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1. Introduction. Every n-dimensional manifold may be partially char-

acterized by means of two sets of topological invariants

Pl,P2,   •••  Pn_! (P)t
and

77i,772, ••• 77*_i       (77)i

whose rôles are analogous to that played by connectivity in the theory of

surfaces. The numbers P¿ and 77¿ are each greater by unity than the maxi-

mum number of ¿-dimensional cycles (cf. § 4 below) which may be traced in

the manifold, but in calculating the numbers P,, certain conventions about

sense are taken into account and the attention is confined to the sensed cycles.

Now if a manifold be subdivided into a complex, or generalized polyhedron,

then one plus the maximum number of independent ¿-dimensional cycles of

the polyhedron (i. e., cycles made up of cells of the polyhedron) is also equal

to Ri, or to Pi if the conventions about sense be adopted. This theorem,

which is of considerable use in calculating the values of the numbers (P)

and (R), has been proved by Poincaré on the assumption that the manifold,

all the cycles of the manifold, and all the cells of the complex may be regarded

as made up of a finite number of analytic pieces. But such an assumption

opens the way to a theoretical objection in that the numbers (P) and (R)

when calculated from the analytic cycles alone might conceivably fail to be

topological invariants. To remove this objection, it would have to be shown

that there never could exist a point-for-point continuous reciprocal corre-

spondence between two manifolds possessing different numbers (P) and

( R ), even if the correspondence were not required to be analytic.

In the following discussion, we shall take into account not only non-analytic

cycles but also cycles possessing singularities of however complicated a nature.

* Presented to the Society, September 8, 1913.

f Poincaré, Journal de l'Ecole Polytechnique, vol. 2 (1895), p. 19; and

Palermo Rendiconti, vol. 13 (1899), p. 285.
tVeblen and Alexander, Annals of Mathematics, vol. 14 (1913), p. 168.
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The inclusion of the latter makes it possible to prove with ease the fundamental

theorem about the numbers ( P ) and ( Ti ) as well as a similar theorem about

the coefficients of torsion.* The discussion will very largely be limited to 3-

dimensional manifolds, since the generalization affords no new difficulties and

suggests itself at once.

The author wishes to express his appreciation and thanks to Professor O.

Veblen for many valuable suggestions.

2. Model of a 3-Dimensional Manifold. From a topological point of view,

a simple closed surface may always be represented in a space of sufficiently

many dimensions by a model consisting of a finite number of triangular

regions. These regions will abut upon one another in such a way that a

side of one always coincides with a side of one of the others. Similarly, a 3-

dimensional manifold may be represented by a finite number of tetrahedral

regions, and so on.f As we are only concerned with manifolds without

singularities, the regions which cluster about a common vertex may be sup-

posed to constitute a simply connected portion of the manifold, that is, one

which can be mapped upon the interior of a tetrahedron. We can then sub-

divide the manifold into smaller tetrahedral regions so as to assure ourselves

that each region together with all the neighboring regions is contained within a

simply connected portion. The model thus finally obtained will be used in

place of the manifold itself in all of the discussion which follows.

The vertices, edges, and triangular faces which bound the tetrahedral

regions subdivide the manifold into a complex w, or generalized polyhedron,

of three dimensions. They constitute the cells of the polyhedron of dimen-

sionalities 0, 1, and 2 respectively, while the interiors of the tetrahedral

regions themselves constitute the cells of dimensionality 3. The polyhedron

7T is of a very restricted type; it can be assumed that all its edges are of equal

length, for if its vertices are V in number, they may all be spaced at equal

distances from one another in a space of V — 1 dimensions.

