vakgroep informatica R,U, Utrecht

A PROOF SYSTEM FOR PARTIAL CORRECTNESS
OF DYNAMIC NETWORKS OF PROCESSES

Job Zwiers
Arie de Bruin

Willem Paul de Roever

RUU-CS-83~-15
November 1983

Rijksuniversiteit Utrecht

Vakgroep informatica

Budapestlaan6 3584 CD Utrecht

Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-531454

The Netheriands

vakgroep informatica R.U, Utreche

S4re/y

A PROOF SYSTEM FOR PARTIAL CORRECTNESS
OF DYNAMIC NETWORKS OF PROCESSES

Job Zwiers
Arie de Bruin

Willem Paul de Roever

Technical Report RUU-CS-83-15
November 1983

Department of Computer Science
University of Utrecht
P.0. Box 80.012, 3508 TA Utrecht
the Netherlands

This paper will appear as extended abstract in:

Proceedings of the 2nd Workshop on Logics of Programs,
D. Kozen & E. Clarke (eds.), Lecture Notes in Computer

Science, Springer Verlag, Heidelberg, 1983.

{

A PROOF SYSTEM FOR PARTIAL CORRECTNESS
OF DYNAMIC NETWORKS OF PROCESSES

(Extended abstract)

Job Zwiers (%)
Arie de Bruin (¥*¥%)
Willem Paul de Roever (¥¥¥)

(*) Department of Computer Science, University of Nijmegen,
Toernooiveld, 6525 ED Nijmegen, the Netherlands

(*¥%) Faculty of Economics, Erasmus University,
P.0. Box 1738, 3000 DR Rotterdam, the Netherlands

(*¥%%) Department of Computer Science, University of Nijmegen,
and Department of Computer Science, University of Utrecht,
P.0. Box 80.002, 3508 TA Utrecht, the Netherlands

Introduction

A dynamically changing network is a set of processes, executing in parallel and com-
municating via interconnecting channels, in which processes can expand into subnet-
works. This expansion is recursive in the sense that the so formed subnetwork can
contain new copies of the expanding process. After all component processes of a
subnetwork have terminated, the expanded process contracts (shrinks) again and con-
tinues its execution. We define a simple language, called dynamic CSP, which can
describe such networks. We introduce a formal proof system for the partial correct-
ness of dynamic CSP programs. The proof system is built upon a new type of correct-
ness formulae, inspired by Misra and Chandy [MC], which allow for modular specifica-
tions c.q. proof of properties of a network. In the full paper, the proof system is
shown to be sound with respect to a denotational semantics for the language.

Acknowledgements

We are indebted to many people for their helpful comments. We would like to thank
P. van Emde Boas, J.W. de Bakker and especially R. Gerth for clarifying discussions.

The major portion of the research reported in this paper was carried out at the
University of Utrecht as part of the requirements for obtaining a "doctoraal examen"
by the first author.

1. The language

First we give the contextfree syntax of dynamic CSP.
In this syntax, x and u stand for program variables, D and E for channel variables,
P for procedure names, s for expressions and b for boolean expressions.

Statements: .
S ::= x:=s | skip | b | D?x | D!s |
$,3S, | [Sy o S,1 | cobegin N coend |)
P(Ejp-1s+++Ein-kiBout-17++*Bout-13%17++»"m
Networks:
N ::= S1HS2

Procedure declarations:

HERS : s begin S end
T ::= P(Din-W""’Din—k’Dout-1""’Dout-l’x1""’xm) peglin > =%
Programs:

