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A proof of the Grünbaum conjecture

by

Bruce L. Chalmers (Riverside, CA) and Grzegorz Lewicki (Kraków)

Abstract. Let V be an n-dimensional real Banach space and let λ(V ) denote its
absolute projection constant. For any N ∈ N with N ≥ n define

λN
n = sup{λ(V ) : dim(V ) = n, V ⊂ l(N)

∞ }, λn = sup{λ(V ) : dim(V ) = n}.

A well-known Grünbaum conjecture [Trans. Amer. Math. Soc. 95 (1960)] says that

λ2 = 4/3.

König and Tomczak-Jaegermann [J. Funct. Anal. 119 (1994)] made an attempt to prove
this conjecture. Unfortunately, their Proposition 3.1, used in the proof, is incorrect. In
this paper a complete proof of the Grünbaum conjecture is presented.

1. Introduction. Let X be a real Banach space and let V ⊂ X be
a finite-dimensional subspace. A continuous linear mapping P : X → V is
called a projection if P |V = id|V .Denote by P(X,V ) the set of all projections
from X onto V. Set

λ(V,X) = inf{‖P‖ : P ∈ P(X,V )},
λ(V ) = sup{λ(V,X) : V ⊂ X}.

The constant λ(V,X) is called the relative projection constant and λ(V )
the absolute projection constant. General bounds for absolute projection
constants were studied by many authors (see e.g. [1, 2, 7, 8, 9, 11, 12]). It
is well-known (see e.g [13]) that if V is a finite-dimensional space then

λ(V ) = λ(I(V ), l∞},

where I(V ) denotes any isometric copy of V in l∞. For any n ∈ N denote

λn = sup{λ(V ) : dim(V ) = n}

and for any N ∈ N with N ≥ n,

λNn = sup{λ(V ) : V ⊂ l(N)
∞ }.
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By the Kadec–Snobar Theorem [6], λn ≤
√
n for any n ∈ N. However,

determination of the constant λn seems to be difficult. In [5, p. 465] it was
conjectured by B. Grünbaum that

λ2 = 4/3.

In [10, Th. 1.1] an attempt has been made to prove this conjecture (and
a more general result). The proof presented in that paper is mainly based
on [10, Proposition 3.1, p. 259 and Lemma 5.1, p. 273]. Unfortunately, the
proof of Proposition 3.1 is incorrect. In fact the formula (3.19) from [10,
p. 263] is false. This can be easily checked by differentiating formula (3.12)
on page 262 there with respect to Zs1 (we are using the notation of [10]).
Because of this error, part of the proof of [10, Proposition 3.1 on p. 265] is
incorrect and as a result, the proof of [10, Th. 1.1, p. 255] is incomplete.
Moreover, not only the proof of Proposition 3.1 from [10] is incorrect but
also its statement (see [3]).

In this paper we give a proof of the Grünbaum conjecture. In Section 2
we present some preliminary results used in the proof. Section 3 contains the
proof of the Grünbaum conjecture. The main tools applied are the Lagrange
Multiplier Theorem and the Implicit Function Theorem. Since our paper is
rather technical, we describe the relations between the results contained in
Sections 2 and 3.

The final part of the proof of the Grünbaum conjecture is presented in
Theorem 3.2. In its proof we need Theorems 3.1 and 2.4 and Lemma 2.13.

Theorem 3.1 is mainly a consequence of Theorems 2.21 and 2.22, which
are the crucial technical results of this paper. (In our proof of Theorem 3.1,
Lemmas 2.5 and 2.6 and Theorems 2.11, 2.16, 2.17 and 2.18 are also ap-
plied.).

Theorem 2.21 is based on Lemmas 2.2, 2.8, 2.15 and 2.19 and Theo-
rems 2.16 and 2.17.

Theorem 2.22 is mainly a consequence of Lemmas 2.9 and 2.10.
Lemma 2.12 is applied in the proof of Theorem 2.16, Lemma 2.13 in the

proof of Theorem 2.17, and Lemma 2.14 in the proof of Theorem 2.18. Also
we need Theorem 2.3 in the proof of Theorem 2.11, and Lemma 2.1 in the
proof of Lemma 2.15.

In the proofs of Theorems 2.11 and 2.22 and Lemmas 2.12–2.14 our sym-
bolic Mathematica programs were used. The source files for them are avail-
able at http://www2.im.uj.edu.pl/GrzegorzLewicki/GrunbaumConjecture/
(later referred to as “our web site”).

2. Preliminaries. In this section we mainly consider the following prob-
lem: for a fixed u1 ∈ [0, 1] maximize the function fu1 : RN−1 × (RN )n → R
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defined by

(2.1) fu1((u2, . . . , uN ), x1, . . . , xn) =
N∑

i,j=1

uiuj |〈xi, xj〉n|

under the constraints

〈xi, xj〉N = δij , 1 ≤ i ≤ j ≤ n,(2.2)
N∑
j=2

u2
j = 1− u2

1.(2.3)

Here for j = 1, . . . , N, xj = ((x1)j , . . . , (xn)j), 〈w, z〉n =
∑n

j=1wjzj for any
w = (w1, . . . , wn), z = (z1, . . . , zn) ∈ Rn and 〈p, q〉N =

∑N
j=1 pjqj for any

p = (p1, . . . , pN ), q = (q1, . . . , qN ) ∈ RN . Also we will work with

(2.4) fu1,A((u2, . . . , uN ), x1, . . . , xn) =
N∑

i,j=1

uiujaij〈xi, xj〉n,

where A = {aij} is a fixed N ×N symmetric matrix.
Now we state some results which will be of use later. Their proofs can

be found in [3].

Lemma 2.1 ([3]). Let x1, . . . , xn ∈ RN and u ∈ RN satisfy (2.2, 2.3).
Set V = span[x1, . . . , xn]. Assume v1, . . . , vn is an orthonormal basis of V
(with respect to 〈·, ·〉N ). Then

fu1((u2, . . . , uN ), x1, . . . , xn) = fu1((u2, . . . , uN ), v1, . . . , vn)

and

fu1,A((u2, . . . , uN ), x1, . . . , xn) = fu1,A((u2, . . . , uN ), v1, . . . , vn)

for any N ×N symmetric matrix A.

Lemma 2.2 ([3]). Let n,N ∈ N with N ≥ n. Fix u = (u1, . . . , uN ) ∈ RN

with nonnegative coordinates. Let f : RnN → R be given by

f(x1, . . . , xn) =
N∑

i,j=1

uiuj |〈xi, xj〉n|,

where xi ∈ RN for i = 1, . . . , n. Assume that y1, . . . , yn ∈ RN are so chosen
that

f(y1, . . . , yn) = max{f(x1, . . . , xn) : (x1, . . . , xn) satisfy (2.2)}.

Let A ∈ RN×N be the matrix defined by

(2.5) aij = sgn(〈yi, yj〉n)
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for i, j = 1, . . . , N (sgn(0) = 1 by definition). Define B ∈ RN×N by

(2.6) bij = uiujaij

for i, j = 1, . . . , N. Let b1 ≥ · · · ≥ bN denote the eigenvalues of B (since B is
symmetric, all of them are real). Then there exist orthonormal (with respect
to 〈·, ·〉N ) eigenvectors w1, . . . , wn ∈ RN of B corresponding to b1, . . . , bn
such that

f(w1, . . . , wn) = f(y1, . . . , yn) =
n∑
j=1

bj .

Set

f1(x1, . . . , xn) =
N∑

i,j=1

bij〈xi, xj〉n.

If y1, . . . , yn ∈ RN are such that

f1(y1, . . . , yn) = max{f1 under constraint (2.2)}
= max{f under constraint (2.2)}

and bn > bn+1 then span[yi : i = 1, . . . , n] = span[wi : i = 1, . . . , n].

