
 

   

 

 1. Introduction  
 

Prime numbers are fundamental mathematical objects in 

number theory [1, 2, 3, 4, 5, 6]. One of the challenging 

questions in number theories yet to be answered is the 

Goldbach’s conjecture [7] that queried by Christian Goldbach 

in a letter to Leonhard Euler in 1742 [4, 8, 9, 10]. A typical 

and informal expression of the Goldbach conjecture may be 

stated as follows.    

 

Definition 1. The Goldbach conjecture queries whether 
every even integer greater than 2 may be expressed as the sum 
of two primes. 
 
    Key milestones towards the proof of Goldbach conjecture 

in the past 278 years and beyond includ: 1) The Euclid’s 

Fundamental Theorem of Arithmetic (FTA) that revealed there 

is always a unique prime factorization for any integer [1, 3]; 2) 

The Legendre’s Sieve of Eratosthenes (1808) that provided a 

foundation for modern sieve theories [2, 11]; 3) The Prime 

Number Theorem (PNT) ( )lim 1
/ logn

n
n n


→
=  that proved by 

Hadamard and de la Vallee Poussin in 1896, independently 

[4]; 4) Vinogradov’s theorem (1937) that stated all large odd 

numbers may be expressed by 1 2 3 (large)n p p p= + +  with 

triple primes [12]; 5) A finding that the number of positive 

even integers less than n which are not representable as a sum 

of two primes grows slower than 
(log )r

n
n

 for any positive r 

[13]; 6) There are some integer k such that every sufficiently 

large even number is the sum of two primes and the kth 

powers of 2 [9]; 7) The refined Linnik’s theorem for k = 8 

[10]; 8) The proof that every sufficiently large even number is 

the sum of a prime and a number with at most two prime 

factors [14]; 9) T. Tao explored obstructions to uniformity of 
primes and their arithmetic patterns [15]; 10) Every odd 

number ( 7) can be written as the sum of three primes known 

as the ternary Goldbach conjecture [16]; 11) Numerical 

algorithms for testing the Goldbach conjecture in a certain 

scope [17]; 12) Every odd number greater than 1 is the sum of 

at most five primes [18]; and 13) Every positive integer can be 

written as the sum of a prime number and a square free 

number [19]. However, there is no formal proof for the 

Goldbach conject yet that may hold in all cases because the 

nature of its complexity.  

 

It is revealed in this work that the key to proof Goldbach 
conjecture is the missing of a prime decomposition theory for 
arbitrary even numbers as a counterpart of Euclid’s FTA on 

prime factorization [1]. This work intends to present a formal 
proof of the Goldbach conjecture based on the finding of the 
set of mirror primes

    where the set of primes  

 o  (odd integers)    except 2 as well as the theorem of 

mirror-prime decomposition. A formal model and the 
recursive properties of the set of primes   are described in 
Section 2. The concept of mirror primes  is introduced in 
Section 3 that leads to the proof of the Theorem of Mirror-
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Prime Decomposition for arbitrary even numbers. These 
preparations lead to the proof of the Goldbach conjecture as 
formally presented in Section 4 by the universal existence of 
mirror primes and the inductive rule of mirror-prime 
decomposition. A set of experiments based on an Algorithm of 
Goldbach Theorem verification is provided for visualizing the 
proven Goldbach conjecture.  
 

 

The set of prime numbers   is a subset of special odd 

integers supplement by 2 in natural numbers , i.e., 

{2}\{1} .o    Since   is infinite, so is   according 

to its countability with respect to . Therefore,  shares the 

generic properties of o as a necessary condition, but also 

obeys special primality properties as their sufficient conditions 

as described in this section.   

 
In order to efficiently denote and manipulate infinite sets 

and sequences as well as functions operating on them, a 

general recursive notation known as the big-R calculus [20] is 

introduced. As shown in Section 2.1, a suitable notation may 
significantly reduce the complexity of problem modeling and 
solving. It may also increase the efficiency in recursive 
inferences for hard problems and long-chain reasoning for 
mathematical induction and deduction.  
 
