writing 

a = n ( r - n +  1), 

b 
n ( r - n +  1) + en' 

c = l .  

A straight forward computation shows that  

T[iQ] = A (a) B(b) C(c) [iQ] = [-I k. 

Assuming for the moment tha t  a > 0  and that  B(b) is defined on C(c)[iQ] we proceed as 

follows. From (22), Q has least one real root and, since (D*[iQ] =0,  Proposition 21(a) gives 

(D~H k = (D*T[iQ] >~ �89 
But then (20) and (19a) give 

~k 

- -  (D O H k Voo_~_ldoFi- * -~[argH~(q,-)]'(~)~>O 

so that  Proposition 22 is proved provided A(a) and B(b) are allowable operators. To see 

this; we first note that  (/~/p,) (0j) ~<flr since up, is a form of degree fl~. From Proposition 14', 

~ ~ f l~ -  n; so 
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rk = ek~  + f l ~  e~(a~ + 1) + n  (23) 

and so rk--n+l~>(ek+l)~,+l > 0  

which shows tha t  a > 0  and thus  A(a) is of correct form. To see tha t  B(b) is defined on 

C(c) [iQ] we mus t  show t h a t  bc(g~ + 1 )+  1 > 0 but ,  with r =r k, e =ek, 

n(r - n + l)  - ena~ bc(~+l)+l- 
n ( r - n +  1)+era 

which, by  (23), >~ ( a 0 + l )  > 0 .  
( r -  + l ) + e  

This completes the proof of Proposit ion 22. 

We need to  s tudy  one more special perturbation.  

PROPOSITION 23. Given t, ~k_l <t  ~tk,  where 

(/~fpa)(0t)~n, t ~ _ l < a ~ $ - I  , (p/p,)(Oj)<~n-1; 

then 
~k 

voY'~=vo Y. O.>~-�89 
G~tk--  1 

Proo[. Using the approximat ion (9), in the special form as in Proposi t ion 22 when 

t~_ 1 < a ~< t - 1, we have 

t~ t -  1 tk 

G~tk- -1  O~tk- -1  a=~ 

which, in turn,  with z = y~e, e = ek, r = rk, gives 

tk t - 1 tk 

G~=Q" ~ (a~+ib~"y)y=o+~" ~ (a~+ib~o~o~y~a)y=~. (24) 
~ O ~ t ~ l  O = t  

We note tha t  if 7r e > e the term, as in the proof o f  Proposit ion 19, can be neglected; we 

m a y  therefore assume tha t  

0 < 7 ~ < 1  for t<~a<.tk. (25) 

I f  we mult iply (24) by  y-=,k~-r and then apply the proper affine t ransformat ion tha t  

sends 1~->1 and i ~ - ~ i  (both operations leave V 0 invariant) we obtain 

tk t - 1 tk 

a = t ~ - - I  a ' t k - - 1  o = t  
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To simplify notation, let 

t - 1  

A 1 + i B  1 = ~ ~(a~ + ib~y) y~o-~'* 
a~$1c--1 

tk 

A2 + iB2 = ~ (ao. + ib~,~(v"-1)~y w') y:*o-C,,k. 
a ~ t  

By our choice of t we have, as in Proposition 22, the existence of a semigroupoid operator 

T of the form A(a)B(v)C(c) such that  

T[iBz] = A 1 +iB1. 

Now the operators T thought of as acting on a// polynomial curves always have inverses; 

thus T -1 = C( - c) B( - b) A (l/a), although T -1 need not, of course, be in the semigroupoid. 

Define 
R +iS = T-I(A2 + iB2) 

whence 
T[R + i(B 1 + S)] = (A~ + A2) + i(B~ + B2). 

Because of conditions (25) on the ~,a and the form of T, T =A(a)B(b)C(c), it follows directly 

that  deg R<<-degA2=at-:r We now apply Proposition 21 ( b ) t o  R + i ( B I + S  ) with T 

as above and the proof is complete. 

l l .  Proof of the theorem* 

Before putting it all together we need one simple inequality which is stated formally so 

that  Propositions 22, 23, 24 together give the main idea of the method for estimating the 

perturbation term. 

(a) 

(b) 

PROPOSITION 24. Given s', 1 <s'~<s, then 

s" tk 

1 

k = 1 a = t k - - 1  

Proof. The proof of these facts follows immediately from the fact that  the sequence 

{~0} is strictly decreasing and that  ~1 = (/~Ep)(0s). 

PROPOSITION 25. 

(a) For (~ufp,) (0j) ~< n -  1, (~1 = p) ,  

v o f l .  = voy~/> - �89 ~1 = ( ~ )  ( 0 ) ;  
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(b) for (lat#,) (Oj) >~ n, 1 < a <~ t~, 

Vo, E. = VoY'. >10; 

(c) for (tt]h) (Oj) >~ n and t such that (if/&) (0t) < n--  1, 

VojE.  = VoY~ >~ - �89 rain [n, p -  n (fffp) (0s) - n].  

Proof. Part  (a) is Proposition 24(b). For part (b) we have from Proposition 22 that  

~k 

Vo ~ G~>~0, 
a ~ t k _  1 

and thus, using Proposition 19', 

ts k 

VoY'. = Vo 2 a~ = ~ Vo 2 o~, >/o. 
a = l  k = l  tk - -1  

For part (c) we show first that  V o ~  --�89 from Proposition 8, z c t ~ n - 1  and then Pro- 

position 23 completes the proof. Second, since {~0} is strictly decreasing and since a z = 

(ffEp) (0j) ~<p-n by Proposition 14', it follows that  V 0 ~  >~ - � 8 9  Third, again since 

V 0 ~  >~ - �89 and since, by Proposition 14", az = (ffE~) (0t) < (gf~) (0t) , n  it follows that  

VoY jn ~< (if/v)(0i) - n .  