R ::= T1,...,Tn : begin S end

The intuitive meaning of x:=s, skip and S1;32 should be clear. [s1 o 52] stands for
nondeterministic choice between S, and S,. Boolean expressions are incorporated as
statements. They function as "guards": whenever b evaluates to "true'", the guard can
be passed, i.e. it is equivalent to "EEEEY' in this case. When b evaluates to
"false" the guard cannot be passed and the computation is aborted. Because we are
only interested in partial correctness ("...if_ a program reaches (a) certain
point(s) then..."), a more familiar construct as if b then S, else S, fi can be ex-
pressed in our language as [b;s1 a~wb;32]. We will freely use such "derived" con-
structs in our examples. A network S1||S2 calls for concurrent execution of S; and
S.. In such a network, 51 and 52 are not allowed to have "shared" program vari-
ables. The two component processes of a network can communicate with each other
(only) along named, directed channels. Communication along a channel, say "D", oc-
curs when an output command "D!s" is executed by one of the component processes
simultaneously, i.e. synchronized, with an input command "D?x" of the other one.
The value of 8 is then assigned to the program variable x and both processes contin-
ue their execution. In dynamic CSP, channels always connect exactly two processes.
So a process cannot both read from and write to one and the same channel, nor are
twwo different processes allowed to both read from or both write to some common
channel. A channel from which some process reads or to which it writes is called an
external input or output channel of that process, respectively. When two processes
are bound together intoc a network, their common channels, along which they communi-
cate, are said to be internal channels of that network. The concepts of internal
and external channels are important to the modularity of our proof system. When
dealing with "nested" networks, i.e. networks as 81[182 in which S, and S, are them-
selves (or contain) subnetworks, it is possible that some subnetwork has an internal
channel with the same name as some channel of the main network. This is even una-
voidable when the subnetwork and the main network belong to different incarnations
of the same procedure body in case of a recursive procedure call. Such channel name
"elashes" are resolved by introducing a kind of block structure with the cobegin -
coend construct, which "hides" internal channels, i.e. no internal channel of S;|[S,
is visible anymore in the process cobegin 81[‘32 coend.

So in S = cobegin S; || cobegin S, || 84 coend coend

with S, D?x, S, = pto, S, = D%y,

3
the S, process communicates with S, along the D channel internal to S,||S;, and not
with S1. The D channel of s1 is an external input channel of S. We note that when
no "eclashes" arise between the external channel names of processes 81, S, and Sg,
then the semantic operator for parallel composition is associative for the network
consisting of S,, s, and S5 executing concurrently, so we can write

cobegin Sy || S5 I S3 coend

without (semantic) ambiguity. In agreement with the modular character of dynamic
CSP, we have for recursive procedures a scope concept different from that of Algol
like languages. All variables used in some procedure body (which is bracketed by
begin -~ ggg_) are assumed to be local variables, i.e. there are no references to any
kind of "global" variables possible. (Correspondingly, there is no explicit vari-
able declaration mechanism needed in dynamic CSP.) The parameter list of a procedure
consists of input channels, followed by output channels, followed by value/result-
variable parameters. To simplify matters technically, we impose the restriction
that all names in a (formal or actual) parameter list be distinct. This avoids any
kind of M"aliasing" that could introduce unwanted sharing of program- or channel
variables by two processes.

This section is concluded by an example of an algorithm known as a "priority queue”.

Q(in;out;)
begin
shrink := false;
while=— shrink
do
[in?val »+ cobegin
P(in,int1;out,int2;val)
X
Q(int2;int1;)
coend
g out!"*" » shrink := true
]
od
end, o¢
P(lin,rin;lout,rout;ownval)
begin
shrink := false;
while— shrink
do
[lin?newval > largest := max(ownval,newval):
ownval := min(ownval,newval);
rout!largest
o lout!ownval » rin?ownval;
shrink := (ownval='"%*m)
]
od
229 :
begin
cobegin Q(D;E;) || Userproc(E;D;) coend

end

4.

The queue can hold an arbitrary number of values: it expands or shrinks into as many
processes as are needed. It can be sent a value along an input channel "in", or re-
quested for a value along an output channel "out". In the latter case it sends the
least value currently in the queue, if any.

IN IN

!

Q expand »

}

ouT OouT

EXPANDED Q

fig.1 Expansion, corresponding to the cobegin - coend part of a "Q" process.

