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A proof of the Griilnbaum conjecture
by

Bruck L. CHALMERS (Riverside, CA) and GRZEGORZ LEWICKI (Krakdéw)

Abstract. Let V be an n-dimensional real Banach space and let A\(V) denote its
absolute projection constant. For any N € N with N > n define

AN = sup{A(V) : dim(V) = n, V CILV}, A =sup{A(V) : dim(V) = n}.
A well-known Griinbaum conjecture [Trans. Amer. Math. Soc. 95 (1960)] says that
Ao =4/3.

Konig and Tomczak-Jaegermann [J. Funct. Anal. 119 (1994)] made an attempt to prove
this conjecture. Unfortunately, their Proposition 3.1, used in the proof, is incorrect. In
this paper a complete proof of the Griinbaum conjecture is presented.

1. Introduction. Let X be a real Banach space and let V' C X be
a finite-dimensional subspace. A continuous linear mapping P : X — V is
called a projection if P|y = id|y. Denote by P(X, V') the set of all projections
from X onto V. Set

AV, X)=mf{||P||: PeP(X,V)},
A(V) =sup{\(V,X):V C X}.

The constant \(V, X) is called the relative projection constant and A(V)
the absolute projection constant. General bounds for absolute projection
constants were studied by many authors (see e.g. [1} 2, [7, [8, O] [1T), 12]). It
is well-known (see e.g [13]) that if V' is a finite-dimensional space then

(V) = MI(V), I},
where I(V') denotes any isometric copy of V' in lo. For any n € N denote
Ap, = sup{A(V) : dim(V) = n}
and for any N € N with N > n,
AN = sup{A(V) : V c IV},
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By the Kadec—Snobar Theorem [6], A\, < y/n for any n € N. However,
determination of the constant A, seems to be difficult. In [5 p. 465] it was
conjectured by B. Griinbaum that

Ay =4/3.

In [I0, Th. 1.1] an attempt has been made to prove this conjecture (and
a more general result). The proof presented in that paper is mainly based
on [10, Proposition 3.1, p. 259 and Lemma 5.1, p. 273]. Unfortunately, the
proof of Proposition 3.1 is incorrect. In fact the formula (3.19) from [10]
p. 263] is false. This can be easily checked by differentiating formula (3.12)
on page 262 there with respect to Zs; (we are using the notation of [10]).
Because of this error, part of the proof of [10, Proposition 3.1 on p. 265] is
incorrect and as a result, the proof of [I0, Th. 1.1, p. 255] is incomplete.
Moreover, not only the proof of Proposition 3.1 from [I0] is incorrect but
also its statement (see [3]).

In this paper we give a proof of the Griinbaum conjecture. In Section 2
we present some preliminary results used in the proof. Section 3 contains the
proof of the Griinbaum conjecture. The main tools applied are the Lagrange
Multiplier Theorem and the Implicit Function Theorem. Since our paper is
rather technical, we describe the relations between the results contained in
Sections 2 and 3.

The final part of the proof of the Griinbaum conjecture is presented in
Theorem [3.2} In its proof we need Theorems [3.1] and 2.4 and Lemma [2.13]

Theorem [3.1] is mainly a consequence of Theorems and which
are the crucial technical results of this paper. (In our proof of Theorem
Lemmas and and Theorems [2.11] [2.16] [2.17] and [2.18 are also ap-
plied.).

Theorem is based on Lemmas and and Theo-
rems 2.16] and

Theorem [2.22] is mainly a consequence of Lemmas [2.9] and [2.10}

Lemma [2.12]is applied in the proof of Theorem Lemma[2.13]in the
proof of Theorem [2.17] and Lemma [2.14] in the proof of Theorem Also
we need Theorem in the proof of Theorem [2.11] and Lemma [2.1] in the
proof of Lemma [2.15

In the proofs of Theorems and and Lemmas[2.12 our sym-
bolic Mathematica programs were used. The source files for them are avail-
able at http://www2.im.uj.edu.pl/GrzegorzLewicki/GrunbaumConjecture/
(later referred to as “our web site”).

2. Preliminaries. In this section we mainly consider the following prob-
lem: for a fixed u; € [0, 1] maximize the function f,, : RV~ x (RV)" — R
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defined by
N
(2.1) Fur(uiz, - yun), 2ty 2™ = 3wl (, 2)l
ij=1
under the constraints
(2.2) (@' al)y =6, 1<i<j<n,
N
(2.3) dui=1-ui.

Here for j = 1,...,N, z; = ((x')j,..., (@");), (w, ), = > i—y wjz;j for any

w = (wi,...,wy), 2 = (21,...,2,) € R" and (p,q)n = Z;‘V:M?J'Qj for any
p=(p1,...,oN),q¢ = (q1,...,qn) € RV. Also we will work with

N
(2.4) fupal(ug, .. un), 2ty 2" = Z U5 (T, Tj)ns
ij=1

where A = {a;;} is a fixed N x N symmetric matrix.

Now we state some results which will be of use later. Their proofs can
be found in [3].

LEMMA 2.1 ([3]). Let z%,...,2" € RY and u € RY satisfy (2.2 .

Set V = span[x!,... 2"]. Assume vl ... 0™ is an orthonormal basis of V
(with respect to (-,-)n). Then
fui ((ug, ... un), 2t .. 2™) = fu, ((ug, ..., uy), 0t .. 0")
and
Jur,a((ua, ... cun )zt x™) = fuya((ug, .. Lun), vt o)

for any N x N symmetric matriz A.

LeEMMA 2.2 ([3]). Let n, N € N with N > n. Fizu = (uq,...,uy) € RV
with nonnegative coordinates. Let f : R™ — R be given by

N
flat,. .. 2" = Z it | (T, Tj)nl,

1,j=1

where ' € RN fori=1,...,n. Assume that y*,...,y" € RY are so chosen
that

S y™) = max{f(ah, . a) (a2 satisfy (29)).
Let A € RN*N be the matriz defined by

(2.5) ai; = sgn((Yi, Yj)n)



106 B. L. Chalmers and G. Lewicki

fori,j=1,....N (sgn(0) = 1 by definition). Define B € RV*N by

(26) bij == uiujaij

fori,j=1,...,N. Let by > --- > by denote the eigenvalues of B (since B is
symmetric, all of them are real). Then there exist orthonormal (with respect

to {-,-)n) eigenvectors w',...,w™ € RN of B corresponding to by, ..., by,
such that

n
flwt, .. w™) = f(yt,... 9" = ij.
j=1
Set
N
fl (ml, e ,$n) = Z bij <l‘i, Ij)n-
ij=1
Ify',....y" € RN are such that
filyt, ..., y™) = max{f1 under constraint (2.2)}
= max{f under constraint (2.2))}
and by, > b1 then spanfy’ :i=1,...,n] =spanfw’:i=1,...,n].

