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ABSTRACT Due to the proliferation of the Internet of Things (IoT), the IoT devices are becoming utilized

at the edge network at a much higher rate. Conventionally, the IoT devices lack the computation resources

required for carrying out ultra-edge analytics. In this paper, we go beyond the typical edge analytics

paradigm, which is mostly limited to user-smartphones, and investigate how to embed intelligence into the

ultra-edge IoT sensors. To conceptualize the smart IoT sensors with enhanced intelligence, we select the

arrhythmia detection task employing Electrocardiogram (ECG) trace as one of the mobile health (mHealth)

cases. The existing approaches are not feasible for ultra-edge IoT sensors due to the extensive noise-filtering

and manual feature extraction phase. Hence, in this paper, to facilitate the analytics, we propose a Deep

Learning-based Lightweight Arrhythmia Classification (DL-LAC) method, which employs only single-lead

ECG trace and does not require noise-filtering and manual feature extraction steps. As the proposed

technique, we design a one-dimensional Convolutional Neural Network (CNN) architecture. Complying

with the ANSI/AAMI EC57:1998 standard, four heartbeat types are taken into consideration as class labels.

The efficiency and the generalization ability of the proposed model are evaluated, employing four different

datasets from PhysioNet. The experimental results demonstrate that the proposed DL method outperforms

traditional methods such as the Delay Differential Equation (DDE)-based optimization, K-Nearest Neighbor

(KNN), and Random Forest (RF). The proposed DL-LAC illustrates encouraging performance in terms

of time and memory requirement when the trained model is transferred to virtualized microcontrollers

connected to IoT sensors.

INDEX TERMS Internet of Things (IoT), arrhythmia, electrocardiogram (ECG), deep learning (DL),

convolutional neural network (CNN), smart health, smart sensor.

I. INTRODUCTION

The escalation of Artificial Intelligence (AI), Internet of

Things (IoT) sensors, and numerous wearable devices

have radically enhanced mobile health (mHealth). However,

due to the hurdle of incorporating intelligence into these

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamad Forouzanfar .

resource-constrained IoT devices, the IoT sensors continue

to be routine monitors. The conventional technique is to

employ the IoT sensors and wearables to sense user’s day

to day health data such as Electrocardiogram (ECG), Elec-

troencephalogram (EEG), temperature, respiration patterns,

diabetes level, sleep patterns, weight change, and so forth.

These health data accumulated by the regular IoT devices

are dispatched to a remote cloud for medical analytics,
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as portrayed in Fig. 1. Although this IoT and cloud-based

medical analytics serve the purpose of health monitoring,

it still raises a few major concerns that cloud-based architec-

ture cannot avoid easily. This paradigm of ECG data analytics

results in bandwidth consumption, delay due to transmitting

the enormous amount of health data, and privacy concerns

associated with the user’s health data.

FIGURE 1. How migrate the pre-trained AI model towards the
resource-constrained sensor.

Our goal in this paper is to analyze how to exploit the logic-

in-sensor concept, recently introduced by the coauthors’

earlier research work [1]. The logic-in-sensor architecture,

which is based on Magnetic Tunnel Junction (MTJ)-based

spintronic technology, can revolutionize themHealth industry

by enhancing the Quality of Service (QoS) such as commu-

nication delay, network bandwidth consumption and privacy

of user’s health data. Considering the user-smartphone as

an edge device that is capable of some analytics, the pro-

posed ultra-edge architecture shown in Fig.1 aims to bring

the intelligence or the analytics from the cloud to the edge

device using the logic-in-sensor concept. Following the hard-

ware enhancement and AI-based intrinsic noise processing,

as demonstrated in [1], in this paper, we intend to obtain

a lightweight solution to relocate the cloud-based medical

analytics to the ultra-edge smart IoT nodes, and hence, over-

coming the issues as mentioned earlier.

We have chosen an essential use-case of cardiac arrhyth-

mia, one of the major causes of Cardiovascular Diseases

(CVDs) [2]. Cardiovascular diseases are the leading cause of

death worldwide, which results in approximately 31% of all

global deaths; however, the risk can be eliminated if detected

and diagnosed with timely treatment [3]. Arrhythmias cause

the heart not to pump blood in the body adequately, and

the patients usually experience symptoms of faster or slower

heart pulsations. Conventional clinically graded 12-lead ECG

or consumer-grade wearables can be employed to monitor the

heart activity of a person. The electrical activity of the heart

is known as the ECG waveform, which is a crucial diagnostic

tool used to monitor the conditions of the heart and can

be used to identify arrhythmias [4]. Automatic detection of

irregular heartbeats from ECG signals is a significant task for

the smart diagnosis of CVDs, and it is becoming a prominent

area where AI can be employed extensively to automate the

process.

Recent advances in AI and the availability of more health

data, the utilization of the deep neural network has proven

to be indispensable for automating the smart healthcare sys-

tem [4]. ECG data analytics using Machine Learning (ML)

or AI techniques and analyzing time series ECG with non-

linear Delay Differential Equations (DDEs) are explored

broadly by traditional cloud-based medical analytics. How-

ever, the adaptation of localized embed intelligence at the

ultra-edge devices is still not extensively studied in the litera-

ture. For diminishing the communication delay and network

bandwidth with the cloud and preserve user-data privacy by

considering the localized analysis of the health data, a more

effective and lightweight analytics technique on-sensor is

critical. Therefore, in this paper, we considered several

ML techniques to pave the way to move the arrhythmia

analytics from the centralized cloud paradigm to ultra-edge

smart IoT. Among different AI approaches, we propose a

Deep Learning-based Lightweight Arrhythmia Classification

(DL-LAC) algorithm employing the one-dimensional Con-

volutional Neural Network (CNN) that emerges as the most

viable solution for ultra-edge ECG analytics.

