
 

 

Number theory in general and analytic primality in 

particular are a fundamental field of pure mathematics [1], [2], 

[3], [4], [5], [6], which are widely applied in computer 

science, AI, IT, algorithm design, coding theories, 

cryptography, Internet protocols, biology, and economics [4], 

[7], [8], [9], [10]. One of the most challenging questions in 

number theory is the Twin Primes Conjecture initiated by de 

Polignac in 1849 [11] who queried whether there exist 
infinitely many twin primes among nature numbers. There is 

no formal proof yet in general, because the nature and 

complexity of the problem in the infinite universe of discourse 

of number theory. 
 

A typical form of the twin prime conjecture may be 

informally expressed according to de Polignac’s suggestion 

[4], [11] as follows. 
 

    

Definition 1. The Twin Primes Conjecture queries 
whether there exist infinitely many primes p such that p + 2 or 
p – 2 may also be prime. 

Many key milestones towards proving the twin prime 

conjecture in the past 173 years have been represented by the 

following hypotheses, findings or theorems: a) V. Brun proved 

that the sum of the reciprocals of twin primes convergences 

to

, 2

1 1( )
2p p p p+ 

+  
+

  in 1915 [12]; b) T. Tao explored 

obstructions to uniformity of primes and their arithmetic 
patterns in 2006 [13]; c) T. Goldston, J. Pintz and I. Yildirim 
derived that the relative gap of twin primes approaches 

1lim  ( ) / log 0n n n
n

p p p+
→

− =  in 2009 [14]; c) Y. Zhang found 

that there are infinitely many pairs of twin primes within a 

bounded distance   
6

10 | |  70  10n np p+ −   in 2014 [15]; 

d) T. Tao initiated the International Polymath Project where  
optimizations of Zhang's work are conducted since 2014 [16]; 

and e) J. Maynard reduced Zhang’s bound of prime gaps to 

   1 1 1lim( ) 600, lim( ) 12, and lim( ) 6 + + +
→ → →

−  −  − n n n n n n
n n n

p p p p p p

successively based on the Maynard–Tao theorem in 2015 [17]. 
 

This work intends to present a formal proof of the twin 

prime conjecture based on a discovery of the mirror primes  

and their universal distributions in the infinite set       
[18]. Then, the set of twin primes         is 

recognized as a subset of  where 1 2n np p+ −   in Section II 

using the big-R calculus [19]. The twin prime conjecture is 

then deduced to a problem of Cantor’s equivalent countability 
among sets of , . , and , which leads to a formal proof 

of the twin prime conjecture in Section III based on the 

recursive properties of the prime sequence and the infinite 

distribution of  as discovered for proving Goldbach 

conjecture [18]. Analytic experiments based on an Algorithm 
of Twin-Prime Sieve (ATPS) are designed in Section IV to 
demonstrate the proven twin prime theorem and its 
applications. 

 
A novel structure and a set of interesting properties of 

mirror primes are introduced in recent basic research 
breakthroughs [18] as a set of symmetrically adjacent pair of 
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primes with respect to any even number in e. Based on the 
concept of mirror primes, the set of twin primes may be 
deduced to a special category of them where the distance (or 
difference of values) is always 2. This approach may 

significantly reduce the complex for recursive determination 

of twin primes and enables a rigorous inference on whether 

there are infinitely many pairs of twin primes. 
 

2.1 Analytic Properties of Primes 
 

It is used to be perceived that the sets of primes  and 

twin primes   seem to possess almost irregular members. 

However, a new perspective on the underpinned recursive 

properties of    and   is introduced as follows.     
 

Definition 2. A prime number p, except 2, is a positive 

odd integer 2  op  that is not a product of two 

smaller integers:  

 

 

 

  
2

(  |  0 (mod )),  {2}\{1}
n

o
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p n n m nR
 
 

=
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where the big-R calculus [19] denotes a recursive structure or 

manipulates a recursive function.  
 

