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1 Introduction

While second order methods for computational simulations of fluid flow are by now quite ma-

ture and reliable, providing the basis of widely used commercial software, the development

of higher order methods that could potentially yield better accuracy or reduced computa-

tional costs is a subject of ongoing research. One of the most promising approaches is the

Discontinuous Galerkin (DG) method, for which the theoretical basis has been provided in

a series of papers by Cockburn and Shu [1, 2, 3, 4]. The rapid growth of the computational

complexity of DG methods with increasing order has spurred the search for more efficient

variants or alternatives. One approach is the nodal DG scheme in which the solution is

represented by Lagrange interpolation at a set of collocation points in each element, and

the quadratures required by the DG method are pre-integrated to produce local mass and

stiffness matrices. An exposition of the nodal DG method can be found in the recent book

by Hesthaven and Warburton [5].

The spectral difference (SD) method has recently emerged as a promising alternative.

The basic idea of the SD method was first put forward by Kopriva and Kolias [6] under the

name ”staggered grid Chebyshev multidomain” method. In order to discretize the conser-

vation law
∂u

∂t
+

∂

∂x
f(u) = 0 (1.1)

they proposed to represent the solution by polynomials of degree p in each element and the

flux by polynomials of degree p+1 with interlocking collocation points for the solution and

the flux. The flux collocation points include the element boundaries, where a single valued

numerical flux is imposed which is common to each element and its neighbors on the left

or right. Then the value of ∂u
∂t

at each solution point is obtained directly as the derivative

of the flux polynomial. Kopriva and Kolias used Chebyshev and Chebyshev-Lobatto points

as the solution and flux collocation points, and it remains unclear whether the SD scheme

is stable with this choice, although they did prove the scheme to be conservative. Some

years later Liu, Wang and Vinokur presented a general formulation of SD methods on both

quadrilateral and triangular elements [7]. The SD method seems considerably simpler to

implement than the local DG method, and it has been observed by May [8] that it may

be regarded as a variant of a pre-integrated nodal DG method. While the SD method has

proved robust and productive in a variety of applications [9, 10, 11, 12, 13, 14, 15], doubts

have been raised about its stability. In particular it has been suggested that the SD scheme
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is not stable for higher order triangular elements [16], and sometimes weakly unstable in one

dimension depending on the choice of flux collocation points.

The purpose of this note is to present a proof of the stability of the SD method for

the one dimensional linear advection equation for all orders of accuracy in an energy norm

of Sobolev type. Specifically using solution polynomials of degree p, which are expected to

yield accuracy of order p+1. The norm is

||u|| =
∫

(u2 + cu(p)2)dx

where the coefficient c must be determined to cause a cancellation of terms as will appear in

the derivation. Because the proof rests on a comparison of the SD method with the nodal

DG method, the proof that the DG method is stable is reviewed in Section 2, as a precursor

to the proof that the SD method is stable, which is presented in Section 3.
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2 Stability of the nodal discontinuous Galerkin method

Consider a scalar conservation law of the form (1.1). We shall generally restrict our attention

to the linear advection equation
∂u

∂t
+ a

∂u

∂x
= 0 (2.1)

for which the flux is f = au, and we assume a > 0, corresponding to a right running wave.

In the local DG method (1.1) or (2.1) is discretized by representing the discrete solution uh

in each element as an expansion in a set of basis functions Φj defined within the element.

uh =
n∑

j=1

ujΦj (2.2)

Then we require the residual

Rh =
∂uh

∂t
+

∂

∂x
f(uh) = 0

to be orthogonal to a set of test functions which are taken to be the basis functions. Thus,

integrating by parts, we require∫ xR

xL

∂uk
h

∂t
Φjdx−

∫ xR

xL

f(uk
h)
∂Φj

∂x
dx+ f̂Φj

∣∣∣∣xR

xL

= 0 (2.3)

to hold for j =1 to n, where uk
h is the discrete solution in element k and xL and xR are the

left and right boundaries of the element, while f̂ is the single valued numerical flux at the

interface which is also used in corresponding equations for the neighboring elements. The

weak form (2.3) can be converted to the corresponding strong form by integrating the middle

term back by parts.∫ xR

xL

∂uk
h

∂t
Φjdx+

∫ xR

xL

Φj
∂

∂x
f(uk

h)dx+ (f̂ − f(uk
h))Φj

∣∣∣∣xR

xL

= 0 (2.4)