The proposed CNN-based model is trained at a cen-

tral node and then can be transferred to the logic-in-

sensor simulation for inference. The proposed model can

be used to classify heartbeats employing raw single-lead,

and it does not require any noise-filtering of the ECG

signal, which makes the system lightweight and easy to

integrate with the ultra-edge node. In this vein, the pro-

posed deep learning-based CNN employs the recommen-

dation of Association for the Advancement of Medical

Instrumentation (AAMI) for the arrhythmia classification

task. We have considered four classes of heartbeats, namely

N , S, V , and F , in this paper, which represents nor-

mal, supraventricular ectopic, ventricular ectopic, and fusion

beats, respectively [5]. To evaluate the model’s generaliza-

tion ability, we experimented using four clinically graded

ECG datasets and considered different experimental settings

to test the model’s performance using accuracy, precision,

and f-score as performance metrics. Lastly, due to the high

fabrication cost of a single logic-in-sensor (approaching

$15k for the entire circuit and a further $10k for further

customization), we illustrate the viability of the proposed

method’s feasibility as a lightweight solution in an emu-

lated ECG sensor with a Raspberry Pi and a few other IoT

devices.

The remainder of the paper is constructed as follows.

Sec. II surveys the relevant research work. The problem

of traditional cloud-based analytics and the necessity of

lightweight analytics at the smart logic-in-sensor is dis-

cussed in Sec. III. The data preparation is outlined in

Sec. IV. Our proposed input representation and deep learn-

ing model are manifested in Sec. V. The performance

of our proposal is assessed in Sec. VI and contrasted

with those of K-Nearest-Neighbour (KNN), Support Vector
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Machine (SVM) and Random Forest (RF). Finally, Sec VII

concludes the paper.

II. RELATED WORK

Due to the availability of IoT devices that can deliver health

data, researchers are have been working on ECG classifica-

tion [6]. As an indispensable strategy for diagnosing heart

diseases, ECG monitoring is comprehensively studied and

analyzed. It is vital to detect cardiovascular diseases timely,

and for that purpose, continuous observation of ECG for

a prolonged period is essential. However, the conventional

method of long-time ECG monitoring is invasive and expen-

sive, and it hinders the daily activity of the patients. To over-

come this issue and introduce some level of automation in the

ECG monitoring system, cloud-based ECG analytics can be

employed where the ECG signal is usually transmitted using

wireless transmission techniques such as Bluetooth, Zigbee,

or Wi-Fi [7]–[9]. Therefore, most of these traditional auto-

mated ECG monitoring systems analyze the data at the cloud

and then send feedback back to the user or care-providers.

One of the proposed cloud-based analytics where the ECG

data are collected using a wearable monitoring node and

are transmitted straight to the IoT cloud using Wi-Fi [10].

An IoT-based patient monitoring system is proposed where

data is then processed using a Raspberry Pi, and useful

information is delivered to the IoT cloud for cloud-based

analytics [11].

In this proposed system [12], AdaBoost and Gradient

Boosting algorithm were applied to classify ECG using

single-lead ECG. An automatic and fast ECG arrhythmia

classifier based on a brain-inspired ML approach known as

Echo State Networks (ESN) was implemented in for faster

ECG analytics [13]. In another work, an accurate arrhyth-

mia classification method for ECG was proposed based on

extremeweighted gradient boosting (XGBoost) using a broad

range of feature set [14]. In [15], to tackle the patients’ privacy

concerns, Baza et al. have proposed a mimic learning-based

machine learning approach for automatic, secure, and effi-

cient analysis of Cardiovascular activities. A clustering-based

feature extraction algorithm followed by employing a number

of well-known ML classifiers for accurate recognition and

classification of arrhythmias is proposed in [16]. Researchers

have also employed mathematical methods to decompose

ECG, such as a nonlinear DDE was utilized to classify ECG

by differentiating features for various heart diseases [17].

Apart from traditional ML techniques, researchers have

also employed neural networks and deep learning-based

approaches for the classification of ECG heartbeats. In one

of the research works, the convolutional neural network

of 34-layer was adopted to classify with high accuracy that

transcends the cardiologist performance [18]. Principal Com-

ponent Analysis (PCA) based feature extraction followed

by a Multi-Layer Perceptron (MLP) was utilized in another

research [19]. Deep-learning-based, Long Short-Term Mem-

ory (LSTM) algorithm was proposed in [20], having

considerable low computational costs. Recurrent Neural

Networks (RNN) was used for binary classification (normal

and abnormal) of heartbeat in this research [21]. A Deep

Genetic Ensemble of Classifiers (DGEC) was proposed by

combining deep learning algorithms with an ensemble learn-

ing and genetic optimization of parameters for the classifi-

cation of various types of arrhythmias [22]. In our recent

work [23], these issues were raised and an attempt was made

to embed AI at the IoT sensor level to perform ECG predic-

tion at the ultra-edge network. However, the work concluded

the need for a systematic investigation and computational

analysis to conceptualize a fusion of logic and sensing to

render a continuous and lightweight arrhythmia monitoring

system.

III. PROBLEM FORMULATION

As manifested in the previous section, the healthcare sec-

tor still needs accelerating improvement in establishing

smart healthcare with embedded intelligent sensors. As our

research focus in this paper is lightweight arrhythmia mon-

itoring, we will discuss the drawbacks of the existing

ECG/arrhythmia monitoring system and the hurdles associ-

ated with transferring the existing analytics to ultra-edge IoT.