Theorem 2.3 ([3]). Let A denote the set of all N ×N symmetric ma-
trices (aij) such that aij = ±1 and aii = 1 for i, j = 1, . . . , N. Let fu1 be
given by (2.1). Then

max{fu1 : ((u2, . . . , uN ), x1, . . . , xn) satisfying (2.2, 2.3)}

= max
{ n∑
i=1

bi(v,A) : A ∈ A, v = (v1, . . . , vn) ∈ RN ,

N∑
i=1

v2
i = 1, v1 = u1

}
,

where b1(v,A) ≥ · · · ≥ bn(v,A) denote the n largest eigenvalues of the N×N
matrix (vivjaij)Ni,j=1. Also

max
{ N∑
i,j=1

uiuj |〈xi, xj〉n| : (x1, . . . , xn) satisfy (2.2),
N∑
j=1

u2
j = 1

}

= max
{ n∑
i=1

bi(v,A) : A ∈ A, v = (v1, . . . , vn) ∈ RN ,

N∑
i=1

v2
i = 1

}
.

Now for n,N ∈ N with N ≥ n define

(2.7) λNn = sup{λ(V, l(N)
∞ ) : V ⊂ l(N)

∞ , dim(V ) = n}.
Theorem 2.4 ([3]). Let n,N ∈ N with N ≥ n. Then

λNn = max
{ N∑
i,j=1

uiuj |〈xi, xj〉n| : (x1, . . . , xn) satisfy (2.2),
N∑
j=1

u2
j = 1

}
.
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Lemma 2.5 ([3]). For any n ≥ 2,

λn+1
n = 2− 2/(n+ 1).

Moreover, λn+1
n = λ(ker(f), l(n+1)

∞ ) if and only if f = c(±1, . . . ,±1), where
c is a positive constant.

Lemma 2.6 ([3]). Consider problem (2.1) with u1 = 0 and fixed N ≥ n+2.
Assume that λN−1

n > λN−1
n−1 . Then the maximum of fu1 under constraints

(2.2, 2.3) is equal to λN−1
n .

Lemma 2.7 ([3]). Let u = (u1, . . . , uN ) ∈ RN and let z = (z2, . . . , zn) ∈
{−1, 1}N−1. Let Az be the N × N symmetric matrix defined by a1j = zj ∈
{±1} for j = 2, . . . , N , aij = −1 for i, j = 2, . . . , N , i 6= j, and aii = 1 for
i = 1, . . . , N. Let Bz = (uiuj(Az)ij)Ni,j=1. Hence

(2.8) Bz =


u2

1 z2u1u2 z3u1u3 . . . zNu1uN

z2u1u2 u2
2 −u2u3 . . . −u2uN

z3u1u2 −u2u3 u2
3 . . . −u2uN

. . . . . . . . . . . . . . .

zNu1uN −u2uN . . . . . . u2
N

 .

Let σ be a permutation of {1, . . . , N} such that σ(1) = 1 and for any x =
(x1, . . . , xN ) ∈ RN , let x− = (x1,−x2, . . . ,−xN ). Then the matrices

Bσ(z) = (uσ(i)uσ(j)(Aσ(z))ij)Ni,j=1, Bz− = ((uiuj(Az−)ij)Ni,j=1

and Bz have the same eigenvalues.

The next lemma is a simple consequence of the Implicit Function Theo-
rem.

Lemma 2.8 ([3]). Let U ⊂ Rl be an open nonempty set and let f :
U × Rn → R and Gi : Rn → R for i = 1, . . . , k be fixed C2 functions. Let
g : U × Rn+k → R be defined by

g(u, x, d) = f(u, x)−
k∑
i=1

diGi(x)

for u ∈ U , x ∈ Rn and d ∈ Rk. Assume that ∂g
∂zj

(u0, x0, d0) = 0 for j =
1, . . . , n+ k and

det
(

∂2g

∂zi∂zj
(u0, x0, d0)

)
6= 0

for some (u0, x0, d0) ∈ U × Rn+k and i, j = 1, . . . , n + k (we do not differ-
entiate with respect to the coordinates of u). Assume that (um, xm, dm) ∈
U × Rn+k and (um, ym, zm) ∈ U × Rn+k are such that (um, xm, dm) →
(u0, x0, d0) and (um, ym, zm) → (u0, x0, d0) with respect to any norm in
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Rl+n+k. If, for any m ∈ N, ∂g
∂zj

(um, xm, dm) = 0 and ∂g
∂zj

(um, ym, zm) = 0
for j = 1, . . . , n+ k then

(um, xm, dm) = (um, ym, zm) for m ≥ m0.

Lemma 2.9 ([3]). Let A ∈ Rn×n be a symmetric matrix. Let λk1 , λk2 be
eigenvalues of A, with λki

of multiplicity ji for i = 1, 2. Assume that for
i = 1, 2, {vij : j = 1, . . . , ji} is an orthonormal basis of the eigenspace of
λki . Define a (j1 + j2)×n matrix V with rows vij , i = 1, 2, j = 1, . . . , ji. Let

(2.9) C =
(
A− λk1 id V T

V 0

)
.

Then det(C) 6= 0.

Lemma 2.10 ([3]). Assume that t ∈ R, let B,E be fixed n× n matrices
and let A be a fixed m×m matrix. Define

(2.10) C(t) =
(
A D

D1 B + tE

)
,

where D is a fixed m×n matrix and D1 is a fixed n×m matrix. If det(C(t)) =∑n
j=0 ajt

j , then
an = det(A) det(E).

Now we prove some other technical results.

Theorem 2.11. Let n = 2 and N = 4. Let z = (z2, z3, z4) be such that
zi = ±1 for i = 2, 3, 4 and zj = −1 for exactly one j ∈ {2, 3, 4}. Let

(2.11) Az = (aij(z)) =


1 z2 z3 z4

z2 1 −1 −1
z3 −1 1 −1
z4 −1 −1 1


and

MA = max
{ 4∑
i,j=1

uiujaij(z)〈xi, xj〉2 : (x1, x2) ∈ (R4)2 satisfy (2.2),

4∑
i=1

u2
i = 1

}
.

Then MA = 4/3.

Proof. By Lemma 2.7, we can assume that z4 = −1. Fix u ∈ R4 with∑4
i=1 u

2
i = 1. Let Bu = (uiujaij(z))4i,j=1. By Lemma 2.2,

MA = max
{
b1(u,A) + b2(u,A) : u ∈ R4,

4∑
i=1

u2
i = 1

}
,
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where b1(u,A) ≥ b2(u,A) denote the two largest eigenvalues of Bu. Put
vi = u2

i for i = 1, . . . , 4. After elementary calculations (see also the file
theorem2.11.nb at our web site) we get

det(Bu − t id) = t4 − t3
4∑
i=1

vi + 4tv3v2(v1 + v4).

Define w = (w1, . . . , w4) by w1 = 0, w4 =
√
u2

1 + u2
4, wi = ui for i = 2, 3.

Observe that by the above formula, Bu and Bw have the same eigenvalues.
Since w1 = 0, by Lemmas 2.5 and 2.6 and Theorems 2.3 and 2.4 applied to
n = 2 and N = 4 we get

b1(u,A) + b2(u,A) ≤ λ3
2 = 4/3,

which completes the proof.

Lemma 2.12. Let n = 2, N = 4 and u ∈ [0, 1/
√

3). Let

(2.12)

B=


u2 u/

√
3 u/

√
3 −u

√
1/3− u2

u/
√

3 1/3 −1/3 −
√

1/3− u2/
√

3
u/
√

3 −1/3 1/3 −
√

1/3− u2/
√

3
−u
√

1/3− u2 −
√

1/3− u2/
√

3 −
√

1/3− u2/
√

3 1/3− u2

.
Then the eigenvalues of B are 2/3 (with multiplicity 2), −1/3 and 0. More-
over,

w1 = (
√

2u, 1/
√

6, 1/
√

6,−
√

2(1− 3u2)/
√

3), w2 = (0,−1/
√

2, 1/
√

2, 0)

are orthonormal eigenvectors corresponding to 2/3, and

w3 = (1, 0, 0, u/
√

1/3− u2)

is an eigenvector corresponding to 0.