The "queue" starts as a single Q process. When sent a value, this Q process expands
into a P process, which holds the value in its variable "ownvalue", and a new copy
of a Q process. (see fig.1) When this expanded process is sent another value, this
value is received by the internal P process, which compares it with its "ownvalue".
It then keeps the smallest of the two, sending the larger one to its right neighbour
which is, in this case, the internal Q process which will expand itself, etc. How-
ever, when a P process is asked for a value it sends its "ownvalue" which it is
currently holding, and then tries to get a value from its neighbour. When this
neighbour is itself a P process it acts analogously, but if it is a Q process it
sends a "*" value to P and then terminates. The P process, upocn receiving this "*",
will also terminate, so the internal network consisting of these two processes ter-
minates. The Q process which "envelopes" this terminated network can then receive a
value and expand again, or it can be asked for a value, whereafter it sends a "¥*"
and terminates itself too, etc....

- *
7

———
*
9
*
3
Iy N G I :
5
U oy I Gy *
7
*
9
‘ “

fig.2 A queue holding the values 3,7 and 9 is sent a value 5. This new value
is inserted, causing the queue to expand. Before this process of insertion has come
to an end, the queue is already asked for its least value. This causes a deletion
of the "front" value (3); this deletion then "ripples" towards the end of the queue,
after which the queue shrinks.

2. The proof method

By now, a number of proof systems has been designed for "static" networks con-
sisting of a fixed number of concurrently executing processes. (e.g.:[AFR], (spl,
Imc], [L]) With the proof systems of [AFR] a specification of a collection con-
currently executing processes is derived by means of a "cooperation test"™ from proof
outlines for the component processes. This derived specification is not of the same
form as the specifications of the components! Because of this, we cannot repeat the
procedure to derive some specification of a still larger network in which the col-
lection processes mentioned above can be handled as just one component. Obviously,
such a proof system cannot be used for dynamically evolving networks. Another type
of proof system, for example that of [Sp], does not distinguish between the form of
the specifications of networks on the one hand and of their components on the other.
The correctness formulae of the system of [SD] are expressed in terms of the notions
mtpace" and "state". A state is a function describing the current contents of the
program variables of some process. A trace is a sequence of records of communica-
tion, indicating which values were communicated along which channel (or with which
process in the case of CSP), and also showing the chronolegical order of these com-
munications. The system of [SD] uses Hoare style correctness formulae and proof
rules. A general disadvantage of the Hoare method is, that a Hoare style assertion
itself is not suited to express properties about a process which is not intended to
terminate. The only way seems to be to resort to proof outlines, i.e. program texts
with assertions attached to intermediate control points. However, for a modular set
up of a proof system, complete proof outlines are hardly satisfactory as program
specifications. For a specification of a, possibly nonterminating, process, which
will execute concurrently with, and communicate with some "unknown" collection of
other processes, it seems plausible to include some kind of invariant to describe
the interface of the process with its environment. This invariant must be expressed
solely in terms of the (traces of) éxternally visible channels of the process, and
not in terms of the internal state or internal channels.

This leads to the following type of correctness formulae:

I: {p} S {q}

where p is a precondition on the initial state and trace, and q is a postcondition
on the final state and trace of S. I is an trace invariant for computations of S.
The informal meaning of such a formula is:

If p and I hold initially (that is, p holds for the initial state and trace, I
holds for the initial trace), then:

(1) I is preserved during the computation of S, that is, I still holds after any
communication of S.

(2) If S terminates, the postcondition q will hold for the final state and trace
of S.

With this type of formulae, a proof rule for parallel composition can be envisaged
as: .

I1 : {D1} S-‘ {Q1} ’ I2 : {pe} SZ {Q2}

7.

Tne conclusion of this rule is called an internal specification of the network
Sy[|S,, because it will mention channels internal (as well as external) to S,|[S,-
To turn an internal specification into an external one, we introduce the following
abstraction rule:

I7: {p’} S1 § S, g’} , I'™>I

=) >((p" & 1I°) , d’=>q

(p & I & Mintehan™

I : {p} cobegin S, || S, coend {q}

provided that the free channel names, used in I,p and q are included in the external
channels of S |]s .

