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We extend a method for approximate balanced reduced order model derivation for finite
dimensional linear systems developed by Rowley (Internat. J. Bifur. Chaos Appl. Sci. En-
grg., 15(3), 997–1013) to infinite dimensional systems. The algorithm is related to standard
balanced truncation, but includes aspects of the proper orthogonal decomposition in its com-
putational approach. The method can be also applied to nonlinear systems. Numerical results
are presented for a convection diffusion system.

Keywords: balanced truncation, proper orthogonal decomposition, infinite dimensional
systems

1. Introduction and Overview

A large body of research over the last ten to fifteen years has been devoted to the
development of reduced order models for a variety of uses including simulation,
optimization, optimal design, and controller derivation. A technique that came
from the systems literature is balanced realization and truncation, and is used
regularly with a good deal of success. This approach involves retaining the states
of the system that are both most controllable and most observable. The other states
of the system are truncated and a reduced model is formed. For an overview of
the method and details of the standard algorithm, see e.g., [1, 2]. Computing the
balanced reduced order model for large scale systems, such as those arising from
a discretization of an infinite dimensional system, is an active area of research
(see [3, 4] and the references therein).

In [5], an approach to computing the balanced realization was presented that
uses the proper orthogonal decomposition. The technique was developed for finite
dimensional systems. In this work, we extend Rowley’s balanced POD algorithm to
a class of infinite dimensional systems. One of the main features of the algorithm
is that it does not require matrix approximations of the infinite dimensional opera-
tors. Such matrices can be difficult or impossible to obtain from certain simulation
codes or for certain problems (such as linearized fluid flow). Although we do not at-
tempt to provide a complete convergence analysis of the algorithm in this work, we
present numerical results for a model problem that indicate that the algorithm is
convergent. Our derivation of the algorithm also points to the analysis that remains
in order to prove convergence. We also note how the present algorithm can differ
from the popular method of first discretizing the infinite dimensional system and
then balancing the resulting finite dimensional system. In particular, we demon-
strate by way of example that the latter method can lead to an incorrect reduced
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order model if the finite dimensional algorithm is applied without consideration of
the underlying approximation of the infinite dimensional system.

The algorithm proposed in this work is a POD-type procedure to design an
approximate balanced transformation of an infinite dimensional linear system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (1a)

y(t) = Cx(t), (1b)

over a Hilbert space X with inner product (·, ·). We assume the linear operator
A : D(A) ⊂ X → X generates an exponentially stable C0-semigroup eAt, and the
operators B : U → X and C : X → Y are bounded and finite rank. We also
assume the input and output spaces are finite dimensional; specifically U = Rm

and Y = Rp.
The general goal of model reduction is to construct a low order model of the

form

ȧ(t) = Ara(t) +Bru(t), a(0) = a0, (2a)

y(t) = Cra(t), (2b)

that is a “good approximation” to the original system (1) in some sense. Here, the
system holds over the state space Rr, where the objective is to have the order r
small. The input and output spaces are the same as in (1). One way to measure the
distance between the two systems is to compare their transfer functions, G(s) =
C(sI −A)−1B and Gr(s) = Cr(sIr −Ar)−1Br, respectively. Therefore, we look for
a system (Ar, Br, Cr) that makes the error ‖G − Gr‖∞ small. Here, the applied
norm is the H∞ norm which is the largest singular value of the transfer function
along the imaginary axis.

Model reduction via balanced truncation is performed by first determining
a realization of the system in which the controllable and observable states of
(1) coincide. Specifically, define the controllability and observability operators
B : L2(0,∞;U)→ X and C : X → L2(0,∞;Y ) by

Bu =
∫ ∞

0
eAtBu(t) dt, [Cx](t) = CeAtx.

The adjoint operators B∗ : X → L2(0,∞;U) and C∗ : L2(0,∞;Y ) → X are given
by

[B∗x](t) = B∗eA
∗t, C∗y =

∫ ∞
0

eA
∗tC∗y(t) dt.

The controllability and observability Gramians, LB ∈ L(X) and LC ∈ L(X), are
defined by

LBx = BB∗x =
∫ ∞

0
eAtBB∗eA

∗tx dt, LCx = C∗Cx =
∫ ∞

0
eA

∗tC∗CeAtx dt.

