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Abstract

Deep neural networks and other deep learning methods have very successfully been applied to
the numerical approximation of high-dimensional nonlinear parabolic partial differential
equations (PDEs), which are widely used in finance, engineering, and natural sciences. In
particular, simulations indicate that algorithms based on deep learning overcome the curse of
dimensionality in the numerical approximation of solutions of semilinear PDEs. For certain
linear PDE:s it has also been proved mathematically that deep neural networks overcome the
curse of dimensionality in the numerical approximation of solutions of such linear PDEs. The
key contribution of this article is to rigorously prove this for the first time for a class of
nonlinear PDEs. More precisely, we prove in the case of semilinear heat equations with
gradient-independent nonlinearities that the numbers of parameters of the employed deep
neural networks grow at most polynomially in both the PDE dimension and the reciprocal of
the prescribed approximation accuracy. Our proof relies on recently introduced full history
recursive multilevel Picard approximations for semilinear PDEs.
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1 Introduction

Deep neural networks (DNNs) have revolutionized a number of computational problems;
see, e.g., the references in Grohs et al. [13]. In 2017 deep learning-based approximation
algorithms for certain parabolic partial differential equations (PDEs) have been proposed
in Han et al. [6, 14] and based on these works there is now a series of deep learning-based
numerical approximation algorithms for a large class of different kinds of PDEs in the
scientific literature; see, e.g., [1, 2,4, 9, 10, 11, 13, 15, 21-25]. There is empirical evidence
that deep learning-based methods work exceptionally well for approximating solutions of
high-dimensional PDEs and that these do not suffer from the curse of dimensionality; see,
e.g., the simulations in [1, 2, 6, 14]. There exist, however, only few theoretical results
which prove that DNN approximations of solutions of PDEs do not suffer from the curse of
dimensionality: The recent articles [5, 10, 13, 20] prove rigorously that DNN approxi-
mations overcome the curse of dimensionality in the numerical approximation of solutions
of certain linear PDEs.

The main result of this article, Theorem 4.1 below, proves for semilinear heat equations
with gradient-independent nonlinearities that the number of parameters of the approxi-
mating DNN grows at most polynomially in both the PDE dimension d € N and the
reciprocal of the prescribed accuracy ¢ > 0. Thereby, we establish for the first time that
there exist DNN approximations of solutions of such PDEs which indeed overcome the
curse of dimensionality. To illustrate the main result of this article we formulate in the
following result, Theorem 1.1 below, a special case of Theorem 4.1.

Theorem 1.1 Let Ay : R — R, d € N = {1,2,...}, and ||| : (UgenRY) — [0, 00) sat-
isfy for all d € N, x = (x1,...,x4) € R? that Ay(x) = (max{x;,0},... max{xs,0}) and
I3l = [0, (x0)*]'72, let N= Unen U ay.oryenis [Hfill([@k”x"”" X Rk”)}» let R :
N — (UrienC(RE RY) and P : N — N satisfy for all H € N, ko, ky, ... kg, kg € N,
® = ((Wi,B1), ... (Wrs1, Buin)) € [ (Rt x RM), xg € R%, .. xy € R¥ with
Vne NN, H]: x, = Ay, Wpxn—1 + By) that

H+1
R(®) € C(RY, R¥+1), (R(D))(x0) = Wyr1xy + Bry1, and P(®) = 3 ky(ky_y + 1),
n=1

let T,k € (0,00), f € C(R,R), (84.)sense(0,1] E Ns (€a)gen € (0,00), for every d € N let
g4 € C(RYR), for every d € N let ug € C'*([0,T] x R?,R), and assume for all d € N,
v,we R, x e R ¢ € (0,1], 1 € (0,T) that [f(v) — f(w)| < klv — wl|, R(g,,) € C(R),R),
[(R(84.)) ()] < (1 + [|x[]%), 184 (x) = (R(84,.))(x)| < ercd™ (1 + ||x]|"),  P(gy,) < rd"
e, Jua(t,x)| < ca(1 + ||x]|), 4q(0,x) = ga(x), and

(gud)(w) = (Awug)(t,) + f (ua(1, %)). (1)
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Then there exist € (0,00) and (M4) gen se0,1] © N such that for all d € N, ¢ € (0,1] it
holds that R(u4,;) € C(RY R), P(uy,) <nd'e™", and

[/[0 g = (Rluse)) (@) de| <. 2)

Theorem 1.1 is an immediate consequence of Corollary 4.2 in Sect. 4.2 below (with
T =2T, uy(t,x) = ug(T — £ ,x), f(v) =f(v)/2 for t € [0,2T], x € R?, v € R in the nota-
tion of Corollary 4.2). In the following we add a few comments on some of the mathe-
matical objects which appear in Theorem 1.1. First, note that for all d € N it holds that
l'll|ge : R — [0,00) in Theorem 1.1 is nothing else but the standard norm on R?. The-
orem 1.1 shows under suitable assumptions that DNNs can overcome the curse of
dimensionality in the numerical approximation of semilinear heat equations of the form (1)

above and the functions Ay : R?Y — RY, d € N, in Theorem 1.1 above specify the acti-
vation functions which we employ in the considered DNN approximations. The set N in
Theorem 1.1 above represents the set of all DNNs. Observe that for all ® € N we have that
the natural number P(®) specifies the number of real parameters used to describe the DNN
®. Moreover, note that for all ® € N it holds that R(®) is the realization function asso-
ciated to the DNN ®. The real number T € (0, co) specifies the time horizon [0, T] of the
PDEs in (1), the function f : R — R specifies the nonlinearity of the PDEs in (1), the
functions g, : R >R, deN, specify the initial conditions of the PDEs in (1), and the
functions u, : [0, T] x R >R, deN, specify the solutions of the PDEs in (1). The real
numbers k € (0,00) and ¢4 € (0,00), d € N, are constants which we use to specify
suitable regularity assumptions on the nonlinearity f: R — R, the initial conditions
g4:RY > R, d € N, and the PDE solutions u, : [0,T] x R?Y — R, d € N. Theorem 1.1
establishes the existence of DNNs u,;, € N, d €N, ¢ ¢ (0, 1], which approximate the

solutions u, : [0, T] x R - R,d €N, of (1) at time T without the curse of dimensionality.

Next we sketch the main steps in our proof of Theorem 1.1 above. Roughly speaking,
the proof can be divided into four main steps. First, we approximate the solutions of the
semilinear heat equations in (1) through solutions of PDEs whose initial conditions and
nonlinearities can be exactly represented through suitable DNNs (cf. Lemma 2.3 below).
Next we construct a suitable artificial probability space on which we approximate the
solutions of these approximating PDEs by means of the in [7, 17] recently introduced full
history recursive multilevel Picard (MLP) approximations (cf. Corollary 2.4 below and see
also [3, 8, 12, 16, 18, 19] for further articles on MLP approximations). Thereafter, we
prove that the MLP approximations of the approximating PDEs can be exactly represented
by DNNs (cf. Lemma 3.10 below). We thus have constructed suitable random DNNs which
approximate the solutions of (1) without the curse of dimensionality in the probabilistically
strong sense. We are now in the position of the articles [5, 13, 20] to bring, e.g., [20,
Corollary 2.4] into play to obtain the existence of a realization on the artificial probability
space such that the error between the PDE solution of (1) and the realization of the
constructed random DNNs is below the prescribed approximation accuracy ¢ € (0, 1] and
this will allow us to complete the proof of Theorem 1.1 above. Our strategy of the proof of
Theorem 1.1 is inspired by the procedure in [5, 13, 20] in the sense that we also construct
suitable random DNNs to approximate the solutions of (1) on a suitable artificial proba-
bility space. The main difference of this work compared to [5, 13, 20] is that in this work
we do not construct the approximating random DNNs through the plain vanilla Monte
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Carlo method but through the recently introduced MLP approximation scheme which is an
efficient nonlinear Monte Carlo algorithm and thereby allows us to overcome the curse of
dimensionality in the case of nonlinear PDEs of the form (1).

The remainder of this article is organized as follows. In Sect. 2 we provide auxiliary
results on MLP approximations ensuring that these approximations are stable against
perturbations in the nonlinearity and the terminal condition of the PDE (1). In Sect. 3 we
show that MLP approximations can be represented by DNNs and we provide bounds for
the number of parameters of the representing DNN. In Sect. 4 we use the results of Sects. 2
and 3 to establish in Theorem 4.1 the main result of this article.