Proof. Elementary calculations (see also the file lemma2.12.nb at our
web site).

Lemma 2.13. Let n = 2, N = 4 and u ∈ [0, 1). Let

(2.13) B =


u2 u

√
1− u2/

√
2 u
√

1− u2/
√

2 0
u
√

1− u2/
√

2 (1− u2)/2 (u2 − 1)/2 0
u
√

1− u2/
√

2 (u2 − 1)/2 (1− u2)/2 0
0 0 0 0

 .

Then the eigenvalues of B are

0, (u2 +
√

4u2 − 3u4)/2, 1− u2, (u2 −
√

4u2 − 3u4)/2.



110 B. L. Chalmers and G. Lewicki

Moreover,
w2 = (z/

√
z2 + 2, 1/

√
z2 + 2, 1/

√
z2 + 2, 0),

where
z = (u2 +

√
4u2 − 3u4)/u(

√
2− 2u2),

is an eigenvector corresponding to (u2 +
√

4u2 − 3u4)/2, and

w3 = (0,−1/
√

2, 1/
√

2, 0)

is an eigenvector corresponding to 1− u2. Also

M = max{1− u2 + (u2 +
√

4u2 − 3u4)/2 : u ∈ [1/
√

3, 1]} = 4/3.

Proof. It can be verified by elementary calculations that the above de-
fined numbers are the eigenvalues of B (see the file lemma2.13.nb at our
web site). Also notice that if

f(v) = 1− v/2 +
√

4v − 3v2/2,

then
f ′(v) = −1/2 + (4− 6v)/(4

√
4v − 3v2).

Note that f ′(v) = 0 if and only if 3v2−4v+1 = 0. Hence f ′(1) = f ′(1/3) = 0.
Since f(1) = 1, M = f(1/3) = 4/3. Observe that if u = 1/

√
3 then v = 1/3,

which shows our claim.

Lemma 2.14. Let n = 2, N = 4 and c ∈ [0, 1/
√

3). Let

(2.14) B =


1− 3c2 c

√
1− 3c2 c

√
1− 3c2 c

√
1− 3c2

c
√

1− 3c2 c2 −c2 −c2

c
√

1− 3c2 −c2 c2 −c2

c
√

1− 3c2 −c2 −c2 c2

 .

Then the eigenvalues of B are 2c2 (with multiplicity 2),

(1− 4c2 +
√

1 + 8c2 − 32c4)/2 and (1− 4c2 −
√

1 + 8c2 − 32c4)/2.

Moreover,

w1 = (0, 1/
√

6, 1/
√

6,−2/
√

6), w2 = (0,−1/
√

2, 1/
√

2, 0)

are orthonormal eigenvectors corresponding to 2c2.

Proof. Elementary calculations (see also the file lemma2.14 at our web
site).

Lemma 2.15. Let A = (aij)Ni,j=1 be a symmetric matrix such that aij ∈
{±1} for i, j = 1, . . . , N and aii = 1 for i = 1, . . . , N. Consider the function

(2.15) fNu1,A((u2, . . . , uN ), x1, x2) =
N∑

i,j=1

uiujaij〈xi, xj〉2
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under constraints (2.2) and (2.3). Then there exist x1, x2 ∈ RN satisfy-
ing (2.2) and (u2, . . . , uN ) satisfying (2.3), maximizing fNu1,A

, and such that
x2
N−1 ≥ 0, x2

N = 0, and x1
N−2 ≥ 0.

Proof. Let y1, y2 and (u2, . . . , uN ) be any vectors satisfying (2.2) and
(2.3) and maximizing fNu1,A

. Let V = span[y1, y2]. Since dim(V ) = 2, there
exist linearly independent f1, . . . , fN−2 ∈ RN such that V =

⋂N−2
j=1 ker(f j).

Hence we can find d2 ∈ V \ {0} orthogonal to eN such that d2
N−1 ≥ 0. Set

x2 = d/‖d2‖2. Analogously, we can find d1 ∈ V \ {0} orthogonal to x2 with
d1
N−2 ≥ 0. Set x1 = d1/‖d1‖2. Note that xi ∈ V for i = 1, 2 and they are

orthonormal. By Lemma 2.1, x1, x2 and (u2, . . . , uN ) maximize fNu1,A
, which

completes the proof.

In the following, for fixed N ≥ 4, we will work with a function fNuN−3

instead of fu1 (uN−3 ∈ [0, 1] is fixed). More precisely,

(2.16) fNuN−3
((v1, . . . , vN−4, vN−2, vN−1, vN ), z1, z2) =

N∑
i,j=1

vivj |〈zi, zj〉2|,

where vN−3 = uN−3. Also define, for any N ×N matrix A,

(2.17) fNuN−3,A
((v1, . . . , vN−4, vN−2, vN−1, vN ), z1, z2)

=
N∑

i,j=1

aijvivj〈zi, zj〉2.

The next three theorems show what candidates for maximizing fNuN−3
look

like.

Theorem 2.16. Let A be an N ×N symmetric matrix defined by

(2.18) A =



1 a1,2 . . . a1,N−3 a1,N−2 a1,N−1 a1,N

. . . . . . . . . . . . . . . . . . . . .

aN−3,1 aN−3,2 . . . 1 1 1 aN−3,N

aN−2,1 aN−2,2 . . . 1 1 −1 aN−2,N

aN−1,1 aN−1,2 . . . 1 −1 1 aN−1,N

aN,1 aN,2 . . . aN,N−3 aN,N−2 aN,N−1 1


,

where aij ∈ {−1, 1} for i 6= j. Assume additionally that

aj,N = aN,j = −1

for j = N − 3, N − 2, N − 1. Fix t ∈ R and uN−3 ∈ [0, 1/
√

3). Define
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hNuN−3,A,t
: RN−1 × (RN )2 × R3 × R→ R by

(2.19) hNuN−3,A,t
((v1, . . . , vN−4, vN−2, vN−1, vN ), z1, z2, b1, b2, b12, b4)

= fNuN−3,A
((v1, . . . , vN−4, vN−2, vN−1, vN ), z1, z2)

+ t((vN−1 + vN−2)/
√

1− 3u2
N−3 + vN + z2

N−1 − z2
N−2)

− (b1(〈z1, z1〉N − 1) + b2(〈z2, z2〉N − 1))

− b12〈z1, z2〉N − b4(〈(uN−3, v), (uN−3, v)〉N − 1),

where v = (v1, . . . , vN−4, vN−2, vN−1, vN ). For fixed N ∈ N, define

uN = u = (0, . . . , 0N−4, uN−2, uN−1, uN ),

x1N = x1 = (0, . . . , 0N−4, x
1
N−3, x

1
N−2, x

1
N−1, x

1
N ),

x2N = x2 = (0, . . . , 0N−4, x
2
N−3, x

2
N−2, x

2
N−1, x

2
N )

and
dN = d = (d1, d2, d12, d4).

Here uN−2 = uN−1 = 1/
√

3, uN =
√

1/3− u2
N−3, x

1
N−3 =

√
2uN−3, x

1
N−2 =

x1
N−1 = 1/

√
6, x1

N = −
√

2(1− 3u2
N−3)/

√
3, x2

N−3 = 0, x2
N−2 = −x2

N−1 =
−1/
√

2, x2
N = 0, d1 = 2/3, d2 = 2/3 + t/

√
2, d12 = 0 and d4 = 4/3 +

t/(2
√

1/3− u2
N−3). Then

(E)
∂hNuN−3,A,t

∂wj
(x1, x2, u, d) = 0

for j = 1, . . . , 3N + 3 where

wj ∈ {v1, . . . , vN−4, vN−2, vN−1, vN , z
i
k (i = 1, 2, k = 1, . . . , N)},

j = 1, . . . , 3N − 1,

and
wj ∈ {b12, b1, b2, b4}, j = 3N, . . . , 3N + 3.