THEOREM 2.3 ([3]). Let A denote the set of all N x N symmetric ma-
trices (a;j) such that a;; = 1 and a;; = 1 fori,j =1,...,N. Let f,, be
given by (2.1). Then

max{ fu, : ((ug,...,un),zt,...,2") satisfying (2.2] 2.3)}

n N

= maX{Zbi(’u,A) cAc A v=(v1,...,0,) €ERY, va =1,v1 = ul},
i=1 1=1

where by (v, A) > -+ > by(v, A) denote the n largest eigenvalues of the N x N

; s )NV
matriz (v;vjaij);i—q- Also

N N
max{ Z wi|(wg, 25)n| (21,0 2"™) satisfy [2-2), ZUJQ = 1}
j=1

ij=1

n N
= max{Zbi(v,A) cAe A v=(v1,...,v,) €RY, va = 1}.
i=1 =1
Now for n, N € N with N > n define
(2.7) AN = sup{A(V, I - vV c 1Y) dim(V) = n}.
THEOREM 2.4 ([3]). Let n,N € N with N > n. Then
N

N
AY = max{ 3wl ag)al s (21w sotisfy @2), D ud =1},
j=1

ij=1
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LeMMA 2.5 ([3]). For any n > 2,
AL =9 9/(n41).

Moreover, \nT! = )\(ker(f) 1) ) if and only if f = c(£1,...,£1), where
c 18 a positive constant.

LEMMA 2.6 ([3]). Consider problem (2.1) withuy = 0 and fired N > n+2.
Assume that AN=1 > AN Then the mazimum of fu, under constraints

(2.2 is equal to AN 1.

LemMA 2.7 ([B]). Let u = (u1,...,un) € RY and let z = (22,...,2,) €
{—1,1}N=1 Let A, be the N x N symmetric matriz defined by a1 = z; €
{£1} forj=2,...,N, ajj = =1 fori,j =2,...,N, i # j, and a; = 1 for

i=1,...,N. Let B, = (uiuj(Az)ij)f-Yj:l. Hence
u% zZ2U1U  Z3uiuz ... ZNUIUN
Z2o9U1U ug —usuz ... —U2UN
(2.8) B, =] z3ujua —usus u} ... —UgUN
ZNU1TUN —UQUN c. ’U,?V
Let o be a permutation of {1,..., N} such that o(1) = 1 and for any x =
(z1,...,on) ERN et 2_ = (21, —29,...,—xN). Then the matrices

BO'(Z) - (ug(i)ua(j) (AO'(Z))ij)z]'Yj:D B. = ((UIUJ(AZ* )ij)gjzl
and B, have the same eigenvalues.

The next lemma is a simple consequence of the Implicit Function Theo-
rem.

LemMma 2.8 ([3]). Let U C R! be an open nonempty set and let f :
UxR" - Rand G; : R* = R fori=1,...,k be fized C? functions. Let
g:U xR S R be defined by

k

i=1
foru € U, z € R" and d € R*. Assume that (u 29.d%) =0 for j =
1,...,n+k and

&g 0 0
det<aZZa (u, z° d)>7é0

for some (u®,2°,d°) € U x R""* and i,j = 1,...,n+k (we do not differ-
entiate with respect to the coordinates of u). Assume that (u™,x™,d™) €

U x Rk and (u™,y™,2™) € U x R"™* are such that (u™,2™,d™) —
(u®,2%,d") and (u m,ym 2m) — (u’,2°,d%) with respect to any norm in
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Rk If, for any m € N, g—i(um,xm,dm) =0 and g—fj(um,ym,zm) =0
forj=1,...,n+k then
(W™ 2™ d™) = (W™ y™, 2™)  form > my.

LEMMA 2.9 ([3]). Let A € R™ ™ be a symmetric matriz. Let Ay, , A\, be
eigenvalues of A, with A\, of multiplicity j; for i = 1,2. Assume that for

i=1,2, {v9 :j=1,...,5} is an orthonormal basts of the eigenspace of
i Define a (j1+ j2) x n matriz V with rows v, i =1,2, j =1,...,j;. Let
A— )\, id VT
(2.9) C:( al >
|4 0

Then det(C') # 0.

LeEMMA 2.10 ([3]). Assume thatt € R, let B, E be fized n x n matrices
and let A be a fixed m X m matriz. Define

(2.10) o) = (Di1 B+tlE))’

where D is a fized mxn matriz and D1 is a fized nxm matriz. If det(C(t)) =
S att, then
=0 an = det(A) det(E).

Now we prove some other technical results.

THEOREM 2.11. Let n = 2 and N = 4. Let z = (22, 23, 24) be such that
zi = %1 fori=2,3,4 and z; = —1 for exactly one j € {2,3,4}. Let

1 Z9 z3 Z4
29 1 -1 -1

2.11 A, = (aii(2)) =
@) O
zg —1 —1 1
and
4
My = max{ Z wujag;(2){(xi, ;)2 ¢ (2t 2?) € (RY)? satisfy (2.2),
ij—1

4
St
i=1

Then My = 4/3.

Proof. By Lemma we can assume that z4 = —1. Fix v € R* with
S u?=1.Let B, = (uiwjaij(2))} =1 By Lemma

4
My = max{bl(u, A) +ba(u, A) i u e R S u? = 1},
=1
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where by(u, A) > bo(u, A) denote the two largest eigenvalues of B,. Put
v; = u? for i = 1,...,4. After elementary calculations (see also the file

theore nb at our web site) we get

4
det(B, —tid) = th— 3 Z v; + dtvgva(v1 + vg).
i=1

Define w = (w1, ...,wy) by w1 = 0, wy = Ju? +u?, w; = u; for i = 2,3.
Observe that by the above formula, B, and B,, have the same eigenvalues.

Since w; = 0, by Lemmas and and Theorems and applied to
n=2and N =4 we get

b1(u, A) + by(u, A) < X3 = 4/3,
which completes the proof. m

LEMMA 2.12. Letn =2, N =4 and u € [0,1/V/3). Let

(2.12)
u? u/V3 u/V3  —uy/1/3 — u?
B u/V3 1/3 —1/3 —/1/3 —u2/\/3
B u/v/3 ~1/3 1/3 —/1/3=u2/V3 |
—uy/1/3 —u? —/1/3 —u2/V/3 —\/1/3 —u2/\/3 1/3 — u?

