
A Formal Model for Service Mediators

Klaus-Dieter Schewe1 and Qing Wang2

1 Software Competence Center Hagenberg, Hagenberg, Austria
kd.schewe@scch.at

2 University of Otago, Dunedin, New Zealand
qing.wang@otago.ac.nz

Abstract. In this paper we present a model of service mediators, which
are high-level specifications of service-based applications. These media-
tors provide slots that are to be filled by actual services. Suitable ser-
vices have to match the specification of the slots according to functional
and categorical characteristics. Services and mediators are based on the
ASM-based model of Abstract State Services.

1 Introduction

A lot of research is currently investigated into service-oriented architectures
(SOA) (see e.g. [9,12,16]), service-oriented computing (SOC) [14], web services
(see e.g. [1,2,3,6,11]), and cloud computing [4,10,24,25], which are all centred
around related problems. In an effort to consolidate and integrate current re-
search activities, the Service-Oriented Computing Research Roadmap [20] has
been proposed. Service foundations, service composition, service management
and monitoring, and service-oriented engineering have been identified as core
SOC research themes.

Despite this big interest in the area, and the many ideas and systems that
have been created many fundamental questions have still not been answered.
Nonetheless there is an agreement that content, functionality and sometimes
even presentation should be made available for use by human users or other
services, which ressembles the view of a pool of resources in the meme media
architecture [23]. The general idea is that media resources are extracted from any
accessible source, wrapped and thereby brought into the generic form of a meme
media object, and stored in a meme pool, from which they can be retrieved,
re-edited, recombined, and redistributed.

Our research aims at laying the foundations of a theory of service-oriented
systems. In particular, we try to answer the following fundamental questions:

– How must a general model for services look like capturing the basic idea and
all facets of possible instantiations, and how can we specify such services?

– How can we search for services that are available on the web?
– How do we extract from such services the components that are useful for the

intended application, and how do we recombine them?
– How can we optimise service selection using functional and non-functional

(aka “quality of service”) criteria?

J. Trujillo et al. (Eds.): ER 2010 Workshops, LNCS 6413, pp. 76–85, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Formal Model for Service Mediators 77

In [18] we addressed the first of these problems by developing the formal model
of Abstract State Services (AS2s) as a general, formal model for services. It is
based on Abstract State Machines (ASMs) [8], which have already proven their
usefulness in many areas. AS2s abstract from and generalise our research on Web
Information Systems [21], and integrate the customised ASM thesis for database
transformations [22]. The model of AS2s captures in particular web services (see
e.g. [1]).

In [19] we extended our work towards the second problem. We proposed a
formalisation of clouds as service federations, which in addition provide an on-
tological description of the offered services. The ontology must contain at least
a functional description of services by means of types, and pre- and postcondi-
tions, plus a categorical description of the application area by keywords. It can
be formalised by description logics [5]. In a sense, this is the idea of the “semantic
web”, which enables at least the semi-automatic selection of services. Thus, AS2s
that are extended in this way by an ontological description of services capture
the idea of “semantic web services” (see e.g. [17]).

In this paper we further extend our work addressing the third of the problems
above. More precisely, we formalise the notion of plot of a service, which speci-
fies algebraically how a service can be used. We then turn the idea around using
plots with open slots for services to specify on a high level of abstraction intended
service-based applications. We call such specifications service mediators, as the
mediate the collaboration of participating services. We then have to formally de-
fine matching criteria for services that are to fill the slots. In accordance with the
proposed ontological description of services we investigate matching conditions
based on functional and categorical characteristics. For plots we adopt Kleene
algebras with tests instead of looking into much more sophisticated process al-
gebras [7], which would all be far too complicated to have a chance to obtain a
decidable matching condition.

In the remainder of the paper we first elaborate on AS2s and associated plots
in Section 2. Note that in our original work on AS2s in [18] plots were at best
included implicitly. In Section 3 we introduce service mediators with service
slots, and formally discuss matching between such slots and actual services. We
conclude wth a brief summary and outlook.