2 A stability result for full history recursive multilevel Picard (MLP)
approximations

2.1 Setting

Setting 2.1 Let d € N, T,L,3,B € (0,00), p,q € [1,00), fi.f> € C([0,T] x R? x R, R),

21,8 € C(RYR), let ||| : R! = [0,00) satisfy for all x= (xi,...,xq) € R? that
|lx]| = [Z?:](x,-)z]l/z, assume for all t € [0,T], x € RY, w,v € R, i € {1,2} that
lfi(t,x,w) = fi(t,x,v)| < Llw — v/, (3)
max{[f;(t,x, 0}, |g:(x)[} < B(1 + [|x[])", (4)
and
max{[fi (t,x,v) = fa(t,x,v)|, [g1(x) — g2(x)[} < 5((1 + [|x])™+[v[), (5)

let  F;:C([0,T] xRYR) — C([0,T] x R, R), ie{l,2}, satisfy for all
ve C([0,T] x RY,R), t € [0,T], x € RY, i € {1,2} that

(Fi<v))(t’x) :ﬁ(tvxvv(tvx))7 (6)

let (Q,F,P) be a probability space, let W :[0,T] x Q — R? be a standard Brownian
motion with continuous sample paths, let uj,u; € C([0,T] x R, R), assume for all
i€{1,2},5€[0,T], x € R! that

[E[\g,(x Wl [ ) 6 W) dz] <o )

and

ui(s,x) =E |:g,-(x + Wy )+ /ST(Fi(u,»))(zgx + WH)dt] , (8)

let @ =J,cn 2", let w0 — [0,1], 0 € O, be independent random variables which are
uniformly distributed on [0, 1], let U’ : [0,T] x Q — [0,T], 0 € @, satisfy forall t € [0,T],
0€®that! =t 4 (T —t)u’, let W : [0,T] x Q — RY, 0 € ©, be independent standard
Brownian motions, assume that (1%),cq, (W%))ce, and W are independent, and let
Ug‘M (0, T x R x Q — R, n,M € Z, 0 € ®, be functions which satisfy for all n,M € N,
0€®©,1€(0,T],x e R that U ,(1,x) = Uf,,(t,x) = 0 and
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1 . .
Uyt x) = i Z g2 (x + W) w00 l>)
i

M 1

(FZ(U%W“)) - 11N(1)F2(U§01 j})) 9)

i=1
<u£9,1 D gt W(e{,l,’,) 3 Wt(e.z.aﬂ .

(T —1)
n—I

=0 M

+

2.2 An a priori estimate for solutions of partial differential equations (PDEs)

Lemma 2.2 (g-th moment of the exact solution) Assume Setting 2.1 and let x € R,
i € {1,2}. Then it holds that

sup (E[(1+ [lx+ W, )™])e|.  (10)

sup ([E {\ui(t,x + W,)|q] )é <M(T+1)B Sup

t€[0,7]

Proof of Lemma 2.2 Throughout this proof let yu, : B(RY) — [0,1], € [0,T], be the
probability measures which satisfy for all ¢ € [0, 7], B € B(R?) that

1,(B) = P(x + W, € B). (11)

The integral transformation theorem, (8), and the triangle inequality show for all # € [0, T that

(el wor]) = ([ it o miao))

1
q

= </Rd [E[ i(Z-i-WTr)+/tT(Fi(”i))(s7Z+Wsz)ds} qﬂz(dZ))
<([ J[E[gi<z+wT_,>1|qu,<dz>)i
/ ([ e+ Wl uf(dZ)yd
(12)

Next, Jensen’s inequality, Fubini’s theorem, (11), the fact that W has independent and
stationary increments, and (4) demonstrate that for all ¢ € [0, T] it holds that

e+ We st < [ B[l + W = W] ()

(13)

= E s+ Wa+ Wy — W)I?] = Ells e+ Wi)[) < EIB(1+ e + Wy ).
Furthermore, Jensen’s inequality, Fubini’s theorem, (11), the fact that W has independent
and stationary increments, the triangle inequality, (3), and (4) demonstrate for all 7 € [0, T
that
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q
1

/tT( Rd|[E[(Ft(“i))(S,z+WH)]|‘1 ut(dz)) ds

< [ ([ elirnis.e+w. - wr] u,<dz>)"ds

:/’T([E[KF( ))(s,x+ W, + W, —W,) |4D

g/tT([E[|(F(O))(sx+W Dds+/ (eI F(O))(sx+W)|Dl'ds
STS:BPT]([E[ (1 + ||x + W|[)"]) “’—5—/ ( [ u; vx+W)|])%ds. (14)

Combining this with (12) and (13) implies that for all 7 € [0, T] it holds that

([E{|ui(t,x+W,)|qD%

T 1 (15)
<7+ 0B sup (E(1+ ot Wt [ (E[ (o, Wol*]) .
s€[0,7] t
Next, [17, Corollary 3.11] shows that
sup supM < sup %upM <oo0. (16)

seo]yert (L VD" ™ seor)yere L+ VI
This, the triangle inequality, and the fact that E[||Wr||”¥] < oo show that

/OT([E (i, x 4+ W) ] )l%ds < [ Sup sup Msiﬂ)”} /OT([EK] + [l + W[ ])eds

sef0.7] yerd (1 + (Y]]

ugs, 1\P
< [ supsup DL (1 -+ EW ) <oc.

s€[0,T) ye[Rd (1 + ||yH)P

(17)
This, Gronwall’s integral inequality, and (15) establish for all ¢ € [0, 7] that
1
(B[l + WoI] ) < e (7 + 1)B sup (E[(1+ [l + Wl (18)
s€[0,T]
The proof of Lemma 2.2 is thus completed. |
2.3 A stability result for solutions of PDEs
Lemma 2.3 Assume Setting 2.1. Then it holds for all t € [0,T], x € R? that
[E[|u, (t,x +W,) — w(t,x + w,)ﬂ
(19)

<3 (T 4+ 1) (B 4 1) (14 )+ LW ])%)
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Proof of Lemma 2.3 First, (8), the triangle inequality, and the fact that W has stationary
increments show for all s € [0,7], z € R? that

[ui (s,2) — ua(s, z)|

E{@l — et W)+ [ (Fia) = Fie) + () = Fafun)) 12+ w,fodr}

T 20
<E[l(g1 - ga)(a+ Wr = W] + [ E[(Fi ) = Faue)) 02+ W — Wl s 20

+ /T E[[(F) (12) — Fa)) (1,2 + W, — W)

This, Fubini’s theorem, the fact that W has independent increments, and the Lipschitz
condition in (3) ensure that for all s € [0, 7], x € R? it holds that

E[ 10— 02) s+ W)l = E[ a5 2) = 1025, 2) o,

< [E[E[Kgl —&)(z+Wr — Ws”] Fﬁwx]

- gy M(m (1) = F1 (1)) 1,2+ W, = W, W} dr
v g [l te) - Rawz+ - W] | e
— E[|(g1 — &2)(x + W) + /T E[I(F (1) = Fi(2)) (1, x + W) -
# [ e[ w) ~ Fati e+ W
<#[lter ~ ) Wl + [ B[t~ ) W
o7 s E[I(Fy (12) = Faun)) 1.+ W) .
This, Gronwall’s lemma, and Lemma 2.2 yield for all x € R? that
sy E[ |1 — ) 0,6+ W)
<7+ 1) sup max{E[l(s1 — g2)(r+ W] E[|(F1 () = Faoe)) e + WO .
(22)

Furthermore, (5), the triangle inequality, and Lemma 2.2 imply for all x € R? that
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sup max{E[|(s1 —g2)(x-+ W)l E[|(F1(00) = Fa(u) 0.6+ W) |

<6 sup E[(1+ [|x + W,||)""+|uz(x + W,)|]
t€[0,7]

<é sup E[(1 + |Jx 4+ W, |[)"] + & sup E[luz(x + W,)|7]. (23)
te[0,T t€[0,7]

<o up E[(1+ [Jx + We[[ )] + 0(e" (T + 1)B)* sup E[(1+ [lx + W, )"]
t€[0,T]

e[0T

§5(€LT(T+ 1) (B +1) S[l(l)pT] E[(1 + [lx + W, [[)"].
1€l0,

This, (22), and the triangle inequality yield that

sup [E[|(u1 —uwp)(t,x + W,)|}
1€[0,T)

<o(eM(T+1))" (B + 1 1) sup E[(1+ e+ Will Y] (24)

t€[0,T]
<o(eT(r+ )" (B4 1) (1 + [l + (E[|wr||”q])"lq)pq.

This completes the proof of Lemma 2.3. ]

2.4 A stability result for MLP approximations

Corollary 2.4 Assume Setting 2.1, let x € R4, N,M € N, and assume that q >?2. Then it
holds that

([E “U&M(O,x) - ul(O,x)ﬂ );

< () B ) (5 # ) (1 1ot + (E[iw] )

(25)

1
Proof of Corollary 2.4 First, Lemma 2.2 implies that for([E“uz(t,x+W,)|2D2dt<oo.

This, [17, Theorem 3.5] (with ¢ =x, F = F,, g = g2, and u = u, in the notation of [17,
Theorem 3.5]), (4), and the triangle inequality ensure that
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([E UU]?,‘M(O,x) _ u2(07x)ﬂ )

4 17 MP(1+2LT)Y
LT 2 1 2
< | (E[lgax+ Wr)P]) +T(T/O E[I(F2(0)) (1, + W) }d;)] s
N\:eM2(1 4+ 2LT
(T 4 1) s;;;]( B2+ e+ W7 ] ) %
t€fo,
5\ eM/2(1 +2LT
<o (14 + (efwe])F) CE0E2T
(26)
Furthermore, Lemma 2.3 shows that
1\ Pq
2 0,%) — 1 (0,)] < (e (T + )™ (B4 + 1) (14 || + (ENWP])%) ™. (27)

This, the triangle inequality, (26), the fact that B <B? + 1, the assumption that ¢ > 2, and
Jensen’s inequality show that

1

<[E [.U,Q,M(O,x) _ ul(o,xﬂ >5

< ([E U U3y 1(0,x) — u2(0, x) ]2] >%+|u2(0,x) —u1(0,x)|

MP2(1 4 2LT)N 1\P4
() B ) (6 O (i + W)
(28)
The proof of Corollary 2.4 is thus completed. (I

3 Deep neural network representations for MLP approximations

The main result of this section, Lemma 3.10 below, shows that multilevel Picard
approximations can be well represented by DNNs. The central tools for the proof of
Lemma 3.10 are Lemmas 3.8 and 3.9 which show that DNNs are stable under composi-
tions and summations. We formulate Lemmas 3.8 and 3.9 in terms of the operators defined
in (33) and (34) below, whose properties are studied in Lemmas 3.3, 3.4, and 3.5.