Balancing provides a new system (Ab, Bb, Cb) that yields the same transfer function
G(s) as the original system and for which the Gramians, LbB and LbC , are equal
and diagonal.

The magnitude of the diagonal entries of the balanced Gramians can be thought
of as a measure of the controllability and observability of the states. These diagonal
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entries are given by the singular values of the Hankel operator H : L2(0,∞;U)→
L2(0,∞;Y ) defined by

[Hu](t) = [CBu](t) =
∫ ∞

0
CeA(t+s)Bu(s) ds.

An important fact is that the Hankel singular values are independent of the system
realization. Therefore, once the Hankel singular values are ordered from greatest
to least, the states corresponding to the “small” singular values are truncated to
produce a low order model.

An important property of this method is that we have the following error bound:

‖G−Gr‖∞ ≤ 2
∑
k>r

σk, (3)

where σk is the kth (ordered) Hankel singular value and Gr is the transfer function
of the rth order truncated balanced system. Therefore, if the Hankel singular values
decay quickly, the error will be small.

In the infinite dimensional setting, the balanced realization exists under certain
conditions; in the case that it does exist, the Gramians are equal to a diagonal
operator on `2, the space of square summable sequences (see [6, 7] and the review
in [8]). For the theory to hold, the Hankel operator must be nuclear, i.e., the
infinite sum of the Hankel singular values must be finite. Of course, this condition
is necessary to guarantee that the right hand side of the error bound (3) is finite.
It is known that the Hankel operator is nuclear for the class of systems studied in
this paper [9, Theorem 4].

The balanced POD algorithm determines a truncated approximate balancing
transformation Tr : Rr → X and its left inverse Sr : X → Rr (i.e., SrTr = Ir). To
obtain a low order model, approximate the solution x(t) of the linear system (1)
by Galerkin projection as

x(t) ≈ xr(t) = TrSrx(t) = Tra(t), where a(t) = Srx(t). (4)

Substituting this approximate solution into the linear system yields the reduced
order model (2), where Ar = SrATr, Br = SrB, Cr = CTr, and a0 = Srx0.

We may apply this Galerkin projection to obtain low order models of more
general, in fact nonlinear, systems. For example, suppose the model takes the form

ẋ(t) = Ax(t) + F (x(t)) +Bu(t) +Dw(t), x(0) = x0, (5a)

y(t) = Cx(t) + Ew(t), (5b)

where F is a nonlinear operator and w is a disturbance. One can derive the ap-
proximate balancing transformation about the linearized system and use the ap-
proximation for the solution (4) to obtain the model

ȧ(t) = Ara(t) + Fr(a(t)) +Bru(t) +Drw(t), a(0) = a0, (6a)

y(t) = Cra(t) + Erw(t), (6b)

where Ar, Br, Cr, and a0 are as above, Dr = SrD, Er = E, and Fr(a) = SrF (Tra).
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2. Derivation of the Algorithm

We now give a derivation of the balanced POD algorithm for the infinite dimen-
sional setting described above. We do not attempt to rigorously prove every step
the derivation; in some cases we simply proceed by analogy with the finite dimen-
sional case. However, we point out places where rigorous convergence analysis of
the algorithm is needed; this is an important first step in showing what can be
done. Although the formal derivation may seem unnecessary, we show in Section
4.4 that naively applying the finite dimensional approach can lead to incorrect
results.

The complete algorithm is presented in Section 3 below. One possible numerical
implementation of the algorithm is given in Section 3.1.

2.1. Special Forms of the Gramians

One of the main components of the balanced POD algorithm is to compute ap-
proximate factors of the Gramians using simulation data. This is possible because
of the special form of the Gramians.

Given the specific assumptions regarding the input and output operators, B and
C, in Section 1, they must have the form (see [10, Theorem 6.1])

Bu =
m∑
j=1

bjuj , Cx = [ (c1, x), . . . , (cp, x) ]T , (7)

where u = [u1, . . . , um ]T ∈ U , and each bj and cj are in X. This allows us to
rewrite the Gramians. First, define the functions wj(t) = eAtbj , for j = 1, . . . ,m.
Then wj is the solution of the evolution equation

ẇj(t) = Awj(t), wj(0) = bj .