Then the eigenvalues of B are 2/3 (with multiplicity 2), —1/3 and 0. More-
over,

w' = (V2u,1/v6,1/v6, —/2(1 = 3u2)/V3),  w?® = (0,-1/v2,1/v/2,0)
are orthonormal eigenvectors corresponding to 2/3, and

w = (1,0,0,u/y/1/3 — u?)
is an eigenvector corresponding to 0.

Proof. Elementary calculations (see also the file lemmag2.12{nb at our
web site). =

LEMMA 2.13. Letn=2, N =4 andu € [0,1). Let

u? w1 —u2/vV2 uv/1—u2/V2 0

(213) B= wil-w?/v2  (1-v?)/2 (W -1)/2 0
| wl—uw?/v2 (@ =1)/2  (1-4)/2 0

0 0 00

Then the eigenvalues of B are

0, (u+v4u2 —3ut)/2, 1 —u?, (u? — V4u2? — 3ud)/2.
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Moreover,

= (2/V22+2,1/V22+2,1/V22+2,0),

7= (u 4+ V42 — 3ut) Ju(V/2 — 2u?),
is an eigenvector corresponding to (u? + v4u® — 3u?)/2, and
= (0,—1/v2,1/v/2,0)
is an eigenvector corresponding to 1 — u?. Also
M = max{1 —u® + (u*> + V4u? — 3ut)/2 : u € [1/V3,1]} = 4/3.

Proof. It can be verified by elementary calculations that the above de-
fined numbers are the eigenvalues of B (see the file lemma2.13Inb at our
web site). Also notice that if

fv)=1—v/2+4v—30v?/2,
f'(v) = =1/2+ (4 — 6v)/(4V/ 4v — 302).

Note that f/(v) = 0 if and only if 3v2—4v-+1 = 0. Hence f'(1) = f/(1/3) = 0.
Since f(1) =1, M = f(1/3) = 4/3. Observe that if u = 1/+/3 then v = 1/3,

which shows our claim. m

LEMMA 2.14. Letn =2, N =4 and c € [0,1//3). Let
1-3c¢% ev1-32 ev/1—-3c2 ¢v1—3c2

where

then

(2.14) . cv1 —3c? 2 —c? —c?
' | eI =32 —c? 2 —c2
cv1 —3c? —c? —c? 2

Then the eigenvalues of B are 2¢* (with multiplicity 2),

(1—4c® + V1482 —32c4)/2 and (1 —4c% — /1 + 8¢2 — 32¢4)/2.
Moreover,
=(0,1/v6,1/v6,-2/V6), w?=(0,-1/v2,1/3/2,0)
are orthonormal eigenvectors corresponding to 2c¢2.

Proof. Elementary calculations (see also the file lemma2.14| at our web
site). m

LEMMA 2.15. Let A = (aij)%-:l be a symmetric matriz such that a;; €
{1} fori,j=1,...,N and a;; =1 fori=1,...,N. Consider the function

(2.15) fé\iA((’U/Q, un),zt2?) = Z Ui Qi (Ti, T5)2
ij—1



A proof of the Griinbaum conjecture 111

under constraints (2.2) and (2.3). Then there exist x', 2> € RY satisfy-
ng 1D and (ug,...,un) satisfying 1) mazimizing fﬁ 4> and such that
x?v_l >0, ZE?V =0, and x]lV_Q > 0.

Proof. Let y',4? and (ug,...,ux) be any vectors satisfying and
and maximizing ﬁ’A. Let V = span[y!, y?]. Since dim(V) = 2, there
exist linearly independent f!,..., f¥=2 € RN such that V = ﬂ;vz_f ker(f7).
Hence we can find d> € V' \ {0} orthogonal to ey such that d%;_; > 0. Set
2?2 = d/||d?||2. Analogously, we can find d* € V' \ {0} orthogonal to z? with
dy_o > 0. Set 2! = d'/||d"||2. Note that z' € V for i = 1,2 and they are
orthonormal. By Lemma ol 2% and (ug,...,uy) maximize fﬁ,A: which
completes the proof. =

In the following, for fixed N > 4, we will work with a function fﬁws
instead of f,, (uy—_3 € [0,1] is fixed). More precisely,

N
(216) fé\][\,_S(('Uh “e 7UN747UN727UN71)UN)7 217 22) - Z ’UZ"U]‘|<ZZ‘, Z]‘>2‘,
3,7=1

where vy_3 = un_3. Also define, for any N x N matrix A,

(2.17) fi\]fv737A((vl, e UN—4,UN—2,UN—1,UN), 2, 2%)
N
= Z aijij(zi,zjh.
ij=1

The next three theorems show what candidates for maximizing 1%_3 look
like.

THEOREM 2.16. Let A be an N x N symmetric matriz defined by

1 a2 ... QI N-3 QI N—2 Q1 N—1 a1,N

(218) A= AN-31 AN-32 --- 1 1 1 an-3nN
N - )

aN—21 aN-22 .- 1 1 -1 an—onN

aN-1,1 AN—-12 --- 1 -1 1 an-1n

an,1 ang2 ... GN,N—3 GN,N-2 ON,N—1 1

where a;; € {—1,1} fori # j. Assume additionally that
ajN = an,; = —1

forj = N—-3N-2N-1 Fizt € R and ux_3 € [0,1/v3). Define
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hY (RYL X (RV)2Z xR3 xR — R by

Un 3, At
(2.19) hnyigyA’t((vl, e UN—4, UN—2, UN—1,UN ), 2, 22, b1, bo, b12, by)
= fﬁv_&A((vl,...,UN_4,1}N_2,UN_1,UN),21,22)
+t((on—1 4+ vN-2)/V1—=3ud 5 +oN+ 2% | — 2% o)
= (b1({z!, 2 v = 1) + ba((z%, 2% v — 1))
—bia(z', 2%) N — ba({(un—3,0), (un—3,v))n — 1),
where v = (v1,...,UN—4,UN—2,UN—1,UN). For fited N € N, define
uV == (0,...,0N—4, UN—2,UN—1,UN),
e =2l =(0,...,08 4,25 3, TN o, TN_1, TN,
eV =22 =(0,...,0§ 4, 2% _3, 720, TX_1, TX)
and

dN =d = (dy,da,dy2,dy).

Hereuyn_o =un_1=1/V3,uy =V 1/3 — u?vf?), m}\_g = V2un_3, :1:}\,72 =
x}\/fl = 1/\/67 x}v = -Vv2(1- 3“?\[73)/\/& 33?\/73 =0, x%\PQ = _x?\ffl =
—1/\/5, JI?V =0, d = 2/3, do = 2/3+t/\/§, dis = 0 and dgy = 4/3+
t/(2V'1/3 —uk_5). Then

onv
(E) e ud) =0
forj=1,...,3N + 3 where

wj € {’1}1, ..., UN—4,UN—-2,UN—-1,UN, ZIZC (2 = 1, 2, k= 1, ceey N)},
j=1,...,3N —1,
and
w]'E{b12,b1,b2,b4}, j=3N,...,3N + 3.