Based on Definition 2, a general primality verification 

method may be derived [18]. Though, alternative sieve 

methodologies and algorithms exist [12], [20], [21], [22], [23], 

[24].  

 

Definition 3. The primality verification function ( )n  

determines, {2}\{1}on   , whether n is prime:  
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where ( )n  results in a positive verification iff 

 0 (mod )  for  all  2 .    
 

n m m n  Otherwise, as a 

shortcut, any negative result  0 (mod )n m will terminate the 

testing by returning false. 

 
The primality checker ( )n  plays an important role in 

recursive prime generation, which knocks down any 

successive odd integer for being prime if it is divisible by any 

preceding prime up to .n 
 

  

 

Definition 4. The generic pattern of the set of primes    is 

a recursive and infinite sequence of monotonously increasing 

odd integers (except 2) validated by the primality checker 

( )n :  
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where    3 2 4 3 5 4( 2) 5,  ( 2) 7, and ( 4 | 2) 11 = + = = + = = + = =p p p p p p k

 4because ( 2 9 | 1) 1+ = = p k , and etc. 

 

The generic mathematical model of the set of primes    

reveals an important recursive property of primes that leads to 

the theorem of recursiveness of the prime sequence as proven 

in [19]. The recursive pattern of    does not only explains the 

nature of primality, but also indicates that any pn    would 

remain indeterminable until the preceding primes 

1 n] [ , 
n

pp  
 

have been obtained. This mechanism enables 

a new perspective on the nature of primes in  and their 

manipulations as elaborated in the following subsection.    
 

 
2.2 Analytic Properties of Mirror Primes 

 

A novel mathematical concept of the set of mirror primes 

 is introduced in this work to model the pairs of mirror 

primes as a 2-dimensional structure       [18].   

establishes a relation between the sequence of pairwise primes 
and each pivotal even numbers ne as the center of them.  will 

be used to formally model the prime distribution pattern where 

at least a pair of mirror primes is symmetrically adjacent to 

each ne on both sides within finite distance. 
 

Definition 5. The mirror primes /2en
p

with respect to a 

pivotal even number 
2

− ++
=  e e

p p
n

   are pairwise 

primes symmetrically adjacent to the central ne within finite 
k|  distances:  
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where k is called the half interval of a pair of mirror primes. 
 
 For instances, according to Definition 5, the following 
pairs of primes are mirror primes symmetrically adjacent to 
certain pivot ne/2: 
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Based on Definitions 5, the entire set of mirror primes 


 

may be rigorously determined as follows. 
  

Definition 6. The set of mirror primes


is all valid pairs 
of adjacent primes with respect to each of the pivotal sequence 

4  ne / 2  e bounded by the finite half interval 

1 2
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where all pairs of mirror primes /2en

p   in the scope 

8 en    are determined by Definition 5. 
 

On the basis of the properties of mirror primes 


, a key 

theorem of mirror-prime decomposition for all even numbers 

may be formally derived in the following theorem. 

 

Theorem 1 (Mirror Prime Decomposition, MPD). Any 
even integer / 2 4e en   may be decomposed to the sum of 
at least a pair of mirror primes 

/2 /2 /2( ) ,  
2
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The proof of Theorem 1 has been presented in [18]. 
Theorem 1 for prime decomposition of arbitrary even integers 

is a necessary counterpart of Euclid’s Fundamental Theorem 

of Arithmetic [1] for prime factorization. The MPD theorem 

provides a general theory and methodology for finding all 

pairs of mirror primes, including twin primes, on both sides of 

any arbitrary even number ne, 4 / 2  en , except the 

special case / 2 2en =  where the mirror primes regress to a 

pair of reflexive primes 4 (2,2),  0p k = = . Theorem 1 will be 
adopted to explain the nature of twin primes 


 in the 

following subsection. 
 

2.3 Analytic Properties of Twin Primes 
 

Twin primes are used to be perceived as random pairs of 

primes with a constant half-interval k  1 in the spectrum of 

 .  However, according to the mathematical model of mirror 

primes 


, as introduced in Section 2.2, the set of twin 

primes


 may be formally derived as a special subset of 


. 