(We do not differentiate with respect to uN−3.)

Proof. Notice that for

wj ∈ {zik : i = 1, 2, k = 1, . . . , N}
the equation (E) follows from the fact that (for N = 4) xi4 = xi, i = 1, 2, are
orthonormal eigenvectors of the matrix B defined by (2.12) corresponding
to the eigenvalues di, i = 1, 2, which has been established in Lemma 2.12.
Also for

wj ∈ {b12, b1, b2, b4}
the equation (E) follows immediately from the fact that 〈xi, xj〉N = δij for
i, j = 1, 2, i ≤ j and 〈(uN−3, u), (uN−3, u)〉N = 1.
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To end the proof, we show that (E) holds for

wj ∈ {v1, . . . , vN−4, vN−2, vN−1, vN}.

Notice that, for i = 1, . . . , N − 4,

∂hNuN−3,A,t

∂vi
(x1, x2, u, d) = 2

N∑
j=1

ujaij〈xi, xj〉2 − 2uid4 = 0

since xi = 0 and ui = 0 for i = 1, . . . , N − 4. Now assume that wj = vN−2.
Then the derivative equals

2
N∑
j=1

ujaN−2,j〈xN−2, xj〉2 + t/
√

1− 3u2
N−3 − 2uN−2d4

= 2
(
u2
N−3/

√
3 + 1/

√
3 + (1/3

√
3)(1− 3u2

N−3) + t/2
√

1− 3u2
N−3 −uN−2d4

)
= 2
(
(4/3)/

√
3 + t/2

√
1− 3u2

N−3 − (4/3)uN−2 − (t/2
√

1/3− u2
N−3)uN−2

)
= 0.

The same calculation works for i = N − 1. If i = N, then we obtain

2
N∑
j=1

ujaN,j〈xN , xj〉2 + t− 2uNd4

= 2
(
2u2

N−3

√
1− 3u2

N−3/
√

3 + 2
√

1− 3u2
N−3/3

√
3 + t/2

+ (2/3)(1− 3u2
N−3)

√
1/3− u2

N−3 − uNd4

)
= 2
(
2u2

N−3

√
1/3− u2

N−3 + (4/3)
√

1/3− u2
N−3 + t/2

− 2u2
N−3

√
1/3− u2

N−3 − d4uN
)

= 0,

which completes the proof.

Theorem 2.17. Let A be as in (2.18). Fix t ∈ R and uN−3 ∈ [1/
√

3, 1).
Define hNuN−3,A,t

: RN−1 × (RN )2 × R3 × R→ R by

hNuN−3,A,t
((v1, . . . , vN−4, vN−2, vN−1, vN ), z1, z2, b1, b2, b12, b4)

=
N∑

i,j=1

aijvivj〈zi, zj〉2 + t(uN−2 + uN−1 + z2
N−1 − z2

N−2)

− (b1〈z1, z1〉N − 1) + b2(〈z2, z2〉N − 1))

− b12〈z1, z2〉N − b4(〈(uN−3, v), (uN−3, v)〉N − 1),



114 B. L. Chalmers and G. Lewicki

where v = (v1, . . . , vN−4, vN−2, vN−1, vN ). For fixed N ∈ N, define

uN = u = (0, . . . , 0N−4, uN−2, uN−1, uN ),

x1N = x1 = (0, . . . , 0N−4, x
1
N−3, x

1
N−2, x

1
N−1, x

1
N ),

x2N = x2 = (0, . . . , 0N−4, x
2
N−3, x

2
N−2, x

2
N−1, x

2
N )

and
dN = d = (d1, d2, d12, d4).

Here uN−2 = uN−1 =
√

(1− u2
N−3)/2, uN = 0, x1

N−3 = 0, x1
N−2 = −x1

N−1

= −1/
√

2, x1
N = 0, x2

N−2 = x2
N−1 = 1/

√
2 + w2, x2

N−3 = w/
√

2 + w2,
x2
N = 0, d1 = 1− u2

N−3,

d2 = (u2
N−3 +

√
4u2

N−3 − 3u4
N−3)/2 + t/

√
2,

d12 = 0 and d4 = 1 + uN−3w
uN−2(2+w2)

+ t/(2uN−1), where

w =
u2
N−3 +

√
4u2

N−3 − 3u3
N−3

uN−3

√
2− 2u2

N−3

.

Then

(E)
∂hNuN−3,A,t

∂wj
(x1, x2, u, d) = 0

for j = 1, . . . , 3N + 3 where

wj ∈ {v1, . . . , vN−4, vN−2, vN−1, vN , z
i
k (i = 1, 2, k = 1, . . . , N)},

j = 1, . . . , 3N − 1,

and
wj ∈ {b12, b1, b2, b4}, j = 3N, . . . , 3N + 3.

(We do not differentiate with respect to uN−3.)

Proof. Notice that for

wj ∈ {zik : i = 1, 2, k = 1, . . . , N}
the equation (E) follows from the fact that (for N = 4) xi4 = xi, i = 1, 2, are
orthonormal eigenvectors of the matrix B defined by (2.13) corresponding
to the eigenvalues di, i = 1, 2, which has been established in the proof of
Lemma 2.13. Also for

wj ∈ {b12, b1, b2, b4}
the equation (E) follows immediately from the fact that 〈xi, xj〉N = δij for
i, j = 1, 2, i ≤ j, and 〈(uN−3, u), (uN−3, u)〉N = 1.

To end the proof, we show that (E) holds for

wj ∈ {v1, . . . , vN−4, vN−2, vN−1, vN}.
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Notice that for i = 1, . . . , N − 4, N ,

∂huN−3,t

∂vi
(x1, x2, u, d) = 2

N∑
j=1

ujaij〈xi, xj〉2 + t− 2uid4 = 0

since xi = 0 and ui = 0 for i = 1, . . . , N−4, N. Now assume that wj = vN−2.
Then the derivative equals

2
( N∑
j=1

ujaN−2,j〈xN−2, xj〉2 + t/2− uN−2d4

)
= 2((uN−3w)/(2 + w2) + uN−2 + t/2− uN−2d4) = 0.

Since uN−2 = uN−1, the same calculations work for i = N − 1, which
completes the proof.

Reasoning as in Theorems 2.16 and 2.17 and applying Lemma 2.14 we
can show

Theorem 2.18. Let A be as in (2.18). Assume additionally that

1 = aN,N−3 = −aN,N−2 = −aN,N−1.

Fix t ∈ R and uN−3 ∈ [0, 1). Define hNuN−3,A,t
: RN−1× (RN )2×R3×R→ R

by

hNuN−3,A,t
((v1, . . . , vN−4, vN−2, vN−1, vN ), z1, z2, b1, b2, b12, b4)

=
N∑

i,j=1

aijvivj〈zi, zj〉2 + t(uN + uN−2 + uN−1 + z2
N−1 − z2

N−2)

− (b1(〈z1, z1〉N − 1) + b2(〈z2, z2〉N − 1))

− b12〈z1, z2〉N − b4(〈(uN−3, v), (uN−3, v)〉N − 1),

where v = (v1, . . . , vN−4, vN−2, vN−1, vN ). For fixed N ∈ N, define

uN = u = (0, . . . , 0N−4, uN−2, uN−1, uN ),

x1N = x1 = (0, . . . , 0N−4, x
1
N−3, x

1
N−2, x

1
N−1, x

1
N ),

x2N = x2 = (0, . . . , 0N−4, x
2
N−3, x

2
N−2, x

2
N−1, x

2
N )

and
dN = d = (d1, d2, d12, d4).