(We do not differentiate with respect to un_s.)

Proof. Notice that for

w; €{zp:i=1,2,k=1,...,N}
the equation (E) follows from the fact that (for N = 4) 2™ = 2%, i = 1,2, are
orthonormal eigenvectors of the matrix B defined by (2.12]) corresponding
to the eigenvalues d;, @ = 1,2, which has been established in Lemma [2.12
Also for
wj € {b12,b1,b2,b4}

the equation (E) follows immediately from the fact that (z%,27)y = d;; for
i,j=1,2,i < jand ((un—_3,u), (un—3,u))ny = 1.
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To end the proof, we show that (E) holds for

wj € {v1,...,UN-4,UN—2,UN—1,UN}.
Notice that, fori=1,..., N — 4,

OnN

N
un—3,4t, 1 2
— " (x", % u,d) =2 Ui (T, Ti)9 — 2u;dg = 0
v; ( ) J; J %J< ( J>2 104
since z; = 0 and w; = 0 for ¢ = 1,..., N — 4. Now assume that w; = vy_o.

Then the derivative equals

N
QZUJ'CLN,QJCEN,Q, (L‘j>2 +t/V1-— 3”?\/—3 — 2upn_ody
j=1

= 2(uX_3/V3+1/V3+ (1/3V3)(1 — 3ud_5) +t/2V1 — 3ud,_5 —un—ads)
=2((4/3)/V3+t/2V1 - 3u%_5 — (4/3)un—2 — (t/2V1/3 — u%,_3)un—_2)

=0.

The same calculation works for ¢ = N — 1. If i = N, then we obtain

2 Z ujaN’j<:nN, iL'j)Q +t—2upndy
j=1
=2(2uf_3V1—3u}_5/V3+2V1—-3ud_5/3V3+1t/2
+(2/3)(1 — 3ux_3)V'1/3 —ud_5 — unda)
=2(2uf_3V1/3 —ud_ 5+ (4/3)V1/3 —ud_5 +1/2
— Qu?\,,3\/ 1/3 — u%\,{,) — d4uN) =0,

which completes the proof. =

THEOREM 2.17. Let A be as in (2.18)). Fizt € R and uy_3 € [1/v/3,1).

Define Y . 4, RN (RV)? x R® x R — R by
N 12
Py gat((V1, - UN—4, UN—2,UN—1,UN), 27, 27, b1, ba, 12, ba)
N
= Z aijvivi{zi, 2i)2 + t(un—2 + un—1 + 2% _1 — 28 _2)
ij=1

— (b1(z", 2 )y — 1) + ba((2%, 2*) v — 1))
—bia(z, 28 N — ba({(un—3,v), (un—3,0))n — 1),
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where v = (v1,...,UN—_4,UN—2,UN—1,UN). For fited N € N, define
UN =u= (0, PN ,ON_4,UN_2,UN_1,UN),
e =2l =(0,..., 08 4,25 3, 2N o, 2N _1, 2N,
2N =22 =(0,...,0§ 4, 2% 3, 230, TX_1, TX)
and

dN =d= (dlaand127d4)-
Here uny_—2 = uny—1 = V(1 — u?\,_3)/2, uy = 0, 93]1\,_3 =0, :U}V_Q = fx}v_l

dy = (uhy_s + VAud_y — 3uly_)/2+t/V2,
dis=0anddy =1+ Lw) +t/(2un—1), where

uN,Q(Q—f—wQ

2 2 3
Wy + VAud g —3ud

UN-3V 2 — 2“?\773

Then
ORY, . Ay
(E) ﬁ(xljx{u,d) =0
8wj

for 3 =1,...,3N + 3 where

wj € {vy,... ,211\/_4,11]\/_2,U]\/_l,v]\f,zfC (i=1,2,k=1,...,N)},

j=1,...,3N —1,
and
ij{blg,bl,bQ,b4}, j=3N,...,3N + 3.

(We do not differentiate with respect to un_s.)

Proof. Notice that for

wj € {z:i=1,2,k=1,...,N}

the equation (E) follows from the fact that (for N = 4) 2™ = 2%, i = 1,2, are
orthonormal eigenvectors of the matrix B defined by (2.13)) corresponding
to the eigenvalues d;, ¢ = 1,2, which has been established in the proof of

Lemma 2.13] Also for
wj € {b12,b1,b2,b4}
the equation (E) follows immediately from the fact that (z’,27)y = d;; for

1, =1,2,1<7, and <(uN—3au)a (uN—3au)>N =1
To end the proof, we show that (E) holds for

w; € {vi, ..., uN—4, VN2, UN—1, VN }.
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Notice that fori=1,...,N —4, N,

oh N
%(l’l,la,u,d) = QEUJaZj<xZ’$j>2 4+t — 2U1d4 -0
Z .
7j=1
since x; = 0 and u; = 0fori =1,..., N—4, N. Now assume that w; = vy_o.

Then the derivative equals

N
2 (Z ujaN—2;{TN—2,T;)2 +1/2 — UN—2d4)
=1

= 2((’[1,]\[_311))/(2 + w2) +un—9 + t/2 — uN_2d4) =0.

Since uy_2 = un_1, the same calculations work for ¢ = N — 1, which
completes the proof. m

Reasoning as in Theorems and and applying Lemma we

can show

THEOREM 2.18. Let A be as in (2.18). Assume additionally that

l=anyN-3=—-anN-2=—aNN-1-
Fizt € R and uy_3 € [0,1). Define ) 1, : RN "1 (RV)? xR* xR — R
by
hiVN_&A’t((Ul,...,UN_4,’UN_Q,’UN_l,’l)N),Zl,ZQ,bl,bQ,le,bzl)
N
= ) aijuivg(zi, z)2 + Hun +un—o + un-1 + 21 — 2x )
ij=1
= (b1((z1, 2 )N = 1) + ba({2%, 2%y — 1))
—bia(2", 2%) N = ba({(un—3,0), (un—3,0))n — 1),
where v = (v1,...,UN—_4,UN—2,UN—1,UN). For fited N € N, define
uN =u= (0,...,0N—4, UN—2,UN—1,UN),
eV =2t =(0,..., 0§ 4,2k 5, 2N o, xh g, 2N,
N =22 =(0,...,08_a, 2% 5, 2% o, 221, 2%)
and

dN =d = (di,da, d12,dy).
Here uny_—o = un—1 =uy = V(1 —ud_3)/3, 2k o = 2§, =1/V6, 2 =
—2/\/6, x%V_Q = —ZL'?V_l = —1/\/5, :E%V =0d = 23, dy = 2¢2 —I—t/ﬂ
di2 =0 and dy = 4c¢®> +t/(2uy), where ¢ = V(1 — u%_3)/3. Then

onl¥

_3,At
L(:cl,a?,u,d) —0
8wj
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for j=1,...,3N + 3 where
wj 6{1)17'"7UN747UN72aUN71aUNaZ]i(/L':]-727 k:]-aaN)}a
j=1,...,3N -1,

and )
wje{blg,bl,bZ,b4}, J=3N,...,3N + 3.