Traditionally, researchers have employed diverse heartbeat

classification techniques that generally require a number of

pre-processing steps such as noise filtering, manual feature

extraction, and so forth. The steps needed by the conventional

heartbeat classification employingMLmethods are exhibited

in Fig. 2. Diverse methods such as DWT, DDEs [24], and

ML techniques are commonly utilized in the conventional

feature extraction and classification tasks. Though these

ECG analytics techniques overcome many drawbacks of the

manual ECG monitoring, it still lacks the potential to be inte-

grated with logic-in-sensors due to the extensive computa-

tional steps. These conventional ECGmonitoring approaches

mostly rely on multi-lead ECG signal and requires multiple

preparatory steps (i.e., noise filtering), which is a significant

issue for combining these models with the ultra-edge IoT

logic-in-sensors [23].

Apart from ML techniques, traditionally DDE-based opti-

mization techniques have also been proposed for the ECG

monitoring task. However, the non-linear DDE for the

time-series ECG analysis technique cannot adequately infer

the system models in varying heart conditions. In this

approach, exhaustive search or heuristics must be developed

to select the most competent model for any given classifica-

tion task, which is a considerable challenge for lightweight

ECG analytics. Conventionally a non-linear DDE can be

expressed as follows:

f (ai, xτj ) = a1xτ1 + a2xτ2 + a3xτ3 + . . .+ ai−1xτn

+aixτ1xτ1 + ai+1xτ1xτ2 + ai+2xτ1xτ3 . . .

+aj−1x
2
τn
+ ajx

3
τ1
+ aj+1xτ12xτ2 + . . .

...

. . .+ a1x
m
τn

, (1)
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Here, xτj can be expressed as: xτj = x(t− τj), in Eq. 1, n, t ,

m, and τj represents the number of delays, time, the degree

of non-linearity, and time delays, respectively. The selec-

tion of optimal time-delays and monomials is imperative

for building an effective DDE-based classification system.

For example, to select the optimal model for classification

using the DDE-based model, the authors applied the genetic

algorithm in [25]. Therefore, these approaches are not appro-

priate for integrating with the logic-in-sensors for ultra-edge

IoT analytics in polynomial time.

Apart from expensive computational requirements, some

of the other issues with the traditional ECG monitoring

system are that it requires internet connectivity to commu-

nicate with the cloud servers for ECG analytics. Hence,

it consumes considerable network bandwidth if the num-

ber of users is high. Furthermore, due to continuous data

transmission, cloud-based analytics can also raise significant

privacy concerns for the user’s private data. Therefore, this

approach can be a hindrance to secure ECG analytics for

arrhythmia detection. To address this challenge, we focus

on developing an automated, efficient, and lightweight sys-

tem with localized intelligence that can be deployed and

integrated with the logic-in-sensors for ultra-edge IoT ana-

lytics. To develop a lightweight ECG/arrhythmia mon-

itoring system, we envision an AI-aided technique for

classifying heartbeats employing a raw single-lead ECG

signal and compared the proposed model with tradi-

tional ML techniques adopting the architecture depicted

in Fig 2.

FIGURE 2. Steps of conventional ECG heartbeat classification.

IV. DATA PREPARATION

We have conducted ECG signal analysis to detect

arrhythmia by utilizing the MIT-BIH Supraventricular

Arrhythmia Database (DS1) [26], MIT-BIH Arrhythmia

Database (DS2) [27], St Petersburg INCART 12-lead

Arrhythmia Database (DS3), and Sudden Cardiac Death

Holter Database (DS4) [28] from PhysioNet [29]. The

datasets contain recordings of many traditional and

life-threatening arrhythmias along with cases of normal

heartbeat rhythm. Various researchers have employed these

datasets for diverse ECG based research [30], [31].

The datasets comprise a text header file, a binary file,

and a binary annotation file with.txt,.dat, and.atr extensions,

respectively.

1) Header file (.hea): This file contains a brief text file that

explains the signals’ contents, such as the name of the

record’s file, number of examples, type and format of

the ECG signal, and so forth.

2) Binary file (.dat): The binary files include digi-

tized representations of the ECG signals of each

record.

3) Annotation files (.atr): The annotation files contain

heartbeat labels that define the type of ECG signals at

a particular time in the ECG record.

We generated four separate heartbeat categories fol-

lowing the Association for the Advancement of Medical

Instrumentation (AAMI) EC57 standard from the annota-

tion files in each of the datasets. The summary of map-

pings between the heartbeat annotations for each class

is demonstrated in Table 1. We have employed the DS1

(MIT-BIH Supraventricular Arrhythmia Database) for the

hyper-parameter tuning and the training phase. In the run-

ning/inference stage, we test the model using the other three

datasets (i.e., DS2, DS3, and DS4). We exploited multiple

datasets to evaluate the generalization ability of the proposed

model. Although each of the datasets contains multiple ECG

lead’s data, we have employed the lead II in our experi-

ment as our model only requires single-lead-ECG tracing.

The distribution of four heartbeat labels is manifested in

the Table 2.

V. PROPOSED METHODOLOGY

A. PROPOSED CNN MODEL STRUCTURE

In this section, we illustrate the proposed lightweight heart-

beat classification technique for arrhythmia detection that can

be deployed and integrated with AI-aided logic-in-sensor.

