
Logical Methods in Computer Science
Vol. 3 (4:12) 2007, pp. 1–16
www.lmcs-online.org

Submitted Mar. 4, 2007
Published Dec. 4, 2007

A PROOF OF STRONG NORMALISATION USING DOMAIN THEORY

THIERRY COQUAND a AND ARNAUD SPIWACK b

a Chalmers Tekniska Högskola, Gothenburg
e-mail address: coquand@cs.chamlers.se

b LIX, Ecole Polytechnique
e-mail address: Arnaud.Spiwack@lix.polytechnique.fr

Abstract. Ulrich Berger presented a powerful proof of strong normalisation using do-
mains, in particular it simplifies significantly Tait’s proof of strong normalisation of Spec-
tor’s bar recursion. The main contribution of this paper is to show that, using ideas from
intersection types and Martin-Löf’s domain interpretation of type theory one can in turn
simplify further U. Berger’s argument. We build a domain model for an untyped program-
ming language where U. Berger has an interpretation only for typed terms or alternatively
has an interpretation for untyped terms but need an extra condition to deduce strong
normalisation. As a main application, we show that Martin-Löf dependent type theory
extended with a program for Spector double negation shift is strongly normalising.

Introduction

In 1961, Spector [23] presented an extension of Gödel’s system T by a new schema of
definition called bar recursion. With this new schema, he was able to give an interpreta-
tion of Analysis, extending Gödel’s Dialectica interpretation of Arithmetic, and completing
preliminary results of Kreisel [15]. Tait proved a normalisation theorem for Spector’s bar
recursion, by embedding it in a system with infinite terms [25]. In [9], an alternative form of
bar recursion was introduced. This allowed to give an interpretation of Analysis by modified
realisability, instead of Dialectica interpretation. The paper [9] presented also a normali-
sation proof for this new schema, but this proof, which used Tait’s method of introducing
infinite terms, was quite complex. It was simplified significantly by U. Berger [11, 12], who
used instead a modification of Plotkin’s computational adequacy theorem [19], and could
prove strong normalisation. In a way, the idea is to replace infinite terms by elements of a
domain interpretation. This domain has the property that a term is strongly normalisable
if its semantics is 6=⊥

The main contribution of this paper is to show that, using ideas from intersection types
[3, 6, 7, 18] and Martin-Löf’s domain interpretation of type theory [16], one can in turn
simplify further U. Berger’s argument. Contrary to [11], we build a domain model for an

1998 ACM Subject Classification: F.4.1.
Key words and phrases: strong normalisation, λ-calculus, double-negation shift, Scott domain, λ-model,

rewriting, denotational semantics.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-3 (4:12) 2007

c© T. Coquand and A. Spiwack
CC© Creative Commons

http://creativecommons.org/about/licenses

2 T. COQUAND AND A. SPIWACK

untyped programming language. Compared to [12], there is no need of an extra hypothesis
to deduce strong normalisation from the domain interpretation. A noteworthy feature
of this domain model is that it is in a natural way a complete lattice, and in particular
it has a top element which can be seen as the interpretation of a top-level exception in
programming languages. We think that this model can be the basis of modular proofs of
strong normalisation for various type systems. As a main application, we show that Martin-
Löf dependent type theory extended with a program for Spector double negation shift [23]1,
similar to bar recursion, has the strong normalisation property.

1. An Untyped Programming Language

Our programming language is untyped λ-calculus extended with constants, and has the
following syntax.

M,N ::= x | λx.M | M N | c | f

There are two kinds of constants: constructors c, c′, . . . and defined constants f, g, We
use h, h′, . . . to denote a constant which may be a constructor or defined. Each constant
has an arity, but can be partially applied. We write FV(M) for the set of free variables of
M . We write N(x = M) the result of substituting the free occurences of x by M in N and
may write it N [M] if x is clear from the context. We consider terms up to α-conversion.

The computation rules of our programming language are the usual β-reduction and
ι-reduction defined by a set of rewrite rules of the form

f p1 . . . pk = M

where k is the arity of f and FV(M) ⊆ FV(f p1 . . . pk). In this rewrite rule, p1, . . . , pk are
constructor patterns i.e. terms of the form

p ::= x | c p1 . . . pl

where l is the arity of c. Like in [11], we assume our system of constant reduction rules
to be left linear, i.e. a variable occurs at most once in the left hand side of a rule, and
mutually disjoint, i.e. the left hand sides of two disjoint rules are non-unifiable. We write
M → M ′ if M reduces in one step to M ′ by β, ι-reduction and M =β,ι M

′ if M , M ′ are
convertible by β, ι conversion. It follows from our hypothesis on our system of reduction
rules that β, ι-reduction is confluent [14]. We write → (M) for the set of terms M ′ such
that M → M ′.

We work with a given set of constants, that are listed in section 3, but our arguments are
general and make use only of the fact that the reduction system is left linear and mutually
disjoint. We call UPL, for Untyped Programming Language, the system defined by this list
of constants and ι-reduction rules. The goal of the next section is to define a domain model
for UPL that has the property that M is strongly normalizing if [[M]] 6=⊥.

1This is the schema (∀x.¬¬P (x)) → ¬¬∀x.P (x). Spector [23] remarked that it is enough to add this
schema to intuitionistic analysis in order to be able to interpret classical analysis via negative translation.