3.1 A mathematical framework for deep neural networks

Setting 3.1 (Artificial neural networks) Let ||-||, ||| - ||| : (UsenR?) — [0,00) and dim :
(UgenRY) — N satisfy for all d €N, x= (x1,...,x5) € R? thar ||x|| = /3%, (%),
I[x[|| = max;e(y qen [xi|, and dim(x) = d, let Ay : R? — RY, d € N, satisfy for all d € N,
x=(x1,...,x4) € R? that

Ay(x) = (max{x;,0},...,max{x,,0}), (29)
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let D = Upyen N2, et
H+1
N= U U [H(RW"H x R"“)], (30)
HEN (ko ky ... kpysy )eNAT2 [ n=1

leet. D:N—D and R:N— (UenC(RERY)  satisfy  for all HeN,
ko, ki,....ky kyy €N, ® = ((Wi,B1),...,(Wyt1,But1)) € HHH(W”Xk”" x RE),

n=1

xo € R, .. xy € R withVn e NN [1,H]:x, = A, (Wox,_1 + B,) that

D(®) = (ko, ki, - -, ke, k1), R(D) € C(RY, R+, (31)

and (R((D))(X()) = WH+1XH + BH+1, (32)

let © :D x D — D satisfy for all H,H, € N, o = (otg, 001, - . ., 0pz, , g, 1) € N2 f=
(Bos Bis -+ Brys B +1) € N#2¥2 that

a® ﬁ = (ﬁ07ﬁl7' . '7ﬁH27ﬁH2+1 + 0, %1, 02, - - 'a{ZHHﬁl) € NH1+H2+37 (33)

let. B:DxD—D satisfy for all HEN, o= (ag,0,...,00,0541) € N2 =
(ﬁ07ﬁ1,ﬂ27 .. '7:BH7ﬁH+l) S NH+2 that

aaaﬁ:(a()?al+ﬁ17"':aH+ﬁH7ﬁH+1)€ NH+27 (34)
and let i, € D, n € [3,00) NN, satisfy for all n € [3,00) NN that

no=(1,2,..,2,1) e N".
——

(n—2)—times

(35)

Remark 3.2 The set N can be viewed as the set of all artificial neural networks. For each
network ® € N the function R(®) is the function represented by @ and the vector D(®P)
describes the layer dimensions of ®.

3.2 Properties of operations associated to deep neural networks

Lemma 3.3 (O is associative) Assume Setting 3.1 and let o, ,y € D. Then it holds that
@Op)oy=a0(fOy)

Proof of Lemma 3.3 Throughout this proof let Hy,H,, H3 € N, (ai)ie[O,H1+1]ﬁN(] e NHi+2,
(Boicio,m+110n, € N2, (Vi)icfo. s 110N, € N#+2 satisfy that

o= (0607061,. . '7aH1+1)7 ﬁ = (ﬁO?ﬁla .. '7ﬁH2+1)7 and

(36)
Y= (V07V1»--~7VH3+1)-

The definition of ® in (33) then shows that
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(“@ ﬁ) Oy= ( O:ﬁlaﬁZ' . -:BH27BH2+1 + %o, o1, 02, - '>‘XH1+1) © (VOvVla B '>VH3+1)

= (y07 LS yH37VH3+1 + ﬁOvﬁlv HRR) ﬁszﬁH2+l + 0o, Op, 02,y - e OCHl‘H)
= (O((), LIPREE) Oc1‘114’1) © ("/07"})17 <. '7’VH37 ’VH3+1 + ﬁ07 ﬁ17ﬁ27 HERS) ﬁH2+1)
=aO (fO).
(37)
The proof of Lemma 3.3 is thus completed. ]

Lemma 3.4 (B and associativity) Assume Setting 3.1, let H,k, 1€ N, and let
o, ﬁ7y € ({k} X NH X {l}) Then

(i) it holds that « B B € ({k} x N x {1}),
(ii) it holds that BBy € ({k} x N x {I}), and
(i) it holds that («Bf)By =« B (FHEY).

Proof of Lemma 3.4 Throughout this proof let o;, f;,7; € N, i € [1,H] NN, satisfy that

o= (k7a17“27"'7OCH7l)’ ﬁ = (kvﬁlvﬁ%"'vﬁflvl)’ and Y= (kvylvy2a"-7val)' The defi-
nition of H (see (34)) then shows that

OCEﬁ:(]QOC] +ﬂ17“2+ﬁ27‘~7aﬂ+ﬁﬁ;l) E{k} X NHX{I}7

" (38)
BEV:(kvﬁl +"/17ﬁ2+v2>"'aﬂH+yH7l) E{k} x N¥ {l}a

and

(«BR)By = (k, (o1 + B1) + 715 (02 + o) + 925+ -+ (0 + By) + Vus 1)
:(k,al+(ﬁ1+y1),062+(ﬂ2+))2),...,061-1+(ﬁH+'})H),Z):O(EB(ﬂBH'})).
(39)

The proof of Lemma 3.4 is thus completed. (I

Lemma 3.5 (Triangle inequality) Assume Setting 3.1, let H,k,l € N, and let
o, B € {k} x N x {I}. Then it holds that |||B B||| < |||a/|| + |||Bl|I-

Proof of Lemma 3.5 Throughout this proof let oy, 5; € N, i € [1, H] N N, satisfy that o =
(k,o,00,...,08,0) and B = (k,B;,Pa,---,Pu,l). The definition of E (see (34)) then
shows that o = (k, oy + 1,02 + Pa, ..., 0 + Py, ). This together with the triangle
inequality implies that
[ BB BII| = sup{lkl, |oer + Bul, lo2 + Bal, - - [ow + B, |11}
< sup{[k[, o, [, -, loa |, |1} + sup{lkl, [Bil, [Bal, - |Bul, 12} (40)
= [l [+ [1]BII]-

This completes the proof of Lemma 3.5. (I

The following result, Lemma 3.6, can in a slightly modified variant, e.g., be found in [20,
Lemma 5.4] in the scientific literature.

Lemma 3.6 (Existence of DNNs with H € N hidden layers for the identity in R) Assume
Setting 3.1 and let H € N. Then it holds that Idg € R({® € N: D(®) = npy42}).
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Proof of Lemma 3.6 Throughout this proof let W, € R>!, W; € R¥2, i€ [2,H|NN,
Wiy € R¥2 B € R%, i € [1,H|NN, By, € R satisfy that
10

1
W, = , Vie[Z,H]ﬂN:W,»:
-1 0 1

)7 Wha = (1 1),
(41)

0
ViE[l,H}ﬂNiB,‘:(O>7 By =0,

let (]’) eN satisfy that Q’) = ((W],B]), (Wz,Bz), cey (WH7BH), (WH+1,BH+1)), for every a €
R let at € [0,00) be the non-negative part of a, i.e., ™ = max{a,0}, and let xo € R,
X1,X2,...,xg € R? satisfy for all n € NN [l,H] that

X, = Az( WXn_1 + B, ) (42)

Note that (41) and the definition of D (see (31)) imply that D(¢) = ny,,. Furthermore,
(41), (42), and an induction argument show that

w=anaen)=as(( 1)) =((0))

= a ) =t <as(( )= ((0)) 3)
& :.AZ(W”X”‘ #B0) = Aston0) = <—);i>+)) - ((—);Oto+ )

The definition of R (see (32)) hence ensures that
x5 + +
(R(¢))(x0) = Whiaxy + By = (1 —1) (=x0)" =x5 — (—x0)" =x0. (44)

The fact that xy was arbitrary therefore proves that R(¢) = Idg. This and the fact that
D(¢) = nyy, demonstrate that Idg € R({® € N: D(®) = nH+2}) The proof of
Lemma 3.6 is thus completed. O

Lemma 3.7 (DNNs for affine transformations) Assume Setting 3.1 and let d,m € N,
LER, bERY, acR", W€ N satisfy that R(¥) € C(R?,R™). Then it holds that

M(R(®))(- + b) +a) € RH{® € N : D(®) = D(¥)}). (45)

Proof of Lemma 3.7 Throughout this proof let H, ko, k1, ..., kg+1 € N satisfy that
H+2=dim(D(¥)) and (ko,ki,....ky,kni1) =D(V¥), (46)
let (W1, B1), (Wa,Ba),- .., (Wi, Bu), Wirs1, Bur1)) € [T (REk1 x RM) satisfy that
(W1, B1), (W2, Ba), ..., (W, Bu), (Wpi1,Bui1)) = ¥, (47)
let ¢ € N satisfy that
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¢ = (W1,By + Wib), (W2, Ba), ..., (Wh,By), WWho1, ABry + 2a)),  (48)
and let xo,y0 € R, x;,y; € RM ... xy, yg € RY satisfy for all n € NN [1, H] that
Xn = Ak, (WaXy—1 + By), Y = A, (Woyn1 + By + 11y (n)Wib), and  xo = yo + b.
(49)
Then it holds that
yi = Ay (Wiyo + Bi + Wib) = Ay, (Wi(yo + b) + B1) = Ay, (Wixo + Bi) = x1. (50)
This and an induction argument prove for all i € [2, H] NN that
Vi = A, (Wit + Bi) = A (Wixi_y + B;) = x;. (51)
The definition of R (see (32)) hence shows that
(R($))(yo) = AWrs1ym + By + Ja = AWy xg + 2By + Ja
= AW 1xu + By +a) = A(R(Y)) (x0) + a) = A((R(¥))(vo + b) + a).
(52)

This and the fact that y was arbitrary prove that R(¢p) = A((R(\P))(- + b) + ). This and
the fact that D(¢)=D(¥) imply that A(R(¥))(-+5b)+a)ecR{De
N : D(®) = D(¥)}). The proof of Lemma 3.7 is thus completed. O

Lemma 3.8 (Composition) Assume Setting 3.1 and let di,dr,ds € N, f € C(Rdz, [Rd3),
g€ C(R",R®:), a,peD satisfy that fecR{PEN:D®) =uo}) and
g € R({® € N: D(®) = }). Then it holds that (f o g) € R({® € N: D(®) = a ©® }).