3. Invariants of a Polyhedron and of a Manifold. If a manifold be sub-

divided into a polyhedron k , whether or not of the restricted type of ir, it is a

simple matter to calculate the greatest number of 1-dimensional complexes

Ci, c2, ■ • • Cfc (closed curves) made up of cells of the polyhedron and such

that there is no open 2-dimensional complex also made up of cells of the

polyhedron and having for complete boundary one or more of the complexes

Ci, c2, ■ ■ • Ck. Taking into account the conventions on sense, this calcu-

lation leads to an invariant P\ — 1, otherwise to an invariant R[ — 1. Simi-

larly, the greatest number of independent closed 2-dimensional complexes is

either PK2 — 1 or R2 — 1.   The problem will be to identify these four invari-

* Poincaré, Proceedings of the London Mathematical Society,

vol. 32 (1900), p. 301.
t Veblen and Alexander, loc. cit., § 17.
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ants with the corresponding invariants of the manifold itself, that is with

Pi - 1, Ri - 1, Pi - 1, and R* - 1.
4. By a 1- or 2-dimensional cycle c of the manifold will be meant a set of

points of the manifold which may be regarded as the image of a closed com-

plex X of one or two dimensions as the case may be. There must be a con-

tinuous correspondence between the points of the complex and those of the

cycle such that to every point of the complex there corresponds one and

only one point of the cycle, but the correspondence need not be one-to-one

in the inverse direction. Thus, the cycle may present singularities of any

degree of complexity. Whenever two or more points of the complex X corre-

spond to the same point of the cycle c, we shall say that they correspond in a

one-to-one manner to as many coincident points of c. With this convention,

the correspondence between c and X becomes one-to-ore in both directions

and the internal structure of c becomes the same as that of X. If any length e

be preassigned, it may be assumed that the cells of the cycle c (the images of

the cells of the complex X ) are so small that no two points of the same cell

are at a distance of e or more apart. For if we subdivide the cells of the

complex X into sufficiently small cells, the images of the latter will surely

have the required property, owing to the uniform continuity of the corre-

spondence between X and c.

Before defining what is meant by an independent set of cycles, let us recall

that the boundary of an open i 4- 1 dimensional complex k consists of one or

more closed ¿-dimensional complexes Xi, X2, • • • X, any two of which may

have in common one or more cells of dimensionality less than i. If such a

complex be mapped along with its boundary upon the manifold, the com-

plexes Xi, X2, • • • Xi will form a set of cycles Ci, c2, ■ • • c¿, two or more of

which may coincide. When we disregard the conventions about sense, the

cycle Ci is said to be dependent upon the cycles c2, ■ ■ ■ c¡ provided it occurs

an odd number of times in the set, but when the conventions are made, it is

dependent provided the difference between the number of times it appears in

one sense and the number of times it appears in the other is not zero. A set

of cycles is said to be independent when no cycle of the set is dependent upon

other cycles of the set. A necessary but not sufficient condition for inde-

pendence is that each cycle of the set be non-bounding, that is that no cycle

be the boundary of the image of a complex k .

Pi — 1 and R2 — 1 are respectively the greatest number of independent

1- and 2-dimensions cycles which may be traced in the manifold; Pi — 1 and

P2 — 1 are the corresponding numbers when conventions on sense are made.

5. Lemma.    No cycle lying in a simply connected region can be non-bounding.

This may be seen at once if the simply connected region be regarded as the

inte rior of a tetrahedron, for if we then join each point of the cycle by a linear
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segment to some point P of the region, the points of the segments will con-

stitute the image of an open complex bounded by the cycle in question. The

complex will have as cells a vertex corresponding to the point P, an arc

corresponding to each line joining P to an arc of the cycle, a triangular region

corresponding to each set of lines joining P to an arc of the cycle, and, if the

cycle be 2-dimensional, a tetrahedral region corresponding to each set of

lines joining P to a triangular region of the cycle.

6. The Fundamental Theorem for Polyhedra of the Restricted Type. Let

us first suppose that the manifold be subdivided into a polyhedron v of the

type discussed in § 2. We shall first prove that every cycle of the manifold

is dependent upon one or more cycles of w.