A PROOF OF STRONG NORMALISATION USING DOMAIN THEORY 3

∇∩ U = ∇
c U1 . . . Uk ∩ c′ V1 . . . Vl = ∇
c U1 . . . Uk ∩ V → W = ∇
(U → V1) ∩ (U → V2) = U → (V1 ∩ V2)

c U1 . . . Uk∩c V1 . . . Vk = c (U1∩V1) . . . (Uk∩Vk)

U1 ⊆ U2 U2 ⊆ U3

U1 ⊆ U3

U1 ⊆ V1 . . . Uk ⊆ Vk

c U1 . . . Uk ⊆ c V1 . . . Vk

U ⊆ U

U ⊆ V1 U ⊆ V2

U ⊆ V1 ∩ V2

V1 ∩ V2 ⊆ V1 V1 ∩ V2 ⊆ V2

U2 ⊆ U1 V1 ⊆ V2

U1 → V1 ⊆ U2 → V2

Figure 1: Formal inclusion

2. A domain for strong normalization

2.1. Formal Neighbourhoods.

Definition 2.1. The Formal Neighbourhoods are given by the following grammar:

U, V ::= ∇ | c U1 . . . Uk | U → V | U ∩ V

On these neighbourhoods we introduce a formal inclusion ⊆ relation defined inductively
by the rules of Figure 1. In these rules we use the formal equality relation U = V defined
to be U ⊆ V and V ⊆ U . We let M be the set of neighbourhoods quotiented by the formal
equality. The terminology “formal neighbourhoods” comes from [15, 21, 16].

Lemma 2.2. The formal inclusion and equality are both decidable relations, and M is
a poset for the formal inclusion relation, and ∩ defines a binary meet operation on M.
We have c U1 . . . Uk 6= c′ V1 . . . Vl if c 6= c′ and c U1 . . . Uk = c V1 . . . Vk if and only if
U1 = V1, . . . , Uk = Vk. An element in M is either ∇ or of the form c U1 . . . Uk or of the form
(U1 → V1) ∩ . . . ∩ (Un → Vn) and this defines a partition of M. Furthermore the following
“continuity condition” holds: if I is a (nonempty) finite set and

⋂
i∈I(Ui → Vi) ⊆ U → V

then the set J = {i ∈ I | U ⊆ Ui} is not empty and
⋂

i∈J Vi ⊆ V . Note that there is no
maximum element, where there usually is one. This is linked to the fact that we are aiming
to prove strong normalisation, not weak normalisation.

Similar results are proved in [5, 3, 7, 6, 16].

Proof. We introduce the set of neighbourhoods in “normal form” by the grammar

W,W ′ ::= ∇ | c W1 . . . Wk | I
I ::= (W1 → W ′

1) ∩ · · · ∩ (Wn → W ′
n)

and define directly the operation ∩ and the relation ⊆ on this set. An element in normal
form W is of the form ∇ or c W1 . . . Wk or is a finite formal intersection ∩X where
X is a nonempty finite set of elements of the form W → W ′. The definition of ∩ and
⊆ will be recursive, using the following complexity measure: |∇| = 0, |c W1 . . . Wk| =
1 +max(|W1|, . . . , |Wk|) and | ∩i (Wi → W ′

i)| = 1 +maxi(|Wi|, |W
′
i |).

4 T. COQUAND AND A. SPIWACK

We define

∇∩W = W ∩ ∇ = ∇
c W1 . . . Wk ∩ c W ′

1 . . . W ′
k = c (W1 ∩W ′

1) . . . (Wk ∩W ′
k)

c W1 . . . Wk ∩ c′ W ′
1 . . . W ′

l = ∇
c W1 . . . Wk ∩ (∩X) = (∩X) ∩ c W1 . . . Wk = ∇
(∩X) ∩ (∩Y) = ∩(X ∪ Y).

Notice that we have |W1 ∩W2| ≤ max(|W1|, |W2|).
We have furthermore ∇ ⊆ W and c W1 . . . Wk ∩ c W ′

1 . . . W ′
k iff Wi ⊆ W ′

i for all i
and finally ∩X ⊆ ∩Y iff for all W → W ′ in Y there exists W1 → W ′

1, . . . , Wk → W ′
k in X

such that W ⊆ W1, . . . , W ⊆ Wk and W ′
1 ∩ · · · ∩W ′

k ⊆ W ′. This definition is well founded
since |W ′

1 ∩ · · · ∩W ′
k| < | ∩X| and |W ′| < | ∩ Y |. One can then prove that relation ⊆ and

the operation ∩ satisfies all the laws of Figure 1 on the set of neighbourhoods of complexity
< n by induction on n.

Since all the laws of Figure 1 are valid for this structure we get in this way a concrete
representation of the poset M, and all the properties of this poset can be directly checked
on this representation.

We associate to M a type system defined in Figure 2 (when unspecified, k is the
arity of the related constant). It is a direct extension of the type systems considered in
[3, 5, 6, 7, 16]. The typing rules for the constructors and defined constants appear to be
new however. Notice that the typing of the function symbols is very close to a recursive
definition of the function itself. Also, we make use of the fact that, as a consequence of
Lemma 2.2, one can define when a constructor pattern matches an element of M.

Lemma 2.3. If Γ ⊢M λx.N : U then there exists a family Ui, Vi such that Γ, x : Ui ⊢M N :
Vi and ∩i(Ui → Vi) ⊆ U .

Proof. Direct by induction on the derivation.

Lemma 2.4. If Γ ⊢M λx.N : U → V then Γ, x:U ⊢M N : V .

Proof. We have a family Ui, Vi such that Γ, x : Ui ⊢M N : Vi and ∩i(Ui → Vi) ⊆ U → V .
By Lemma 2.2 there exists i1, . . . , ik such that U ⊆ Ui1 , . . . , U ⊆ Uik and Vi1∩· · ·∩Vik ⊆ V .
This together with Γ, x : Ui ⊢M N : Vi imply Γ, x : U ⊢M N : V .

Lemma 2.5. If Γ ⊢M N M : V then there exists U such that Γ ⊢M N : U → V and
Γ ⊢M M : U .

Proof. Direct by induction on the derivation.

2.2. Reducibility candidates.

Definition 2.6. S (the set of simple terms) is the set of terms that are neither an abstrac-
tion nor a constructor headed term, nor a partially applied destructor headed term (i.e.
f M1 . . . Mn is simple if n is greater or equal to the arity of f).