Here uN−2 = uN−1 = uN =
√

(1− u2
N−3)/3, x1

N−2 = x1
N−1 = 1/

√
6, x1

N =
−2/
√

6, x2
N−2 = −x2

N−1 = −1/
√

2, x2
N = 0 d1 = 2c2, d2 = 2c2 + t/

√
2

d12 = 0 and d4 = 4c2 + t/(2uN ), where c =
√

(1− u2
N−3)/3. Then

∂hNuN−3,A,t

∂wj
(x1, x2, u, d) = 0
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for j = 1, . . . , 3N + 3 where

wj ∈ {v1, . . . , vN−4, vN−2, vN−1, vN , z
i
k (i = 1, 2, k = 1, . . . , N)},

j = 1, . . . , 3N − 1,

and
wj ∈ {b12, b1, b2, b4}, j = 3N, . . . , 3N + 3.

(We do not differentiate with respect to uN−3.)

Lemma 2.19. Let A be as in Theorem 2.16. For fixed uN−3 ∈ [0, 1/
√

3)
and t > 0 define gNuN−3,A,t

: RN−1 × (RN )2 → R by

gNuN−3,A,t
((v1, . . . , vN−4, vN−2, vN−1, vN ), y1, y2) =

N∑
i,j=1

vivjaij〈yi, yj〉2

+ tg1,N
uN−3

((v1, . . . , vN−4, vN−2, vN−1, vN ), y1, y2),

where vN−3 = uN−3 is fixed, and

g1,N
uN−3

((v1, . . . , vN−4, vN−2, vN−1, vN ), y1, y2)

= (vN + (vN−2 + vN−1)/
√

1− 3v2
N−3 + y2

N−1 − y2
N−2).

Let MN
uN−3,A,t

= max gNuN−3,A,t
under the constraints

〈yi, yj〉N = δij , 1 ≤ i ≤ j ≤ 2,
N∑
j=1

v2
j = 1.

Assume that uN−3 ∈ [0, 1/
√

3) is so chosen that

MN
uN−3,A,0

= guN−3,A,0(uN , x1, x2),

where uN , x1, x2 are as in Theorem 2.16. Set
(2.20)

DN
uN−3

= {(v1, . . . , vN−4, vN−2, vN−1, vN , y
1, y2) : y2

N = 0, y1
N−2 ≥ 0}.

Then
XN
uN−3

= (uN , x1, x2)

is the only point maximizing gNuN−3,A,t
satisfying (2.2) and (2.3) belonging

to DN
uN−3

.

Proof. Let

Y N
uN−3

= ((v1, . . . , vN−4, vN−2, vN−1, vN ), y1, y2) ∈ DN
uN−3

maximize gNuN−3,A,t
and satisfy (2.2) and (2.3). Notice that g1,N

uN−3 (as a func-
tion of v = (v1, . . . , vN−4, vN−2, . . . , vn) and y2) attains its maximum under
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constraints (2.2) and (2.3) only at

v = (0, . . . , 0N−4, 1/
√

3, 1/
√

3,
√

1/3− u2
N−3)

and
y2 = (0, . . . , 0N−3,−1/

√
2, 1/
√

2, 0).

Since g1,N
uN−3 does not depend on y1, t > 0, and the maximum of gNuN−3,A,0

is attained at XN
uN−3

, we have vi = 0 for i = 1, . . . , N − 4, vN−2 = vN−1 =
1/
√

3, vN = uN and y2 = x2. Since x1, x2 are eigenvectors of A, by Lemma
2.2, span[yi : i = 1, 2] = span[xi : i = 1, 2]. Note that

〈x1, x2〉N = 〈y1, x2〉N = 0.

Hence y1 = dx1. Since 〈y1, y1〉N = 1, y1
N−2 ≥ 0 and x1

N−2 > 0, it follows
that x1 = y1, as required.

Remark 2.20. Lemma 2.19 remains true (with the same proof) if we
replace the function g1,N

uN−3 by

g2,N
uN−3

((v1, . . . , vN−4, vN−2, vN−1, vN ), y1, y2) = vN−2 +vN−1 +y2
N−2−y2

N−1,

and XN
uN−3

and A from Theorem 2.16 by XN
uN−3

and A from Theorem 2.17.
Also the statement of Lemma 2.19 remains true if we replace g1,N

uN−3 by

g3,N
uN−3

((v1, . . . , vN−4, vN−2, vN−1, vN ), y1, y2)

= vN−2 + vN−1 + vN + y2
N−2 − y2

N−1,

and XN
uN−3

and A from Theorem 2.16 by those from Theorem 2.18.

Now we demonstrate two crucial technical results for our proof of the
Grünbaum conjecture.

Theorem 2.21. Fix N ≥ 4 and uN−3 ∈ [0, 1/
√

3). Let A and

XN
uN−3

= (uN , x1, x2, d = d(t))

be as in Theorem 2.16. Let

MN
uN−3,A,t

= max gNuN−3,A,t
,

where gNuN−3,A,t
has been defined in Lemma 2.19, under the constraints

〈yi, yj〉N = δij , 1 ≤ i ≤ j ≤ 2,
N∑

j=1, j 6=N−3

v2
j = 1− u2

N−3.

Assume that uN−3 ∈ [0, 1/
√

3) is so chosen that

MN
uN−3,A,0

= fNuN−3,A
(XN

uN−3
).
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Denote by DN
u,A,t the (3N + 2)× (3N + 2) matrix defined by

(2.21) DN
u,A,t =

(
∂2(hNuN−3,A,t

)

∂wi∂wj
(x1, x2, u, d1(t), d2(t), d12(t), d4(t))

)3N+2

i,j=1

,

where

wi, wj ∈ {v1, . . . , vN−4, vN−2, vN−1, vN , y
1
j (j = 1, . . . , N)}

∪ {y2
j (j = 1, . . . , N − 1), b1, b2, b1,2, b4}

(we do not differentiate with respect to uN−3 and y2
N ). Assume that

det(DN
u,A,t) =

k∑
j=o

cj,N (u)tj

and cj,N (uN−3) 6= 0 for some j ∈ {1, . . . , k}. Then there exists an open inter-
val UN ⊂ [0, 1/

√
3) (UN = [0, w) if uN−3 = 0) such that uN−3 ∈ UN and for

any u ∈ UN the function fNu,A attains its global maximum under constraints
(2.2) and (2.3) at (uN , x1, x2) (corresponding to u) defined in Theorem 2.16.
The same result holds true if we replace the function gNu,A,t from Theorem
2.16 by the one from Theorem 2.17 and we assume that uN−3 ∈ [1/

√
3, 1).

In this case (x1, x2, uN , d1(t), d2(t), d12(t), d4(t)) are as in Theorem 2.17.

Proof. Fix N ≥ 4 and uN−3 ∈ [0, 1/
√

3) satisfying our assumptions. Let
j0 = min{j ∈ {0, . . . , 2(N −4)+4} : cj,N (uN−3) 6= 0}. For (u, t) ∈ [0, 1)×R,
set

h(t, u) =
2(N−4)+4∑
j=j0

cj,N (u)tj−j0 .

Since cj0,N (uN−3) 6= 0, and cj,N are continuous, there exists an open interval
U ⊂ [0, 1/

√
3) and δ > 0 such that uN−3 ∈ U and

h(t, u) 6= 0

for u ∈ U and |t| < δ. Fix t0 ∈ (0, δ). Set

Ut0 = {u ∈ U : MN
u,A,t0 = gNu,A,t0(XN

u )}.
Note that uN−3 ∈ Ut0 .