1 2 ;
s ntonan Stands for the projection of the trace of s1l|32 onto the internal channels
O% E1|?S2, i.e. the subsequence of the trace formed by deleting all records of com-

munication with a channel name not internal to S1l|82-
A stands for the "empty trace".

The merit of the above rule for parallel composition is the simplicity of its form.
Moreover, for merely "pipelined" processes, its usage in proofs is also straightfor-
ward as the following example shows.

Take the following processes:

do IN?x ; iﬁ_x>0 then D!x else D!-Xx El od
do D?y ; OUT!(entier(¥y)) od
= cobegin S, || S, coend

31
2
s

Denoting by:

- channel names like "D" the corresponding projection of the trace onto that
channel.

- D[i]: the i-th element of (projection) D

- |D]: the length of (projection) D

- trace1 s tracezz that trace1 is some initial prefix of trace '

- f(trace) for some function f: the trace formed by applying f componentwise

then, we can write down the following specification for S:
OUT = entier(vabs(IN)) : {IN = OUT = A} S {true}

To prove this from specifications for S, and S,, we can choose these last ones as:

D = abs(IN) : {IN = OUT = A} S, {true}
and

nonneg(D) => OUT = entier(¥(D)) : {D = OUT = A} S, {true}
{(where nonneg(D) is some predicate expressing that all values occurring in
the trace of D are nonnegative ones.)

From these two, the desired specification of S follows easily with the above two
rules.

Heuristically , we can regard the invariants of S and of S1 as commitments about the
behaviour of S and S; respectively. The invariant of S, is split into a "commit-
ment" OUT = entiere/(D)) which 1is preserved if and only if the assumption
nonneg(D) about the environment is not violated. 1In the network S, the commitment

of 31 implies the assumption of 82. This distinction between assumption and commit-
ment will be formalized after our next example. This example shows that the usage of

8.

the above rule for parallel composition is rather cumbersome for non-"pipelined"
networks, in which information flows back and forth between the component processes
rather than in one direction.

We take:
51 = x:=0 ; do D!(x+1) ; E?x od
s, = do D?y 5 El(y+1) ; OUT!y od
g° =

cobegin S, |] S, coend
and try to prove:

oUT < (1,3,5,....) : {OUT = A} S {true}

from specifications for S; and Spe

(OUT € (1,3,5....) can be written more formally as:

Vil osjs|ouT| = ouTljl = 2j-1 1)

Again, heuristically, S; has a commitment C, =D s (1,3,5...)

which depends on the assumption A, = E S (2,4,6...).

For S,, we have a commitment C, =g g (2,4,6...) & OUT £ (1,3,5...)

which depends on the assumption A, =D = (1,3,5...)

Unfortunately, the specifications:

E
E

A, D Cy {D

A} Sy {true}
OUT = A} S, {true}

will not suffice to deduce the specification for S, as we are stuck on "eircular"
reasoning when we apply the parallel composition rule:

C1 = A2:D C2:DA1:> C1:3

Some adequate specifications, which are however somewhat difficult to appreciate,
are:

p{11 =0 &\7’1 [(1<ig|D] & E[i-1] = 2i-2) ®D[i] = 2i-1] : {D=E=A} S, {true}

Vi [(15ig|ouT| & D[i] = 2i-1) = (E[i] = 2i & OUTLi] = 2i-1)]:{D=E=0UT=A} S, {true}
(D = E =0UT = A} S, {true}

From the conjunction of the two invariants we can, by inductive reasoning, derive an

invariant of S,||S, from which the desired invariant of S can be deduced with the
abstraction rule; the "circular" reasoning is turned into a "spiral". We can para-

phrase the specification for, say S1, as follows:

Let precondition pl = {D = E = A} and C, (as above) hold initially, then if A, holds
for a prefix of the trace of a computation of 81, the commitment C1 holds for that
prefix extended with the next communication.