2 Service Plots

Abstract State Services are composed of two layers: a database layer and a
view layer on top of it. Both layers combine static and dynamic aspects. The
assumption of an underlying database is no restriction, as it is hidden anyway,
and data services will be formalised by views, which in the extreme case could
be empty to capture pure functional services. The sequencing of several service
operations in order to execute a particular task is only left implicit in the AS2

model. In this section we make it explicit by algebraic expressions called plots.

78 K.-D. Schewe and Q. Wang

2.1 Abstract State Services

Starting with the database layer and following the general approach of Abstract
State Machines [13] we may consider each database computation as a sequence
of abstract states, each of which represents the database (instance) at a certain
point in time plus maybe additional data that is necessary for the computa-
tion, e.g. transaction tables, log files, etc. In order to capture the semantics of
transactions we distinguish between a wide-step transition relation and small
step transition relations. A transition in the former one marks the execution
of a transaction, so the wide-step transition relation defines infinite sequences
of transactions. Without loss of generality we can assume a serial execution,
while of course interleaving is used for the implementation. Then each transac-
tion itself corresponds to a finite sequence of states resulting from a small step
transition relation, which should then be subject to the postulates for database
transformations [22].

Definition 1. A database system DBS consists of a set S of states, together
with a subset I ⊆ S of initial states, a wide-step transition relation τ ⊆ S ×
S, and a set T of transactions, each of which is associated with a small-step
transition relation τt ⊆ S × S (t ∈ T) satisfying the postulates of a database
transformation over S.

A run of a database system DBS is an infinite sequence S0, S1, . . . of states
Si ∈ S starting with an initial state S0 ∈ I such that for all i ∈ N (Si, Si+1) ∈ τ
holds, and there is a transaction ti ∈ T with a finite run Si = S0

i , . . . , S
k
i = Si+1

such that (Sj
i , S

j+1
i) ∈ τti holds for all j = 0, . . . , k − 1.

Views in general are expressed by queries, i.e. read-only database transforma-
tions. Therefore, we can assume that a view on a database state Si ∈ S is given
by a finite run Si = Sv

0 , . . . , S
v
� of some database transformation v with Si ⊆ Sv

�

– traditionally, we would consider Sv
� −Si as the view. We can use this to extend

a database system by views.
In doing so we let each state S ∈ S to be composed as a union Sd∪V1∪· · ·∪Vk

such that each Sd ∪ Vj is a view on Sd. As a consequence, each wide-step state
transition becomes a parallel composition of a transaction and an operation that
“switches views on and off”. This leads to the definition of an Abstract State
Service (AS2).

Definition 2. An Abstract State Service (AS2) consists of a database system
DBS, in which each state S ∈ S is a finite composition Sd ∪ V1 ∪ · · · ∪ Vk, and a
finite set V of (extended) views. Each view v ∈ V is associated with a database
transformation qv such that for each state S ∈ S there are views v1, . . . , vk ∈ V
with finite runs Sd = Sj

0 , . . . , S
j
nj

= Sd ∪Vj of vj (j = 1, . . . , k). Each view v ∈ V
is further associated with a finite set Ov of (service) operations o1, . . . , on such
that for each i ∈ {1, . . . , n} and each S ∈ S there is a unique state S′ ∈ S with
(S, S′) ∈ τ . Furthermore, if S = Sd ∪ V1 ∪ · · · ∪ Vk with Vi defined by vi and o is
an operation associated with vk, then S′ = S′

d ∪ V ′
1 ∪ · · · ∪ V ′

m with m ≥ k − 1,
and V ′

i for 1 ≤ i ≤ k − 1 is still defined by vi.

A Formal Model for Service Mediators 79

In a nutshell, in an AS2 we have view-extended database states, and each
service operation associated with a view induces a transaction on the database,
and may change or delete the view it is associated with, and even activate other
views. These service operations are actually what is exported from the database
system to be used by other systems or directly by users.