2.1 Mathematical Models of Recursive Structures and 

Properties of Primes  

 

Definition 2. The big-R calculus is a recursive operator 

for neatly modeling finite or infinite sequences of recurrent 

structures and manipulating a series of embedded functions 

such as: 
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Example 1. The set of even integers e and the recursive 

structures of a series of deductively embedded functions d  

may be formally described by the big-R notation, respectively, 

as follows:  
 

  

 

0
 1

1 1 1 0 0

{ 2 2} {2,4,6,8,.., 2 2, 2( 1) 2,...}

 ( ) ( (... ( )...)),   constant

e
n

k k n n
d

k n

n n n

f f f f f f f

R

R
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=

− −

=

= + = + + +

= =  =

                                             

(2) 
 

 Definition 3. The set of natural numbers   is all positive 

integers in the scope of [1, ) with a uniform step of 
increment that may be denoted by the big-R calculus:    
 

    
1

{1, 1} {1,2,3,..., 1, 2, ...}


=

+ = + +
n

n n nR            (3) 

 

Similarly, the sets of even and odd integers 

 and ,   ,e o e o =  are denoted, respectively, by: 

 

     

     

  

1
  

1

{ 2 } {2,4,6,..., 2 , 2( 1), 2( 2), ...}
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 Definition 4. A prime number p, except 2, is an odd 

positive integer 1 op     that is not a product of two 

smaller integers:  

                              

 

 

  
2

(  |  0 (mod )),  {2}\{1}
n

o
m

p n n m nR
 
 

=

          (5) 

 

     

Any prime may be verified based on Definition 4 though 

more efficient sieve methods and algorithms exist [21, 22, 24, 

25, 26, 27]. A generic method for primality testing may be 

formally described as follows. 
 

Definition 5. The primality testing function ( )n  

determines whether n is prime {2}\{1}on   :  
 

 

 

 

2, 
0,  0 (mod )   // ( )

1,  otherwise                     // 

n

m m
n m nn

n



 
 

= 


  





          (6) 

 

where ( )n  results in a positive verification iff 

 0 (mod ) for all 2 .n m m n    
 

 Otherwise, as a 

shortcut, any negative result  0 (mod )n m will terminate the 

testing by returning false. 

 

In classic number theory, the set of prime 

numbers   is used to be perceived as a random set. 
However, according to Definitions 4 and 5,  may be 

rationally perceived as a recursively determinable sequence as 
follows.  
 

2. The Big-R Calculus for Manipulating  

Recursive Structures and Functions 
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Definition 6. The generic pattern of primes  is a 

recursive and infinite sequence of monotonously increasing 
odd integers (except 2) validated by the primality checker 

( )n :    
 

 

1

    

1
  

1 2 1
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                                     (7) 
 

 Example 2. The following subset of primes may be 

recursively derived by Eq. (7) following the first two known 

primes 1 22 and 3p p= =  in :     

 

3 2 3

4 3 4

5 4

4 5

25 24

( 2) (3 2) 5  {2,3,5,  ...}
( 2) (5 2) 7  {2,3,5,7,  ...}
( 2) (7 2)
( 4) (7 4) 11 {2,3,5,7,11,  ...}

...
( 2) (89 2) , 
(89 4)
(89 6)
(89 8) 97
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= + = + =   =

= + = + 
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= + = + 

→ + 

→ + 

→ + = 

p p
p p
p p

p

p p

 

 

   

            

25

26

26

1

1

1290000
   

6

 {2,3,5,7,11,  ..., 97}
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(97 4) 101  {2,3,5,7,11,  ..., 97,101}
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( 2) (( 1) 2)  

{2,3,5,7,11 .

29
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9686303489

8

. .,

5 2

2996

−
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→ + =   =

= + = − + 

 = =
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1290000 1290000
    3034895 2 2996863031, 1,

 
48

 
95 2

   ...}
− +



 

where the largest twin primes, 2996863034895·212900001, 

have been found in 2016 [29]. The largest prime number as 

known in 2020 is 282,589,933 – 1 which has been revealed by 

Patrick Laroche from the group of Great Internet Mersenne 

Prime Search (GIMPS) [6]. 