The controllability operator B : L2(0,∞;U)→ X defined above takes the form

Bu =
∫ ∞

0
eAtBu(t) dt =

∫ ∞
0

m∑
j=1

wj(t)uj(t) dt,

and its adjoint operator B∗ : X → L2(0,∞;U) is easily computed to be

[B∗x](t) = [ (w1(t), x), . . . , (wm(t), x) ]T .

Therefore, the controllability Gramian LB = BB∗ ∈ L(X) is given by

LBx =
∫ ∞

0

m∑
j=1

wj(t)(wj(t), x) dt.

To treat the observability Gramian, we need the adjoint operator C∗ ∈ L(Y,X)
given by

C∗y =
p∑
j=1

cjyj ,
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where y = [ y1, . . . , yp ]T ∈ Y . We follow a similar procedure as used for B and
define zj(t) = eA

∗tcj , for j = 1, . . . , p. Then zj is the solution of the adjoint equation

żj(t) = A∗zj(t), zj(0) = cj .

The adjoint of the observability operator C∗ : L2(0,∞;Y )→ X takes the form

C∗y =
∫ ∞

0
eA

∗tC∗y(t) dt =
∫ ∞

0

p∑
j=1

zj(t)yj(t) dt

and the operator C : X → L2(0,∞;Y ) is given by [Cx](t) =
[ (z1(t), x), . . . , (zp(t), x) ]T . Therefore, the observability Gramian LC = C∗C ∈
L(X) is

LCx =
∫ ∞

0

p∑
j=1

zj(t)(zj(t), x) dt.

2.2. The Empirical Gramians

The Gramians can be approximated using time snapshots of the states wi(t) and
zi(t). Specifically, we approximate the time integrals with the quadratures

LBx =
∫ ∞

0

m∑
i=1

wi(t)(wi(t), x) dt ≈ Ln1
B x =

m∑
i=1

n1∑
j=1

α2
jwi(tj)(wi(tj), x),

LCx =
∫ ∞

0

p∑
i=1

zi(t)(zi(t), x) dt ≈ Ln2
C x =

p∑
i=1

n2∑
k=1

β2
kzi(tk)(zi(tk), x).

Here, {α2
j} and {β2

k} are quadrature weights corresponding to the sets of quadra-
ture points {tj} and {tk}; different quadrature points and weights can be used for
each wi and zi if desired. Since wi are zi are solutions to linear evolution equations,
they are continuous in time and therefore have a well defined value at the quadra-
ture points. The approximate Gramians Ln1

B ∈ L(X) and Ln2
C ∈ L(X) are called

empirical Gramians.
Following Rowley in the finite dimensional case, we factor the empirical Grami-

ans. Define “vectors” of weighted snapshots

w̃ = [α1w1(t1), . . . , αn1w1(tn1), . . . , α1wm(t1), . . . , αn1wm(tn1) ]T ∈ XN1 , (8)

z̃ = [β1z1(t1), . . . , βn2z1(tn2), . . . , β1zp(t1), . . . , βn2zp(tn2) ]T ∈ XN2 , (9)

where N1 = mn1, N2 = pn2, and Xq = X × · · · ×X (q times). These vectors allow
the empirical Gramians to be written as Ln1

B = PP ∗ and Ln2
C = Q∗Q, where the

operators P : RN1 → X and Q : X → RN2 are defined by

Pa =
N1∑
i=1

aiw̃i, Qx = [ (z̃1, x), . . . , (z̃N2 , x) ]T ,
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and their adjoint operators P ∗ : X → RN1 and Q∗ : RN2 → X are given by

P ∗x = [ (w̃1, x), . . . , (w̃N1 , x) ]T , Q∗a =
N2∑
i=1

aiz̃i.

Note that P and Q and their adjoints depend on the quadrature points and weights;
however, we suppress this dependence for notational simplicity. Note that if the
data is smooth, then in fact P : RN1 → D(A) and Q∗ : RN2 → D(A∗). This will
allow us to say more about the reduced order model that results.

2.3. The Approximate Balanced Transformation

In the finite dimensional case, the eigendecomposition of the product of the Grami-
ans can be used to compute a balancing transformation for the linear system. The
balanced system is then truncated to form the reduced order model. We approxi-
mate the product of the Gramians L = LCLB using the empirical Gramians, i.e.,
L ≈ Ln = Ln2

C L
n1
B . Using the above factors, we have Ln = Q∗QPP ∗. Following

Curtain and Zwart [11, Lemma 8.2.9], it is easy to show that Ln is compact and
that the nonzero eigenvalues of Ln are equal to the squares of the nonzero singular
values of QP .