Inserting the expansion (2.2) into equations (2.3) and (2.4) we obtain the equations

M
du

dt
− ST f + f̂Φ

∣∣∣∣xR

xL

= 0 (2.5)
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and

M
du

dt
+ Sf + (f̂ − f)Φ

∣∣∣∣xR

xL

= 0 (2.6)

in weak and strong form for the local solution vectors

uT = [u1, ...un]

f = au (2.7)

ΦT = [Φ1, ...Φn]

where M and S are the local mass and stiffness matrices

Mij =

∫ xR

xL

ΦiΦjdx (2.8)

Sij =

∫ xR

xL

ΦiΦ
′
jdx

In the nonlinear case, if we replace f(uk
h) by a local expansion in the basis functions

f =
n∑

j=1

fjΦj

we obtain the same equations with

f = [f1, ...fn]

In this case, however, ∂
∂x
f(uk

h) is not exactly equal to
∑n

j=1 fjΦ
′
j, so equations (2.5) and (2.6)

involve a further approximation.

In the foregoing the coefficients uj do not correspond to the value of the solution at

any particular location. In the nodal DG method we introduce collocation points xj in each

element and define the local solution by the Lagrange polynomial of degree p = n− 1.

uk
h =

n∑
j=1

ujlj(x)

where

lj(xi) = 0, i 6= j
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lj(xj) = 1

and uj is now the solution value at xj

uj = uk
h(xj)

It is also convenient to make a local transformation of each element to a reference

element covering the interval [-1,1]. Then the mass and stiffness matrices in the kth element

become

Mk
ij = (xR − xL)Mij, (2.9)

Sk
ij = Sij

where M and S are the reference mass and stiffness matrices

Mij =

∫ 1

−1

liljdx, (2.10)

Sij =

∫ 1

−1

lil
′
jdx

and Φj = lj in the weak and strong equations (2.5) and (2.6). Also, multiplying by M−1,

the strong form (2.6) can be expressed as

du

dt
+Du + M−1l(f̂ − f)

∣∣∣∣1
−1

= 0 (2.11)

where D is the differentiation matrix

D = M−1S (2.12)

Multiplying the linear advection equation (2.1) by u and integrating over x,

∫ b

a

u
∂u

∂t
dx = −a

∫ b

a

u
∂u

∂x
dx = −a

∫ b

a

∂(u2

2
)

∂x
dx

Thus it satisfies the energy estimate

d

dt

∫ b

a

u2

2
dx =

1

2
a(u2

a − u2
b) (2.13)
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In order to prove the stability of the nodal DG scheme we wish to prove that the discrete

solution satisfies a similar estimate. For this purpose we can take the local solution, which

is a linear combination of the basis polynomials, as the test function. Using the strong form,

this yields

uT M
du

dt
+ uT Sf + uT l(f̂ − f)

∣∣∣∣xR

xL

= 0 (2.14)

Using the fact that M and S have been pre-integrated exactly, this is equivalent to

d

dt

∫ xR

xL

u2
h

2
dx+ a

∫ xR

xL

uh
∂uh

∂x
dx+ uh(f̂ − auh))

∣∣∣∣xR

xL

= 0 (2.15)

where the middle term can be integrated and combined with the last term to give

d

dt

∫ xR

xL

u2
h

2
dx = −(uhf̂ − a

u2
h

2
))

∣∣∣∣xR

xL

(2.16)

Let uL and uR be values of uh on the left and right sides of a cell interface. For the

numerical flux we now take

f̂ =
1

2
a(uR + uL)− 1

2
α|a|(uR − uL), 0 ≤ α ≤ 1

where if α = 0 we have a central flux, and if α = 1 we have the upwind flux. Now on

summing (2.16) over the elements, the left side yields d
dt

∫ b

a

u2
h

2
dx, while at each interior

interface, collecting the contributions from the elements on the left and right sides, there is

a total contribution

uRf̂ − a
u2

R

2
− (uLf̂ − a

u2
L

2
)

=
1

2
a(u2

R − u2
L)− 1

2
α|a|(uR − uL)2 − 1

2
a(u2

R − u2
L)

= −1

2
α|a|(uR − uL)2

If we set the numerical flux to the true value aua at the inflow boundary, and to the ex-

trapolated upwind value auh at the outflow boundary, it now follows that there is a negative

contribution at every element boundary except the inflow boundary, where the contribution

is

auauh −
1

2
au2

h =
1

2
au2

a −
1

2
a(ua − uh)2
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which is strictly less than the boundary contribution au2
a