Therefore, if the size of 


 may be determined as proven in 

[18], so do


towards solving the twin prime conjecture.    
 

Definition 7. The twin primes /2en
p with respect to a pivot 

ne, ,e en    are a special pair of mirror primes with a 
constant half interval k  1: 
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where each pair of potential twin primes 
//2 2 /2 ),(  ee enn n

p p p
  − += must be validated by 

/2 /2( ) ( ) 1e en n
p p
 

 − + =  for sufficiently determining both of 

their primality. 
 

For instances, according to Definition 7: 
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where the largest pair of twin primes ever known has been 

found by PrimeBios in 2016 [26]. 
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Definition 8. The set of twin primes


with respect to the 

entire spectrum of pivotal even numbers 4  ne / 2  e <  

are determined in the constant half interval 1k dependent on 

a valid primality verification for each pair: 
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The mathematical models and the recursive properties of 

     pave a way to the formal proof of the twin 

prime conjecture in Section III.   
   

 

 

As a long-term challenging problem in number theory, it 

is curious to find whether there are infinitely many twin 

primes ( ,  )e e en n n
p p p  − +=   as the twin prime conjecture 

queried [11]. A formal proof for twin prime conjecture is 

expected to be based on the fundamental properties of twin 

primes


as described in preceding sections including: a) The 

universe of discourse of 


is constrained by the Cartesian 

product of the sets of primes  ; b) 


is necessarily a 

subset of mirror primes, i.e.,
  ; and c) 


 is 

sufficiently restricted by the uniform half-interval 1k   with 

respect to any pivotal  / 2 \{2}.e en   

 

Hypothesis 1. The Twin Prime Conjecture (TPC) queries 
whether there are infinitely many pairs of twin primes 

    : 
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The hypothesis of TPC may be formally proven based on 

the preparations in Section 2, particularly the recursiveness of 
the prime sequence and the mirror prime decomposition 
theorem for arbitrary even numbers. According to Theorem 1, 

any pair of potential twin primes symmetrically adjacent to a 

pivotal even number ne may be efficiently elicited from the set 

of mirror primes
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Based on Lemma 1 and Definition 8, the relationship 
between  and  

may be formally described in Lemma 2.    
 

Lemma 2. The set of twin primes 


 is a special subset of 

mirror primes 


 determined at the sequential positions 

4 / 2   en N
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where the distribution pattern of the pivotal ne/2 is constrained 
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Proof. Lemma 2 holds based on the following necessary 
and sufficient conditions: 
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3. Formal Proof of the Twin Prime 
Conjecture 
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 The necessary condition of twin primes in Lemma 2 is 

expressed in an informal way in the literature [27]. However, 

without the restriction of the sufficient condition, many false 

predictions would be resulted in


. 

Example 1. Given a sequence s of arbitrarily pivotal 

numbers 
en  , certain pairs of twin primes can be elicited 

from the qualified pairs of mirror primes in 


 according to 

Lemma 2: 
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  {0,       1,     9   2,          ...,  4,           5,            ..., 100,          ..., / 6,       ...}
{4,       6,       12,         ...,  24,         30,          

68630348 5 2
 ...

=

=e

s

n 1290000
  600,            ...,  ,           ...}

{(3,5), (5,7), (11,13),  ...,  (23, 25

2996863034895 2

=      

 

1290000
 ), (29,31),   ...,  (599, 601), ...,  ( 1), ...}

 {2,       2,       2,          ...,  ,          2,            ..., 2,                ...,  2,                               
2996863034895 2

= d                   ...}

 
where (s, ne, 

, d) represent the serial number, pivotal center, 

derived twin primes, and their distances, respectively. It is 
noteworthy that the candidate pair of (23, 25) centered by ne = 
24 is not twin primes because the sufficient condition of 
Lemma 2 requires that both ),(  e e en n n

p p p  − +=  must be prime.    
 