A lightweight model for classification is an essential part of

integrating the AI-aided model at the ultra-edge IoT sensors

for faster analysis. Hence, we primarily focused on designing

the deep learning-based model that only requires a single

lead raw ECG signal so that the model can be sufficiently

lightweight. Sensors with embedded intelligence can be uti-

lized for long-term, accurate monitoring of a person’s car-

diac activity, which is demonstrated in one of the coauthors’

previous works [1]. Keeping the concept of logic-in-sensor

in focus, we developed a deep-learning-based lightweight
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FIGURE 3. Proposed training architecture leveraging CNN structure for the considered use-case. Once the model is trained at the cloud, it is
transferred to the smart IoT sensor’s AI module.

TABLE 1. Mapping DS1, DS2, DS3, and DS4 datasets to the AAMI
heartbeat classes [32].

TABLE 2. Frequency of heartbeats of each class in DS1, DS2, DS3,
and DS4.

model that can be integrated with these AI-aided sensors for

analysis of ECG at the ultra-edge device. The acquired results

of the ECG analytics can then be sent from the IoT nodes to

the care-providers.

We propose an automated deep learning-based one dimen-

sional (1-D) CNN that does not necessitate any noise-filtering

and manual feature extraction. The CNN model detects

unique patterns automatically from the raw single-lead

ECG signal. The ECG signals are sampled at a frequency

of fs before passing to CNN as input. The lightweight ECG

analysis for arrhythmia detection task takes an ECG signal

as input X = [x1, x2, x3, . . . xn], and outputs a sequence of

labels Y = [y1, y2, y3, . . . yn]. Here each yi represents one

of four different heartbeat classes and in terms of arrhythmia

classification yi ∈ {F,N ,V , S}. Table 1 exhibit of the

summary of each of the classes. We consider a minimum

length of ECG signal noted as δ to be passed as input to

the model. Every output label corresponds to a portion of the

input ECG signal, and collectively the output labels cover the

full sequence of the ECG signal record of a subject.

As the deep learning-based solution, a 1-D CNN is

designed and used because of its exceptional performance

in automatically detecting patterns in the ECG signal. The

proposed CNN model can be defined briefly as the com-

bination of the convolution layers, max-pooling layer, and

fully-connected layers. Fig. 3 represents the architecture of

the proposed CNN model. Here the model receives raw ECG

signal as input and generates heartbeat classes as output. CNN

consists of two segments; the first segment comprises nlAFE
number of 1-D convolution layers performing Automated

Feature Extraction (AFE) from the raw single-lead ECG

signal and an Automated Classification (AC) module that

process the extracted features using nlAC number of fully con-

nected layer followed by the output layer for classification.

The 1-D convolution operation can be expressed as in Eq. 2.

x lk =
∑

i∈nlAFE

(x l−1i ∗ wli + b
l
k ) (2)

Here, x lk and b
l
k can be defined as the input and bias for the

k th node of l th layer, respectively. The kernel is defined as wli
and the input of the ith node of the (l − 1)th layer is denoted

as x l−1i . To select the optimal activation function for the

proposed model, we performed hyper-parameter tuning. The

Rectified Linear Unit (ReLU) [33] is selected as activation
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function, �, defined in Eq. 3.

�(z) = max(0, z) (3)

In the first convolution layer, we also apply dropout with

a rate of α as the regularization technique, which will serve

the network in avoiding overfitting. Hence, the model can

gain enhanced generalization ability by randomly disregard-

ing some selected neurons in the hidden layers. After the

regularization layer, we employ the subsampling technique to

compress the size of the ECG data and reduce computation

time. We have employed the max-pooling layer to obtain

the maximum value in a particular region. Eq. 4 determines

the output of the jth unit of the subsampling layer l. where

x lj represents the output of the jth unit of layer l and x l−1joutput
represents the jth output group of layer l-1. The kernel size of

the max-pooling layer is set to a constant kminit for each of

the layers.

x lj = subsample(x l−1joutput
) (4)

The nth layer of the AFE module produces a feature matrix

from the ECG data. The extracted features by the initial

module are relinquished to the subsequent stage for further

analysis. In the next stage, the ACmodule consists of a single

flatten layer, followed by a fully connected layer and an

output layer. The flatten layer is responsible for transforming

the features into a vector that can be forwarded into a fully

connected [34]. ReLU and softmax activation functions are

selected to be used in the fully-connected layer and output

layer, respectively.

B. DEEP LEARNING-BASED LIGHTWEIGHT ARRHYTHMIA

CLASSIFICATION (DL-LAC) ALGORITHM

In this subsection, we present the steps of the training and

inference phases of our proposed DL-LAC algorithm.

The training phase of the proposed DL-LAC algorithm

includes Algorithms 1, 2, and 3. The training stage of

DL-LAC commences from Algorithm 1 with the inputs D, k ,

ξ , B, �, and δ. The details of each of the inputs are provided

in the algorithm’s input section. The training phase of the

algorithm returns the trained model (Mt ), which is further

harnessed in the inference phase. The algorithm initiates

with initializing the required parameters in the steps 1 to 3.

Then, in step 4, the ECG signal and the corresponding heart-

beat class labels are loaded from the dataset, which is later

utilized in training. After that, in step 5, the ECG data is

validated by checking with a pre-defined size threshold in the

DSV algorithm described in Algorithm 2. Afterward, in the

steps 6-11, the training ECG data and the heartbeat labels are

employed to train themodel (Mt ) using k-fold stratified cross-

validation. At the penultimate step, the trained model (Mt ) is

stored for further testing and validation. Finally, in step 13,

the algorithm concludes by returning the trained model.