Generalizing this pattern, we now introduce a new type of correctness formulae, in-
spired by a similar type of formulae used by Misra and Chandy [MC].

Consider the formula:

(a,c) : {p} s {q}

Informally, this formula means the following:

| Assume p & C holds for the initial state and trace, then the following two
[conditions hold: - :

! (1) If A holds after each communication of S up to a certain point, then C
; holds after each communication of S up to that point and also after the next
|

ommunication of S, if present.
2) If S terminates, then if A holds after each communication of S, then the

postcondition q holds for the final state and trace.

The pair (A,C) is called the assumption-commitment pair. The syntactic restrictions
on assumptions and commitments are that they only refer to the trace of computations
of S, and not to the states S passes through.

Also, the only way to refer to traces in assumptions, commitments, pre- or postcon-
ditions is by means of projections N _.., with cset a set of channel names. Such a
projection stands for the subsequence of the trace, formed by deleting all records
of communication which do not represent a communication along one of the channels in
cset. When cset contains just one channel name, we use this name as an abbreviation

for the projection Hcset'

Due to our new correctness formulae, we can formulate a new proof rule which makes
the explicit inductive reasoning in the example above unnecessary, as this induction
becomes implicit in its soundness. This rule, called the network rule, is a slight
modification of a rule proposed by Misra and Chandy [MC], and replaces the rule for
parallel composition introduced above.

The network rule is:

Anet & Ci DD A, s A & Co DA, ' (2)

net

(A Cy & Co) : {pq & po} Sy || S5 {ag & ay!

net’

with the restrictions:

free(4,,Cq,P1,9¢) & free(s,)
free(A,,c,,p,,q,) < free(S,)

(Where free(X) denotes the free program- and channel variables of X. The free chan-
nels of a process are its external channels.)

Example: in the new formalism, we can express specifications for the processes in
the example above as:

]
]

(A7,Cq) + {D = E = A} sy {true}

(A,,C,) : {D = E = OUT = A} S, {true}

(true,c3 & 08) : {D = E =0UT = A} Sy || S, {truel (%)
uT

(true,C { = A} cobegin S, || S, coend {true} (¥¥)
with:

A, = E < (2,4,6...)

A, = o =D < (1,3,5...)

02 = Ay & OUT £ (1,3,5)

C = ouT < (1,3,5...)

Clearly, (*) can be derived from the specifications for S, and S, by means of the

10.

network rule. Finally, an application of the abstraction rule yields (¥*¥),

A formal soundness proof of the network rule can be found in the full paper. A
sketch of this proof is as follows:
Assume that op & C, & Py & Py holds initially.
Then we have to prove:
(1) 1f Aot holds after communications up to a certain point, then C, & C, holds
up to that point and also after the next communication.
(2) If A, holds after all communications up to termination, then q4 & a, holds
for the final state and trace.
Here, we only show (1). So assume also that A ., holds after communications up to
(and including) a certain point, say X, in the execution. We prove, by induction,
that for all points Y, preceding and including X, the following holds:

(*) A1,A2,C1 and C, hold after communications up to and including Y.
(*%) C,andC, hold also after the first communication after Y, say at Y~.

(a) Initially, (¥*) is trivially fulfilled, since no communication took place. (And
we only require something to hold after communication). Now for (¥*¥), we know by
assumption that b, & C1 and Py & 02 hold initially.
Now there are three cases:

- 51 communicated along an external channel of the network.

- S, communicated along an external channel of the network.

- Both S1 and 82 communicated, along an internal channel of the network.
Clause (1) of the network rule guarantees that the commitments of the processes

which actually communicated hold after this communication. The fact that we allow
references to traces in correctness formulae only by means of projections onto sets
of channels can be used to show that the commitment of a process is preserved also
when the process did not participate in the communication. So in all cases, C1 and
C2 hold after the first communication.