Definition 2.7. A reducibility candidate X is a set of terms with the following properties:

(CR1): X ⊆ SN

(CR2): → (M) ⊆ X if M ∈ X
(CR3): M ∈ X if M ∈ S and → (M) ⊆ X

A PROOF OF STRONG NORMALISATION USING DOMAIN THEORY 5

x : U ∈ Γ

Γ ⊢M x : U

Γ ⊢M c : U1 → . . . → Uk → c U1 . . . Uk

Γ, x:U ⊢M M : V

Γ ⊢M λx.M : U → V

Γ ⊢M N : U → V Γ ⊢M M : U

Γ ⊢M N M : V

Γ ⊢M M : U Γ ⊢M M : V

Γ ⊢M M : U ∩ V

Γ ⊢M M : V V ⊆ U

Γ ⊢M M : U

f p1 . . . pk = M pi(W1, . . . ,Wn) = Ui

Γ, x1:W1, . . . , xn:Wn ⊢M M : V

Γ ⊢M f : U1 → . . . → Uk → V

for any U1, . . . , Uk such that
no rewrite rule of f matches U1, . . . , Uk

Γ ⊢M f : U1 → . . . → Uk → ∇

Figure 2: Types with intersection in M

It is clear that the reducibility candidates form a complete lattice w.r.t. the inclusion
relation. In particular, there is a least reducibility candidate R0, which can be inductively
defined as the set of terms M ∈ S such that → (M) ⊆ R0. For instance, if M is a variable
x, then we have M ∈ R0 since M ∈ S and → (M) = ∅.

We define two operations on sets of terms, which preserve the status of candidates. If
c is a constructor of arity k and X1, . . . ,Xk are sets of terms then the set c X1 . . . Xk is
inductively defined to be the set of terms M of the form c M1 . . .Mk, withM1 ∈ X1 . . .Mk ∈
Xk or such that M ∈ S and → (M) ⊆ c X1 . . . Xk. If X and Y are sets of terms, X → Y
is the set of terms N such that N M ∈ Y if M ∈ X.

Lemma 2.8. If X and Y are reducibility candidates then so are X ∩ Y and X → Y . If
X1, . . . ,Xk are reducibility candidates then so is c X1 . . . Xk.

Definition 2.9. The function [−] associates a reducibility candidate to each formal neigh-
bourhood.

• [∇] , R0

• [c U1 . . . Uk] , c [U1] . . . [Uk]

• [U → V] , [U] → [V]

• [U ∩ V] , [U] ∩ [V]

6 T. COQUAND AND A. SPIWACK

Lemma 2.10. If U ⊆ V for the formal inclusion relation then [U] ⊆ [V] as sets of terms.

This follows from the fact that all the rules of Figure 1 are valid for reducility candidates.

Theorem 2.11. If ⊢M M : U then M ∈ [U]. In particular M is strongly normalising.

As usual, we prove that if x1 : U1, . . . , xn : Un ⊢M M : U and M1 ∈ [U1], . . . ,Mn ∈ [Un]
then M(x1 = M1, . . . , xn = Mn) ∈ [U]. This is a mild extention of the usual induction on
derivations. We sketch the extra cases:

• Subtyping: direct from Lemma 2.10.
• Constructor: direct from the definition of [c U1 . . . Uk].
• Defined constant (case with a rewrite rule): we need a small remark: since c′ M1 . . .Ml 6∈
S for any l, we have that c′ M1 . . .Ml ∈ c X1 . . . Xk implies c′ = c and l = k by
definition of c X1 . . . Xk. Knowing this we get that if Ni ∈ pi([W1], . . . , [Wn])), then
f N1 . . . Nk can only interract with one rewrite rule (remember that there is no
critical pair). The definition of c X1 . . . Xk also tells us that if the Ni are equal to
pi(M1, . . . ,Mn), then Mj ∈ Wj. From this the result follows easily.

• Defined constant (case with no rewrite rule): we need the same remark as in the
previous case: c′ M1 . . .Ml ∈ c X1 . . . Xk implies that c′ = c and l = k. Additionally,
[∇] does not contain any constructor-headed term (since [∇] ⊆ S). A consequence
of these two remarks is that there cannot be any fully applied constructor-headed
term in [U → V], by simple induction. In particular there is no term matched by a
pattern in [U → V]. Thus, since there is no rule matching the U1, . . . , Uk, we know
that for any N1 ∈ [U1], . . . , Nk ∈ [Uk], f N1 . . . Nk is not matched by any rewrite
rule; it is, however, a simple term. It follows easily that f N1 . . . Nk ∈ [∇].

2.3. Filter Domain.

Definition 2.12. An I-filter2 over M is a subset α ⊆ M with the following closure prop-
erties:

• if U, V ∈ α then U ∩ V ∈ α
• if U ∈ α and U ⊆ V then V ∈ α

It is clear that the set D of all I-filters over M ordered by the set inclusion is a complete
algebraic domain. The finite elements of D are exactly ∅ and the principal I-filters ↑ U ,

{V | U ⊆ V }. The element ⊤ =↑ ∇ is the greatest element of D and the least element is
⊥= ∅.

We can define on D a binary application operation

α β , {V | ∃U,U → V ∈ α ∧ U ∈ β}

We have always α ⊥=⊥ and ⊤ β = ⊤ if β 6=⊥. We write α1 . . . αn for (. . . (α1 α2) . . .) αn.

2This terminology, coming from [6], stresses the fact that the empty set is also an I-filter.

A PROOF OF STRONG NORMALISATION USING DOMAIN THEORY 7

2.4. Denotational semantics of UPL. As usual, we let ρ, ν, . . . range over environments,
i.e. mapping from variables to D.

Definition 2.13. If M is a term of UPL, [[M]]ρ is the I-filter of neighbourhoods U such
that x1:V1, . . . , xn:Vn ⊢M M : U for some Vi ∈ ρ(xi) with FV(M) = {x1, . . . , xn}.

A direct consequence of this definition and of Theorem 2.11 is then

Theorem 2.14. If there exists ρ such that [[M]]ρ 6= ⊥ then M is strongly normalising.