For the data size validation purpose, our proposed DSV

algorithm is demonstrated in Algorithm 2. This algorithm’s

main objective is to validate the length or size of the

Algorithm 1 Training Phase of DL-LAC

Input: D (ECG data collection for training), k (number

of fold in cross-validation), ξ (number of epoch),

B (mini-batch size), � (activation function), δ

(threshold for data size)

Output:Mt (Trained model)

1 Mt ← ∅

2 Xδ ← []

3 yδ ← []

4 X , y← read ECG signal and annotated heartbeats from

D

5 Xδ yδ ← call DSV(X , y) from algo. 2

6 for (fold no. j = 1 to k) do

7 Xtrain, ytrain,Xval, yval ← set data and labels of jth

fold from Xδ , yδ
8 Ftrain← call AFE(Xtrain, �) from algo. 3

9 update the model parameters ofMt by passing Ftrain
through the AC module as depicted in Fig 3

10 compute validation performance using Xval, yval
11 end for

12 save the model parameters ofMt

13 returnMt

Algorithm 2 Data Size Validation (DSV)

Input: X (data), y (heartbeat labels), δ (threshold for

data size)

Output: Xδ (updated data after size validation), yδ
(updated heartbeat labels after size validation)

1 Xδ ← []

2 yδ ← []

3 for (i = 1 to length(X )) do

4 if (length(Xi) < δ) then

5 continue

6 else

7 Xδ ← add Xi[1 : δ]

8 yδ ← add yi
9 end if

10 end for

11 return Xδ , yδ

ECG signal by checking with a pre-defined threshold of δ.

The algorithm takes X , y, and δ as input and produces an

updated version ofX and y, denoted asXδ and yδ , respectively.

We utilize this algorithm in both the training and inference

phase before the start of their workflow.

In the Algorithm 3, the required steps for the AFE module

of the proposed model is manifested. We utilize this algo-

rithm from step 8 of the Algorithm 1, to extract the unique

features from the ECG signal. The extracted feature matrix

from this algorithm is then employed in the later module

for classification. The inputs to the algorithm are X and �,

whereas the extracted unique features (Ftrain) are returned as
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Algorithm 3 Automated Feature Extraction (AFE)

Input: Xt (training data), � (activation function)

Output: Fx (extracted features)

1 initialize γ (initial filter size), λ (filter size reduction

factor), nlAFE (number of conv. layers), α (dropout rate)

2 z1← γ

3 foreach layer i ∈ nlAFE do

4 Fx ← pass Xt through the convolution layer with z
i

and �

5 if (i = 1) then

6 Fx ← apply regularization of rate α (dropout)

7 end if

8 Fx ← update Fx by passing through sub-sampling

layers (max-pooling)

9 zi+1← zi * λ

10 end foreach

11 return Fx

the output of the algorithm. Step 1 and 2 initialize the required

parameters. In steps 3 to 10, the automated feature extraction

module’s main workflow is illustrated for nlAFE number of

convolution layers. In step 4, the input is passed through the

1-D convolution, the results of which will then be forwarded

to the later layers. We employed dropout with a rate of α

for the first convolution layer (i = 1), which is expressed

in steps 5 to 7. Step 8 performs the sub-sampling operation

using the max-pooling technique described in the previous

subsection (Eq. 4). After that, we update the number of filters

to be used by the reduction factor λ, in the next convolution

layer in step 9. Finally, in step 11, the extracted feature matrix

is returned for the next module to use.

In the inference phase, the proposed DL-LAC algorithm is

exhibited in the Algorithm 4. It receives the location of test

ECG data for inference and returns the predicted class labels

(ypred ) for the corresponding sample. After loading the testing

ECG data from step 1, the pre-trained model (Mt ) is loaded in

the subsequent step. Step 3 is responsible for updating the test

data by validating the data length fromAlgorithm 2. In step 4,

the modelMt is used to predict the probabilities for a sample

ECG test data to belong in each of the four classes. In step 5,

the class with the highest probability is selected as the clas-

sified class for each sample data. Ultimately, in the last step,

the collection of predictions for all the data is returned.

C. COMPUTATIONAL COMPLEXITY ANALYSIS IN TERMS

OF MATHEMATICAL OPERATION

This section investigates the algorithm’s complexity and the

time cost to run the proposed deep learning-based lightweight

ECG monitoring system to detect arrhythmia. We analyze

the complexity of the proposed model’s training and infer-

ence steps in terms of the number of different operations

required by various stages of the model. The analysis primar-

ily encompasses the mathematical analysis of the algorithm

Algorithm 4 Inference Phase of DL-LAC

Input: pathtest (test data location)

Output: ypred (predictions by the model)

1 Xtest , ytest ← load all test ECG data and corresponding

class labels from pathtest
2 Mt ← load the pre-trained model

3 Xtest , ytest ← call DSV(Xtest , ytest ) from algo. 2

4 yprob← predict the probabilities for each sample of Xtest
employing the modelMt

5 ypred ← argmax(yprob)

6 return ypred

complexity in the training phase and inference phase through

determining the recurrence of each operation (e.g., addition,

subtraction, multiplication, and division, etc.).We express the

addition and multiplication operations as ADD and MUL,

respectively. In addition, we also analyze the occurrence of

comparisons denoted as COMP.

1) TRAINING PHASE

The training phase comprises the DSV algorithm for data

augmentation and the DL-LAC training phase for the pro-

posed CNN model. In the training phase of DL-LAC,

depicted in Algorithm 1, we perform computational overhead

analysis, considering that the appropriate hyper-parameters

of the proposed models are already selected after hyper-

parameter tuning employing the grid search technique.