(b) Now fix some arbitrary point Y after the first communication. By assumption,
Anet holds for Y. Also, by induction we may assume that C, and C, hold for Y. But
then, with clause (2) of the network rule, Ay and A, hold for Y, which establishes
(¥). Finally, from (¥*), the induction hypothesis and the assumption that P, & Cy,
and p, & C, hold initially, it follows with clause (1) again that Cy and C, hold
after the first communication, for Y’. :

3. The proof System

There are several points which deserve attention.
Firstly, since recursive procedures are included in our language, statements and
correspondingly correctness formulae, have a meaning only in the context of some en-
vironment consisting of procedure declarations.

So formulae in our system are of the form:
< Deel | (A,C) : {p} S {q} >

1.

(Where Decl is a set of procedure declarations)

However, apart from the recursion rule, we have that for each (axiom or) rule the
environments mentioned in premisses and conclusion of the rule are all the same.
Therefore, in almost all cases, we do not write down environments explicitly in the
formulae, assuming that the environment is clear from context.

Secondly, although in this abstract we have not defined explicitly the assertion
languages to be used in formulae for assumptions, commitments, pre- and postcondi-
tions, we remark here that these languages, besides program- and channel variables,
also include "logical" or "freeze" variables as they are called in the literature.
Such freeze variables cannot occur in the program text, so the value they denote is
not affected by the computations of the program. Correctness formulae containing
free freeze variables are implicitly assumed to be universally quantified for these
variables, so:

(A,C) : {p} s {q}
with free freeze variable f, means the same as:

V£l ot} s ta)]

We now discuss in what sense "classical" Hoare style formulae like the normal as-
signment axiom are incorporated in our system. Notice that if "S" is some noncom-
municating statement, then validity of

(a,C) : {p} S {q}

boils down to: if p & C holds for the initial state and trace, then q holds for the
final. state and trace. So whenever the Hoare formula {p} S {q} is valid (meaning
that, if p holds for the initial state and trace, then q holds for the final state
and trace), then (A,C) : {p} S {q} is valid in our system for every assumption-
commitment pair (A,C). We therefore introduce axiom schemes {p} S {q} in our sys-
tem, from which normal axioms (schemes) can be obtained by adding some arbitrary
(A,C) pair in front of it. It will now be clear that we can incorporate all normal
Hoare axioms provided we regard them as schemes in the above sense. For our partic-
ular language, we have the following axiom schemes:

{pl{s/x]} x:=5 {p} (assign)

(pfs/x] denotes the assertion p in which s is subtituted for free occurrences
of x)

{p} skip {p} (skip)
{p} b {p & b} (test)

However, these axioms are not sufficient if we want a complete proof system! For
instance, look at: (true,false) : {true} skip {false}.

This formula 1is valid, but it cannot be derived from our axioms, since:
{true} skip {false} is not valid if regarded as a classical Hoare formula. To
correct this we introduce the following rule:

12.

(A,C) : {p & C} S {q}

(A,C) : {p} S {q}

Now, what about "classical" Hoare rules like the sequential composition rule? Here
we introduce proof rule schemes like for example:

{D1} s1 {Q1} s {pz} 82,{Q2}

which is valid if and only if

(4,C) : {p1} S1 {q1} , (A,C) : {pz} SZ {QZ}

(4,0) : {p3} 83 {az!
is valid for every feasible (A,C) pair.
(notice that the same (A,C) pair is used in all formulae of the premisses as well as
of the conclusion of the rule!)

We now claim that the following scheme is sound in our system:

{p} sy {r} , (r} S, {q} (sequential composition)

{D} S1 H 52 {Q}

{ So the normal Hoare style sequential composition rule can be regarded as a scheme
in our system.)

We give a sketch of the soundness proof of this scheme:

Take some arbitrary pair (A,C), and assume that p & C holds initially. We prove
that if A holds after communications up to some point in the computation of S1;s s
then C holds after communications up to this point and also after the next communi-
cation, if present. (The proof that q holds upon termination if A holds after all
communications of 51;32 follows similar lines.) So assume also that A holds up to
some point, say X. The only interesting case is when X lies in the midst of the ex-
ecution of S,. 1In this case, A holds after all communications of S, S© with the
premisse for S,, we know that C holds after communications of S;, and that r and C
hold when S, terminates. But then the premisse for S, guarantees that C also holds
after communications of S, up to X and after the next communication of S,.