Notice also that we have [[M]]ρ = [[M]]ν as soon as ρ(x) = ν(x) for all x ∈ FV(M).
Because of this we can write [[M]] for [[M]]ρ if M is closed. If c is a constructor, we write
simply c for [[c]].

Lemma 2.15. We have c α1 . . . αk 6= c′ β1 . . . βl if c 6= c′ and c α1 . . . αk = c β1 . . . βk if and
only if α1 = β1 . . . αk = βk, whenever αi 6=⊥, βj 6=⊥. An element of D is either ⊥, or ⊤
or of the form c α1 . . . αk with c of arity k and αi 6=⊥ or is a sup of elements of the form
↑ (U → V). This defines a partition of D.

Proof. Follows from Lemma 2.2.

As a consequence of Lemma 2.15, it is possible to define when a constructor pattern
matches an element of D. The next result expresses the fact that we have defined in this
way a strict model of UPL.

Theorem 2.16.
[[x]]ρ = ρ(x)
[[N M]]ρ = [[N]]ρ [[M]]ρ
[[λx.M]]ρ α = [[M]](ρ,x:=α) if α 6= ⊥

If f p1 . . . pk = M and αi = [[pi]]ρ then [[f]] α1 . . . αk = [[M]]ρ. If there is no rule for f which
matches α1, . . . , αk and α1, . . . , αk are 6=⊥ then [[f]] α1 . . . αk = ⊤. Finally, if for all α 6= ⊥
we have [[M]](ρ,x:=α) = [[N]](ν,y:=α) then [[λx.M]]ρ = [[λy.N]]ν .

Proof. The second equality follows from Lemma 2.5 and the third equality follows from
Lemma 2.4.

Corollary 2.17. [[N(x = M)]]ρ = [[N]](ρ,x=[[M]]ρ)

3. Application to Spector’s Double Negation Shift

The goal of this section is to prove strong normalisation for dependent type theory
extended with Spector’s double negation shift [23]. The version of type theory we present is
close to the one in [17]: we have a type of natural numbers Nat : U, where U is an universe.
It is shown in [17], using the propositions-as-types principle, how to represent intuitionistic
higher-order arithmetic in type theory. It is then possible to formulate Spector’s double
negation shift as

(Πn : Nat.¬¬B n) → ¬¬Πn : Nat.B n

where ¬A is an abreviation for A → N0 and B : Nat → U. Spector showed [23] that it is
enough to add this schema (Axiom F in [23]) to intuitionistic analysis in order to be able
to interpret classical analysis via a negative translation. We show how to extend dependent
type theory with a constant of this type in such a way that strong normalisation is preserved.

8 T. COQUAND AND A. SPIWACK

It follows then from [23] that the proof theoretic strength of type theory is much stronger
with this constant and has the strength of classical analysis.

3.1. General Rules of Type Theory. We have a constructor Fun of arity 2 and we
write Πx:A.B instead of Fun A (λx.B), and A → B instead of Fun A (λx.B) if x is not
free in B. We have a special constant U for universe. (We recall that we consider terms up
to α-conversion.) A context is a sequence x1 : A1, . . . , xn : An, where the xi are pairwise
distinct.

They are three forms of judgements

Γ ⊢ A Γ ⊢ M : A Γ ⊢

The last judgement Γ ⊢ expresses that Γ is a well-typed context. We may write J [x : A]
for x : A ⊢ J .

The typing rules are in figure 3.1

⊢

Γ ⊢ A

Γ, x : A ⊢

Γ ⊢

Γ ⊢ U
Γ ⊢ A : U
Γ ⊢ A

Γ, x : A ⊢ B

Γ ⊢ Πx:A.B

(x : A) ∈ Γ Γ ⊢

Γ ⊢ x : A

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : Πx:A.B

Γ ⊢ N : Πx:A.B Γ ⊢ M : A

Γ ⊢ N M : B[M]

Γ ⊢ M : A Γ ⊢ B A =β,ι B

Γ ⊢ M : B

We express finally that the universe U is closed under the product operation.

Γ ⊢ A : U Γ, x : A ⊢ B : U
Γ ⊢ Πx:A.B : U

Figure 3: Typing Rules of Type Theory

The constants are the ones of our language UPL, described in the next subsection.

3.2. Specific Rules. We describe here both the untyped language UPL (which will define
the ι reduction) and the fragment of type theory that we need in order to express a program
for Spector double negation shift. The constant of form (op) are used as infix operators.

The constructors are U,Nat,N0,N1, 0 (arity 0), S, Inl, Inr (arity 1) and (+), (×),Fun,Pair
(arity 2). To define the domain D as in the previous sections, it is enough to know these
constructors.

The defined constants of the language UPL are vec, get, trim, T, head, tail, (≤), less,Rec,¬,
exit,Φ,Ψ. The arities are clear from the given ι-rules. From these ι-rules it is then possible
to interpret each of these constants as an element of the domain D.

At the same time we introduce these constants (constructors or defined constants) we
give their intended types.

A PROOF OF STRONG NORMALISATION USING DOMAIN THEORY 9

First we have the type of natural numbers Nat with two constructors:

Nat : U
0 : Nat
S : Nat

We also add the natural number recursor Rec so that the language contains Heyting
airthmetic:

Rec : C 0 → (Πn : Nat.C n → C (S n)) → Πn : Nat.C n[C : Nat → U]
Rec P Q 0 = N
Rec P Q (S x) = M x (Rec N M x)

In addition we add type connectives. (+) stands for the type disjunction, and (×) for
the pair type:

(+) : U → U → U
Inl : A → A+B [A,B : U]
Inr : B → A+B [A,B : U]

(×) : U → U → U
Pair : A → B → A×B [A,B : U]

We write (x, y) instead of Pair x y, and (x1, . . . , xn) for (. . . (x1, x2), . . . , xn).
We also need the empty type N0 (with no constructor):

N0 : U

with which we can define exit, its elimination rule, also known as ex falsum quod libet

and the negation ¬:

exit : N0 → A [A : U]

¬ : U → U
¬ A = A → N0

Notice that the constant exit has no computation rule.
The last type we need to define is N1, the unit type (i.e. with only one trivial construc-

tor), in other word the type “true”:

N1 : U
0 : N1

Notice that 0 is polymorphic and is a constructor of both N1 and Nat.
We can now start defining the more specific functions of our language. First comes (≤).