2
in the true solution. This completes

the proof that the DG scheme is energy stable for the linear advection equation.
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3 Stability of the spectral difference method

As in the case of the DG scheme, it is convenient to represent the SD scheme in terms

of a reference element covering [-1,1]. Then the discrete solution is locally represented by

Lagrange interpolation on the solution collocation points xj as

uh(x) =
n∑

j=1

ujlj(x) (3.1)

where for polynomials of degree p, n = p + 1. Correspondingly the flux is represented by a

polynomial of degree p+ 1,

fh(x) =
n+1∑
j=1

fj l̂j(x) (3.2)

where l̂j(x) are the Lagrange polynomials defined by the n + 1 flux collocation points x̂j,

which include the element boundaries. At the interior flux collocation points fj is set equal

to f(uh(x̂j)) where uh(x̂j) is interpolated from uh(x). At the element boundaries f(−1) and

f(1) are defined to be the single valued numerical flux f̂ which is common to the element

and its left or right neighbor. Then we differentiate the flux polynomial at the solution

collocation points to obtain

dui

dt
= −

n+1∑
j=1

fj l̂
′
j(xi) (3.3)

Restricting our attention to the case of linear advection, f = au, the first step is to rewrite

the flux at each boundary as

f̂(−1) = auh(−1) + fCL, f̂(1) = auh(1) + fCR

where fCL and fCR are boundary corrections

fCL = f̂(−1)− auh(−1), fCR = f̂(1)− auh(1) (3.4)

This follows the flux reconstruction procedure proposed by Huynh [17]. Now

fh(x) = fCLl̂1(x) + fCR l̂n+1(x) + a

n+1∑
j=1

uh(x̂j)l̂j(x)
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But since uh(x) is a polynomial of degree p, it is exactly represented by the sum. Hence

fh(x) = fCLl̂1(x) + fCR l̂n+1(x) + auh(x) (3.5)

We can now rewrite the SD scheme as

∂uh

∂t
= −a∂uh

∂x
− fCLl̂

′
1 − fCR l̂

′
n+1

Evaluating this at the solution points

dui

dt
= −a

n∑
j=1

Dijuj − fCLl̂
′
1(xi)− fCR l̂

′
n+1(xi) (3.6)

where D is the differentiation matrix associated with the solution collocation points, and is

uniquely determined by the location of these points and the polynomial degree p. Thus D

is represented by equation (2.12). In the case of an upwind numerical flux there will only be

a correction from the left boundary, and in order to simplify the analysis this will now be

assumed.

Equation (3.6) can be converted to a form which resembles the nodal DG method by

multiplying it by the mass matrix to produce

∑
j

Mij
duj

dt
+ a

∑
j

Sijuj = −fCL

∑
j

Mij l̂
′
1(xj) (3.7)

Now since l̂1(−1) = 1 and l̂1(1) = 0,

n∑
j=1

Mij l̂
′
1(xj) =

∫ 1

−1

li(x)
n∑

j=1

l̂′1(xj)lj(x)dx =

∫ 1

−1

li(x)l̂′1(x)dx

= l̂1li

∣∣∣∣1
−1

−
∫ 1

−1

l′i(x)l̂1(x)dx

= −li(−1)−
∫ 1

−1

l′i(x)l̂1(x)dx

Thus ∑
j

Mij
duj

dt
+ a

∑
j

Sijuj = fCL

(
li(−1) +

∫ 1

−1

l′i(x)l̂1(x)dx

)
(3.8)
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This differs from the corresponding nodal DG equation only in the last term. In order

to compensate for this we can replace the mass matrix M by a matrix Q > 0 such that

QD = S (3.9)

Q must have the form M + C where

CD = 0

Thus each row of C must be orthogonal to every column of D. Because DRp = R′p for any

polynomial Rp(x) of degree p, the coefficients of each row of D must sum to zero, so the

rank of D is no greater than n−1. In order to find a row vector which is orthogonal to every

column of D, consider the pth difference operator dT which gives

n∑
j=1

djRp(xj) = R(p)
p

for any polynomial of degree p. Then∑
i

di

∑
j

DijRp(xj) = R(p+1)
p = 0

Thus the matrix

Q = M + cddT

where c is an arbitrary parameter, satisfies equation (3.9). Also since any polynomial Rp(x)

of degree p can be represented exactly as

Rp =
∑

i

Rp(xi)li(x)

it follows that if li(x) is expanded as

li(x) = aix
p + ...