 

Both Lemmas 1 and 2 will enable the proof of the twin 

prime hypothesis to be true in order to establish the twin prime 

theorem based on Cantor’s principle of equivalent countability 
between infinite sets [29].  

 

Theorem 2 (Twin Prime Theorem, TPT). There are 
infinitively many pairs of twin primes in 

    : 
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Theorem 2 holds by a reductive proof based on the 

properties and relationships of  and  
as given in Lemmas 

1 and 2 as follows:  
 

 

 
Theorem 2 indicates that, although some pairs of mirror 

primes in 


would be ineligible because 1k   during twin 

prime verification, the entire 


 still maintains infinity as 

what Cantor has proven [29] for the equivalent classes 

. = e o
 

 

 
The proven twin-prime conjecture in Theorem 2 will be 

experimentally elaborated in this section by an infinitively 
recursive sequence of twin primes /2 /2

 ( , )e en n
p p   − +     . 

A numerical algorithm is introduced to demonstrate and 

visualize Theorem 2, as well as the infinite distribution pattern  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of twin primes in 
  . 

 

Algorithm 1. The algorithm of Twin-Prime Sieve (ATPS) 
is designed based on Theorem 2 as shown in Figure 1. It 
provides a twin-prime determination methodology for 
selecting 

max
en


from validated mirror primes 


 against each 

pivotal     even    integer   
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 The ATPS|PM algorithm is formally 

described as a recursive process model (PM) ATPS|PM in 

Real-Time Process Algebra (RTPA) [28], which is a form of 

Intelligent Mathematics (IM) [5] that enables readers to 

empirically test the twin prime theorem. 
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Fig. 1. The algorithm of twin-prime sieve (ATPS) 

The ATPS algorithm is a computational expression of the 
mathematical models according to Theorems 2. The input (I) 
of ATPS|PM is the maximum expected pivotal max

|
e e

n in the 

type of even numbers ( |
e ). The output (O) of ATPS|PM is a 

set () of valid twin primes adjacent to each potential ne/2 
in | |n . The Hyperstructure (H) denotes underpinning 
Structure Models (SMs) to be operated by the algorithm. 
ATPS|PM is implemented by a recursive process in the loop 

max

/2| 4

|

e e

e e

n

n

R (...) after the upper limit for an expected scope of 

iterations is validated by the if-then-(else) structure ( ). It 
then determines if each potential pair of twin primes 

/2 /2 /2 /2( ), 2|− + + − −e e e en n n n
p p p p
   

 is valid according to the 
primality test criteria (Eq. 2). Once both the necessary and 
sufficient conditions are satisfied, the algorithm displays the 
nth twin pair otherwise it skips (  ) the current iteration. 
Either outcome leads to the next iteration until the algorithm 
reaches max |e en . 

 
The ATPS algorithm provides a computational simulation 

for visualizing the recursive distribution pattern of twin primes 
in 

    . It may be implemented in MATLAB or 

any programming language.  

 

In order to visualize the proven twin prime theorem, a set 
of numerical experiments has been designed and implemented 
based on Algorithm 1, which provides empirical evidence for 
demonstrating the infinitive distribution of twin primes in 

.    The time complexity of the ATPS|PM algorithm 

is 
3
2max max max ) ( ) )( e e eO n n O n . The space requirement for 

ATPS|PM is constrained by the memory size of the 

underpinning computer. Therefore, for extremely large set of 

twin prime detections over 100,000,000, parallel computing 

facilities are required for supporting the algorithm.  