It decides if its first argument is less or equal to its second one. Note that it returns either
N1 or N0 which are types. This is an example of strong elimination, i.e defining a predicate
using a recursive function.

(≤) : Nat → Nat → U
0 ≤ n = N1

(S x) ≤ 0 = N0

(S x) ≤ (S n) = x ≤ n

Consequently we have the function less which proves essentially that (≤) is a total
ordering:

10 T. COQUAND AND A. SPIWACK

less : Πx : Nat.Πn : Nat.(S x ≤ n) + (n ≤ x)
less x 0 = Inr 0
less 0 (S n) = Inl 0
less (S x) (S n) = less x n

In order to write the proof of the shifting rule it is convenient to have a type of vectors
vec B n, which is intuitively (. . . (N1 ×B 0) . . .)×B (n− 1) and an access function of type

Πn : Nat.Πx : Nat.(S x ≤ n) → vec B n → B x
Notice that this access function requires as an extra argument a proof that the index

access is in the right range. To have such an access function is a nice exercise in programming
with dependent types.

This has to be seen as the type of finite approximations of proofs of Πn : Nat.B n.
And the access function is the respective elimination rule (i.e. a finite version of the forall
elimination rule of natural deduction).

The type of vectors vec is defined recursively

vec : (Nat → U) → Nat → U
vec B 0 = N1

vec B (S x) = (vec B x)×B x

With vec come two simple functions head and tail accessing respectively the two compo-
nent of the pair (any non-0-indexed vector is a pair of an “element” and a shorter vector):

head : Πx : Nat.(vec B (S x)) → B x
head x (v, u) = u

tail : Πx : Nat.(vec B (S x)) → vec B x
tail x (v, u) = v

In order to build the access function for type vec (which is supposed to extract the
element of type B x from a vector of a length longer than x) we introduce a function trim

which shortens a vector of type vec B n into a vector of type vec B x by removing the n−x
first elements. The reason why such a function is useful is because we are trying to read
the vector from the inside to the outside.

T : (Nat → U) → U
T P = Πk : Nat.P (S k) → P k

trim : Πn : Nat.Πm : Nat.(n ≤ m) → ΠP : Nat → U.T P → P m → P n
trim 0 0 p P h v = v
trim 0 (S m) p P h v = trim 0 m P h (h m v)
trim (S n) 0 p P h v = exit p
trim (S n) (S m) p P h v = trim n m p (λx.P (S x)) (λx.h (S x)) v

As a consequence of the function trim we can define in a rather simple way the access
function get:

get : ΠB : Nat → U.Πn : Nat.Πx : Nat.(S x ≤ n) → vec B n → B x
get B n x p v = head x (trim (S x) n p (vec B) tail v)

We need the following result on the domain interpretation of this function get. To
simplify the notations we write h instead of [[h]] if h is a constant of the language. We also
write l for Sl 0.

A PROOF OF STRONG NORMALISATION USING DOMAIN THEORY 11

Lemma 3.1. Let v 6= ⊥, y 6= ⊥ and B such that for any l, B (Sl ⊤) 6= ⊥ and B l 6= ⊥ (in
particular, B 6= ⊥). If x = q with q < p then get p x 0 v = get p+ 1 x 0 (v, y). If x = Sq ⊤
with q < p then get p x 0 v = ⊤.

Proof. Let us prove that if x = q with q < p then get p x 0 v = get p+ 1 x 0 (v, y). The
proof of the second part of the Lemma is similar. It is proved by the following sequence of
propositions

• If h = [[λx.f (S x)]](f=h) 6= ⊥ and h m u = h ⊤ u for any m,u, q ≤ p, t 6= ⊥, v 6= ⊥

and P (Sl ⊤) 6= ⊥ for any l (in particular, P 6= ⊥), then trim q p t P v = (h ⊤)p−q v.
This is proved by simple induction on q and p. Using the definition of trim together

with Theorem 2.16 and the fact that P (Sl ⊤) 6= ⊥ implies that [[λf.f (S x)]](f=P) (S
l ⊤) =

P (Sl+1 ⊤) 6= ⊥ for any l.
• tail = [[λx.f (S x)]](f=tail) 6= ⊥ and tail m u = tail ⊤ u. By Theorem 2.16.

• If B (Sl ⊤) 6= ⊥ and B l 6= ⊥, then for all l vec B (Sl ⊤) 6= ⊥. It is direct by
induction on l using the definition of vec and Theorem 2.16.

• Finally

get p+ 1 x 0 (v, y) = head x (trim (S x) p+ 1 0 (vec B) tail (v, y))
= head x ((tail ⊤)p−q (v, y))
= head x ((tail ⊤)p−q−1 v)
= head x (trim (S x) p 0 (vec B) tail v)
= get p x 0 v

We can now introduce two functions Φ and Ψ, defined in a mutual recursive way. They
define a slight generalisation of the double negation shift:

Φ : ΠB : Nat → U.(Πn : Nat.¬¬B n) → ¬(Πn : Nat.B n) → Πn : Nat.¬vec B n
Ψ : ΠB : Nat → U.(Πn : Nat.¬¬B n) → ¬(Πn : Nat.B n) →

Πn : Nat.vec B n → Πx : Nat.(S x ≤ n) + (n ≤ x) → B x
Φ B H K n v = K (λx.Ψ B H K n v x (less x n))
Ψ B H K n v x (Inl p) = get B n x p v
Ψ B H K n v x (Inr p) = exit (H n (λy.Φ B H K (S n) (v, y)))

The program that proves Spector’s double negation shift

ΠB : Nat → U.(Πn : Nat.¬¬B n) → ¬¬(Πn : Nat.B n)

is then λB.λH.λK.Φ B H K 0 0.