It turns out that many "classical" Hoare rules remain sound when regarded as proof
rule schemes in our system. In particular, for dynamic CSP we have besides the

sequential composition rule the following rule for the nondeterministic choice con-
struct:

{p} S, {q} , {p} s, {a} (choice)

fp} [8y 25] {q}

We continue with rules for input and output commands. In these rules, we use sub-
stitutions in assertions like: A[D<v>/D] denoting the assertion formed from A by re-

placing terms nc , with D € cset, by Hcset<D’V>' As usual, care must be taken
that the variable v not becomes bound by some quantifier in A. (In the assertion

13.

language, two consecutive trace expressions denote the concatenation of the two
corresponding traces. A term <D,v> denotes the one element trace, indicating the
communication of a value v along the channel D; when the channel is clear from con-
text, the abbreviation <v> is also used for such a term.) '

c & p2V/ vi(cDv>/D]) (input)

C & p:\/v;(A[D<V>/D1 = q[D<v>/D,v/x])

(A,C) : {p} D?x {q}

C & p= Cc[D<«s>/D] (output)

C & p>(A[D<s>/D] > q[D<s>/D])

(A,C) : {p} D!s {q}

The first premisse of both rules is clear: we must show that C is preserved for this

communication. Since we do not know which value we are going to receive, we must
show this for every possible value for the case of an input command. The second

premisse for the input rule is also clear: the assumption A can be used to derive
some property of the value actually received. This property can be expressed in the
postcondition of the command.

The role of the A-term in the second premisse of the output rule is less clear,
since the communicated value is not unknown. However, in the next example it is used
to fix the channel along which communication occurs:

31 = [DO ; E!IO ; x:=0 g E!0 ; D!O ; x:=1]
= E? ?

S, = E?y 5 D%

S = cobegin S, H S, coend

We can prove: (true,true) : {true} S {x=1}

from: (A, ,true) {HD,E = A} S, {x=1}
with: Ay T Cy = v [ITD,E S (KE,v><D,w>)]

To prove the formula for S, we must show among others that:

(A1,true) = A} D!O ; E!O0 ; x:=0 {x=1}

{nD,E

Here we can use the assumption A; 1n the output rule to obtain:

(Aj,true) : {my 5 = A} D!O {false}

The rest of the proof now follows easily.

In the next two rules, for recursive procedure calls, we use the following notation:
D and X are abbreviations for lists of channel and program variables.

E/D denotes the substitution of the E-variables for correspondihg D-variables.

w denotes some special value, used to initialize all local variables of a pro-
cedure body.

var(X) denotes the free program variables of X.

chan(X) denotes the free channel variables of X.

The rules are:

< Decl | {p} P(D’ D %) (g} > = (recursion)

out’

< Decl | {p & ¥=u} Sg la}

< Decl {P(D. ;X)} begin Sy end | {p} P(D; ;05X {a} >

in’ out

Provided that var(p,q)g; {¥}, and where ¥ denotes the list of local variables of So
excluding the parameters X. (Motice that we used a proof rule scheme here)

The essence of the soundness proof for this rule is an induction on the recursion
depth of a call of some procedure. A problem is that this recursion depth is not
necessarily bounded for a given call. For formulae in which such nonterminating
calls occur, the requirement that some postcondition holds upon termination is of
course trivially fulfilled, but the requirement for the (A,C) pair is not! The
solution to this problem is to remember that the validity of correctness formulae is
formulated in terms of (finite) prefixes of the trace of some process, and that each
of these prefixes is produced already after the computation has reached some finite
recursion depth. See the full paper for a real soundness proof.