Proof of Lemma 3.8 Throughout this proof let Hy, Hy, %, -, x5 11, Bos - - - Br,11 €N,
@, @, € N satisfy that

(20, 01+ oy 0 1) = &, (Bos Bis - - ~7ﬁH2+1) =B, R(¥) =1,

D@) =z R(®)=g ad D(®,) = 53)

Lemma 5.4 in [20] shows that there exists | € N such that D(I) = donz = (dz,2d>,d>) and
R(l) = Idpa . Note that 2d, = Br,+1 + co. This and [20, Proposition 5.2] (with ¢, = @y,
¢, = @, and | = [ in the notation of [20, Proposition 5.2]) show that there exists ®y,, € N
such that R(®Pro,) = f 0 g and D(Py,p) = D(Pf) © D(D,) = o ® . Hence, it holds that
fog e R({P e N:D(®) =u® f}). The proof of Lemma 3.8 is thus completed. d

The following result, Lemma 3.9, can roughly speaking in a specialized form be found,
e.g., in [20, Lemma 5.1].

Lemma 3.9 (Sum of DNNs of the same length) Assume Setting 3.1 and let M,H,p,q € N,
hihy, ... hy €R, k; €D, f; € C(RP,RY), i € [1,M] NN, satisfy for all i € [1,M]NN
that

dim(k;) =H+2 and f; € R{® € N: D(®D) = k;}). (54)
Then it holds that
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XM:hif,- 6R<{<D6N:D(<I>) :iMlki}), (55)

Proof of Lemma 3.9 Throughout this proof let ¢; €N, i € [I,M]NN, and k;, € N,
ie[l,M]NN, ne0,H+ 1]N Ny, satisfy for all i € [1,M] NN that

D(¢i) =k = (ki,oyki417ki,27 .- -7ki,H7ki,H+1) and R(Cﬁ,‘) =fi (56)

for every i€ [1,M] NN let ((Wf}],Bin), Ceey (VVi,HJrlaBi.,HJrl)) c HHHIII ([Rk"”Xk"'”’l X [Rk"”)
satisfy that

¢; = ((Wir,Bir), - ., (Wins1, Bins1)), (57)

let kP € N, n e [I,H NN, k¥ € N¥*2 satisfy for all n € [1,H] NN that
M
k= ki and k= (p,k{7 KF . kT ), (58)
i=1

let W, € R 7, B, € R4 satisfy that

Wi B
Wa B

W1 = . and B] = . 5 (59)
W1 B

let W, € R& k50 B, € RM | n e [2,H] NN, satisfy for all n € [2, H] NN that

Win 0 0 0 B
0 Wy, O 0 Ba,
W, = ) and B, = , (60)
0 0 0
0 0 0 Wy, Bup

let Wyt € RN B,y € R satisfy that
M
Wi = (miWigsr .. hyWynpy) and Byyy = ZhiBi,HJrh (61)
i=1
let xp € R, x; € Rk'EE,Xz € RkZEE. . Xg € [Rk’?, let X1,05X2,05 - - -y XM,0 € RP, Xin € [Rk"",
ie[l,MINN, nel,H NN, satisfy for all i € [1,M]NN, n € [1,H NN that

X0 = X1,0 =X20 = """ = XM0,
Xin = Ak, (WinXin—1 + Bin), (62)
Xn = AkEE (ann—l + Bn)7

and let iy € N satisfy that
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Y = ((Wi,B1),(W2,B2),...,(Wn,Br), W11, Bui))- (63)

First, the definitions of D and R (see (31) and (32)), (56), and the fact that Vi €
[1,M] NN :f; € C(R?,R?) show for all i € [I,M]NN that k; = (p, ki1, ko, ..., kin,q).
The definition of D (see (31)), the definition of H (see (34)), and (58) then show that

,D(lp) = (pvklEEa' . '7k1537q) = iéglki‘ (64)

Next, we prove by induction on n € [I, H] NN that x,, = (X1, X2, . .., Xpm,,)- First, (59)
shows that

Wi By Wi 1x0 + By
Wa 1 By Wa 1x0 + Ba 1
W])C() +B| = . X0 + . = X . (65)
W1 By Wa,1x0 + By
This implies that
X1,1
X2,1
x| = Ak]EE (W1X() + Bl) = ) . (66)
XM 1

This proves the base case. Next, for the induction step let n € [2, H] N N and assume that

Xn—1 = (X1n—1,X%20—1, - -, XM n—1)- Then (60) and the induction hypothesis ensure that
Wn-xnfl + Bn
X1 -1 Wi, O 0 0 X1 -1 B,
X2 -1 0 W, O 0 X2 p-1 By,
- ‘/Vn . + Bn - . . +
. O 0 . 0 .
XM -1 0 0 0 Wy XM n—1 By,

WinXin—1 + B
W27nx2~nfl + BZ,n

W nXmn—1 + Bun

This yields that

SN Partial Differential Equations and Applications
A SPRINGER NATURE journal



10 Page 16 of 34 SN Partial Differ. Equ. Appl. (2020) 1:10

Xin
X2.n

= AkEE ( nXn—1 + Bn) . . (68)
XM n

This proves the induction step. Induction now proves for all n € [1,H]NN that
Xn = (X1, X2, - - s Xar,n)- This, the definition of R (see (32)), and (61) imply that

(R(¥))(x0) = W r1Xu + Bu

X1.H X1.H
X2.H X2.H M
= Wh i ) +Byy1 = (mMWiasr . huWunir) E hiBi p 41
: i=1
XM.H XM H

M

{Zh i H1Xi H

M
th Wis1%im + Bins1)

i=1 i=1

Z h, ()C()

i=1

M
Z hiBi 41
=1

(69)
This, the fact that xo € R” was arbitrary, and (56) yield that
M M
=Y hR(¢) =D _hi: (70)
i—1 i—1
This and (64) show that
M M
ZhiﬁeR({QeN:D(fb):Eﬂlki}) (71)
i=1 =
The proof of Lemma 3.9 is thus completed. O

3.3 Deep neural network representations for MLP approximations

Lemma 3.10 Assume Setting 3.1, let d,MeN, T,ce (0,0), fe€CR,R),
g € C(RY,R), @, ®, € N satisfy that R(¥;) = f, R(®,) = g and

¢ > max{2, ||[D(@)||], [ D(@)]]}, (72)

let (Q,F,P) be a probability space, let ® =], 2", let u’:Q — [0,1], 0 € ©, be
independent random variables which are uniformly distributed on [0, 1], let
U’ 0,T] x Q — [0,T], 0 € O, satisfy for all t € [0,T], 0 € © that U’ =t + (T — 1)’
let W:[0,T] x Q — RY, 0 € ©, be independent standard Brownian motions with con-
tinuous sample paths, assume that (1’)y.q and (W'),.o are independent, let

SN Partial Differential Equations and Applications
A SPRINGER NATURE journal



SN Partial Differ. Equ. Appl. (2020) 1:10 Page 17 of 34 10

Uty :0,T] xR xQ— R,neZ0€ O, satisfy foralln € N, 0 € ©,1 € [0,T], x € R
that U‘llﬁM(t,x) = UgyM(t,x) =0 and

1 o . g
Upu(,%) = WZg(x + WO w0 >)
i=1
n—1 Ml
r—t 0,0 0,1,
+ (Mn_,) {Z (f o Uit —1n(D)f o UL]‘M>) (73)
=0 i=1
(2 e wigh — i) |

0

n,t

and let w € Q. Then for all n € Ny there exists a family (® )()ee,ze[(),T] C N such that

(i) it holds for all t,,t, € [0,T], 0,0, € O that
(o, ) =D(af,), (74)
(ii) it holds for all t € [0,T)], 0 € O that
dim(D(®),) ) = n(dim(D(ey)) - 1) + dim(D(®,)), (75)

(iii) it holds for all t € [0,T), 0 € O that

IID(@) )| < e(3M)", (76)
and
(iv) it holds for all 0 € ©, t € [0,T], x € R that
Upa (1,5, 0) = (R(Dy) (x). (77)

Proof of Lemma 3.10 We prove Lemma 3.10 by induction on n € Ny. For the base case
n = 0 note that the fact that Vs € [0,T],0 € ©® : U&M(t, -, w) = 0, the fact that the function
0 can be represented by a network with depth dim (D ((I)g) ), and (72) imply that there exists

(@),)pcoscior C N such that it holds for all 11,1, € 0,7], 0,0, € © that D((ngtl) -
D(cpg;z) and such that it holds for all 0 € ©, 1 € [0, 7] that dim(D(CI)g,[)) — dim(D(®,)),
|||D((Dg7t)||| <|||D(®,)||| <¢, and Ug’M(t,-,w) = R((I)g,t). This proves the base case
n=0.