4. Model of type theory and strong normalisation

4.1. Model. We let Pow(D) be the collection of all subsets of D. If X ∈ Pow(D) and
F : X → Pow(D) we define Π(X,F) ∈ Pow(D) by v ∈ Π(X,F) if and only if u ∈ X implies
v u ∈ F (u).

A totality predicate on D is a subset X such that ⊥/∈ X and ⊤ ∈ X. We let TP(D) be
the collection of all totality predicates.

Lemma 4.1. If X ∈ TP(D) and F : X → TP(D) then Π(X,F) ∈ TP(D).

12 T. COQUAND AND A. SPIWACK

Proof. We have ⊤ ∈ X. If v ∈ Π(X,F) then v ⊤ ∈ F (⊤) and so v ⊤ 6=⊥ and v 6=⊥ hold.
If u ∈ X then u 6=⊥ so that ⊤ u = ⊤ ∈ F (u). This shows ⊤ ∈ Π(X,F).

Definition 4.2. Amodel of type theory is a pair T,El with T ∈ TP(D) and El : T → TP(D)
satisfying the property: if A ∈ T and u ∈ El(A) implies F u ∈ T then Fun A F ∈ T .
Furthermore El(Fun A F) = Π(El(A), λu.El(F u)).

If we have a collection of constants with typing rules ⊢ h : A we require also [[A]] ∈ T
and [[h]] ∈ El([[A]]).

Finally, for a model of type theory with universe U we require also: U ∈ T , El(U) ⊆ T
and Fun A F ∈ El(U) if A ∈ El(U) and F u ∈ El(U) for u ∈ El(A).

The intuition is the following: T ⊆ D is the collection of elements representing types
and if A ∈ T the set El A is the set of elements of type A. The first condition expresses that
T is closed under the dependent product operation. The last condition expresses that U is
a type and that El (U) is a subset of T which is also closed under the dependent product
operation.

The next result states the soundness of the semantics w.r.t. the type system.

Theorem 4.3. Let ∆ be a context. Assume that [[A]]ρ ∈ T and ρ(x) ∈ El([[A]]ρ) for x:A in

∆. If ∆ ⊢ A then [[A]]ρ ∈ T . If ∆ ⊢ M :A then [[A]]ρ ∈ T and [[M]]ρ ∈ El([[A]]ρ).

Proof. Direct by induction on derivations, using Theorem 2.16 and Corollary 2.17. For in-
stance, we justify the application rule. We have by induction [[N]]ρ ∈ El (Fun [[A]]ρ [[λx.B]]ρ)
and [[M]]ρ ∈ El([[A]]ρ). It follows that we have

[[N M]]ρ = [[N]]ρ [[M]]ρ ∈ El([[λx.B]]ρ [[M]]ρ)

Since El([[A]]ρ) ∈ TP(D) we have [[M]]ρ 6=⊥. Hence by Theorem 2.16 and Corollary 2.17 we
have

[[λx.B]]ρ [[M]]ρ = [[B]]ρ,x=[[M]]ρ = [[B[M]]]ρ

and so [[N M]]ρ ∈ El([[B[M]]]ρ) as expected.

4.2. Construction of a model.

Theorem 4.4. The filter model D of UPL can be extended to a model T ∈ TP(D), El :
T → TP(D).

Proof. The main idea is to define the pair T,El in two inductive steps, using Lemma 2.15
to ensure the consistency of this definition. We define first T0, El. We have ⊤ ∈ T0 and
⊤ ∈ El(A) if A ∈ T0. Furthermore, we have

• N0 ∈ T0

• N1 ∈ T0 and 0 ∈ El(N1)
• Nat ∈ T0 and 0 ∈ El(Nat) and S x ∈ El(Nat) if x ∈ El(Nat)
• A+B ∈ T0 if A,B ∈ T0 and Inl x ∈ El(A+B) if x ∈ El(A) and Inr y ∈ El(A+B)
if y ∈ El(B)

• A×B ∈ T0 if A,B ∈ T0 and (x, y) ∈ El(A×B) if x ∈ El(A) and y ∈ El(B)
• Fun A F ∈ T0 if A ∈ T0 and F x ∈ T0 for x ∈ El(A). Furthermore w ∈ El(Fun A F)
if w x ∈ El(F x) whenever x ∈ El(A)

We can then define T ⊇ T0 and the extension El : T → TP(D) by the same conditions
extended by one clause

A PROOF OF STRONG NORMALISATION USING DOMAIN THEORY 13

• N0 ∈ T
• N1 ∈ T and 0 ∈ El(N1)
• Nat ∈ T and 0 ∈ El(Nat) and S x ∈ El(Nat) if x ∈ El(Nat)
• A+B ∈ T if A,B ∈ T and Inl x ∈ El(A +B) if x ∈ El(A) and Inr y ∈ El(A +B)
if y ∈ El(B)

• A×B ∈ T if A,B ∈ T and (x, y) ∈ El(A×B) if x ∈ El(A) and y ∈ El(B)
• Fun A F ∈ T if A ∈ T and F x ∈ T for x ∈ El(A). Furthermore w ∈ El(Fun A F)
if w x ∈ El(F x) whenever x ∈ El(A)

• U ∈ T and El(U) = T0

The definition of the pair T,El is a typical example of an inductive-recursive definition:
we define simulatenously the subset T and the function El on this subset. The justification
of such a definition is subtle, but it is standard [2, 8, 22]. It can be checked by induction that
T ∈ TP(D) and El(A) ∈ TP(D) if A ∈ T . The next subsection proves that [[h]] ∈ El ([[A]])
if ⊢ h:A is a typing rule for a constant h.

4.3. Strong normalisation via totality. It is rather straightforward to check that we
have [[h]] ∈ El([[A]]) for all the constants h : A that we have introduced except the last two
constants Φ and Ψ. For instance [[exit]] ∈ El(N0 → A) for any A ∈ T since El(N0) = {⊤}
and [[exit]] ⊤ = ⊤ is in El(A). To check [[h]] ∈ El([[A]]) is more complex for the last two
functions.