(A,C) : {p} P(D, ;%) {q} (parameter substitution)

1n out

(Alel,cle]) : {plel} P(E, iEq 3w (alell

out’

where [e] [Ein/Din’Ebut/B-ut’U/XJ
And provided that:
(Emuiout) M chan(A,C,p,q) € (D‘in Dout)

UANvar(p,q) € X

Due to our restriction that all names in a (formal or actual) parameter list must be
distinct, and also to the absence of "global" variables, we could keep this rule
quite simple.

The rules above can be used to derive properties of changes made to the actual
parameters of some procedure call, but they are not sufficient to prove that other
variables, not used as actual parameter, are left unchanged by this call. Similar
problems arise when we try to prove that the trace of some channel D is left invari-
ant by the execution of some network of which D is not an external channel. To be
able to prove these invariance properties, we introduce an axiom and some rules.

(A,C) : {p} S {p} (invariance)

Provided that free(A,C,p) N free(S) = g

(free(X) denotes the free program- and channel variables of X)

Soundness of this rule depends heavily on the fact that assertions can refer to
traces only by means of projections on channels.

15.
(A;,Cq) = {pq} 8 {aq} , (A5,C5) = {py} S {q2} (conjunction)

(A; & 45,Cy & C,) = {py & Py} S {a; & gy}

{p} S {q} (freeze variable substitution I)

{ple/f]} S {qle/f]}

Where f is some freeze variable and e is some expression, not containing program- or
channel variables.

{p} S {q} (freeze variable substitution II)

{p[s/f]} S {q}

Where f is some freeze variable and s is some expression, and provided that f does
not occur free in q.

We close this section with a restatement of the network rule, a reformulation of the
abstraction rule, and the introduction of a consequence rule, which is used in con-
nection with the other two.

(A1yc1) : {p1} S1 {Q1} y (AzyC2) : {pz} 82 {q2} (network)

A &§Cy DA, , A & Cr, DA

net net

(ApersCq & C5) & {py & Do} Sy || Sy {ag & apl
With the restrictions:
free(Ay,Cq,Pq,4q1) < free(S,)
fFee(Az,Cz,pZ,q2) < free(s,)

(a4,C) : {p & T,

intehan=M S1 | s {q} (abstraction)

(A,C) H {P} cobegin S1 || 82 coend {q}

Where intchan denotes the internal channels of S,||S,» and provided that
chan(A,C,p,q) N intchan = o

(A7,C") + {p"} X {q"} (with X = S or X= N)

ADA ,C">C,p>p , 3 >q, p &C>C’

(A,C) : {p} X {a}
The intended usage of these rules is as follows:
(1) Use the network rule to derive a formula for S ||s .
(2) Use the consequence rule to remove all information about the internal func-
tioning of the network, that is, ensure that no internal channel name remains after
the application of the consequence rule, except for a conjunct I =A (which

intchan
clearly cannot be removed by means of the consequence rule).

16.

(3) Use the abstraction rule to get rid of the conjunct I
a formula for cobegin S1||32 coend.

intchan=A’ and to obtain

4, Conclusion

We introduced a formal proof system for dynamic networks. of processes, and
touched upon its soundness. Future work will consider the completeness of the sys-

tem.

References

[AFR] Apt, K.R., Francez,N. and de Roever, W.P.

[CH]

"A proof System for Communicating Sequential Processes"
TOPLAS 2,3. July 1980, pp. 359-385.

Chen, Z.C. and Hoare, C.A.R.

"Partial Correctness of Communicating Sequential Processes."
2nd International Conference on Distributed Computer Systems,
IEEE 1981, 1-12.

fL] Levin, G.M.

(Mc]

[sD]

"A Proof Technique fo Communicating Sequential Processes",

TR 79-401, Computer Science Department, Cornell University, Ithaca, New
14853, 1979.

Misra, J. and Chandy, K.M.

"Proofs of Networks of Processes",

IEEE Transactions on Software Engineering, July 1981, pp. 417-426.
Soundararajan,N. and Dahl, O.d.

"Partial Correctness Semantics of Communicating Sequential Processes”
Research Report, Institute of Informatics, University of Oslo.

17.

York

Abs e /v
& p\c)