For the induction step from n € Ny to n+ 1 € N let n € Ny and assume that (i)—(iv)
hold true for all k € [0,n] N Ny. The assumption that g = R(®,) and Lemma 3.7 (with

d=dm=1,.=1,a=0,b=Wl(w)— W (w),and ¥ = @, for 0 € ©, 1 € [0, T] in the
notation of Lemma 3.7) show for all 0 € ©, ¢ € [0, T] that
g(- + Wi(0) = W/ () = (R(®)) (- + Wr(w) — W/())

(78)
e R({® eN:D(®) = D(d,)}).

Furthermore, Lemma 3.6 (with H = (n+ 1)(dim(D(®f)) — 1) — 1 in the notation of
Lemma 3.6) ensures that
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1dz € R({® € N: D(®) = 1,1 (im(oi0y)) 151} )- (79)

This, (78), and Lemma3.8 (with dy=d, dry=1, dy=1, f=Idg,
g= g(' + Wi(w) — Wf(w)), % = W) (dim (D)) 1) 410 and f = D(®,) for 0 € O, t €
[0, 7] in the notation of Lemma 3.8) show that for all § € ©, ¢ € [0, T] it holds that

8-+ Wi(©) = W/(©)) € R({® € N: D(®) =1,y (gm(pran) 1)1 @ D@} )

(30)
Next, the induction hypothesis implies for all 6 € ©, t € [0,T], [ € [0,n] N Ny that
Uly(t, @) =R(@],) and D(af,) =D(@f). (81)
This and Lemma 3.7 (with
d=d, m=1, a=0, b= Wg{y(w)(w) —W/(w), and
Y= (I)Zuﬁ’((u) for 0,n€®, te[0,T], 1€[0,n]NNy ®2)

in the notation of Lemma 3.7) imply that for all 6,5 € ©, ¢ € [0,T], [ € [0,n] N Ny it holds
that

Ulﬂ,M (Uf(w), ot Wf,;'(w)(w) - Wtﬁ(w), w)
= (R(¥g)) (- + Wity () — W) (83)

€ R({cb eN:D(®) = D(cpzmw))}) - R({cb €N:D(®) = D(®§{0>}).

Moreover, Lemma 3.6 (with H = (n — I) (dim(D(®)) — 1) — 1 for € [0,n — 1] N Ny in
the notation of Lemma 3.6) ensures for all / € [0,n — 1] N N that

1d € R({® € N: D(®) = 1, (gim(miay)) 1)1} )- (84)
This, (83), and Lemma 3.8 (with

di=d, dy=1, d=1f=Mdp, =0, Gn(D@y)-1)+1

B= D(@?O), and g =U)y, (Uf’(w), -+ Wf{ﬁ,(w)(w) - W (), co) (85)
for 7,0€@, t€[0,T], [€[0,n—1]NNy
in the notation of Lemma 3.8) prove for all 7,0 € ©, t € [0,T], I € [0,n — 1] N N that
Ul (U (), + Wi, () = W), )
€ R({‘D € N:D(®) =1, (gim(D(@))) 1) 11 @ D(‘D?,o)})

This and Lemma 3.8 (with

(86)
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dl :d7 d2:17 d3:17 f:f7 O(:D((Df)’
p= Wty (dim(D(@y)) ~1)+1 © D(®20)’ and g="U}, (Uf(w) -t W;Zy(w)(w) - W (), 60)
for n7,0€®, r€[0,T], l€[0,n—1]NNj
(87)

in the notation of Lemma 3.8) assure for all 7,0 € ©®, t € [0,T], [ € [0,n — 1] N N that

(£0 Ul ) (U (), + Wiy (@) = W), 0)

88
e R({® € N:D(@) = D(®) &1,y (gm(pian) 1)1 @ Do)} ) )
Next, (83) (with [ = n) and Lemma 3.8 (with
di=d, d=1, d=1, f=f a=D), p= D(CDQ,O), and
g = (UZM) (L{?(co)7 -+ ng’(w)(w) — W (o), w) for ,0€0, te][0,T] )
in the notation of Lemma 3.8) prove for all #,0 € ©, ¢ € [0, T] that
(f o UZ,M> (Z,{i)(w), -+ lef;(w)(a)) — W (o), w) 0

€ R({(D eN: D(®) = D(®) © D(@Svo)})
Furthermore, the definition of ® in (33) and the fact that
W€ [0,n] 1 No s dim (D(®fy)) = 1(dim(D(@))) — 1) +dim(D(®,)) (91
in the induction hypothesis imply that
dim(n(t1+1)(dim(D((l)f))—l)+1 © D((Dg))
= [(n+ 1)(dim(D(®y)) — 1) + 1] + dim(D(®)) — 1 (92)
= (n+ 1)(dim(D(®f)) — 1) + dim (D (D)),
that
dim (D(cp,-) ® D(cpg‘o)) = dim (D(®)) + dim (D(CIJSQ)) 1
= dim(D(®)) + [n(dim(D(®)) — 1) + dim(D(®,))] — 1 (93)
= (n+ 1)(dim(D(®/)) — 1) + dim(D(®y)),
and for all / € [0,n — 1] N N that
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dim (D(Py) © W, aim(pio) 1)1 © D(@o))
= dim (D(®)) + dim (1, (Do) -1)41) + dim (D(@f)) — 2
= dim(D(®))) + [(n — 1) (dim (D(®)) ~ 1) +1] (04)
+ [{(dim(D(®f)) — 1) + dim(D(®,))] — 2
= dim(D(®@)) + n(dim(D(@,)) — 1) + dim(D(®,)) — 1
= (n+1)(dim(D(®y)) — 1) + dim(D(®,)).

This shows, roughly speaking, that the functions in (80), (90), and (88) can be represented
by networks with the same depth (.e. number of  layers):
(n+ 1)(dim(D(®)) — 1) + dim(D(®P,)). Hence, Lemma 3.9 and (73) imply that there

exists a family (7, ocoep.r) € Nsuch that forall 0 € ©,7 € [0, 7], x € R? it holds that

(R(@ZH,»)(x)
Mn+l
—i 0,0,—i
= g 2= 8 (4 W)~ W )
S (6, (0.n,0) (0.n,) (0.n,)
M ;(f UnM ) (ut . (w)7x+ WZ/{,(;"”"")(w)(w) - W (w)7w)
S-S OL)\ (5 (0.10) (0.L) O.L)
+2 g 2 (7o ul”) (u, o)t WD () = W <w>,w)
=0 i=1
n M71+] —1
(T —1) (0.1 (7000 (0.4) (0.,)
o Mn+1-1 - (f Ul ) (w)vx + WZ/{,(“"")(w)(w) - W (60)7 (%)
- Un+l M(lvx’ (D),
(95)
that
dim(D(<I>3+1,t)) = (n+ 1)(dim(D(¥5)) — 1) + dim(D(®y)), (96)
and that

n— 1Ml

D(®,,,) = (MEH[ W1y (dim(D() 1)1 © D((I)g)D s <Eiél (D(q)f) @D(CD )))
H @3 {(D(q)f) O] n(n—l)(dim(D(dy))—l)H ®© 'D(‘D?O))> .

n M”Hf/
B <EE | (D((Df) O Mg 1) (dim (D(@y)) ~1)+1 © D((D?fl,o))] >
(97)
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This shows for all 71,1, € [0,T], 0,0, € © that

D@l ) =D(@,): (98)
Furthermore, (97), the triangle inequality (see Lemma 3.5), and the fact that
V1€ [0,n] N No : [ID(®)]l] < c(3M)' (99)
in the induction hypothesis show for all € ©, ¢ € [0, 7] that

M/1+l

M
D@ IS DMy @im(pr@p)-1y+1 © D@+ D ID(@y) © D@ )]
i=1 i=1

n—1 M-t

0
+ ; Zl ID(®r) O, )(dim(D(@y))~1)+1 © D(P;)ll]
= =

+ Z Z IID(Py) an I+1)(dim (D(®y) ) -1 1@D(‘D?71,0)|||~
(100)

Note that for all Hy,Hs,a0,...,0m+1,80,-- P €N, o, D  with
= (00, 0m11)s B=Por--Puys1)» % = Py,.y =1 it holds that |[[la®
Pl < max{|||«|||, 11|B]]|,2} (see (33)). This, (100), the fact that VH € N : |||ng2]|| =2
(see (35)), (72), and (99) prove for all 0 € O, € [0, T] that

D@5 I
M" n+1 M n—1 M" n+1-1 n Mn+]—1
Z Z (3M)" c(3 c(3M)11:|
i=1 i=1 =0 i=1 =1 i=1
n—1 n
=M"e+ Mc(3M)" + | Y M e3M) | + D M e(3m) !
=0 =1 (101)
n—1 n n
SSYADN I S PO IV 1+Z3I+23~}
1=0 =1 =0 =1
<eM™| 1+ 2263’ =M™ |1 + 2& =c(3M)"".
= £ 3-1