Note that for each view v the defining query, i.e. the database transformation
qv, can be considered itself a service operation. This simply reflects the fact that
data that is made available on the web can be extracted and stored or processed
elsewhere. In particular, we have the extreme cases of a pure data service, in
which no service operations would be associated with a view v, i.e. Ov = ∅, and
a pure functional service, in which the view v is empty.

A formalisation of database transformations is beyond the scope of this paper.
In a nutshell, the postulates require a one-step transition relation between states
(sequential time postulate), states as (meta-finite) first-order structures (abstract
state postulate), necessary background for database computations such as com-
plex value constructors (background postulate), limitations to the number of ac-
cessed terms in each step (bounded exploration postulate), and the preservation
of equivalent substructures in one successor state (genericity postulate) [22].

2.2 Algebraic Plots

According to [21] a plot is a high-level specification of an action scheme, i.e. it
specifies possible sequences of service operations in order to perform a certain
task. For an algebraic formalisation of plots in Web Information Systems (WISs)
it was possible to exploit Kleene algebras with tests (KATs [15]). Then a plot is
an algebraic expression that is composed out of elementary operations including
0, 1, and propositional atoms, binary operators · and +, and unary operators ∗

and ,̄ the latter one being only applicable to propositions. With the axioms for
KATs we obtain an equational theory that can be used to reason about plots.

Propositions and operations testing them are considered the same. Therefore,
propositions can be considered as operations, and overloading of operators for
operations and propositions is consistent. In particular, 0 represents fail or
false, 1 represents skip or true, p · q represents a sequence of operations or a
conjunction, if both p and q are propositions, p+q represents the choice between
p and q or a disjunction, if both p and q are propositions, p∗ represents iteration,
and p̄ represents negation.

For our purposes here, the definition of plots for AS2s requires that we leave
the purely propositional ground. The service operations give rise to elementary
processes of the form

ϕ(x) op[z](y) ψ(x,y, z),

in which op is the name of a service operation, z denotes input for op selected
from the view v with op ∈ Opv, y denotes additional input from the user, and
ϕ and ψ are first-order formulae denoting pre- and postconditions, respectively.
The pre- and postconditions can be void, i.e. true, in which case they can be
simply omitted. Furthermore, also simple formulae χ(x) – again interpreted as

80 K.-D. Schewe and Q. Wang

tests checking their validity – constitute elementary processes. With this we
obtain the following definition.

Definition 3. The set of process expressions of an AS2 is the smallest set P
containing all elementary processes that is closed under sequential composition·,
parallel composition ‖, choice +, and iteration ∗. That is, whenever p, q ∈ P
hold, then also pq, p‖q, p+ q and p∗ are process expressions in P .

The plot of an AS2 is a process expression in P .

Example 1. Let us look at some very simplistic examples. For a flight booking
service we may have the following (purely sequential) plot:

get itineraries[](d) select itinerary[i]() personal data[](t)
confirm flight[](y) pay flight[](c)

Here the parameters d, i, t, c and y represent dates, selected itinerary, traveller
data, card details, and a Boolean flag for confirmation.

Similarly, the following expression represents another plot for accommodation
booking:

get hotels[](d) select hotel[h]() select room[r]() personal data[](t)
confirm hotel[](y) pay accommodation[](c)

Here the parameters h and r represent the selected hotel and room.
Finally, the expression personal data[](t) (papers[]() ‖ discount[](d′) repre-

sents the plot of a conference registration service. 	

Note that the set of all instantiations of process expressions in P still defines a
Kleene algebra with tests, but different to the work on Web Information Systems
in [21] this algebra is not finitely generated. The sequences of service operations
with instantiated parameters that are permitted by the plot define the semantics
of the AS2.

3 Mediators

With the concept of service mediators we want to capture the plot of a composed
AS2. In other words, we want to define a plot of an application that is yet to
be constructed. The key issue is that such mediators specify service operations
to be searched for, which can then be used to realise the problem at hand in a
service-oriented way.