Next we simply sum the inequalities in Proposition 25 and obtain directly the complete 

estimate of the perturbation term. 

PROPOSZTIOZ~ 26. 

Y v o f i .  >1 - �89 7. {(~Ep (o,)IEAoj) = o  (~/p (0,) < n -  1} 

- �89 Z { m i n  [p - n, n (ffl~) (0j) - n]  I E~ (0t) = 0, (if/ ,)  (0j)/> n + 1}. 

n n Using the definition En z Ozu and also (4) in section 8 we have 

noe~  = - n +  o~Eo+ ~ {Vo E. E,(O,)= o}. 
* 

We also have as an estimate on o~ o Er. 

(26) 

PROPOSITION 27. 

co~ E~, >/�89 ~.. {min [n, p - n + 1 (fir2,) (0,)] I ]p (0,) = 0}  

+ �89 ~ {/.,&,) (o,)1E,,(r = o, (/4,,) (r < n -  1}. 

Proof. From the fact that  E,, =L,,fp =N~,),vf p and that  there exists by Proposition 13 

an SreSo and w e E  such that  Lpfp=Sp~f~,w where the length of Sp is equal to 

min [n, p - n  + 1] the proof follows directly from the corollary to Proposition 11. 
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Now the ident i ty {26} together with the inequalities in Propositions 26 and 27 give 

directly 

P R O P O S I T I O N  28 

~ o ~ U ~  > -n+�89 [n,p-n+L (~/,)(0j)][/~(0,) =0} 

"�89 [n; p - n ,  (#/~) (O j) -n]  J E~,(O j) =0, (l~/z,) (O j) >~n + l }. 

Note again that  a linear factor of u~(or Onus,) of multiplicity/t  means exactly that  ]~ 

(or E~) has zero at 0 and 0 + ~  of multiplicity/t; thus Proposition 28 is equivalent to the 

Dual Theorem and so the proof of both the Theorem and the Dual Theorem is complete. 

12. Remarks 

1. The isolated singularity, condition is not really important since in the non-isolated 

case a real analytic function can be factored out of O~u, uEC~(D, R), and the index ~0 

remains invariant. The Loewner conjecture in the caseChat u E C~~ R) remains open; 

here some condition similar to tha t  of an isolated singularity will no doubt be crucial. 

2. Let s be a homogeneous polynomial 

s 5) = ~ c~z'~-~ 5'~, c,,E• 
G=O 

and interpret F~n as a mapping from the real one dimensional projective space P(R) to it- 

self. As such s has a topological degree (~s Let A(x, y) and B(x, y) be real polynomials 

with z = x + i y  and choose cEC so that  12n(z, 5)-c[A(x, y)+iB(x,  y)]. With a little algebra 

one can establish that  ~ E ~ = - n  if and only if s 5)--II(ar with a~, b, eC and 

a~g~-b~$~ > 0, and this if and only if the polynomial B(x, 1) separates A (x, 1) positively. 

There is another Loewner Conjecture which states with uEC~(D, R), O s  and an 

isolated singular point that  
~0 s ~z)u~ > - n .  

This conjecture remains unsettled; an affirmative answer even when u fiC~'(D, R) 

would be of considerable use in various differential geometric conjectures (see Little [7], 

Wall [15]). 

The results obtained here for the qualitative properties of the differential action of 

So should, with slight modifications, be sufficient but  the perturbation theory and the 

relation between the differential actions of s and S0 apparently present much more seri- 

ous difficulties. 
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3. The differential action of the semigroups $0 allows for considerable generalization. 

First, with real polynomials A ,  and Bn-1, if Bn-a separates A ,  positively then, with x, y, 

/E C~~ x, R), the differential equation x = A  n [/] has for given x a unique solution ]. Thus 

the "parametr ic"  function ] may  be eliminated as in the classical Heavyside Calculus 

to obtain operators of the form y=B'n_l[A~a[x]]=(Bn_lA-:X)[x]. As is well known these 

"degenerate" operators effectively approximate,  for example, the Hilbert  Kernel Operator 

y -~ Hx where 

y( t )  = - 2 ~  p c o t  ~,(t - 8) dr.  

I t  can then be shown, see [12], tha t  for any  C ~ immersion of S 1 in E represented by  

(x, y) where y=Hx ,  can Mso be obtained by  y = S x  where S comes from a semigroup $ 

invol~ng real non-negative fimetions rather  than  the constant coefficients as for $0- Since 

again S is a finite product of generators the theory of certain integral operators is in this 

sense combinatoriMized. 

Second, also see [12], the definition of the semigroup $ and its differential action can 

be further extended so tha t  i t  operates on the C ~ mappings from an oriented manifold M 

of dimension n to an oriented manifold of dimension n + 1 (replacing S 1 and E respec- 

tively). Suppose M is an oriented manifold of dimension n + 1 so tha t  0M = M and call 

/: M ~ N  positively extendable to M if there exists a sensepreserving (roughly, non-nega- 

tive Jacobian) extension F:  M-~N.  One has, with the appropriate definitions, tha t  positive 

extendabili ty is an invariant  under the differential action of such a semigroup. 

This generalization has perhaps most of its interest in the fact tha t  the target  need 

not be a linear space since the operators are in "parametr ic"  form; i.e., a principle reason 

for a linear target  is to make the procedure for eliminating the parametric functions 

(mappings) easier to handle. 
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