 
2.2 Recursive Properties of the Sequence of Primes  

 

The generic pattern of prime numbers described in 

Section 2.1 reveals the analytic and distribution properties of 

the set of primes. According to Definition 6, all primes 

ip   are derived from a recursive sequence that 

provides a new perspective on the nature of primes and their 

manipulations.   

Theorem 1 (Recursiveness of the Prime Sequence, 

RPS). Primes in   are a recursive sequence where prime pn+1 

is derived from and constrained by the preceding ones 
  

 
1

n

i
i

pR
=

 

based on the following necessary and sufficient conditions:    
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(8) 

where n, m, i, k  ,  p1 = 2, and p2 = 3 

 

Proof. Theorem 1 holds based on the inherent properties 

of primes as a special sequence of particular odd integers, 

except 2, according to Definition 6:  
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Theorem 1 reveals the nature of primality and the 

recursive property of the infinite sequence of primes. It also 

indicates that pn+1 would remain indeterminable until the 

preceding 
1npp
+  

 have been acquired by any inexhaustive 

prime sieve method. 
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
 

Based on the preparations in Section 2, a key concept of 

mirror primes is introduced in this section to model an 

important distribution pattern of primes towards the proof of 

Goldbach conjecture. 

Definition 7. The mirror primes /2enp
with respect to a 

pivotal even number ne  e   are pairwise primes 
symmetrically adjacent to the central en within finite k    
distances: 
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where k is called the half interval and the primality validation 

function ( ),  1 2
2 2

e en nk k    −  as given in Definition 5 

eliminates any potential decomposition that is not a pair of 

mirror primes. 
 

 Example 3. The following sets of mirror primes are 
derived according to Definition 7 where the sum of each pair 
is always equal to their corresponding pivotal ne:   
 
                     

Based on Definition 7, the entire set of mirror primes 


 

may be recursively derived as given in Definition 8. 
  

Definition 8. The set of mirror primes 

 is all valid 

pairs of mirror primes with respect to each pivotal even 

number 4  ne /2  e in finite distance 1 2
2
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where all pairs of mirror primes /2enp   in the scope 

8 en    are determined by Definition 7. 
 

It is noteworthy that the set of mirror primes represents 

all symmetric pairs of adjacent primes with respect to any 

pivotal even number ne/2 in equal distances. Based on the 

generic model of mirror primes, the classic twin 

primes enp may be formally derived as a special subset of


 

where the half interval 1k  . For instances: 
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        According to Definition 8, although the number of mirror 
primes with respect to different ne is proportional to its value, 
i.e., ( / 2) 2en − , but at least one pair of mirror primes exists 
in finite steps for mirror-prime decomposition. This discovery 
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3. Formal Models and Properties of 

Mirror Primes 
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of the interesting properties of mirror primes is formalized in 
the following theorem.  
 

Theorem 2 (Mirror Prime Decomposition, MPD). Any 
even integer / 2 4e en    may be decomposed to the sum of 
at least a pair of mirror primes 
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Proof. Theorem 1 holds according to the principle of 
mathematical induction throughout the entire set of mirror 
primes 

    as follows:  
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 
 

The Theorem of MPD is a coherent counterpart of 
Euclid’s FTA on prime factorization in number theory [1]. It 

provides a general theory and methodology for finding all 

pairs of mirror primes, including twin primes, on both sides of 

any arbitrary even number in the scope of 4
2

en
   , except 

the special case 2
2

en
=  where the mirror primes regress to a 

pair of reflexive primes 4 (2,2),  0p k = = . The proven 
existence of at least a symmetric pair of mirror primes to any 

pivotal even numbers according to the MPD theorem paves a 

way to formally prove Goldbach conjecture in the following 

section.  