Now we show that Ut0 is an open set. Let u0 ∈ Ut0 . Assume on the
contrary that there exist zn ∈ U \Ut0 such that zn → u0. For any u ∈ U, let

Zu,t0 = Zu = (v1,u, . . . , vN−4,u, vN−2,u, vN−1,u, vN,u, x
1u, x2u, x3u)

be a point maximizing gNu,A,t0 under constraints (2.2) and (2.3). Since the
function (fNu,A − gNu,A,t0)((v1, . . . , vN−4, vN−2, vN−1, vN ), z1, z2) is indepen-
dent of z1, and by Lemma 2.15, without loss of generality, the function
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gNu,A,t0 can be considered as a function of 3N + 2 variables (we can put
z2
N = 0). Consequently, we can assume that

Zu ∈ DN
u

(see (2.20)). By (2.2) and (2.3), passing to a convergent subsequence if nec-
essary, we find that Zzn → Z. By definition of DN

u0
, Z ∈ DN

u0
. Also by the

continuity of the function

(v, Y ) 7→
N∑

i,j=1

vivjaij〈yi, yj〉2

+ t0((vN−1 + v+N−2)/
√

1− 3u2
n + vN + y2

N−1 − y2
N−2)

we have
gu0,A,t0(Z) = Mu0,A,t0 .

By Lemma 2.19, XN
u0

is the only point in DN
u0

which maximizes gNu,A,t0 , and
Z ∈ DN

u0
. Hence Z = XN

u0
. Moreover, since XN

u0
∈ int(DN

u0
), by the Lagrange

Multiplier Theorem, there exists

Mzn = Mzn(t0) = (dn1 , d
n
2 , d

n
12, d

n
4 ) ∈ R4

such that

(2.22)
∂hNu,A,t0
∂wi

(Zzn ,Mzn) = 0

for wi ∈ X ∪DD; here hNu,A,t is defined by (2.19) (see Theorem 2.16) and

DD = {d1, d2, d12, d4}.

Also by (2.2), (2.3), the proof of Lemma 2.2 given in [3] and (2.22),

Mzn → Lu0 = Lu0(t0) = (d1, d2, d12, d4),

where Lu0 is defined in Theorem 2.16 for t = t0 and uN−3 = u0. Now we
apply Lemma 2.8. Define G : U × R2N−1 × RN−1 × R4 → R3N+2 by

G(u, x, v,Q) =
(
∂hu,A,t0
∂w1

(u, x, v,Q), . . . ,
∂ht0,u
∂w3N+2

(u, x, v,Q)
)
/t
j0/(3N+2)
0

for wi ∈ X ∪DD. Notice that by (2.22),

G(zn, Zzn ,Mzn) = 0.

Also G(zn, Xzn , Lzn(t0)) = 0, where (Xzn , Lzn(t0)) are defined for zn and t0
in Theorem 2.16. Moreover,

(zn, Zzn ,Mzn)→ (u0, Xu0 , Lu0) and (zn, Xzn , Lzn)→ (u0, Xu0 , Lu0).
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Notice that

det
(
∂G

∂wj
(u0, Xu0 , Lu0)

)
=

det(Du0,A,t0)

(tj0/(3N+2)
0 )3N+2

=
k∑

j=j0

cj,N (u0)tj−j00 = h(t0, u0) 6= 0,

by definition of j0 and t0. By Lemma 2.8 applied to the function G, we
have Zzn = Xzn and Mzn = Lzn for n ≥ n0. Hence zn ∈ Ut0 for n ≥ n0, a
contradiction. This shows that Ut0 is an open set.

It is clear that Ut0 is closed. Since uN−3 ∈ Ut0 and U is connected,
Ut0 = U. Consequently, for any n ∈ N with n ≥ n0 and u ∈ U, the functions
gNu,A,1/n achieve their maximum at u1, . . . , uN−4, uN−2, . . . , , uN−1, uN , x

1, x2

(corresponding to uN−3 = u0) defined in Theorem 2.16. Since gNu,A,1/n tends
uniformly to gNu,A,0 = fNu,A, on the set defined by (2.2) and (2.3), with u ∈
U fixed, fNu,A attains its maximum at u1, . . . , uN−4, uN−2, uN−1, uN , x

1, x2

defined in Theorem 2.16 for any u ∈ U.
By Theorem 2.17, reasoning exactly in the same way as above we can de-

duce our conclusion for the function fNu,A determined by A given in Theorem
2.17. The proof is complete.

Now we prove that the assumptions of Theorem 2.21 concerning DN
u,A,t

are satisfied.

Theorem 2.22. Let A, d(t) = (d1(t), d2(t), d12(t), d4(t)), and (uN , x1, x2)
be as in Theorem 2.16. Let DN

u,A,t be defined by (2.21). Then for any uN−3 =
u ∈ [0, 1/

√
3) and t ∈ R,

det(DN
u,A,t) =

2(N−4)+4∑
j=0

cj,N (u)tj ,

where the functions cj,N are continuous for j = 0, . . . , 2(N − 4) + 4 and

c2N−4,N (u) 6= 0.

The same holds if we replace A, (d(t), uN , x1, x2) from Theorem 2.16 by
those from Theorem 2.17 and assume that uN−3 = u ∈ [1/

√
3, 1).

Proof. First we assume that N = 4. Let g4
u1,A,t

be as in Theorem 2.16.
We will differentiate the function h4

u1,A,t
given in Theorem 2.16 with respect

to the following variables:

(w1, . . . , w8) = (x1
1, x

1
2, x

1
3, x

1
4, b1, b2, b12, b4)

and
(w9, . . . , w14) = (x2

1, x
2
2, x

2
3, v2, v3, v4).
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Set

X = (x1, b, b, x4, 0,−1/
√

2, 1/
√

2, 0),
BB = (b1, b2, 0, z) and v = (u1, c, c, u4).

By elementary but tedious calculations (see also the file theorem2.22a.nb at
our web site) the 14× 14 symmetric matrix C = D4

u1,A,t
(X,BB, v) is given

by

(2.23) C =
(
D1 B

BT D2

)
where

(2.24)

D1 =



2(u2
1 − b1) 2cu1 2cu1 −2u1u4 −2x1 0 0

2cu1 2(c2 − b1) −2c2 −2cu4 −2b 0 1/
√

2

2cu1 −2c2 2(c2 − b1) −2cu4 −2b 0 −1/
√

2

−2u1u4 −2cu4 −2cu4 2(u2
4 − b1) −2x4 0 0

−2x1 −2b −2b −2x4 0 0 0

0 0 0 0 0 0 0

0 1/
√

2 −1/
√

2 0 0 0 0


,

(2.25) D2 =

0 0 0 0 −2c −2c −2u4

0 2(u2
1 − b2) 2cu1 2cu1 −

√
2u1

√
2u1 0

0 2cu1 2(c2 − b2) −2c2 −3
√

2c −
√

2c 0

0 2cu1 −2c2 2(c2 − b2)
√

2c 3
√

2c 0

−2c −
√

2u1 −3
√

2c
√

2c 1 + 2(b2 − z) 1− 2b2 −2bx4

−2c
√

2u1 −
√

2c 3
√

2c 1− 2b2 1 + 2(b2 − z) −2bx4

−2u4 0 0 0 −2bx4 −2bx4 2(x2
4 − z)


and

(2.26) BT =

0 0 0 0 0 0 0

0 0 0 0 0 0 −x1

0 0 0 0 0
√

2 −b
0 0 0 0 0 −

√
2 −b

2bu1 2(cb+ u1x1 − u4x4) −2cb −2bu4 0 0 0

2bu1 −2cb 2(cb+ u1x1 − u4x4) −2bu4 0 0 0

−2u1x4 −2cx4 −2cx4 4(u4x4 − u1x1/2− cb) 0 0 0

.