(We do not differentiate with respect to un—_s.)

LEMMA 2.19. Let A be as in Theorem [2.16, For fized un_3 € [0,1/v/3)
and t > 0 define giVNi&A’t RV (RM)2 - R by

N
goe aat((1, . uN_g, 0N, UN—1,0N), ' Y%) = Z ViV A (Yi, Yj)2
ij—1
+ tgi}VN,B((Ul, e UN—4, UN—2, UN—1, VN ), U U7),

where vy_3 = un_3 1S fized, and

gi}é\i3((vla “e. a/UN747/UN*27/UN717/UN)a yla y2)

= (vv + (vnv—2 +vN_1)/V1— 3”12\/—3 + 912V—1 - yZQV—2)‘

Let MY A4 = Max giVNig A, under the constraints

UN -3,
N
Wy )y =65, 1<i<j<2, > vf=1
j=1
Assume that uy_3 € [0,1/+/3) is so chosen that
N N 1 2
MuN_3,A,0 :guN,g,Ap(U y L, T )7
where vV, x', 2% are as in Theorem [2.16| Set
(2.20)
DY . =A{(v1,...,vn—s,on—2,vn—1,0N, ¥ ¥*) 1 YR =0, yn_o > 0}
Then
N N 1,2
XuN_3 =(u",z",z%)
1s the only point mazximizing giVNis,Ayt satisfying 1' and {D belonging
to DIJLVN_S.
Proof. Let
YN =((v1,...,on—a,0N-2,0N-1,0N), 4", y?) € DY,

maximize giVNig 4+ and satisfy 1) and lj Notice that g},’NN_S (as a func-
tion of v = (v1,...,UN_4,UN_2,...,V,) and y?) attains its maximum under
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constraints (2.2]) and only at
v=1(0,...,0N_4,1/V3,1/V3,V1/3 —u}_,)
and
y? =(0,...,0n_3,—1/v/2,1/v/2,0).
Since gi}vj\lg does not depend on ', t > 0, and the maximum of gfLVN_&Ap
is attained at X%73,

1/V3, vx = upy and y? = 22 Since x!, 22 are eigenvectors of A, by Lemma
span[y’ : i = 1,2] = span[z’ : ¢ = 1, 2]. Note that

we have v, =0fori=1,...,N — 4, vy_o = vny_1 =
2

(a',a®) v = (y!,2%)n = 0.
Hence y' = dz!. Since (y*,y')v = 1, yh_5, > 0 and z};_, > 0, it follows

that 2! = y', as required. =
REMARK 2.20. Lemma remains true (with the same proof) if we
replace the function giﬁa by

2N 1,2y _ 2 2
Gun s (V1,0 UN—4, UN—2, UN-1,UN ), Y, Y") = UN—2 +UN-1+YN_2 —YN_1>

and X{L\]fw , and A from Theorem by Xﬁw , and A from Theorem

Also the statement of Lemma [2.19| remains true if we replace g}t}\],\i?, by

g ((v1,...,on—1,vN—2,0N-1,0n),¥", ¥°)
= oN_2+ ON-1+ON + YN _2 — UN_1,
and XY and A from Theorem by those from Theorem

UN-3

Now we demonstrate two crucial technical results for our proof of the
Griinbaum conjecture.
THEOREM 2.21. Fiz N >4 and uy_3 € [0,1/v/3). Let A and
Xﬁws = (UN,$1,$2, d=d(t))

be as in Theorem 216l Let
N _ N
M'UJN737A’t = max 'g’u‘]\/'737*47t7

where giLVN_&AJ has been defined in Lemma under the constraints

N
Wy ) v =10y, 1<i<j<2, Z vi=1-—u¥_3.
J=1,j#N-3
Assume that un_3 € [0,1/y/3) is so chosen that

N N N
MuN_g,,A,O = fuN_3,A(XuN_3>'



118 B. L. Chalmers and G. Lewicki

Denote by DZXA¢ the (3N +2) x (3N + 2) matrixz defined by

P, a) 42
(2.21) DuA (uN?”(1‘1,1'2,U,dl(t),dg(t),dlg(t),d4(t))> 5
it Ow;0w; ij=1
where
wi,wj € {v1,...,vN—4,0N—2,0N—1,0N, Y] (j=1,...,N)}

ULy (=1, N = 1),b1, b, bro, b}

(we do not differentiate with respect to un_3 and y?\,) Assume that

det( Du At) Z ¢j,N

and cj n(un—3) # 0 for some j € {1,...,k}. Then there exists an open inter-
val Uy C [0,1//3) (Uy = [0 w) if uy—3 = 0) such that uy_3 € Un and for
any u e Uy the functzon f A attains its global mazimum under constraints
and (2.3) at (uV,z', 22) (corresponding to u) defined in Theoremm.
The same Tesult holds true if we replace the function ngA,t from Theorem
by the one fmm Theorem and we assume that uy_3 € [1/v/3,1).
In this case (x', 2%, u"N,di(t),da(t), d12(t),ds(t)) are as in Theorem .

Proof. Fix N >4 and uy_3 € [0,1/1/3) satisfying our assumptions. Let
jo=min{j € {0,...,2(N —4)+4} : ¢; n(un—3) # 0}. For (u,t) € [0,1) xR,

set
2(N—4)+4

hit,u)= > cin(u)t .
J=Jjo
Since c;,, ~(un—3) # 0, and cj,N are continuous, there exists an open interval
U c[0,1/4/3) and 6 > 0 such that uy_3 € U and

h(t,u) # 0
for u € U and |t| < 6. Fix tg € (0,9). Set

N N N
Uto = {U ceU: Mu,A,tO = Gu, At (Xu )}
Note that uy_3 € Uy,.
Now we show that U, is an open set. Let ug € U;,. Assume on the
contrary that there exist z, € U \ Uy, such that z, — ug. For any u € U, let

lu 2u _3u
Zu,t():Zu:(Ul,ua"‘7UN—4,’LL7UN—2,U7UN—1,U7UN,UJx , 0, T )

be a point maximizing gfx A, under constraints l' and 1' Since the

function (fqﬁ\fA — gi\{Avto)((vl, e UN—4,UN—2,UN_1,UN), 21, 2°) is indepen-

dent of 2!, and by Lemma m without loss of generality, the function



A proof of the Griinbaum conjecture 119

gix At, can be considered as a function of 3N + 2 variables (we can put
212\/ = 0). Consequently, we can assume that