where ai is the leading coefficient, then

di = l
(p)
i = p!ai
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Now on multiplying equation (3.6) by Q instead of M we obtain the extra term

−cfCLdi

∑
j

dj l̂
′
1(xj) = −cfCLl̂

(p+1)
1 l

(p)
i

on the right, so that equation (3.8) is replaced by

∑
j

Qij
duj

dt
+ a

∑
j

Sijuj = fCL

(
li(−1) +

∫ 1

−1

l′i(x)l̂1(x)dx− cl̂(p+1)
1 l

(p)
i

)
(3.10)

Now if we can choose c so that the last two terms on the right cancel, we can attain an

energy estimate with the norm uT Qu replacing uT Mu in each element. For this purpose we

can choose the interior flux collocation points as the zeros of the Legendre polynomial Lp(x)

of degree p. Then

l̂1(x) = (−1)p 1

2
(1− x)Lp(x)

and ∫ 1

−1

l̂1(x)l′i(x)dx = (−1)p+1 1

2

∫ 1

−1

xLp(x)l′i(x)dx

since l′i(x) is a polynomial of degree p − 1 and Lp(x) is orthogonal to all polynomials of

degree < p. Moreover only the leading term in xl′i(x) contributes to the integral for the same

reason. Let

Lp(x) = cpx
p + ...

where the leading coefficient cp can be evaluated from Rodrigues formula

Lp(x) =
1

2p

1

p!

dp

dxp
(x2 − 1)p

=
1

2p

1

p!

dp

dxp
(x2p + ...)

=
1

2p

1

p!
2p(2p− 1)...(p+ 1)xp + ...

=
1

2p

(2p)!

(p!)2
xp + ...

=
1 · 3 · 5... · (2p− 1)

p!
xp + ...

Also

xl′i(x) = paix
p + ...
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where ai is the leading coefficient in li(x). Noting that∫ 1

−1

L2
pdx =

2

2p+ 1

we obtain ∫ 1

−1

xLp(x)l′i(x)dx =
2p

2p+ 1

ai

cp

Also

l̂(p+1) = (−1)p+1 1

2
(p+ 1)!cp

and

li
(p) = p!ai

Thus the desired cancellation is obtained by setting

c =
2p

2p+ 1

1

c2p

1

p!(p+ 1)!
> 0

In the case that the interface flux is not fully upwind, a similar calculation shows that

the convection from the right boundary is correspondingly reduced, so that finally

∑
j

Qij
duj

dt
+ a

∑
j

Sijuj = fCLli(−1)− fCRli(1) (3.11)

Since uh is a polynomial of degree p ∑
i

diui = u
(p)
h

and in each element ∑
i

∑
j

uiQijuj =

∫ xR

xL

(u2
h + cu

(p)2

h )dx

Now the same argument that was used to prove the energy stability of the nodal DG

scheme establishes the energy stability of the SD scheme with the norm∫ b

a

(u2
h + cu

(p)2

h )dx

for the case of solution polynomials of degree p, provided that the interior flux collocation
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points are the zeros of Lp(x). It can be seen that c decreases very rapidly with increasing p,

as is illustrated by the following table of values of c.

p c

1 1
3

2 4
135

3 1
1050
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4 Conclusion

The result is consistent with the conclusion of Van den Abeele, Lacor and Wang [16] that the

stability of the spectral difference method depends only on the location of the flux collocation

points. While it establishes the stability of the SD scheme when the interior flux collocation

points are the zeros of the Legendre polynomial Lp(x), it does not preclude the stability of

the SD scheme with other choices of the flux collocation points, possibly in a different norm.

However, extensive calculations for the second, third and fourth order cases (not included

here) have indicated that the conditions for the cancellation of the last two terms of the

boundary correction in equation (3.10) can only be satisfied by choosing the interior flux

collocation points as the zeros of Lp(x).

It is also interesting that as the order of accuracy is increased the norm in which the

SD method is stable asymptotically approaches the usual energy norm. Whether a similar

proof of stability for all orders of accuracy can be established for the multidimensional case

with either tensor product or simplex elements remains a subject for future research.
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