3.1 Service Slots

In order to capture the idea to specify service requests we relax the definition of
a plot in such a way that service operations do not have to come from the same
AS2. Thus, in elementary processes we use prefixes to indicate the corresponding
AS2, so we obtain ϕ(x) X : op[z](y) ψ(x,y, z), in which X denotes a service
slot. Apart from this we leave the construction of the set of process expression
as in Definition 3.

A Formal Model for Service Mediators 81

Definition 4. A service mediator is a process expression with service slots.
Furthermore, each service operation is associated with input- and output-types,
pre- and postconditions, and a concept in a service terminology.

Example 2. Let us specify a service mediator for a conference trip application,
which should combine conference registration, flight booking, and accommoda-
tion booking. Furthermore, replicative entry of customer data should be avoided,
and confirmation of selection as well as payment should be unified in single local
operations. This leads to the following specification:

L : personal data[](t) (X : papers[]() ‖ X : discount[](d′)
(Y : get itineraries[](d) Y : select itinerary[i]() ‖

Z : get hotels[](d) Z : select hotel[h]() Z : select room[r]())
L : confirm[](y) (Y : confirm flight[](y) ‖ Z : confirm hotel[](y))
L : pay[](c) (Y : pay flight[](c) ‖ Z : pay hotel[](c))

Here the three slots X,Y and Z refer to the three services for conference regis-
tration, flight booking, and accommodation booking, respectively, while the slot
L refers to local operations. For confirmation and payment the input parameters
y and c are simply pushed through to the two booking services. 	

The work in [19] contains a precise definition of service terminologies on the
grounds of description logics [5]. For this we assume that C0 and R0 represent
not further specified specified sets of basic concepts and roles, respectively. Then
concepts C and roles R are defined by the following grammar:

R = R0 | R−
0

A = C0 | � | ≥ m.R (with m > 0)
C = A | ¬C | C1 	 C2 | C1
 C2 | ∃R.C | ∀R.C

Definition 5. A service terminology is a finite set T of assertions of the form
C1 � C2 with concepts C1 and C2 as defined by the grammar above.

Each assertion C1 � C2 in a terminology T is called a subsumption axiom. The
semantics of a terminology is defined by its models in the usual way [19]. Such a
service terminology should comprise at least two parts: a functional description
of input- and output types as well as pre- and postconditions telling in techni-
cal terms, what the service operation will do, and a categorical description by
inter-related keywords telling what the service operation does by using common
terminology of the application area (see [19] for details).

Example 3. With respect to the service operations in the plots in Example 1 the
terminology has to specify that select itinerary is a flight booking service opera-
tion. For this purpose the terminology may contain among others the following
subsumption axioms:

82 K.-D. Schewe and Q. Wang

Booking � Service Operation 	 ∃initiator.Customer 	
∃initiated by.Request 	 ∃receives.Acknowledgement
	 ∃requires.Customer data 	 ∃requires.Payment 	

Flight booking � Booking 	 ∀initiated by.Flight request

Further details can be found in [19]. 	

3.2 Service Matching

A service mediator specifies, which services are needed and how they are com-
posed into a new plot of a composed AS2. So we now need exact criteria to
decide, when a service matches a service slot in a service mediator.

It seems rather obvious that in such a matching criteria for all service op-
erations in a mediator associated with a slot X we must find matching service
operations in the same AS2, and the matching of service operations has to be
based on their functional and categorical description. The guideline is that the
placeholder in the mediator must be replaceable by matching service operations.
Functionally, this means that the input for the service operation as defined by
the mediator must be accepted by the matching service operation, while the out-
put of the matching service operation must be suitable to continue with other
operations as defined by the mediator. This implies that we need supertypes
and subtypes of the specified input- and output-types, respectively, in the me-
diator, as well as a weakening of the precondition and a strengthening of the
postcondition. Categorically, the matching service operation must satisfy all the
properties of the concept in the terminology that is associated with the place-
holder operation, i.e. the concept associated with the matching service operation
must be subsumed by that concept.