Z, € DY

(see (2.20)). By . ) and (12.3] ., passing to a convergent subsequence if nec-
essary, we ﬁnd that Z,, — Z. By definition of DN Z € DN Also by the

continuity of the function

N

(v,Y) — Z VUi (Yiy Yj)2

ij—=1
+to((on—1 + v+n—2)/V1 —3u2 + N + YR — Yx_2)

we have
Gug,Ato (Z) = MUO,AJO'

By Lemma X{L\g is the only point in Di\g which maximizes giv Auty> and
YAS Di\g. Hence Z = Xi\g. Moreover, since Xq% € int(Dq%), by the Lagrange
Multiplier Theorem, there exists

Mzn = Mzn<t0) = ( ”]?’ n 127d4) € R4
such that

N
hu,A,to

ow;
for w; € X U DD; here hY 4, is defined by (2.19) (see Theorem and
DD = {dy,ds,d12,ds}.
Also by , , the proof of Lemma given in [3] and ,
M, — Ly, = Luo(tO) = (dy,d2, d12,dy),
where L, is defined in Theorem for t = tg and uy_3 = ug. Now we
apply Lemma [2.8 Define G : U x R2 VoL RV xR — R3NV+2 by

hay Ry
G(u,z,v,Q) = <861i’t0(u,$,v,62),...,ai3§’+ (u, z, v Q))/tm/ SN+2)

for w; € X U DD. Notice that by (2.22)),
G(zn, Z,,,M,,) = 0.

Also G(zn, X, , L., (to)) = 0, where (X, , L., (t9)) are defined for z, and t
in Theorem Moreover,

(Zn;Zzn;M ) (U(),XuO,LuO) and (ZTMXZ”?L ) (u07XuoyLu0)~

(2.22) (Z..,M,,) =0
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Notice that

oG
det <6u]j(U0, Xuaa LUQ)

. det (DUO JAto )
N (téo/(3N+2))3N+2

k
=Y e (o)t = h(to, ug) # 0,
J=jo
by definition of jo and tg. By Lemma [2.8] applied to the function G, we
have Z,, = X,, and M,, = L, for n > ngy. Hence z, € Uy, for n > ng, a
contradiction. This shows that Uy, is an open set.

It is clear that U, is closed. Since uy_3 € U, and U is connected,
Ui, = U. Consequently, for any n € N with n > ng and u € U, the functions
ngA,l/n achieve their maximum at uy, ..., UN—4, UN—2, .- ., , UN—1,UN, T, >
(corresponding to un_3 = ugp) defined in Theorem Since gi\{ Al/n tends
uniformly to gi\f A0 = fiv 4> on the set defined by 1' and , with u €
U fixed, quA attains its maximum at wi,...,UN—4, UN—2, UN_1, UN, T, T
defined in Theorem [2.16| for any v € U.

By Theorem [2.17] reasoning exactly in the same way as above we can de-

duce our conclusion for the function fiv 4 determined by A given in Theorem
[2.17] The proof is complete. =

Now we prove that the assumptions of Theorem concerning DfX At
are satisfied.

THEOREM 2.22. Let A, d(t) = (dl(t), dg(t), dio(t ,d4(t)), and (UN, xl, z?
be as in Theorem . Let Di\{A,t be defined by 1} Then for any un_3 =
u €[0,1/v/3) and t € R,

2AN—4)+4
det(Dya) = Y cin(w)t,
j=0
where the functions cj N are continuous for j =0,...,2(N —4) +4 and

con—a,N(u) # 0.

The same holds if we replace A, (d(t),u”,z',2?) from Theorem by
those from Theorem and assume that un_3 = u € [1/4/3,1).

Proof. First we assume that N = 4. Let 931 4+ be as in Theorem
We will differentiate the function hil 4+ given in Theorem with respect
to the following variables:

(’LUl, s 7w8) - ( %71.%73’::157'%41171)17[)27[)12;1)4)

and
(wyg, ..., wig) = (m%,m%,x%,vg,v;;,m).
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Set
X = (x1,b,b,24,0,—1/v/2,1/3/2,0),
BB = (b1,b2,0,2) and v = (u1,c,c,uyg).
By elementary but tedious calculations (see also the file theore.nb at

our web site) the 14 x 14 symmetric matrix C' = ijl 4+(X, BB, v) is given
by

Dy B
(2.23) C = < T
B D,
where
(2.24)
Z(U? —b1) 2cuq 2cuq —2uius —2z1 O 0
2cu; 2(c? —by) —2¢2 —2cus  —2b 0 1//2
2cu; —2¢2 2(c* —by) —2cus =20 0 —1/v2
D = —2U1 U4 —2cuy —2cuy Q(ui —b1) —2x4 O o1,
72371 72b 72() 72374 0 O O
0 0 0 0 0 0 0
0 1/V2 -1/v2 0 0 0 0
(2.25) Dy =
0 0 0 0 —2c —2c —2uy
0 2(u} —ba) 2cuq 2cuq —/2u1 vV2u1 0
0 2cu 2(02 —b2) —202 —3v2¢ —/2¢ 0
0 2cuq —2c2 2(c2 —b2) V2¢ 3v/2¢c 0
—2¢  —2u1  —3V2c V2¢ 142(b* —2) 1 — 2b —2bx4
—2c V2u, —V/2c 3v2c 1—20% 142(0% —2) —2bxy
—2uy4 0 0 0 —2bx4 —2bxs 2(x3 — 2)
and
(2.26) BT =
0 0 0 00 0 0
0 0 0 00 0 —x1
0 0 0 00 V2 —b
0 0 0 00 —v/2 -—b
2bu; 2(cb 4+ uiz1 — uaws) —2cb —2bug O 0 0
2buy —2¢cb 2(cb+ urz1 — uaxa) —2bug 0 0 0
—2u1x4 —2cxy —2cxq 4(uazs —urx1/2—cb) 0 0 0