As was shown in § 4, the cells of the cycle c may be supposed to lie in regions

as small as we please; hence, in particular, they may be supposed to lie in

such small regions that if every point on the interior and boundary of any

one of the cells be joined to the nearest vertex of the polyhedron, or to one

of the nearest if there are more than one, these points will all be joined to the

same or to adjacent vertices. Now if c be a one-dimensional cycle, the ends

Ai and A2 of each one-cell will be joined respectively to two vertices Bi and

B2 of the polyhedron ir which either coincide or bound an edge Bi B2 of tt .

At all events, the circuit Ai A2 B2 Bi Ai will bound the image s of some

open complex since it lies in a simply connected region (§ 5). The totality of

complexes s corresponding to the various circuits Ai A2 B2 Bi Ai constitutes

the image s of a complex bounded by the cycle c and, in general, one or more

cycles of the polyhedron -w composed of the arcs Bi B2. It may happen that

the circuit c constitutes by itself the complete boundary of S, as for instance

in the case where the vertices Bi and B2 all coincide. In any case, the

cycle c is dependent upon the cycles of the polyhedron ir.

When c is a 2-dimensional cycle, it may be regarded as composed of the

images of triangular regions (§ 2). Each 2-cell will have three vertices Ai,

A2, and Az which will be joined to three vertices Bi, B2, and B3 of the poly-

hedron 7T every two of which must either coincide or bound an arc of t.

Now, by the lemma, the cycles Ai A2 B2 Bi Ai, A2 A3B3B2 A2, and

A3 Ai Bi B3 A3 bound three surfaces su, s23, and s3i respectively all of which

are situated within the same simply connected portion of the manifold. More-

over, the surfaces «12, «23, and 531, together with the cells A1 A2 A3 and Bi B2 B3

(the latter being of less than two dimensions if two or more of the vertices

Bi, B2, and B3 coincide) form a closed complex which bounds the image r of

a 3-dimensional complex, again by the lemma. But the totality of regions r

determines a region R which is bounded by the cycle c and, in general, one

or more cycles c' of the polyhedron ir made up of cells Bi B2B3*

* The term region is here used in a very broad sense to denote the image, with or without

singularities, of a 3-dimensional complex.
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Since every cycle of the manifold is dependent upon one or more cycles

of the polyhedron ir, we have the relations

Pf i= Pi        and        Pr 1= Pi-

Moreover, we also have

Pi == Pi       and       PJ S P2,

since it is readily seen that the above argument holds equally well when the

conventions about sense are introduced.

On the other hand, if a set of cycles a made up of cells of the polyhedron

fails to be independent with respect to the manifold, so also does it fail to be

independent with respect to the complex. For if it is not independent with

respect to the manifold, there exists an open complex X which may be so

mapped upon the manifold that the boundary of its image c coincides with

one or more of the cycles a. Let us first suppose that the cycles a are linear

so that the complex X is 2-dimensional. Then, supposing as we may that the

cells are sufficiently small and the images of triangles, we may find a cell

Pi P2 B3 of the polyhedron ir corresponding to every cell ^4i A2 A3 of c, by

the process indicated above. The cells Pi B2 B3, together with the cells of

lower dimensionalities on their boundaries constitute one or more complexes

c' of 7T bounded by cycles of the set a, therefore the cycles are not independent

with respect to the polyhedron. It might be objected that the complex or

complexes c' could fail to exist, as for instance if the vertices Pi, P2, and P3

always coincided. This can never be the case, however, for c and c' constitute

the boundary of a certain open 3-dimensional region P, by the argument

made above. But the boundary of P must be a closed complex, whereas c

by itself is open. Therefore c' must not only exist but must have the same

boundary as c in order that c and c' together shall constitute a closed complex.

When a is a set of 2-dimensional cycles, c is the image of a complex of

three dimensions. We may therefore regard its cells as the images of tetra-

hedra, besides which we may suppose them as small as we please. If we join

the vertices ^4i ̂ 42 A3 and Ai of each cell to the four nearest vertices Pi P2 B3

and P4 of it respectively, the cells Bi B2 B3 P4 will determine the complex

c'.   The details of the argument in this and in the previous case are similar.