Combining (95), (96), (98), and (101) completes the induction step. Induction hence
establishes (i)—(iv). The proof of Lemma 3.10 is thus completed. O

3.4 Deep neural network approximations for the PDE nonlinearity
Lemma 3.11 (DNN interpolation) Assume Setting 3.1, let NeN,

ap,ap, ... ay—1,¢, &1, ..., Ey € R satisfy that Ey<Ei<...<Ey, let f:R—-R be a
function, assume for all x € (—oo, &] that f (x) = f(&), assume for alln € [0,N — 1] N Z,
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x € (&, Eun] that f(x) =f(&,) +an(x —¢&,), and assume for all x € (Ey,00) that
f(x) =f(&y). Then it holds that

FERU®EN:D®) = (1,N+1,1)}). (102)

Proof of Lemma 3.11 Throughout this proof let a ;=0 and ay =0, let
cn € Ryn €[0,N]NZ, be the real numbers which satisfy for all n € [0,N]NZ that
Cn =y — ap_y, let Wy € RVTDX B e RV w, € R*WHD B, € R, @ € N be given
by

1 )
1 =&
Wi=| .|, Bi=| . |. Wa=(c a ... o) B=f(), (103)
1 =
and
@ = ((W1,B1), (W2, B)), (104)

and let g : R — R satisfy for all x € R that

N
g(x) =f(&) + > cxmax{x — &,0}. (105)
=0
First, observe that the fact that Vn € [O,N — 1]NZ: £, <&, and the fact that Vn €
[0,N]NZ:a,=73}_,ck then show for all n € [O,N — 1] NZ, x € (&,,&,.4] that

g(x) - g(én) = ch(max{x - ékvo} - max{én - ék?o})
k=0 (106)

n

cl(x = &) — (& — &)l ch (x = &) = an(x = &)
k=0
This shows foralln € [0, N — 1] N Z that g is affine linear on the interval (&, &,,]. This, the
fact that for all n € [0, N — 1] N Z it holds that fis affine linear on the interval (£,, &, 1], the
fact that Vx € (—oo, &) : f(x) = g(x) =f(&), and an induction argument imply for all
x € (—o0,&y]  that  f(x) =g(x).  Furthermore,  (105), the  fact that
Vne[0,N—1]NZ: ¢ <&y, and the fact that >3 ¢, = 0imply forall x € (€, 00) that

N
glx) —g(&y) = ch(max{x — &, 0} —max{&y — &,0})

k=0

:Z [(x— &) — N—fk)}zzck(x—éN):O.
=0

This shows for all x& (&y,00) that g(x) =g(&y). This, the fact that
Vx € (Ey,00) : f(x) =f(&Ey), the fact that Vx € (—oo, &y : f(x) = g(x), and (105) prove
for all x € R that

(107)
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N
f(x) = g(x) =f(&) + Y cemax{x — &,0}. (108)
k=0
Next, the definition of R and D (see (31) and (32)), (103), (104), and (108) imply that for
all x € R it holds that D(®) = (1,N + 1,1) and

(R(D))(x) = Wa(An11(Wix + B1)) + B2
max{x — &, 0}

max{x — &,0} N
=(co ¢ ... ) , +£(&) =f(&) + Y cemax{x — &,0} = f(x).
: =0
max{x — &y, 0}
(109)
This establishes (102). The proof of Lemma 3.11 is thus completed. (I

Lemma 3.12 Ler L€ [0,00), N € N,a € R, b € (a,0), &y, &y, ..., En € R satisfy for all

n€[0,N|NZ that &, = a—}—%, let f : R — R satisfy for all x,y € R that
If(x) =f ()| < Llx =y, (110)
and let g : R — R satisfy for all x € R, n € [0,N — 1] N Z that
f(o) ) 1 x € (=00, &
g(x) _ f(én)(é:r#l _5)() 1+_f(é§n+l)(x - én) x e (énv £n+l] (111)
n+ n
f(&n) 1 x € (&, 00).

Then

(i) it holds for all n € [0,N]NZ that g(&,) = f(&,),
(ii) it holds for all x,y € R that |g(x) — g(y)| <L|x — y|, and

(iii) it holds for all x € [a,b] that |g(x) — f(x)| < w.
Proof of Lemma 3.12 Throughout this proof let r, £ : R — R satisfy for all x € R\(a, b]
that
r(x) =4(x) =x (112)
and foralln € [O,N —1]NZ, x € (&,,&,41] that
H3) = G and £(x) = &, (113)

Note that (111) implies (i). Next observe that for all x,y € (a, b] with x <y and £(y) <r(x)
it holds that r(x) = r(y) and £(x) = ¢(y). This, (112), (111), and (110) show that for all
x,y € R with x <y and ¢(y) <r(x) it holds that x,y € (a, b], r(x) = r(y), £(x) = £(y), and

(o) — )| = [ =)

Furthermore, (111), (110), and the fact that Vx € R : £(x) <x <r(x) imply for all x € (a, b]
that

(x=y)[<Llx =yl (114)
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( (x = £(x)) +£(£(x)) = £ (r(x))
( (115)

)~ Fe@) - )
- [N LD < 1 — 9] = 200 -
and
£(x) — 5(0()) W“” —IOD) () 1 (o) — Fle)
)~ () e
) AW | e - et
DI - o) | < b — 809 = L - €09
This and (112) show for all x € R that
1800 — g(r(@)| SL(r(x) —x) and |g(v) — ()| <Lx— ). (117)

The triangle inequality therefore shows for all x,y € R with x <y and r(x) </¢(y) that

lg(x) =8I <1g(x) — g(r(x))] + lg(r(x)) — g(t(y))] + [8(£(y)) — g(v)]
S L(r(x) —x) + L(£(y) — r(x)) + L(y — £(y)) = L(y — x) = Ly — x].
(118)

This and (114) show for all x,y € R with x <y that |g(x) — g(y)| <L|x — y|. Symmetry
hence establishes (ii). Next, the fact that Vx € R: g(4(x)) =f(¢(x)), the triangle
inequality, (110), (117), and the fact that Vx € [a,b] : 0 <x — £(x) < (b — a)/N imply for

all x € [a, b] that
18(x) = f(x)] = [8(x) = f(£(x)) +f(£(x)) —f(x)

= lg(x) — g(€(x)) +£(£x)) —f(x)]|
<lg(x) — g(t(x)| + [f(€(x)) —f ()| <2L(x — £(x)) <2L(b — a)/N.

(119)

This establishes (iii). The proof of Lemma 3.12 is thus completed. |

Corollary 3.13  Assume Setting 3.1, let e € (0,1], L € [0,00), ¢ € (1,00), and let f : R —
R satisfy for all x,y € R that |[f(x) — f(y)| <L|x — y|. Then there exists a function g :
R — R such that

(i) it holds for all x,y € R that |g(x) — g(y)| <L|x —y|,
(i) it holds for all x € R thart |f(x) — g(x)| <e(1 + |x|?), and
(iii) it holds that

({ 4L(1+ (4L + 2/ (O))7) +2}>
geR|[{®eN:D®) e Nand |||D(D)||| < — .

€lg-1)

(120)
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Proof of Corollary 3.13 Throughout this proof let R € R, N € N satisfy that

R:max(l,(w)q> and N:min{nEN:M—Rge}, (121)
n

€

let &, &,...,&y € R be the real numbers which satisfy for all n € [0,N]|NZ that
& =R(—1 +2ﬁ"), and let g: R — R satisfy for all x € R, n € [0,N — 1] N Z that
R R I W
f n n — X +f én X =Gy -
g(x) = -1 . = HR S (Cnv £n+l] (122)
gn+l - én B
f(&n) x € (Ey,00).

By (ii) in Lemma 3.12 the function g satisfies (i). Next, it follows from (iii) in Lemma 3.12
that for all x € [—R, R] it holds |g(x) — f(x)| <4LR/N. This and the fact that 4LR/N <e
prove that for all x € [—R, R] it holds that |g(x) — f(x)| < e < e(1 + |x|?). Next, the triangle
inequality, the fact that f(R) = g(R), and the Lipschitz condition of f and g imply for all
x € R that

If(x) = (@) <IF(x) =FO) + [F(O)] + [g(x) — g(R)[ + [¢(R)]
= [f(x) =) + [F(0)] + lg(x) — e(R)[ + If (R)]
<If(x) =fO) + £ (0)] + lg(x) = gR)[ + If (R) —f(O)] + [F(O)]  (123)
<Llx| +2|f(0)] + L|x — R| + LR
<2L(|]x| + R) + 2| (0)].
This and (121) show for all x € R\[—R, R] that
f(x) =g _ 2L(1x| + R) + 2If ()] _ 4L|x| + 2If(0)]