Notice that in the 6th row of C' the only non-zero elements are cg19 =
—C6,11 = V2 and in the 8th row of C the only elements which could be
different from 0 are cg12 = cg13 = —2c and cg14 = —2uy4. Consequently,
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applying the symmetry of C, adding the 10th row to the 11th, the 10th
column to the 11th column, subtracting the 14th row multiplied by ¢/uq4
from the 12th and 13th rows, and subtracting the 14th column multiplied
by ¢/uy from the 12th and the 13th columns, we obtain

det(C) = 8u3 det(A),

where A is a 10 x 10 symmetric matrix of the form

(2.27) A= ( A F )
FT A,
with
(2.28)
2(u? — by) 2cuq 2cuq —2uiug —217 0
2cu; 2(c? —by) —2c2 —2cuy  —2b  1/V2
A — 2cuy —2¢2 2(c? — by) —2cuy  —2b —1/V2
—2uiUy —2cuy —2cuy 2(ui —b1) —2x4 0|’
-2 —2b —2b —2x4 0 0
0 1/vV2 —1/V2 0 0 0
(2.29)
2(u? —by)  deuy —V2u4 V2uy
Ay = deuy  —4by —2¢/2¢ 24/2¢

—V2u; —V2¢ as3 — (2+ 2¢/(u4)?)z as4 — 2(c/(uq)?)z ’
V2ui  V2c as3 —2(c/(ug)®)z asa — (24 2¢/(us)?)2
where a3 4 = as4,3 and a3 3 = as 4 do not depend on by and z. Also observe

that the entries of BT do not depend on by and z, hence the same is true
for F. Now we calculate the coefficient ¢4 4(u1) of det(D317A7t). To do this,

we apply Lemmas [2.9] and Notice that

det(C(t)) = det(Dy, 4,(X, BB,v)) = 8uj det(A(t)),
where C(t) and A(t) denote the above matrices C' and A with z replaced
by z 4+ t/(2u4), by = by + t/v/2 and with 21 = V2uy, b = 1/V6, 24 =

—/2(1 - 3u?)/V/3. By Lemma

caa(ur) = 8uj det(Ay) det(E),

where
—V2 0 0 0
0 —2v2 0 0
(2.30) E = V2 .
0 0 —(ui+c)/ui —c/uj

0 0 —c/ui —(ul+c)/ul
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Since u1 € [0,1/v/3) and uy = /1/3 —u? > 0, E is well-defined and
det(E) # 0. Notice that by Theorem and Lemma det(A;) # 0.

Consequently,
caa(ur) = 8uj det(A;) det(E) # 0,

which shows our claim.

Now assume that N = 4 and let A4, (2!, 22, u*,d) be as in Theoremm
In this case we have uy = 0 and z; = 0. Reasoning in a similar way (see also
the file theore.nb at our web site) we get

det(C) = 8(1 — u?) det(A),
where A is a 10 x 10 symmetric matrix of the form
(2.31) A= ( ;1; Ai >
where A; is as in the previous case and
2(u? —by)  4dewy V2uy 0
4eu;  —4by 4/ 2¢ 0

2V2u; 4v2¢ dsz—4z 0
0 0 0 —2z

(2.32) Ay =

)

Also, as in the previous case, the entries of F' do not depend on z or bs.
Moreover, the entries of A; and Ay do not depend on ay ; for j = N — 3,
N — 2, N — 1, which are not fixed, for A given by , as they were in
Theorem Now we calculate the coefficient ¢4 4(u1) of det(Df;h a)- To
do this, we apply Lemmas [2.9 and Notice that

det(C(1)) = det(DA, 4 (X, BB,v)) = 4(1 — u?) det(A(),
where C(t) and A(t) denote the above matrices C' and A with z replaced

by z +t/(2u3) and by = by + t/v/2 and with 21 =0, b = 1/v/2, 24 = 0. By

Lemma [2.10
caa(ur) = 4(1 — uf) det(A;) det(E),

where
-2 0 0 0
0 —2v/2 0 0
(2.33) E = V2
0 0 —2/us 0
0 0 0 —4/u3

Since uy € [0,1) and ug = /1 —uf > 0, E is well-defined and det(E) # 0.
Notice that by Theorem and Lemma det(A;) # 0. Consequently,

caa(ur) = 4(1 — uf) det(A;) det(E) # 0,

which shows our claim.
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Now take any N > 4. We show that the proof of this case practically
reduces to the proof given for N = 4. First assume that A, (z!, 2%, vV, d(t))
are as in Theorem [2.16] We will differentiate with respect to the following
variables:

1,2 1 2
(w17' : "w3(N—4)) = (ﬂfl,iﬂl,Ul, s 7'1"N—47xN—47uN74)7
(W3(N—4)+15- - - > W3N+2)
1 1 1 1 2 2 2
:(xN—Sa'rN—27xN—17xN7xN—37$N—27‘rN717b17b27b127b47uN—27uN—17uN)'

(We do not differentiate with respect to 3, and uy_3.) Now we show that
(since u; = wjl = x? =0for j=1,...,N —4) the matrix Cy corresponding

to our case has the form

Wi 0 ... 0 0

0 Wy ... 0 0
(2.34) Cv=1| ... ... ... ... .1,

0 0 ... Wyg O

0 0 ... 0 Cy

where C4 denotes the matrix obtained for

1 1 1 1 .2 2 2 2
X = (9UN—3,9UN—275L‘N—1»33N7l'N—3a$N—2a$N—1anN),

ut = (un_s,un_2,un_1,un), b= (di(t),da(t),d12(t),ds(t))
in the case N = 4. Here, fort=1,..., N — 4,

—2b1 0 ws. 1
(2.35) W; = 0 —2by w2 ,
Wi,1 W;,2 —2z
where
N
Wi | = Z aijujxé?
j=N-3
for kK =1,2. Indeed for any j =1,..., N,
8h1]y1,z4,t 1,2 = 1 2 1
Tx]l(x ,xl u,d(t)) = Q(kz ajprpujuy — dia(t)ry — dl(t)xj)
=1
and
8h1]AV1,A,t 1,2 o
— A (gl a2, () = 2( Y ageun e or)2 — dalt)u ).
J k=1

Hence for any j =1,...,N — 4,
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82h’u At

1.2
—_— d(t)) =0
8$j18wl (27, 2% u, d(?))

for w; # a:l and w; # u;. The same reasoning applies if we differentiate with
respect to ac ,j=1,...,N —4. Analogously, for j =1,...,N — 4,

82 N N
At
L(xlvxzaqhd(t)) =0
Oujow;
for w; # x;», i =1,2 and w; # u;. Also for
1 1 1 1 .2 2 2
Wk, Wj € {xN—3axN—zaxN—laflfNaﬂUN—&iUN—z,iUN_bUN—2,UN—1,UN}
U {b1, b2, b12,bsa}

we have . -
0“h 0°h
u,At, 1 2 N u, At 1 2
— u At d — u, At d
dw; 0wy, (2% v, d) = dw; 0w mlCRERLL

where hih At 18 the function from Theorem corresponding to N = 4
and

2 = (leVf:S? $]1\7727 x}\ffl? $}V)7
22 = (2} 32Xz 2N _1), v = (un_2,un—1,uN).
This shows our claim concerning the matrix Cly.