Theorem 4.5. For all constants h : A that we have introduced, we have [[h]] ∈ El([[A]]).

Proof. To simplify the notations we write h instead of [[h]] if h is a constant of the language,
and we say simply that h is total instead of h ∈ El(A). The only difficult cases are for the
constants Φ and Ψ. It is the only place where we use classical reasoning. We only write the
proof for Φ, the case of Ψ is similar.

Assume that Φ is not total. We can then find total elements B ∈ El(Nat → U),
H ∈ El(Fun Nat (λx.¬¬ (B x))), K ∈ El(¬ (Fun Nat B)), n ∈ El(Nat) and v ∈ El(B n)
such that Φ B H K n v does not belong to El(N0) = {⊤}. Since

Φ B H K n v = K (λx.Ψ B H K n v x (less x n))

and K is total, there exists x ∈ El(Nat) such that Ψ B H K n v x (less x n) is not total at
type B x. Given the definition of Ψ this implies that less x n is of the form Inr h. It follows
from the definition of less that n is of the form p. Furthermore

Ψ B H K n v x (less x n) = exit (H p (λy.Φ H K p+ 1 (v, y)))

is not total. Since H is total, there exists yp ∈ El (B p) such that Φ B H K p+ 1 (v, yp)
is not total. Reasoning in the same way, we see that there exists yp+1 ∈ El (B p+ 1)
such that Φ B H K p+ 2 (v, yp, yp+1) is not total. Thus we build a sequence of elements
ym ∈ El (B m) for m ≥ p such that, for any m

Φ B H K m (v, yp, . . . , ym−1) 6= ⊤

Consider now an element x = q. For m > q we have S x ≤ m = N1 and we take f x to
be get m x 0 (v, yp, . . . , ym−1). This is well defined since we have for m1,m2 > q by Lemma
3.1

get B m1 x 0 (v, yp, . . . , ym1−1) = get B m2 x 0 (v, yp, . . . , ym2−1)

14 T. COQUAND AND A. SPIWACK

We take also f (Sq ⊤) = ⊤. This defines a total element f in El (Fun Nat (λx.El (B x))).
Since K is total, K f is total and belongs to El (N0) = {⊤}. Hence K f = ⊤. Since ⊤ is a
finite element of D we have by continuity K f0 = ⊤ for some finite approximation f0 of f .
In particular there exists m such that if gm (Sq 0) = f (Sq 0) and gm (Sq ⊤) = f (Sq ⊤),
for all q < m, then K gm = ⊤. If we define

gm x = Ψ B H K m (v, yp, . . . , ym−1) x (less x m)

we do have gm (Sq 0) = f (Sq 0) and gm (Sq ⊤) = f (Sq ⊤) for all q < m. Hence K gm = ⊤.
But then

Φ B H K m (v, yp, . . . , ym−1) = K gm = ⊤

which contradicts the fact that the element Φ B H K m (v, yp, . . . , ym−1) is not total.

Like in [11], it is crucial for this argument that we are using a domain model. These
constants make also the system proof-theoretically strong, at least the strength of second-
order arithmetic.

Corollary 4.6. If ⊢ A then [[A]] 6=⊥. If ⊢ M : A then [[M]] 6=⊥.

Proof. If ⊢ A we have by Theorem 4.3 that [[A]] ∈ T . By Theorem 4.4 we have T ∈ TP(D).
Hence [[A]] 6=⊥. Similarly, if ⊢ M : A we have by Theorem 4.3 that [[A]] ∈ T and [[M]] ∈
El([[A]]). By Theorem 4.4 we have T ∈ TP(D) and El([[A]]) ∈ TP(D). Hence [[A]] 6=⊥ and
[[M]] 6=⊥.

By combining Corollary 4.6 with Theorem 2.14 we get

Theorem 4.7. If ⊢ A then A is strongly normalisable. If ⊢ M : A then M is strongly
normalisable.

Conclusion

We have built a filter model D for an untyped calculus having the property that a
term is strongly normalisable whenever its semantics is 6=⊥, and then used this to give
various modular proofs of strong normalization. While each part uses essentially variation
on standard materials, our use of filter models seems to be new and can be seen as an
application of computing science to proof theory. It is interesting that we are naturally lead
in this way to consider a domain with a top element. We have shown on some examples
that this can be used to prove strong normalisation theorem in a modular way, essentially
by reducing this problem to show the soundness of a semantics over the domain D. There
should be no problem to use our model to give a simple normalisation proof of system F
extended with bar recursion. It is indeed direct that totality predicates are closed under
arbitrary non empty intersections. By working in the D-set model over D [24, 4], one should
be able to get also strong normalisation theorems for various impredicative type theories
extended with bar recursion.

For proving normalisation for predicative type systems, the use of the model D is proof-
theoretically too strong: the totality predicates are sets of filters, that are themselves sets
of formal neighbourhoods, and so are essentially third-order objects. For applications not
involving strong schemas like bar recursion, it is possible however to work instead only with
the definable elements of the set D, and the totality predicates become second-order objects,
as usual. It is then natural to extend our programming language with an extra element ⊤

A PROOF OF STRONG NORMALISATION USING DOMAIN THEORY 15

that plays the role of a top-level error. As suggested also to us by Andreas Abel, it seems
likely that Theorem 2.11 has a purely combinatorial proof, similar in complexity to the one
for simply typed λ-calculus. He gave such a proof for a reasonable subsystem in [1].

A natural extension of this work would be also to state and prove a density theorem for
our denotational semantics, following [13]. The first step would be to define when a formal
neighbourhood is of a given type.

In [6, 18], for untyped λ-calculus without constants, it is proved that a term M is
strongly normalizing if and only if [[M]] 6=⊥. This does not hold here since we have for
instance 0 Nat strongly normalizing, but [[0 Nat]] =⊥. However, it may be possible to find
a natural subset of terms M for which the equivalence between M is strongly normalizing
and [[M]] 6=⊥ holds. Additionally, Colin Riba showed this result for a system where the
neighbourhoods are closed by union but were the rewrite rules are weaker [20].