  

 
 

The classic expression of Goldbach conjecture has been 

described in Definition 1. Although in his letter to Euler [7], 

Goldbach demonstrated alternative prime compositions for a 

few small even integers, he could not go very far perhaps 
because of the extreme complexity for deal with both infinite 
sets of and . More fundamentally, we now understand 
that the yet to be proven conjecture was mainly due to the lack 
of a formal prime decomposition theory for even numbers 
representation as revealed in Theorem 2 supplement to 
Euclidean FTA [1] for prime factorization in number theory. 

            
Goldbach conjecture as given in Definition 1 may be 

formally described as a hypothesis of general prime 

decomposition for even numbers as follows. 
 

Hypothesis 1. Goldbach Conjecture states that any 
arbitrary even number en  as equal to or greater than 4 may be 
expressed by the sum of two primes  andi jp   p : 
 

 

?
,  ,  ,  4e i j i j e e en  p + p p , p n n   =  (12) 

4. Proof of the Goldbach Conjecture 
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On the basis of the MPD theorem, Goldbach conjecture 
may be deduced to a general prime decomposition problem for 
even numbers. Therefore, the establishment of Theorem 2 has 
provided the necessary and sufficient conditions for proving 
the Goldbach conjecture based on the mathematical model of 

mirror primes

.    

Theorem 3 (The Goldbach Theorem). Given any 
arbitrary even integer / 2 4e en    , there exist at least 
a pair of mirror primes /2 /2( ),e en np p

 − +    that 

satisfy:     
2

  
/2 /2 / /2

/2 4
( [ , ) ]) | (e e e

e

en n
e

n

n nn p p p pR    − + − +



=

 +        (13) 

 

where /2 /2,  ,  .in finite distence 1 2
2 2 2− += − = +   −e en ne e enp knk kpn

 
 

 

Proof. The Goldbach theorem is proven based on the 
recursive symmetric property of mirror-prime decomposition 
as established in Theorem 2: 
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 

Example 4. Applying the Goldbach Theorem to the 

largest twin primes   
129000029968630348 195 2enp =  

discovered in 2016 [29],   
12900002996863034895 2en =  is 

surely decomposable by the pair of known twin primes as a 

special case of the mirror primes where k = 1: 
 
 

 

  

  

  

  

1290000
 

1290000

1290000

1290

2996863034895 2

(2996863034895 2 1) 1,

2996863034895 2

( 1) ( 1),  1
2 2

29968630

,  and

  
according to Theorem 3:
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

=
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=

=

=

=e e e e

e

e

n en en n n np p p p

n

n

k
   
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000 12900002996863034895 21) ( 1)

2 2
− + +

 

The proven Goldbach conjecture in Theorem 3 may be 
numerically explained by an infinitively inductive sequence in 


. An algorithm for numerically implementing the Goldbach 

theorem is derived for prime decomposition of arbitrary even 

numbers. It is formally described using Real-Time Process 

Algebra (RTPA) [28] known as a form of Intelligent 

Mathematics (IM) [5, 23] for AI programming.     

 
Algorithm 1. The Algorithm of Goldbach Theorem 

Verification (AGTV) is designed based on Theorem 3 as a 
numerical verification tool for mirror-prime decompositions of 
arbitrary even integers. The AGTV algorithm treats the 

Goldbach theorem as a recursive function
  

/2 4
( , ) e e

en

n nf p pR  − +

−

=

 

according to Eq. (13), which links the hard problem in number 

theory to a deterministic numerical solution. The AGTV 
algorithm as a process model (PM) in RTPA, AGTV|PM, is 

shown in Fig. 1. 

 
The AGTV algorithm is a computational implementation 

of the mathematical models obtained in Theorem 3. The input 
(I) of AGTV|PM is the maximum expected prime 

decomposition for
max

8

|
, )|( e e

e

e e
n n

n

n
p pR . The output (O) of 

AGTV|PM is a set of verified results represented by 
max

8

|
)( | | |e e

e

e e
n n

e e
n

n
n p pR . The Hyperstructure (H) 

denotes underpinning Structure Models (SMs) to be operated 
by the algorithm. AGTV|PM is implemented by a recursive 

process in the loop 

max

/2| 8

|

e e

e e

n

n

R (...) after the upper limit for 

iteration is validated by the if-then-(else) structure ( ). It 
then determines the first or nearest mirror-prime 
decomposition for each | | |e e pn p  guaranteed by 

Theorem 3 within 
2

2enk  −  iterations. Once a validate pair of 

mirror-prime decomposition for a given even number | een  is 
found, the algorithm exits (  ) and enter the next iteration 
until all max |e en cases of Goldbach decompositions are 
completed.    