Since wj i, for k =1,2 and i = 1,..., N — 4 do not depend on by and in
our situation by = 2/3, by = 2/3 +t/V/2, z = 4/3 + t/(2u,) by the proof
given in the case N =4,

C4+2(N74),N(UN—3) # 0
for any uy_3 € [0,1/4/3), which completes the proof for N > 4 in the case

of A from Theorem The case of A from Theorem and N > 4 can
be proved in exactly the same way, so we omit it. m

3. A proof of the Griinbaum conjecture. Our proof of the Griin-
baum conjecture uses an induction argument. Notice that by Lemma we
have \j = 4/3. First we show that \j = 4/3. Then assuming \) = 4/ 3 we
demonstrate that A}’ ™' = 4/3.

THEOREM 3.1. Fiz N € N with N > 4 and uy_3 € [0,1]. Let
%,3(%,-- yUN—4, UN—2, UN— 1,UN,96 22 Z wig| (T, 25)2]-
4,j=1
Let M, y = max N under constraints 1’ and 1) Then for any un_3 €
[0,1/V/3),
MuN73vN = 4/37
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and for any uy_3 € [1/v/3,1],
Myy_ 3N =1+ (\/4U?V—3 — 3Ry — uf_3)/2.

Proof. We proceed by induction on N. First assume N = 4. Define
Uy = {uy €1[0,1/V3) : My, 4 = 4/3}.

By Lemmas and 0 € Us. Now we show that Uy is an open set. Fix
uy; € U. First we consider the case u; = 0. We apply Theorems [2.21] and
Assume that there exist {w,} C Ry with w,, — 0 and w,, ¢ U for any
n € N. Let (Zy,,, My, (t)) be as in the proof of Theorems [2.21] Passing to a
convergent subsequence if necessary, and reasoning as in Theorem we
can assume that (Z,,, My, (t)) — (Xo, Lo). Let Z,, = (w?, 21, 29,,). Since
Zy,, — Xo we have
sgn <Zm, Zjn>2 = aij

for i,5 = 2,3,4 and n > ng, where the matrix a;; is given by for
N = 4. Without loss of generality, passing to a convergent subsequence if
necessary we can assume that for n > ng,

SgN (21n, Zjn)2 = 2j
for j = 2,3,4, where z; = +1. By Lemma 2.7 we have to consider two cases:

(a) 29 = 23 = 24 = 1;
(b) z2g =23 =1,24 = —1.

If (a) holds true, then by Theorems (applied to uy_3 = 0) and
B2 we gt
My, 4 =4(1—-w2)/3<2/3+2/3=4/3

for n > ng, which by Theorem leads to a contradiction. (Since u; =0,
Df: At is the same for hﬁL At from Theorem as for hy, 4+ from Theorem
. If (b) holds true, by Theorems[2.11], 2.22]and [2.16| we get a contradic-
tion with Theorem Consequently, there exists an interval [0,v) C Uy.

Now assume that v = u; € U and v > 0. Assume w,, — v and w,, ¢ Uy
for n € N. Let (Zy,, My, ) be as in Theorem [2.21] Without loss of generality
we can assume that (Z,,, My, (1)) — (Xu, Ly (t)). Let Zy,, = (0, 210, 220)-

Since Z,,, — X, we have

sgn (Zin, Zjn)2 = Qij
for i, j = 1,2, 3,4 for n > ng, where the matrix (a;;) is as in Theoremfor
N = 4. Applying Theorem [2.:2T] we get w,, € U for n > ng, a contradiction.
Hence the set Uy is open.
It is easy to see that Uy is also closed. Since 0 € Uy and [0,1/+/3) is
connected, Uy = [0,1/4/3). Observe that by the continuity of the function
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UN_3 — f?i\j\r,y we get
Now define
Wy = {uy € [1/V3,1) : My, 4 =1+ (V43 — 3u} —u?)/2}.

By the above reasoning 1/\/5 € Wy. Let v = up € Wy. Assume that w, — v
and wy, ¢ W,. Applying Theorem and proceeding as above we find
that (Zy,, My, (t)) — (Xy, Ly(t)). Also reasoning as above, passing to a
convergent subsequence if necessary, we can assume that

4 f4
wn — Jwp,A
where A is a fixed matrix satisfying (2.18)). By Theorems|2.17 [2.21{and [2.22]

w, € Wy for n > ng, a contradiction. Hence Wy is an open set. Reasoning
as above we get

Wy =[1/V3,1),

which completes the proof for N = 4. (It is easy to see that My 4 = 1.)

Now assume that our formula for M, , n holds true. We will show that
it holds for My, , n+1. We will proceed in the same way as in the case
N = 4. Define

Un+1 = {un—2 €0, 1/\/§) P Muy_ N1 = 4/3}.

By the induction hypothesis and Lemma 0 € Un41. Reasoning as in the

N =4 case and applying Theorems [2.16], 2.18], 2.21] and [2.22] we show that
Un+1 is an open set. It is clear that it is closed. Hence Uny1 = [0,1/+/3).

Again by the continuity of uni1_3 — fé\]fvfl_ , we get

Define

Wni1
= {un_s € [1/V3,1) : Myy_, ne1 =1+ (VA2 _, —3uk_, —u2_,)/2}.

By the above reasoning 1/v/3 € Wy 1. Applying Theorems and
and proceeding as in the case N = 4, we get

Wi = [1/V3,1).

It is easy to see that M; y41 = 1. The proof is complete. m

THEOREM 3.2.
Ao =4/3.

Proof. By Theorems and Lemma [2.13]
N =4/3
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for any N € N with N > 3. Let V' C I be so chosen that dim(V') = 2 and
A2 = A(V). For any € > 0 we can find N € N and Vx C 18 such that
In(d(Vn,V)) <,
where d denotes the Banach-Mazur distance. Since
In(A(Vx)) = In(A(V))] < In(d(V, V)
(see e.g. [13, p. 113]), we obtain
Az = AMV) < A(Vy)ef < AYes.

Consequently,

lin MY = o,
which shows that Ao = 4/3. The proof is complete. =

REMARK 3.3. Notice that in [4], it has been proven that
A(V)<4/3

for any two-dimensional, real, unconditional Banach space. Recall that a
two-dimensional, real Banach space V' is called unconditional if there exists
a basis v!,v? of V such that for any a1,as € R and €1, 63 € {—1,1},
arvt 4 agv?|| = |lerarv! + ezan?|.
Acknowledgements. The authors are indebted to the referee for his
valuable remarks concerning the final version of this paper.
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