We divide the overall analysis of the training phase, mainly

into three different fragments, such as the required data size

validation phase, feature extraction phase, and the classifica-

tion phase. Therefore, the total computational complexity can

be expressed as Eq. 5:

C(Training) = C(DSV )+ C(AFE)+ C(AC). (5)

Here, C(DSV ),C(AFE), and C(AC) indicate the required

computational overhead in the data size validation, automated

feature extraction, and automated classification phases,

respectively. For each of these three phases, the computation

complexity is divided into three parts: the required number

of additions, multiplications, and comparisons. In the first

stage, to calculate the complexity of the data size validation

phase, we mainly analyze the complexity of the Algorithm 2,

which is invoked from the training procedure (Algorithm 1).

The first four steps of the training algorithm are initializing

steps; hence these do not require anymathematical operations

(i.e., addition and multiplication). In step 5, the Algorithm 2

is invoked for validating the ECG data size. If the length of

considered training ECG trace is len(Xtrain), then the required

number of comparisons is also len(Xtrain) as the condition will

be validated for each ECG trace.

In the next phase, the computational overhead is deter-

mined for the feature extraction phase manifested in the

Algorithm 3 of the training procedure. For a particular layer

(l th layer) of the AFE module, if we consider that there are
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N l number of nodes for the convolution layer, then the num-

ber of required operations can be defined as Eqs. 6 and 7.

C(AFEADD)= nlAFE ∗ ξ ∗ N l ∗ (len(x l)/B)

∗((len(k l) ∗ len(x l−1))−(len(k l)−η)+ 1)

−(len(x l−1)−(len(k l)− η)) ∗ zl)), (6)

C(AFEMUL)= nlAFE ∗ ξ ∗ N l ∗ (len(x l)/B)

∗(zl ∗ ((len(k l) ∗ len(x l−1))

−(len(k l)− η)+ 1))+ (nlAFE − 1). (7)

Here, x l , k l , and zl indicate the input, kernel, and the

number of filters of layer l. The striding window length,

the number of epoch, and batch sizes are denoted by η, ξ ,

and B, respectively.

Also, in terms of the AFE phase, the number of compar-

isons required for nlAFE layers can be denoted as eq. 8. Here,

x l and zl implies the input and the number of filters in the l th

layer of the AFE phase. For zl number of filters, the number

of comparisons required at the layer l due to passing the input

x l through the activation function (�) is ((zl ∗ len(x l)). In the

sub-sampling layer (i.e., max-pooling layer), the number of

comparisons required is (len(x l)− (zl − 1)).

(AFECOMP) =

nlAFE
∑

l=1

(ξ ∗ N l ∗ (len(x l)/B) ∗ ((zl ∗ len(x l))

+(len(x l)− (zl − 1)))) .(8)

The extracted features set (Fx) of the AFE phase will be

relinquished to the AC module of the proposed model for

the classification task. For a particular layer denoted as l,

if the output of the ith layer is γ i, then the computational

complexity for the ith layer can be (len(γ i) ∗ (len(Fx) −

1)) ADD, (len(γ i) ∗ len(Fx)) MUL. Thus considering the

number of fully-connected layers to be nlAC , the computa-

tional complexity of this phase can be denoted as Eqs. 9

and 10.

C(ACADD) =

nlAC
∑

i=1

(ξ + (len(γ i)) ∗ (len(Fx)− 1), (9)

C(ACMUL) =

nlAC
∑

i=1

(len(γ i)) ∗ len(Fx) ∗ ξ. (10)

In terms of the number of comparisons required in the

AC phase, considering nlAC layers, the cumulative compar-

isons due to the comparisons as are necessary for computing

the activation functions can be denoted as Eq. 11.

C(ACCOMP) =

nlAC
∑

i=1

(ξ ∗ len(γ i)). (11)

Hence, by substituting the equations, as mentioned earlier

in the Eq. 5, the overall computational complexity in terms

of the number of mathematical operations required in the

training phase of the proposed DL-LAC algorithm can be

expressed as Eq. 12. The number of comparisons needed in

different stages of the DL-LAC algorithm’s training phase is

also considered in this equation.

C(Training)

=



















ADD : C(AFEADD)+ C(ACADD)

MUL : C(AFEMUL)+ C(ACMUL)

COMP : len(Xtrain)+ C(AFECOMP)

+ C(ACCOMP).

(12)

2) INFERENCE PHASE

The inference/running phase is conducted to infer classes of

each testing ECG data employing the pre-trained lightweight

model (Mt ) and then evaluating it using the unseen data.

In correspondence with Algorithm 4, if we consider the test

data to be Xtest , and the size of test data after validating ECG

signal is len(Xtest ), then the computational complexity of the

inference phase can be denoted as follows:

C(Inference) =



















































ADD :
∑nlAFE

i=1 (len(x i)− (η + 1))

+
∑nlAC

j=1 (len(γ
j)− 1)

MUL :
∑nlAFE

i=1 (len(x i)− η)

+
∑nlAC

j=1 (len(γ
j))

COMP :
∑nlAFE

i=1 (len(x i))

+
∑nlAC

j=1 (len(γ
j))

+len(Xtest )

(13)

Eq. 13 illustrates that, in the inference phase, the pre-

trained model is able to produce results with consider-

ably lower computational operations and in linear time

(i.e., upper bound time-complexity of O(len(Xtest ), in Big

O notation). The complexity analysis indicates that it can

be utilized for lightweight arrhythmia classification at the

resource-constrained ultra-edge IoT node.

VI. PERFORMANCE EVALUATION

In this section, we manifest the simulation results to estab-

lish the algorithmic analysis of the proposed lightweight

DL-LAC method that is estimated in the previous section.

Hence, the proposed method is compared with the traditional

techniques in terms of classification performance, memory

consumption, and required time for inference.