Most of our results hold without the hypotheses that the rewrite rules are mutually
disjoint. We only have to change the typing rules for a constant f in Figure 2 by the
uniform rule: Γ ⊢M f : U1 → . . . → Uk → V if for all rules f p1 . . . pk = M and for all

W1, . . . ,Wn such that pi(W1, . . . ,Wn) = Ui we have Γ, x1 : W1, . . . , xn : Wn ⊢M M : V .
(This holds for instance trivially in the special case where no rules for f matches U1, . . . , Un.)
For instance, we can add a constant + with rewrite rules

+ n 0 = n
+ 0 n = n
+ n (S m) = S (+ n m)
+ (S n) m = S (+ n m)

and Theorem 2.14 is still valid for this extension.

Acknowledgement

Thanks to Mariangiola Dezani-Ciancaglini for the reference to the paper [6]. The first
author wants also to thank Thomas Ehrhard for reminding him about proofs of strong
normalisation via intersection types.

References

[1] A. Abel. Syntactical Normalization for Intersection Types with Term Rewriting Rules. 4th International
Workshop on Higher-Order Rewriting, HOR’07, Paris, France, 2007.

[2] P. Aczel. Frege structures and the notions of proposition, truth and set. The Kleene Symposium, pp.
31–59, Stud. Logic Foundations Math., 101, North-Holland, Amsterdam-New York, 1980.

[3] Y. Akama. SN Combinators and Partial Combinatory Algebras. LNCS 1379, p. 302-317, 1998.
[4] Th. Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD thesis, University of

Edinburgh, 1993.
[5] R. Amadio and P.L. Curien. Domains and Lambda-Calculi. Cambridge tracts in theoretical computer

science, 46, (1997).
[6] S. van Bakel. Complete restrictions of the Intersection Type Discipline. Theoretical Computer Science,

102:135-163, 1992.
[7] H. Barendregt, M. Coppo and M. Dezani-Ciancaglini. A filter lambda model and the completeness of

type assignment. J. Symbolic Logic 48 (1983), no. 4, 931–940 (1984).
[8] M. Beeson. Foundations of constructive mathematics. Metamathematical studies. Ergebnisse der Math-

ematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 6. Springer-Verlag,
Berlin, 1985.

16 T. COQUAND AND A. SPIWACK

[9] S. Berardi, M. Bezem and Th. Coquand. On the computational content of the axiom of choice. Journal
of Symbolic Logic 63 (2), 600-622, 1998.

[10] U. Berger and P. Oliva. Modified Bar Recursion and Classical Dependent Choice. Logic Colloquium
’01, 89–107, Lect. Notes Log., 20, Assoc. Symbol. Logic, Urbana, IL, 2005.

[11] U. Berger. Continuous Semantics for Strong Normalisation. LNCS 3526, 23-34, 2005.
[12] U. Berger. Strong normalization for applied lambda calculi. Logical Methods in Computer Science, 1-14,

2005.
[13] U. Berger. Continuous Functionals of Dependent and Transfinite Types. in Models and Computability,

London Mathematical Society, Lecture Note Series, p. 1–22, 1999.
[14] J. W. Klop, V. van Oostrom and F. van Raamsdonk. Combinatory reduction systems: introduction and

survey. Theoretical Computer Science, Volume 121, No. 1 & 2, pp. 279 - 308, December 1993.
[15] G. Kreisel. Interpretation of analysis by means of constructive functionals of finite types. In Construc-

tivity in Mathematics, North-Holland, 1958.
[16] P. Martin-Löf. Lecture note on the domain interpretation of type theory. Workshop on Semantics of

Programming Languages, Chalmers, (1983).
[17] P.Martin-Löf. An intuitionistic theory of types. in Twenty-five years of constructive type theory (Venice,

1995), 127–172, Oxford Logic Guides, 36, Oxford Univ. Press, New York, 1998.
[18] G. Pottinger. A type assignment for the strongly normalizable terms. in: J.P. Seldin and J.R. Hindley

(eds.), To H. B. Curry: essays on combinatory logic, lambda calculus and formalism, Academic Press,
London, pp. 561-577, 1980.

[19] G. Plotkin. LCF considered as a programming language. Theoretical Computer Science, 5:223-255, 1977.
[20] C. Riba. Strong Normalization as Safe Interaction. Logic In Computer Science 2007.
[21] D. Scott. Lectures on a mathematical theory of computation. Theoretical foundations of programming

methodology (Munich, 1981), 145–292, NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., 91, Reidel,
Dordrecht, 1982.

[22] D. Scott. Combinators and classes. λ-calculus and computer science theory, pp. 1–26. Lecture Notes in
Comput. Sci., Vol. 37, Springer, Berlin, 1975.

[23] C. Spector. Provably recursive functionals of analysis: a consistency proof of analysis by an extension
of principles in current intuitionistic mathematics. In F.D.E.Dekker, editor, Recursive Function Theory,
1962

[24] Th. Streicher. Semantics of Type Theory. in the series Progress in Theoretical Computer Science. Basel:
Birkhaeuser. XII, 1991.

[25] W.W. Tait. Normal form theorem for bar recursive functions of finite type. Proceedings of the Second

Scandinavian Logic Symposium, North-Holland, 1971.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	Introduction
	1. An Untyped Programming Language
	2. A domain for strong normalization
	2.1. Formal Neighbourhoods
	2.2. Reducibility candidates
	2.3. Filter Domain
	2.4. Denotational semantics of UPL

	3. Application to Spector's Double Negation Shift
	3.1. General Rules of Type Theory
	3.2. Specific Rules

	4. Model of type theory and strong normalisation
	4.1. Model
	4.2. Construction of a model
	4.3. Strong normalisation via totality

	Conclusion
	Acknowledgement
	References