Notice that in the 6th row of C the only non-zero elements are c6,10 =
−c6,11 =

√
2 and in the 8th row of C the only elements which could be

different from 0 are c8,12 = c8,13 = −2c and c8,14 = −2u4. Consequently,
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applying the symmetry of C, adding the 10th row to the 11th, the 10th
column to the 11th column, subtracting the 14th row multiplied by c/u4

from the 12th and 13th rows, and subtracting the 14th column multiplied
by c/u4 from the 12th and the 13th columns, we obtain

det(C) = 8u2
4 det(A),

where A is a 10× 10 symmetric matrix of the form

(2.27) A =
(

A1 F

F T A2

)
with

(2.28)

A1 =



2(u2
1 − b1) 2cu1 2cu1 −2u1u4 −2x1 0

2cu1 2(c2 − b1) −2c2 −2cu4 −2b 1/
√

2
2cu1 −2c2 2(c2 − b1) −2cu4 −2b −1/

√
2

−2u1u4 −2cu4 −2cu4 2(u2
4 − b1) −2x4 0

−2x1 −2b −2b −2x4 0 0
0 1/

√
2 −1/

√
2 0 0 0


,

(2.29)

A2 =


2(u2

1 − b2) 4cu1 −
√

2u1

√
2u1

4cu1 −4b2 −2
√

2c 2
√

2c
−
√

2u1 −
√

2c a3,3 − (2 + 2c/(u4)2)z a3,4 − 2(c/(u4)2)z√
2u1

√
2c a4,3 − 2(c/(u4)2)z a4,4 − (2 + 2c/(u4)2)z

,
where a3,4 = a4,3 and a3,3 = a4,4 do not depend on b2 and z. Also observe
that the entries of BT do not depend on b2 and z, hence the same is true
for F. Now we calculate the coefficient c4,4(u1) of det(D4

u1,A,t
). To do this,

we apply Lemmas 2.9 and 2.10. Notice that

det(C(t)) = det(D4
u1,A,t(X,BB, v)) = 8u2

4 det(A(t)),

where C(t) and A(t) denote the above matrices C and A with z replaced
by z + t/(2u4), b2 = b1 + t/

√
2 and with x1 =

√
2u1, b = 1/

√
6, x4 =

−
√

2(1− 3u2
1)/
√

3. By Lemma 2.10,

c4,4(u1) = 8u2
4 det(A1) det(E),

where

(2.30) E =


−
√

2 0 0 0
0 −2

√
2 0 0

0 0 −(u2
4 + c)/u3

4 −c/u3
4

0 0 −c/u3
4 −(u2

4 + c)/u3
4

.
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Since u1 ∈ [0, 1/
√

3) and u4 =
√

1/3− u2
1 > 0, E is well-defined and

det(E) 6= 0. Notice that by Theorem 2.16 and Lemma 2.9, det(A1) 6= 0.
Consequently,

c4,4(u1) = 8u2
4 det(A1) det(E) 6= 0,

which shows our claim.
Now assume that N = 4 and let A, (x1, x2, u4, d) be as in Theorem 2.17.

In this case we have u4 = 0 and x1
4 = 0. Reasoning in a similar way (see also

the file theorem2.22b.nb at our web site) we get

det(C) = 8(1− u2
1) det(A),

where A is a 10× 10 symmetric matrix of the form

(2.31) A =
(

A1 F

F T A2

)
,

where A1 is as in the previous case and

(2.32) A2 =


2(u2

1 − b2) 4cu1

√
2u1 0

4cu1 −4b2 4
√

2c 0
2
√

2u1 4
√

2c d3,3 − 4z 0
0 0 0 −2z

 ,

Also, as in the previous case, the entries of F do not depend on z or b2.
Moreover, the entries of A1 and A2 do not depend on aN,j for j = N − 3,
N − 2, N − 1, which are not fixed, for A given by (2.18), as they were in
Theorem 2.16. Now we calculate the coefficient c4,4(u1) of det(D4

u1,A,t
). To

do this, we apply Lemmas 2.9 and 2.10. Notice that

det(C(t)) = det(D4
u1,A,t(X,BB, v)) = 4(1− u2

1) det(A(t)),

where C(t) and A(t) denote the above matrices C and A with z replaced
by z + t/(2u3) and b2 = b1 + t/

√
2 and with x1 = 0, b = 1/

√
2, x4 = 0. By

Lemma 2.10,
c4,4(u1) = 4(1− u2

1) det(A1) det(E),
where

(2.33) E =


−
√

2 0 0 0
0 −2

√
2 0 0

0 0 −2/u3 0
0 0 0 −4/u3

 .

Since u1 ∈ [0, 1) and u3 =
√

1− u2
1 > 0, E is well-defined and det(E) 6= 0.

Notice that by Theorem 2.17 and Lemma 2.9, det(A1) 6= 0. Consequently,

c4,4(u1) = 4(1− u2
1) det(A1) det(E) 6= 0,

which shows our claim.
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Now take any N > 4. We show that the proof of this case practically
reduces to the proof given for N = 4. First assume that A, (x1, x2, uN , d(t))
are as in Theorem 2.16. We will differentiate with respect to the following
variables:

(w1, . . . , w3(N−4)) = (x1
1, x

2
1, u1, . . . , x

1
N−4, x

2
N−4, uN−4),

(w3(N−4)+1, . . . , w3N+2)

=(x1
N−3, x

1
N−2, x

1
N−1, x

1
N , x

2
N−3, x

2
N−2, x

2
N−1, b1, b2, b12, b4, uN−2, uN−1, uN ).

(We do not differentiate with respect to x2
N and uN−3.) Now we show that

(since uj = x1
j = x2

j = 0 for j = 1, . . . , N − 4) the matrix CN corresponding
to our case has the form

(2.34) CN =


W1 0 . . . 0 0

0 W2 . . . 0 0
. . . . . . . . . . . . . . .

0 0 . . . WN−4 0
0 0 . . . 0 C4

 ,

where C4 denotes the matrix obtained for

X = (x1
N−3, x

1
N−2, x

1
N−1, x

1
N , x

2
N−3, x

2
N−2, x

2
N−1, x

2
N ),

u4 = (uN−3, uN−2, uN−1, uN ), b = (d1(t), d2(t), d12(t), d4(t))

in the case N = 4. Here, for i = 1, . . . , N − 4,

(2.35) Wi =

 −2b1 0 wi,1

0 −2b2 wi,2

wi,1 wi,2 −2z

 ,

where

wi,k =
N∑

j=N−3

aijujx
k
j

for k = 1, 2. Indeed for any j = 1, . . . , N ,

∂hNu1,A,t

∂x1
j

(x1, x2, u, d(t)) = 2
( N∑
k=1

ajkx
1
kujuk − d12(t)x2

j − d1(t)x1
j

)
and

∂hNu1,A,t

∂uj
(x1, x2, u, d(t)) = 2

( N∑
k=1

ajkuk〈xj , xk〉2 − d4(t)uj
)
.

Hence for any j = 1, . . . , N − 4,
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∂2hNu,A,t
∂x1

j∂wl
(x1, x2, u, d(t)) = 0

for wl 6= x1
j and wl 6= uj . The same reasoning applies if we differentiate with

respect to x2
j , j = 1, . . . , N − 4. Analogously, for j = 1, . . . , N − 4,

∂2hNu1,A,t

∂uj∂wl
(x1, x2, u, d(t)) = 0

for wl 6= xij , i = 1, 2 and wl 6= uj . Also for

wk, wj ∈ {x1
N−3, x

1
N−2, x

1
N−1, x

1
N , x

2
N−3, x

2
N−2, x

2
N−1, uN−2, uN−1, uN}

∪ {b1, b2, b12, b4}
we have

∂2hNu1,A,t

∂wj∂wk
(x1, x2, uN , d) =

∂2h4
u1,A,t

∂wj∂wk
(z1, z2, v, d),

where h4
u1,A,t

is the function from Theorem 2.16 corresponding to N = 4
and

z1 = (x1
N−3, x

1
N−2, x

1
N−1, x

1
N ),

z2 = (x2
N−3, x

2
N−2, x

2
N−1), v = (uN−2, uN−1, uN ).

This shows our claim concerning the matrix CN .
Since wi,k for k = 1, 2 and i = 1, . . . , N − 4 do not depend on b2 and in

our situation b1 = 2/3, b2 = 2/3 + t/
√

2, z = 4/3 + t/(2un) by the proof
given in the case N = 4,

c4+2(N−4),N (uN−3) 6= 0

for any uN−3 ∈ [0, 1/
√

3), which completes the proof for N > 4 in the case
of A from Theorem 2.16. The case of A from Theorem 2.17 and N > 4 can
be proved in exactly the same way, so we omit it.