A. PERFORMANCE INDICATORS

To evaluate the classification results, we adopted the combi-

nation of three measurement indicators, accuracy, weighted

precision, and weighted F1 score. The accuracy of a test is its

ability to correctly differentiate the three cases. Considering,

C = Number of classes in the considered classification task,

len(yi)= number of samples in the ith class, TPi= the number

of cases correctly identified to be in the ith class, and len(Y )

= total number of samples in all the class, the accuracy can

be denoted as Eq. 14:

Accuracy =

∑C
i=1(TPi)

len(Y )
. (14)
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The weighted precision can be expressed as Eq. 15.

It addresses how precise the model is out of those predicted

to be in ith class, how many of them are actually in ith class,

and the value is multiplied by the weight of the ith class as

follows:

Weighted precision =

C
∑

i=1

(
len(yi)

len(Y )
∗

TPi

TPi + FPi
). (15)

Here, FPi represents the number of cases incorrectly iden-

tified to be in the ith class. Weighted F1 score is the weighted

average of precision and recall. Hence, although we did not

use recall directly as a performancemeasure, because of using

the F1 score, it is implicitly used. The weighted F1 score can

be obtained as follows:

Weighted F1 score =

C
∑

i=1

(
len(yi)

len(Y )
∗ 2

Pi ∗ Ri

Pi + Ri
). (16)

In the above equation, the precision and recall of ith class

are indicated byPi andRi, respectively.Pi can be expressed as

TPi/(TPi + FPi) and Ri can be denoted as TPi/(TPi + FNi).

FNi denotes the number of cases incorrectly identified as a

class other than the ith class.

B. RESULTS AND DISCUSSION

We have conducted comprehensive experiments in a system-

atic approach to identify the optimal model. Here, the exper-

imental results can be summarized as follows:

1) The first phase of the experiment encompasses the

hyper-parameter tuning to find the optimal structure of

the model. The selected hyper-parameters were applied

in the proposed DL-based model.

2) In the second phase, we measured the model’s per-

formance employing the trained model obtained from

DS1 and then tested it using MIT-BIH Arrhyth-

mia Database (DS2), St Petersburg INCART 12-lead

Arrhythmia Database (DS3), and Sudden Cardiac

Death Holter Database (DS4).

3) In the third phase of the experiment, we evaluated the

proposed model’s generalization ability by utilizing

each of the four datasets individually for training and

testing purposes using k-fold cross-validation.

4) Finally, numerical analysis is carried out to assess

the proposed CNN models’ effectiveness in terms of

execution time required and memory consumption in

various IoT devices and compared to the traditionalML

techniques.

We performed hyper-parameter tuning to select the optimal

parameters for the proposed CNN-based model in the initial

phase of the experiment. Figure 4 demonstrates the results

of manual tuning for the number of convolution layers used

in the model by varying the number from one to five. The

experimental results illustrate that, for three convolution lay-

ers, the best performance is achieved with 96.26%, 0.9606,

and 0.9604 accuracy, precision, and F1-score, respectively.

FIGURE 4. Performance variation of the proposed/custom CNN model
with varying numbers of layers.

Therefore, we conducted further analysis using three number

of convolution layers in the proposed DL-based architecture.

Furthermore, to select the optimal activation function (�)

and the number of the initial filter size (γ ), we performed

a grid search technique. Figure 5 demonstrates the results

obtained from the grid searchwhere 5(a), 5(b), 5(c) represents

the initial number of filter equals to large, moderate, and

small, respectively. For the grid search, we considered three

sizes for the filters of the first convolution layer, such as large,

moderate, and small, with the value of 300, 150, and 50,

respectively. For selecting activation function (�), we exper-

imented with a set of five activation functions: relu, selu,

elu, tanh, and sigmoid. According to performance, the best

combination is evident when the activation is ReLU, and the

number of filters is large with the accuracy, precision, and

F1-score, respectively 96.23%, 0.96004, and 0.9601.

Additionally, to elect the optimal optimizer, batch size,

dropout, and epochs, we performed a grid search, which is

manifested in Table 3. We have conducted the grid search

among six widely used optimizers such as Adadelta, Nadam

(Nesterov-accelerated Adaptive Moment Estimation), SGD

(Stochastic Gradient Descent), RMSprop (Root Mean Square

Propagation), Adagrad (Adaptive Gradient Algorithm), and

Adam (Adaptive Moment Estimation). For the batch size,

we tuned the value employing a set of three different

TABLE 3. Selected parameters for each optimizer after employing grid
search.
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FIGURE 5. Performance comparison for different activation functions
with respect to different filter size of the proposed CNN.

values, such as 1000, 2500, and 5000. For selecting the

optimal dropout rate (α), we considered values from 0.1 to

0.5. We varied the number of epochs (ξ ) using three values

(i.e., 10, 50, and 100). The best performing combination

is obtained for the Adam optimizer along with batch size

5000, dropout rate 0.5, and the number of epochs 10. Hence,

for further analysis of the experiment, we employed these

parameter values for the model.

In the second phase of the experiment, we utilized DS1 as

the training dataset and then tested the model’s performance

using DS2, DS3, and DS4 as test dataset. Table 4 illustrates

the results for this phase. In all three test datasets, the pro-

posed model outperformed the traditional ML methods

(i.e., random forest, KNN) in terms of accuracy, precision,

and F1-score. The proposed CNN achieved an accuracy

of 94.07%, 92.04%, and 95.83%, while DS2, DS3, and

DS4 are harnessed as the test dataset, respectively. The pro-

posed custom CNN model is showing superior performance

over traditional ML techniques because the combination of

Convolution, sum-sampling, and regularization layers are

able to capture the detailed features from the ECG signal

automatically. Furthermore, due to the adaptive filter reduc-

tion in the deep convolution layers, the proposed model can

identify significant points from the ECG with higher effi-

ciency, and because of the use of the regularization layer,

the proposed approach is able to avoid overfitting during

training. However, the traditional methods are lacking the

ability to automatically retrieve significant features from

the ECG even after extensive manual pre-processing stages.