 
The time complexity of AGTT|PM is 

5

2

max
max max max1) (( ( ) )

2 2
e

e e eO
n

n n O n . The space 

requirement for AGTV is constrained by the memory size of 

the underpinning computer platform.  
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Fig. 1. The algorithm for Goldbach Theorem verification (AGTV) 

 
The AGTV algorithm may be implemented in any 

programming language for enabling empirical testing by 
readers as illustrated in Experiment 1. A set of numerical 

experiments based on AGTV is tested in MATLAB that 

provides empirical evidence for demonstrating the nature of 
the proven Goldbach theorem. 
 

 
 

Fig. 2. Experimental results of Goldbach theorem 

for     66 66 66= 
 by Algorithm 1 

 

Experiment 1. Applying the AGTV algorithm, a set of 
experimental results has been obtained as illustrated in Figures 
2 and 3 in the two-dimensional space 

  

. Figure 2 
demonstrates the proven decompositions of the first 66 
samples in the scope of 4 / 2 66eN  . It shows that any even 
number Ne can be expressed as the sum of a pair of mirror 
primes, Ne  Pm- + Pm+, as predicated by the proven Goldbach 
theorem. It is noteworthy that the curve of Ne/2 functions as a 
divider for separating the pairs of both sets of symmetric 
mirror numbers. The cases where the mirror primes almost 
touch the Ne/2 curve indicate those of twin primes (k =1) 
decomposition as special cases of mirror primes.  

Similarly, the proven decompositions of the set of 100 
even numbers in the scope of 4 / 2 100eN   is autonomously 

generated as illustrated in Figure 3 in a neat form where every 
Ne  (Pm-+Pm+)/2 is determined based on the proven Goldbach 
theorem. Any large set of experiments may serve as additional 
instances to demonstrate the Goldbach theorem in general. 
The only constraint for the processing capability of AGTT is 

the limit of computer speed and memory space towards 

exhaustively decomposing the infinitive sequence of mirror 

primes. Therefore, the inductive theorem and mathematical 

inferences as proven in Theorems 2 and 3 play more generic 

and rigorous roles for manipulating the infinite scope of 

mirror-prime decompositions problem beyond any empirical 

experiment towards infinitive. 
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Fig. 3. Experimental results of Goldbach theorem 

for     100 100 100= 
 by Algorithm 1  

 
The experiments have provided a visualization of the 

Goldbach Theorem, which empirically explain the nature of 
Goldbach conjecture. Figures 1 and 2 demonstrate there 
always exist at least one pair of mirror primes to decompose 
arbitrary even numbers in most of the testing cases according 
to Theorem 3. It is found that the expected pair of primes for 
satisfying the Goldbach theorem is not arbitrary primes, but 
merely those belong to the set of mirror primes. The Goldbach 
theorem and MPD theorem proven in this work have found 
many interesting applications including a deepened 
understanding of the nature and the recursive distribution 
patterns of primes, an expected fast recursive algorithm for 
primality testing, and a formal proof of the twin prime 
conjecture [30]. 
 

 

This work has presented a formal proof of Goldbach 
conjecture based on a discovery of mirror primes and their 

recursive properties. A theorem of mirror-prime 
decomposition for arbitrary even numbers has been 
established towards the formal proof of the Goldbach 
conjecture. The work has led to a new perception on the 
Goldbach theorem as an infinite recursive sequence in 
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such that there exist at least a pair of mirror primes for any 

/ 2 4en   bounded by 1 ( /2) 2ek n  −  steps. Experiments 
using the algorithm of Goldbach theorem testing have 
empirically and visually demonstrated the Goldbach theorem 
in analytic number theory. 
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