 
Experiment 1. Applying Algorithm 1 in MATLAB, a set 

of experimental results has been obtained as shown in Figures 
2 in the Cartesian space  

    . Figure 2 
demonstrates the trends of detected twin primes in the first 26 
pairs of twin primes within the scope of 24 / 52 eN  based 
on the twin-prime theorem. In Figure 2, the first three curves 

show those of /2 /2( ,  )
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Table 1. Statistical Distributions of Twin Primes based on the ATPS Algorithm 
 

Scope (N) 500 10,000 100,000 1,000,000 10,000,000 100,000,000 
Number of primes (Np) 95 1,229 9,592 78,498 664,579 5,761,455 
Number of pairs of twin primes (N) 25 206 1,225 8,170 58,981 440,313 
Density of pairs of twin primes (d = N / N) 5.00% 2.10% 1.23% 0.82% 0.59% 0.44% 
Maximum gaps between twin primes (gmax) 72 210 630 1,452 1,722 2,868 
Position of maximum gap ( / 2en N ) 23 145 833 7,121 58,619 428,136 

    
 

Fig. 2. Experimental results of infinite twin primes 

distribution in the space
    

 

Experiment 2. Applying the ATPS algorithm for a larger 
set of twin primes in the scope of 4 / 2 210 en  revealing 

similar results as illustrated in Figure 3. There are 206 twin 
primes detected and the density of twin primes 

10000 210 =  = 2.10%.
/ 2 10000e

d
n


 = The maximum gap among the 

pairs of detected twin primes is 6 ● 35 = 210 observed at 

/ 2 145en = . 
 

The inductive inference in the formal proof of Theorems 2 

provides a rigorous methodology for dealing with the infinite 

twin prime problem. More large-scale testing based on 
Algorithm 1 have been conducted as summarized in Table 1 to 
support the twin prime theorem. The experimental data 
provide empirical evidence for Theorem 2 by demonstrating: 

 
a) There is no tendency that the pairs of twin primes will 

disappear in the infinite sets of  constrained by 

    because lim  lim  e e
n n

d n n
→ →

= =  . 
 

b) There is no sign that the gaps gmax between the pairs of 
twin primes in 


 would irruptively jump to infinitive as 

shown in Figures 2 and 3.  
 

c) The classes of N and N are equivalent as shown in 

Table 1 where N (Lemma 1) is monotonically growing along 

N such that lim   | | = .
→

=   
n

N 
  

Fig. 3. Experimental results of infinite twin primes 

distribution in the space
    

 

The inductive inference towards the proof of Theorem 2 

provides a rigorous methodology for dealing with the infinite 

twin prime problem. Large-scale testing based on Algorithm 1 
have been conducted as summarized in Table 1 to support the 
proven twin prime theorem where the only limitation is 
computing speed and memory capacity. The experimental 
results have provided empirical evidence for confirming the 
twin prime theorem without exception. It demonstrates the 
ultimate power of human abstract inference underpinned by 
mathematical laws and formal analytic platforms. 

 
Theorem 2, Algorithm 1, and associated experiments 

provide both formal proof and empirical verification of the 
infinity distribution of twin primes in 

    . That 

is, lim  (| | | | | | | | ) = 
→


n

 
 based on Cantor’s 

infinitive countability across the equivalent classes of sets in 
number theory [29]. The properties of mirror/twin primes and 
the theorem of mirror prime decomposition have also been 
applied to prove the Goldbach conjecture in my lab [18]. 
 

 

This work has presented a formal proof of the twin prime 
conjecture based on a novel mathematical model of two-
dimensional mirror primes 

    and their symmetric 

properties. A fundamental theorem of mirror-prime 
decomposition for arbitrary even numbers has been 
established towards the proof of the twin prime conjecture. By 

5. Conclusion 
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observing that the set of twin primes 

 with 1 2n np p 

+ −   as 
a subset of mirror primes, this work has deduced the twin 
prime conjecture to a special case of the infinity of the 
recursive sequence of mirror prims 


: 
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The formal prove of the twin prime conjecture has been 

based on the discovery on the set of mirror primes 
    

and the establishment of the equivalent countability across 

lim  (| | | | | | | | ) = 
→


n

 
. Experiments using the 

algorithm for twin-prime sieve have visualized the proven 
twin-prime theorem and the infinitively recursive properties of 
twin primes among .  
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