However, the matching of service operations is not yet sufficient. We also have
to ensure that the projection of the mediator to a particular slot X results in a
subplot of the plot of the matching AS2.

Definition 6. A subplot of a plot p is a process expression q such that there
exists another process expression r such that p = q + r holds in the equational
theory of process expressions.

The projection of a mediator m is a process expression pX such that pX =
πX(m) holds in the equational theory of process expressions, where πX(m) re-
sults from m by replacing all placeholders Y : o with Y �= X and all conditions
that are irrelevant for X by 1.

Based on this definition it is tempting to require that the projection of a mediator
should result in a subplot of a matching service. This would, however, be too
simple, as order may differ and certain service operations may be redundant. We
call such redundant service operations phantoms. Formally, if for a condition
ϕ(x) appearing in a process expression p the equation ϕ(x) = ϕ(x)op[y](z)
holds, then op[y](z) is called a phantom of p. That is, if the condition ϕ(x)

A Formal Model for Service Mediators 83

holds, we may execute the operation op[y](z) (or not) without changing the
effect.

Whenever p = q holds in the equational theory of process expressions, and
op[y](z) is a phantom of p with respect to condition ϕ(x), we may replace ϕ(x)
by ϕ(x)op[y](z) in q. Each process expression resulting from such replacements
is called an enrichment of p by phantoms.

Thus, we must consider projections of enrichments by phantoms, which leads
us to the following definition.

Definition 7. An AS2 A matches a service slot X in a service mediator m iff
the following two conditions hold:

1. For each service operation X : o in m there exists a service operation op
provided by A such that
– the input-type Iop of op is a supertype of the input-type Io of o,
– the output-type Oop of op is a subtype of the output-type Oo of o,
– preo ⇒ preop holds for the preconditions preo and preop of o and op,

respectively,
– postop ⇒ posto holds for the postconditions posto and postop of o and
op, respectively, and

– the concept Co associated with o in the service terminology subsumes
the concept Cop associated with op.

2. There exists an enrichment mX of m by phantoms such that building the
projection ofm and replacing all service operationsX : o by matching service
operations op from A results in a subplot of the plot of A.

Example 4. Let us look again at the simple service mediator in Example 2.
We can assume that the local operation personal data[](t) has the postcondition
person(t), and this is invariant under the service operations for itinerary and
hotel selection. We can further assume that in both booking services the service
operation personal data[](t) is a phantom for person(t). Thus, the mediator can
enriched by phantoms, which results in:

L : personal data[](t) (X : papers[]() ‖ X : discount[](d′)
(Y : get itineraries[](d) Y : select itinerary[i]() Y : personal data[](t) ‖

Z : get hotels[](d) Z : select hotel[h]() Z : select room[r]())
Z : personal data[](t)

L : confirm[](y) (Y : confirm flight[](y) ‖ Z : confirm hotel[](y))
L : pay[](c) (Y : pay flight[](c) ‖ Z : pay hotel[](c))

The projection of this process expression to the servicesX , Y and Z, respectively,
results exactly in the three plots in Example 1. 	

4 Conclusion

In this paper we continued our research on foundations of a theory of web-based
service-oriented systems. We addressed the problem of service mediation starting

84 K.-D. Schewe and Q. Wang

from a high-level specification of an intended service-oriented application, in
which ”holes” are to be filled by suitable services. This led us to the formal
model of service mediators with service slots. For the slots we provide matching
conditions for services, which combine functional criteria by means of types, and
pre- and postconditions, and categorical criteria capturing the application area.
Thus, the matching conditions link to an ontological description of services.