Although the proposed model outperforms the traditional

methods in terms of performance, the notable part is that the

proposed technique can achieve great accuracy even with raw

ECG signals, without adopting noise-filtering and manual

feature extraction of the ECG. The results reveal that the

custom CNN-based model is robust in detecting heartbeats

with high accuracy and lightweight because of using raw

single-lead ECG.

In the penultimate experimental phase (third phase),

we experimented using each dataset individually, as mani-

fested in Fig. 6, employing 3-fold stratified cross-validation

to validate the generalization capability of the proposed

model. Stratification is a method in which the samples are

rearranged to have a stable representation of the whole dataset

FIGURE 6. Performance of the proposed model for the third experimental
setting employing the four datasets individually (3-fold stratified
cross-validation). Here, DSi means the i th dataset.
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TABLE 4. Performance comparison of CNN with traditional ML methods for the second experimental setting using DS1 as the training dataset.

FIGURE 7. Area Under the Receiver Operating Characteristic (AUROC) curve derived for the third experimental settings utilizing 3-fold
stratified cross-validation.

by preserving the portion of samples for each class [35].

The cross-validation is performed after splitting each of the

four datasets into 80%-20% for training and testing pur-

poses. On the testing part of the dataset, the accuracy values

of the model are 94.79%, 94.12%, 94.97%, and 96.67%,

respectively, for DS1, DS2, DS3, and DS4. The encouraging

results illustrate the model’s ability to generalize diverse

types of ECG signals to classify arrhythmias. To investigate

the classification efficiency for each class, we manifested the

AUROC curve for each class. Figure 7 exhibits the ROC

curves where 7(a), 7(b), 7(c), and 7(d) corresponds to the

ROC curves for DS1, DS2, DS3, and DS4, respectively.

VOLUME 9, 2021 26103



S. Sakib et al.: Proof-of-Concept of Ultra-Edge Smart IoT Sensor

FIGURE 8. Required execution time and memory consumption of various methods on a workstation and different micro-controllers used as a
proof-of-concept AI logic for the smart sensor.

For each dataset, the model demonstrated a high AUC score.

The AUC scores for the four datasets are 0.9113, 0.9406,

0.9796, and 0.9340 for DS1 to DS4, respectively. The promis-

ing results prove the model’s efficiency in distinguishing dif-

ferent classes of heartbeats to classify arrhythmia by employ-

ing a raw ECG signal.

Finally, we conducted the numerical analysis in terms

of time delay and memory consumption (in percentage) of

the proposed model and compared it with that of the tra-

ditional ML approaches (i.e., KNN, RF). Figure 8 illus-

trates the results obtained from the analysis. The initial

experiment was conducted on a workstation with Intel Core

i7, 3.00GHz CPU, 16 GB RAM, powered by Nvidia RTX

2060 GPU. We approximated the time and memory con-

sumption required for different IoT devices to determine

the model’s potential to integrate with the logic-in-sensor.

The microprocessor-based IoT devices we considered for

the numerical analysis are Jetson Nano (Quad-core ARM

A57 @ 1.43GHz), Raspberry Pi 4 (Quad-core Cortex-A72

@ 1.5GHz), and Raspberry Pi 3 (Quad-core Cortex-A53

@ 1.4GHz). Figs. 8(a) and 8(b) exhibit that the proposed

CNN-based model can be beneficial for real-time analysis

of the ECG signal as the model can perform efficiently with

limited resources due to employing raw-ECG signal without

any manual feature extraction.

The complexity analysis explained in Sec. V and the exper-

imental outcomes presented in this section precisely confirm

that the proposed lightweight ECG classification method can

be considered as a viable solution for embedding intelli-

gence into the resource-constrained ultra-edge IoT nodes.

The proposed DL-LACmethod’s generalization aptitude was

evaluated on four separate, publicly available real datasets by

adopting multiple experimental settings. Promising experi-

mental results signify that the proposed method performed

with efficiency in all the experiments. Therefore, the model

can be utilized for the ultra-edge IoT sensors to enhance

healthcare services.

VII. CONCLUSION

Centralized cloud-based analytics and edge analytics

on smart-devices are the traditional health monitoring

approaches. To make smart health even smarter, in this paper,

we focus on the necessity to go beyond the realms of con-

ventional methods and investigate how to incorporate intelli-

gence into the ultra-edge IoT sensors. As an example of the

smart ultra-edge healthmonitoring, we selected arrhythmia (a

cardiovascular disease) classification by analyzing the ECG

signal. As the sensors are resource-constrained, we designed

a deep learning-based lightweight heartbeat classification

model named DL-LAC, that utilizes raw single-lead ECG

to classify arrhythmia with encouraging efficiency. We com-

pared the proposed method with traditional machine learning

(e.g., KNN, random forest) and the DDE-based optimization

technique. The proposed method’s generalization ability was

evaluated using four different datasets. The promising exper-

imental outcomes manifest that the proposed deep learning

model has the potential to be coupled with smart IoT sensors

for ultra-edge computing to enhance the existing ECG mon-

itoring system. Therefore, this research can be considered as

a pioneering footprint to encourage the sensor foundries to

consider embedding intelligence into IoT devices, and if it

can be produced in mass production, the fabrication cost of

the intelligent sensors can be significantly reduced.
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