L+t L+ T TR (124)
124

AL 2(O) AL 2(0)] _4L+2fO)] _

Tt x? T R Ri — Rl 7

This and the fact that Vx € [—R, R] : |g(x) —f(x)| < e(1 + |x|?) prove that for all x € R it
holds that [g(x) —f(x)] <e(l + |x|?). This shows that g satisfies (ii). Next, (i) in
Lemma 3.12 ensures that g satisfies for all x € (—oo, —R] that g(x) = g(—R), for all
n€[0,N—1]NZ x € (&, &) that g(x) = g(&,) + €245 (x — &), and for all x €
(R,00) that g(x) =g(R). This and Lemma 3.11 (with N=N, f=g, ¢ =¢&, for
n€0,NNZ, and a, = (g(&1) — 8(&))/ (& — &) for n€[O,N —1]NZ in the
notation of Lemma 3.11) imply that

g€ RUD N :D®) = (I,N+1,1)}). (125)

Furthermore, if N > 1, then (121) implies that 1% > €. Hence, if N > 1 it holds that
N< ‘”‘TR + 1. This and (121) ensure that

1
4L+2|f(0)\)qj
ALR 4Lmax(1, (7F ) +€
N —+1= .
€

(126)

€
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This and (125) imply that

4Lmax<1, (%)ﬁ) + 2e

€

D@ =N+1<

4L max (7, (4L + 21 (0))77) + 2657

(127)
7
€D
4L(1 (4L + 2[f(0)|)ﬁ) )
< s .
This establishes (iii). The proof of Corollary 3.13 is thus completed. O

4 Deep neural network approximations for PDEs

4.1 Deep neural network approximations with specific polynomial convergence
rates

Theorem 4.1 Let |||, ]| - |I| : (UsenRY) — [0, 00) and dim : (UgenR?) — N satisfy for
all d €N, x= (x1,...,x) € RY that ||x|| = [X0, (x)*"% |IIx]|| = maxicp aow [6l, and
dim(x) =d, let T,L,B,f € [0,00), p,p €N, g € NN[2,00), & € [2,00), let f: R — R
satisfy for all x,y € R that |f(x) — f(y)| < L|x — y|, for every d € N let g; € C(R? R), for
every d € N let vg : B(RY) — [0, 1] be a probability measure on (R?, B(RY)), for every
deN let Ay : R — R satisfy for all x = (xi,...,x4) € R that

Ay(x) = (max{x;,0},..., max{x,,0}), (128)

let D = Upen N2 et

H+1

N = U U |:H (Ranknq % le,,):|7 (129)
HEN (ko ki ... k41 ) NTT2 Ln=1

lett P:N—N, D:N—D, and R:N — (UenC(RYRY) satisfy for all H € N,

ko ki, .. ky kg1 €N, ® = ((Wi,By),....,(Wyy1,Buy1)) € HnHill([Rk"Xk”" x RFr),

xo € RN . xy € R¥ withVn e NN [1,H] : x, = A, (Wyx,_, + B,) that

H+1
P(®) = an(knfl +1), D(®) = (ko ki, - - ku, kpis1), (130)
n=1
R(®) € C(Rb, Rh+1), and  (R(®))(xo) = Wrs1xm + Buyi, (131)

forevery e € (0,1], d € N let 84 € N, and assume for all d € N, x € RY, ¢ e (0, 1] that

R(g,.) € CRLR), [R5y, )0 SB(1+ s [ax) = (Rigy,) ()| < aBa(1

. 1/(2pq)
P D0, 1 < Bae, dim (D(a,,.) ) < Bare ™, and ( fyal|Pvaldy)) " <

BdP. Then
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(i) there exist unique ug € C([0,T] x R*,R), d € N, such that for every d € N,
xeRse [0, T], every probability space (Q,F,P), and every standard Brownian
motion W : [0,T] x Q — R? with continuous sample paths it holds that

SUP;c(o, 7] SUPyerd (‘1“ j-(H,vsz") <oo and

ua(s, x) = [gd(x FWp) 4 / ualtx+ We) dt] (132)

and

(ii)  there exist (‘Pd,s)deN.,se(o,l] CN,n€(0,00),C= (C“/)ye(o,u - (0,1] — (0, 00) such
that for all deN, &y (0,1] it holds that R(V¥a.) € C(R),R),
P(\Pzﬂg) S C;,dn£7(4+21+/3+}r), and

1

3
{ / Jua(0,x) - (R(‘I’d‘s))(x)|2vd(dx)] <e (133)
R
Proof of Theorem 4.1 Throughout this proof assume without loss of generality that
B2 max{[f(0)] + 1,4L(1 + (4L + 2/ (0))77) + 2} (134)
Note that the triangle inequality, the fact that

VdeN,xe R’ ¢e (0,1]:|(R(ay,))(x)| <Bd’(1+ ||x||), and the fact that Vd € N, x €
Re,ee (0,1]: ‘gd(x) — (R(gdyc))(x)’ <eBd”(1 + ||x|)" imply for all d € N, x € R, ¢ €
(0, 1] that
(2| < [8a0) — (R84, (9] + | (Rl )00)| < B (1 -+ Il + B (1 + sy
(135)
This proves for all d € N, x € R? that
|ga(x)| < Ba’(1 + [|x]))". (136)

Corollary 3.11 in [17], the fact that f is globally Lipschitz continuous, and (136) hence
establish (i). It thus remains to prove (ii). To this end note that Corollary 3.13 ensures that
there exist f, € N, ¢ € (0, 1], which satisfy for all v, w € R, ¢ € (0, 1] that R(f,) € C(R, R),
[(R(1.)(w) = (R(T)) W) < Lw = v], [f(v) = (R(F) () <&(L + [v[*), dim(D(f,)) =3,

and
PG < [42(1 + (@L + 27 O))77) +2]& 7. (137)
Note that the fact that B> 1 + |[f(0)| implies for all ¢ € (0, 1] that

[(R(7.)(0)] <[(R(7.))(0) = (0)| + [F(0)| <& + [F(0)| < B. (138)

Next let (Q, F,[P) be a probability space, for every d € N let W' : [0, T] x Q — R? be a
standard Brownian motion with continuous sample paths, let O = UneN 7", let
w0 - [0,1], 6 € ©, be independent random variables which are uniformly distributed
on [0, 1], let U’:[0,T] x Q — [0,T], 0 € ©, satisfy for all € [0,T], 0 € ® that
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U =t 4 (T — ), for every d € N let WO :[0,T] x Q — R?, 0 € ©, be independent
standard Brownian motions with continuous sample paths, assume for every d € N that
(1")peo and (W), g are independent, and let U, ,, ;5 : [0,T] x R x Q — R, n,M € Z,
deN, e (0,1], 0 € O, satisfy for all d,n,M € N, 6 € (0,1], 0 € ®, € [0,T], x € R?
that U‘ilﬁMﬁdA(;(t, x) = U(‘;’M,d’(;(t,x) =0 and

M

0,0,—i 0,0,~i).d
Unaras(t,%) = Tz Z(R(Qd,(s))(x+ Ww0mDd _ yy 007, )
i=1

3

+(M"){ ((RGG) 0 U2, ~ I8 @R 0 U 4,)

=0 i=1
(u[(euz) _i_W(eoz,l’) _WI(07I,i),d):|7

(139)

let ¢; € [1,00), d € N, satisfy for all d € N that

rq
() d||x\|2pqu<dx>>< " (e w ) } 7

ca = (T + 1) (Ba) + 1)

(140)
let ks, € N, d € N, ¢ € (0, 1], satisfy for all d € N, ¢ € (0, 1] that
ke = max { DG 1D, )12}, (141)
let C = (C, )ye(o,) * (0,00) — (0, 00] satisfy for all y € (0, c0) that
. 1+ 2LT)\ ")
C,= sup |n(3n)” (M) : (142)
neNn[2,00) vn—1
let Noo € N, d € N, ¢ € (0, 1], satisfy for all d € N, ¢ € (0, 1] that
1+2LT)\"] ¢
Ny, = min{n eNN2,00): {cd <%> } < %}, (143)
and let 04, € (0,1], d € N, ¢ € (0,1], satisfy for all d € N, ¢ € (0, 1] that ,, = m.

wr

VT
with d degrees of freedom and Jensen’s inequality imply that for all d € N it holds that

= (21)™ Eﬂ; (g + k) :

Note that the fact that for all d € N the random variable ‘ is chi-squared distributed

T'(§+pq)

r@)

(E[Iwyl""])" <E[w || = Ty (144)

This implies for all d € N that
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1

el et e var (T (5 6)) < or(§ 1)

(145)

1
This together with the fact that Vd € N : ( ot 117 (dx))(w < Bd" implies that there
exists C € (0,00) such that for all d € N it holds that

o pa
cg < Cd (ﬂ) < Cd®thpa, (146)

Next note that for all y € (0, 00) it holds that

C,= sup [n(3n)2" (M) . l)4+’)]

neNN[2,00) vn—1
ny bl 2(n—1)
= sup {(ﬁ(l+2LT>><"—”<4+'>n332"<n—1)‘(”‘”7(—" ) }
neNN[2,00) n—1
. 1) 2(n-1)
g{ sup  [(va(1 4 227) "I 1) O ”f}H sp () }
neNN[2,00) neNn2,00) M —
<o00.

(147)
The fact that for all deN, veR, xeR? ce€ (0,1] it holds that
[f(v) = (R(F)) (V)| <e(1 +[v[) and ‘gd(X) - (R(Sdﬂ))(X)‘ <eBd(1 + [|x[|))**  implies
that foralld e N,ve R, xe R, ¢ € (0, 1] it holds that

max{|/(4) = (RO, [ga(®) = (Rlag )| } < max{a(t + vI*), sBa (1 + 1]}

<eBd”((1+ [[x[)™ + [v[).