With this work we add another tile to our theory, which permits the iden-
tification, search and composition of services in order to build a web-oriented
application. While this is highly relevant to realise the vision of cloud and service-
oriented computing on the web, there are still many open problems regarding
allocation and optimised performance, selection among choices, and security and
privacy. These open problems constitute the challenges for our continuing re-
search.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-
tecture and Applications. Springer, Heidelberg (2004)

2. Altenhofen, M., Börger, E., Lemcke, J.: An abstract model for process media-
tion. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 81–95.
Springer, Heidelberg (2005)

3. Alves, A., et al.: Web services business process execution language, version 2.0.,
OASIS Standard Committee (2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

4. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A.,
Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A
berkeley view of cloud computing. Technical Report UCB/EECS-2009-28, Depart-
ment for Electrical Engineering and Computer Sciences, University of California
at Berkeley, US (2009)

5. Baader, F., et al. (eds.): The Description Logic Handbook: Theory, Implementation
and Applications. University Press, Cambridge (2003)

6. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing
web service protocols. Data and Knowledge Engineering 58(3), 327–357 (2006)

7. Bergstra, J.A., Ponse, A., Smolka, S.A.: Handbook of Process Algebra. Elsevier
Science B.V., Amsterdam (2001)

8. Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg (2003)
9. Brenner, M.R., Unmehopa, M.R.: Service-oriented architecture and web services

penetration in next-generation networks. Bell Labs Technical Journal 12(2), 147–
159 (2007)

10. Buyyaa, R., Yeo, C.S., Venugopala, S., Broberga, J., Brandic, I.: Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6), 599–616 (2009)

11. Christensen, E., et al.: Web services description language (WSDL) 1.1 (2001),
http://www.w3c.org/TR/wsdl

12. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

13. Gurevich, J.: Sequential abstract state machines capture sequential algorithms.
ACM Transactions on Computational Logic 1(1), 77–111 (2000)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.w3c.org/TR/wsdl

A Formal Model for Service Mediators 85

14. Huhns, M.N., Singh, M.P.: Service-oriented computing: Key concepts and princi-
ples. IEEE Internet Computing 9, 75–81 (2005)

15. Kozen, D.: Kleene algebra with tests. ACM Transactions on Programming Lan-
guages and Systems 19(3), 427–443 (1997)

16. Kumaran, S., et al.: Using a model-driven transformational approach and service-
oriented architecture for service delivery management. IBM Systems Journal 46(3),
513–530 (2007)

17. Kuropka, D., Tröger, P., Staab, S., Weske, M. (eds.): Semantic Service Provisioning.
Springer, Heidelberg (2008)

18. Ma, H., Schewe, K.-D., Thalheim, B., Wang, Q.: A theory of data-intensive software
services. Service Oriented Computing and Its Applications 3(4), 263–283 (2009)

19. Ma, H., Schewe, K.-D., Wang, Q.: An abstract model for service provision, search
and composition. In: Kirchberg, M., et al. (eds.) Services Computing Conference -
APSCC 2009, pp. 95–102. IEEE Asia Pacific (2009)

20. Papazoglou, M.P., van den Heuvel, W.-J.: Service oriented architectures: Ap-
proaches, technologies and research issues. VLDB Journal 16(3), 389–415 (2007)

21. Schewe, K.-D., Thalheim, B.: Conceptual modelling of web information systems.
Data and Knowledge Engineering 54(2), 147–188 (2005)

22. Schewe, K.-D., Wang, Q.: A customised ASM thesis for database transformations
(2009) (submitted for publication)

23. Tanaka, Y.: Meme Media and Meme Market Architectures. IEEE Press, Wiley-
Interscience, USA (2003)

24. Yara, P., Ramachandran, R., Balasubramanian, G., Muthuswamy, K., Chan-
drasekar, D.: Global software development with cloud platforms. In: Software Engi-
neering Approaches for Offshore and Outsourced Development, pp. 81–95. Springer,
Heidelberg (2009)

25. Zeng, W., Zhao, Y., Ou, K., Song, W.: Research on cloud storage architecture and
key technologies. In: Proceedings of the 2nd International Conference on Interac-
tion Sciences: Information Technology, Culture and Human, pp. 1044–1048. ACM,
New York (2009)

	A Formal Model for Service Mediators
	Introduction
	Service Plots
	Abstract State Services
	Algebraic Plots

	Mediators
	Service Slots
	Service Matching

	Conclusion
	References