3. A proof of the Grünbaum conjecture. Our proof of the Grün-
baum conjecture uses an induction argument. Notice that by Lemma 2.5 we
have λ3

2 = 4/3. First we show that λ4
2 = 4/3. Then assuming λN2 = 4/3 we

demonstrate that λN+1
2 = 4/3.

Theorem 3.1. Fix N ∈ N with N ≥ 4 and uN−3 ∈ [0, 1]. Let

fNuN−3
(u1, . . . , uN−4, uN−2, uN−1, uN , x

1, x2) =
N∑

i,j=1

uiuj |〈xi, xj〉2|.

Let Mu,N = max fNu under constraints (2.2) and (2.3). Then for any uN−3 ∈
[0, 1/

√
3),

MuN−3,N = 4/3,
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and for any uN−3 ∈ [1/
√

3, 1],

MuN−3,N = 1 + (
√

4u2
N−3 − 3u4

N−3 − u2
N−3)/2.

Proof. We proceed by induction on N. First assume N = 4. Define

U4 = {u1 ∈ [0, 1/
√

3) : Mu1,4 = 4/3}.

By Lemmas 2.5 and 2.6, 0 ∈ U4. Now we show that U4 is an open set. Fix
u1 ∈ U. First we consider the case u1 = 0. We apply Theorems 2.21 and
2.22. Assume that there exist {wn} ⊂ R+ with wn → 0 and wn /∈ U for any
n ∈ N. Let (Zwn ,Mwn(t)) be as in the proof of Theorems 2.21. Passing to a
convergent subsequence if necessary, and reasoning as in Theorem 2.21, we
can assume that (Zwn ,Mwn(t))→ (X0, L0). Let Zwn = (w4

n, z1n, z2n). Since
Zwn → X0 we have

sgn 〈zin, zjn〉2 = aij

for i, j = 2, 3, 4 and n ≥ n0, where the matrix aij is given by (2.18) for
N = 4. Without loss of generality, passing to a convergent subsequence if
necessary we can assume that for n ≥ n0,

sgn 〈z1n, zjn〉2 = zj

for j = 2, 3, 4, where zj = ±1. By Lemma 2.7 we have to consider two cases:

(a) z2 = z3 = z4 = 1;
(b) z2 = z3 = 1, z4 = −1.

If (a) holds true, then by Theorems 2.21, 2.18 (applied to uN−3 = 0) and
2.22 we get

Mwn,4 = 4(1− w2
n)/3 < 2/3 + 2/3 = 4/3

for n≥ n0, which by Theorem 2.16 leads to a contradiction. (Since u1 = 0,
D4
u1,A,t

is the same for h4
u1,A,t

from Theorem 2.18 as for hu1,A,t from Theorem
2.16). If (b) holds true, by Theorems 2.11, 2.22 and 2.16 we get a contradic-
tion with Theorem 2.21. Consequently, there exists an interval [0, v) ⊂ U4.

Now assume that v = u1 ∈ U and v > 0. Assume wn → v and wn /∈ U4

for n ∈ N. Let (Zun ,Mun) be as in Theorem 2.21. Without loss of generality
we can assume that (Zwn ,Mwn(t))→ (Xv, Lv(t)). Let Zwn = (w4

n, z1n, z2n).
Since Zwn → Xv we have

sgn 〈zin, zjn〉2 = aij

for i, j = 1, 2, 3, 4 for n ≥ n0, where the matrix (aij) is as in Theorem 2.16 for
N = 4. Applying Theorem 2.21, we get wn ∈ U for n ≥ n0, a contradiction.
Hence the set U4 is open.

It is easy to see that U4 is also closed. Since 0 ∈ U4 and [0, 1/
√

3) is
connected, U4 = [0, 1/

√
3). Observe that by the continuity of the function
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uN−3 7→ fNuN−3
, we get

M1/
√

3,4 = 4/3.

Now define

W4 = {u1 ∈ [1/
√

3, 1) : Mu1,4 = 1 + (
√

4u2
1 − 3u4

1 − u2
1)/2}.

By the above reasoning 1/
√

3 ∈W4. Let v = u1 ∈W4. Assume that wn → v
and wn /∈ W4. Applying Theorem 2.17 and proceeding as above we find
that (Zwn ,Mwn(t)) → (Xv, Lv(t)). Also reasoning as above, passing to a
convergent subsequence if necessary, we can assume that

f4
wn

= f4
wn,A,

where A is a fixed matrix satisfying (2.18). By Theorems 2.17, 2.21 and 2.22,
wn ∈ W4 for n ≥ n0, a contradiction. Hence W4 is an open set. Reasoning
as above we get

W4 = [1/
√

3, 1),

which completes the proof for N = 4. (It is easy to see that M1,4 = 1.)
Now assume that our formula for MuN−3,N holds true. We will show that

it holds for MuN+1−3,N+1. We will proceed in the same way as in the case
N = 4. Define

UN+1 = {uN−2 ∈ [0, 1/
√

3) : MuN−2,N+1 = 4/3}.
By the induction hypothesis and Lemma 2.6, 0 ∈ UN+1. Reasoning as in the
N = 4 case and applying Theorems 2.16, 2.18, 2.21 and 2.22, we show that
UN+1 is an open set. It is clear that it is closed. Hence UN+1 = [0, 1/

√
3).

Again by the continuity of uN+1−3 7→ fN+1
uN+1−3

we get

M1/
√

3,N+1 = 4/3.

Define

WN+1

= {uN−2 ∈ [1/
√

3, 1) : MuN−2,N+1 = 1 + (
√

4u2
N−2 − 3u4

N−2 − u2
N−2)/2}.

By the above reasoning 1/
√

3 ∈ WN+1. Applying Theorems 2.17, 2.21 and
2.22 and proceeding as in the case N = 4, we get

WN+1 = [1/
√

3, 1).

It is easy to see that M1,N+1 = 1. The proof is complete.

Theorem 3.2.
λ2 = 4/3.

Proof. By Theorems 3.1, 2.4 and Lemma 2.13,

λN2 = 4/3
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for any N ∈ N with N ≥ 3. Let V ⊂ l∞ be so chosen that dim(V ) = 2 and
λ2 = λ(V ). For any ε > 0 we can find N ∈ N and VN ⊂ l(N)

∞ such that

ln(d(VN , V )) ≤ ε,

where d denotes the Banach–Mazur distance. Since

|ln(λ(VN ))− ln(λ(V ))| ≤ ln(d(VN , V ))

(see e.g. [13, p. 113]), we obtain

λ2 = λ(V ) ≤ λ(VN )eε ≤ λN2 eε.

Consequently,
lim
N
λN2 = λ2,

which shows that λ2 = 4/3. The proof is complete.

Remark 3.3. Notice that in [4], it has been proven that

λ(V ) ≤ 4/3

for any two-dimensional, real, unconditional Banach space. Recall that a
two-dimensional, real Banach space V is called unconditional if there exists
a basis v1, v2 of V such that for any a1, a2 ∈ R and ε1, ε2 ∈ {−1, 1},

‖a1v
1 + a2v

2‖ = ‖ε1a1v
1 + ε2a2v

2‖.
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