Thus, we also have

Pi Si Pi,       Rl^R2,       PfSiPi,       Pl^Pi,

and therefore,

Pr = Pi,    pj = P2,    Pr = Pi,    pj = P2,

which establishes the theorem for the case where ir is a polyhedron of the

restricted type.
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Evidently, all that has been said up to this point may be generalized at

once to manifolds of more than three dimensions. The polyhedron tv will

then consist of simplexes, or generalized tetrahedra, together with the Sim-

plexes of lower dimensionalities on their boundaries.

7. Corollary. If a manifold be topologically equivalent to the boundary of

an n-dimensional simplex, or generalized tetrahedron, its invariants (P) and

(R) are all equal to unity.

For the cells on the boundary of the simplex determine a polyhedron of

the restricted type w. Moreover, if we remove from one of the ra-cells of the

polyhedron a small n-dimensional simplex, there will be left a simply con-

nected region containing all the cycles of the polyhedron. But, by the the-

orem, these cycles are the only ones which need be considered and, by the

lemma, they all bound.

8. The Fundamental Theorem for a General Polyhedron. A polyhedron

of the most general type may be transformed into one of the restricted type tt

by means of a series of regular subdivisions.* It merely remains to be shown,

therefore, that a regular subdivision does not alter the number of independent

cycles of the complex. Let k' be the complex before the subdivision and let k

be the complex after the subdivision of a cell E of k' . Then every ¿-dimen-

sional cycle Ci of k which was not a cycle of k' previous to the subdivision

must necessarily pass through the new vertex V of k . Now the bases of the

(pyramidal) cells of c¿ which have for common apex the point V constitute

one or more cycles dt_i of dimensionality i — 1, except for the case i = 1

when they are a set of points, even in number. In either case, since the

boundary of a cell is in point-for-point correspondence with the boundary

of a simplex, the cycles or points d¿_i are the complete boundary of an open

complex di made up of cells on the boundary of E (§ 7). But the complex d¡

together with the cells of c¿ which abut upon V constitutes a closed complex e,

which may be shown to bound by exactly the same argument as was used in

proving the lemma. If we addf the complex e,- to the complex c<, the latter is

transformed into one which no longer passes through the vertex V and which

therefore belonged to k' previous to the subdivision.J    Hence,

Pi ^ Pi'       and       Ri ^ fif.

Moreover, every cycle of k' which bounds in k also bounds in k' . For

either the bounded complex belonged to k' or else it now passes through the

* A regular subdivision is made by partitioning one of the cells E of the complex into a

set of "pyramidal " cells whose bases are the cells on the boundary of E and whose apexes

coincide at a point V of E.   For details, see Veblen and Alexander, loc. cit.

t Veblen and Alexander, loc. cit., p. 169.

Î When the dimensionality of the cycle c¡ is equal to or greater than that of the cell E,

the cycle c¡ includes all the sub-cells of E, therefore it is the same cycle as the cycle of k' ob-

tained by replacing the sub-cells of E by E itself.
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vertex V.    In the latter case, it can be replaced by one which does not pass

through V by an argument like the one just made.    Therefore,

Pi = Pi       and       R\ = Rf.

9. When the conventions on sense are introduced, it sometimes happens

that a cycle is non-bounding when counted only once, though bounding

when counted a sufficient number of times. From a consideration of such

cycles are derived the coefficients of torsion of the manifold. An argument

like the one made in this paper shows that a cycle having the above property

may be replaced first by one of the same kind belonging to a polyhedron of

type w, then by one of the same kind belonging to any polyhedron into which

the manifold may be subdivided. The invariance of the coefficients of torsion

therefore also follows at once.

Princeton, N. J.,

September, 1.913.
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