(148)

This, (136), (138), the fact that for all d € N, v,w € R, x € R?, ¢ € (0, 1] it holds that
IF(v) —f(w)| <L, [(R(7.))(v) = (R(F)) (W) < Ly — w, F(O) <8,
|(R(84,))(x)| <Bd’(1 + |lx[|)”, and Corollary 2.4 (with fi =f. fo ="R(f5). & = ga:
g2 =R(8,;). L =L, 5 =0Bd’, B=Bd’, W = W in the notation of Corollary 2.4) imply
that for all d,N,M € N, ¢ € (0, 1] it holds that

(/Ra E UUI(\)/,Md,o‘(va) - “d(o’x)ﬂ vd(dx))%

< (M(T 4+ 1) (Ba) + 1) <5de +6M/2(1+2LT)N> (149)

MN/2

[+ ) )]
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The triangle inequality hence proves for all d, N,M € N, ¢ € (0, 1] that

(/Rd [E UU&MM(OJ) B Md(O,x)H vd(dx))%

eMP2(1+2LT)Y
MN/2

. Pq
(2pq) L
1+ (/RdeHquvd(dx)) +([E[HW?HM])(”‘“}

M1 4 20TV
MN/2

< (T + 1)) (Bd)! + 1) <5Bd” +
(150)

=cCy <5de —+
This and Fubini’s theorem imply that for all d € N, ¢ € (0, 1] it holds that

[E[/WU

(
1(\)/:1,5.71\/41; (),1;(0 X) 0 x Vd dx :|

:/ |:‘U1(\)]d Na, d(jd(Ox—WOX

(i,é:
Ve(l+2LT) e &2 ,
< ¢y8,.Bd" vel 22l < (& —) <&
(C"’ e +C‘1< Nas *(4+2 ¢

This implies that for all d € N, & € (0, 1] there exists w;, € Q such that

(151)

2
/ (08, 00,02, 00) = 0 0.9) | vatax) <22 (152)
R o

Next, observe that Lemma 3.10 shows that for all d € N, ¢ € (0, 1] there exists Y. €N
such  that for all xe€R?! it holds that R(¥s)e€ C(R,R),

(R(¥ae)) () = U, Ny, a0, (0% @as) 44 (3Ng )", and

dim(D(¥s)) = Nao (dim(D(55,,) ) = 1) + dim(D(a4,.))- (153)

This and (152) prove (133). Moreover, (153) and (130) imply that for all d € N, ¢ € (0, 1]
it holds that

dim(D(¥,,))
P(¥a) S Y kaon, BNao)™ (kao, (3Nao)™ +1)

=1

< 2dim (D(¥a,))ki g, (3Nas) ™ (154)
=2 (Nd‘ﬁ (dim (D (f%) ) — 1) +dim (D (gdv %) ) ) 24, (3Nas)

In addition, it follows from (137) and (134) that for all ¢ € (0, 1] it holds that
DN < [4L(1+ @L+ 2 O))) +2]e FT<Be 2 <Be (155)
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Combining this with (154), the fact that Ve € (0, 1] : dim(D(f,)) = 3, the fact that
VdeN,ee (0,1]:[||D(gy,)|l| <dPe™®B, and the fact that Vde N,ee (0,1]:

dim (D(gdﬁg)) < &P B implies that for all d € N, z € (0, 1] it holds that ky s, <d"5;"B
and that
2
P(Wa.) <2(Nag (dim (D (5, ) ) = 1) +dim(D(s,5,) ) ) (°052B) (3Na)™
P -8 P §—o 2 2Na;
<2 2Nd’g +d (5(1}) B)(d 5d‘£B (3Nd,s)

<4dP0, B 3 B2 Ny o(3Ng,0)
—4B3 (4Cdde)2x+ﬁd31787(2a+mNd?5 (3Nd¢8)2NdVL .

(156)
Furthermore, (143) ensures that for all d € N, ¢ € (0, 1] it holds that
Nae—1
£<2¢y Ve(l +2LT) ) (157)
Naw — 1

This together with (156) implies that for all d € N, ¢ € (0, 1], y € (0, 1] it holds that
'P(Td E) < 4BZa+/3+3 (4cd)2d+ﬁd(2a+/}+3)p87(21+ﬂ)Nd E(3Ndin)2N‘1.;:84+1787(4+",')

(Na:=1)(4+7)
< 4B2%+B+3 (4Cd)4+2“+ﬂ+yd(2a+ﬁ+3)de75 (3Nd‘8)2Nd.z, (\/E(l + 2LT)> S—(4+2a+/ﬁ+y)

\/Nag— 1
(n-1)(a+)
< AR (4 TG o | n(3n) (\/E(l + 2LT)> 2t
neNN[2,00) vn—1

4B (4 S GEH I E (42,

(158)
Combining this with (146) and (147) establishes that there exist # € (0,00), C =
(Cy)yeo) * (0,1] = (0,00) such that for all d€N, &y€(0,1] it holds that
P(P,.) < C,de#+2245+7) The proof of Theorem 4.1 is thus completed. O

4.2 Deep neural network approximations with general polynomial convergence
rates

Corollary 4.2 Let ||-|| : (UgenR?) — [0,00) and Ag: R — R?, d € N, satisfy for all
deN, x=(x,..,x)€R that lxll = 29, ()2 and  Ay(x) =
(max{xy,0},...,max{xs, 0}), let

H+l
N= U U [H(Rknxk,m X Rkn)}’ (159)

HEN (ko ky ... kp1)eNT2 Ln=1
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let:  R:N— (UyenCRSRY)  and  P:N— N satisfy for all HEN,
Kokt ki ki €N @ = (Wi,B1), -y (Wi, i) € TLZY (R0 x R,

n=1

xo € RM . xy € R withVn € NN [1,H] : x, = Ar,(Wox,_1 + B,) that
Ht1

R(D) € C(RE, Rb+1) (R(D))(x0) = Wrxy + By, and P(®) = S kn(kut + 1),
n=1

let T,k € (0,00), f € C(R,R), (84,)aenee(0,]ENs (€a)genE(0,00), for every d € N let
g4 € C(RYR), for every d € N let ug € C'*([0,T] x R, R), and assume for all d € N,
vweR xeR, e€(0,1], 1€ (0,T) that

Plag,) <wd ™, |ga(x) — (R(8,,)) ()| <erd“(1 +[Ix]"), R(g,,) € C(R,R),
(160)

[(R(84.:)) ()| S wed™(1+ |Ix[[),  [f(v) = fW)| <xpp—wl, ua(t, x)| < ca(l + [Ix]|),
(161)

(gud)(t, x)+ %(Axud) (t,x) +f(uq(t,x)) =0, and ug(T,x) = gq(x).  (162)

Then there exist (Wa,:) gen se(0,)EN- 1 € (0,00) such that for alld € N, ¢ € (0,1] it holds
that R(P4.) € C(RY,R), P(WPa.) <nd'e™", and

1

{/[Ol]d}ud(O,x) — (R(Wa.)) ()| dx| <e. (163)

Proof of Corollary 4.2 Throughout this proof assume without loss of generality that x > 2,

let [||-]]] : (UsenR?Y) — [0,00) and dim : (UzenR?Y) — N satisfy for all d € N, x =
(x1, ..., x4) € RY that |||x||| = maX;e(; gnn %] and dim(x) = d, let D : N — D satisfy for
all HeN, kOakl7"’7kH7kH+l eN, CD:((Wl,Bl),...,(WH+17BH+1)) S
[T (REkmt 5 RE) that

D(®) = (ko, k1, ks kei1), (164)

and let B= max{l7 K{SUPre[o,oc) %} } The fact that VdeN, te][0,T],

x € R Jug(t,x)| <ca(1+ |]x||“), the fact that Vd € N, x € RY : uy(T,x) = ga(x), the
fact that Vv,w e R:[f(v) —f(w)| <x|v—w]|, (162), and the Feynman—Kac-formula
ensure that the functions u,, d € N, satisfy (132). Next note that for all d € N, ¢ € (0, 1],
x € R? it holds that

K

|(R(g4,0)) ()] <™ (1 + [lx]") <5 { sup d*(1+ [lx[)* < Ba* (1 + [[x]))",

ref0,00) (l + r)K

(165)
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K K l + * K K K K
ga(x) — (R(gd‘s))(x)‘ < erd(1+ |lx]*) <er| sup | d*(1+ |lx]))* < eBd (1 + |||,
ref0,00) (1 + i’)
(166)
ID(g4 )1l <P(8y,,) < wd*e™ < Bd*e™, (167)
and
dim(D(s,,,) ) < Pl9,,) < k"™ <Bd"c™. (168)

Moreover, observe that the fact that Vd € N,y € [0,1]" : ||y|| < V/d ensures that for all
deN, o€ (0,00) it holds that

1

[ i ar) <vasna (169)

Combining this with (165)—(168) and Theorem 4.1 (with « =k, f =, B=B, L=k,
p=K,g=2,p=1,and y :% in the notation of Theorem 4.1) ensures that there exist
(Wae)aeneo)CNs 1 € (0,00) such that for all d €N, e€(0,1] it holds that

R(¥4.) € C(R),R), P(¥,4.) <nd"e™", and

1

2

A)l]d’ud(o’x) — (R(¥as) ) dx| <e. (170)

The proof of Corollary 4.2 is thus completed. (I
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