The operator QP is a bounded linear mapping from RN1 to RN2 ; therefore, it
can be represented as an N2 × N1 matrix Γ with entries Γij = (z̃i, w̃j). Let the
singular value decomposition of Γ be given by

Γ = UΣV ∗ = [U1 U2]
[

Σ1

0
0
0

][
V ∗1
V ∗2

]
= U1Σ1V

∗
1 , (10)

where Σ1 ∈ Rs×s is diagonal and invertible, s = rank(Γ), U∗1U1 = Is = V ∗1 V1, and
Is is the identity matrix in Rs×s.

In the finite dimensional case, Rowley showed that an approximate balancing
transformation is given by the operators T1 : Rs → X and S1 : X → Rs defined by

T1 = PV1Σ−1/2
1 , S1 = Σ−1/2

1 U∗1Q.

In this paper, we assume the same is true for the infinite dimensional setting and
leave theoretical analysis of the algorithm for future work.

The operators T1 : Rs → X and S1 : X → Rs have the representations

T1a =
s∑
j=1

ajϕj , S1x = [ (ψ1, x), . . . , (ψs, x) ]T ,

where the (primary) balanced POD modes {ϕi} and the adjoint balanced POD
modes {ψi} are given by

[ϕ1, . . . , ϕs ]T = Σ−1/2
1 V ∗1 w̃, [ψ1, . . . , ψs ]T = Σ−1/2

1 U∗1 z̃.

As in the finite dimensional case, the primary and adjoint balanced POD modes
are biorthogonal, i.e., (ψi, ϕj) = δij . To see this, note S1T1a = [ (ψi, ϕj) ]a for any
a ∈ Rs. Also, by definition,

S1T1a = Σ−1/2
1 U∗1QPV1Σ−1/2

1 a = Isa.
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Thus, [ (ψi, ϕj) ] = Is, or (ψi, ϕj) = δij . Note that the balanced POD modes have
the same smoothness as the solution data (i.e., snapshots).

The approximate balancing transformations are truncated by selecting r < s and
setting

Tra =
r∑
j=1

ajϕj , Srx = [ (ψ1, x), . . . , (ψr, x) ]T .

Thus, only the first r primary and adjoint balanced POD modes need to be com-
puted. Also, we have SrTr = Ir, and the modes can be computed by

[ϕ1, . . . , ϕr ]T = Σ−1/2
r V ∗r w̃, [ψ1, . . . , ψr ]T = Σ−1/2

r U∗r z̃, (11)

where Σr, Ur, and Vr are appropriate truncations of Σ1, U1, and V1.

3. The Balanced POD Algorithm

The construction of the operators Tr and Sr as shown above completes the balanced
POD algorithm. As outlined in Section 1, we use a transformation to obtain the
reduced order model (2). The complete procedure can be summarized as follows:

(i) Approximate the solutions wj of the differential equations

ẇj(t) = Awj(t), wj(0) = bj , (12)

for j = 1, . . . ,m, where Bu =
∑m

j=1 bjuj .
(ii) Approximate the solutions zj of the adjoint differential equations

żj(t) = A∗zj(t), zj(0) = cj , (13)

for j = 1, . . . , p, where Cx = [ (c1, x), . . . , (cp, x) ]T .
(iii) Form the matrix Γ, where Γij = (z̃i, w̃j), and the weighted snapshot vectors w̃

and z̃ defined in (8) and (9), respectively.
(iv) Compute the singular value decomposition of Γ as in (10), choose r < rank(Γ),

and form the first r primary and adjoint balanced POD modes defined in (11):

[ϕ1, . . . , ϕr ]T = Σ−1/2
r V ∗r w̃, [ψ1, . . . , ψr ]T = Σ−1/2

r U∗r z̃,

where Σr, Ur, and Vr are appropriate truncations of Σ1, U1, and V1.
(v) Use the modes to form the matrices in the reduced order model (2):

Ar = SrATr = [ (Aϕj , ψi) ] ∈ Rr×r,
Br = SrB = [ (bj , ψi) ] ∈ Rr×m,
Cr = CTr = [ (ϕj , ci) ] ∈ Rp×r,
a0 = Srx0 = [ (x0, ψ1), . . . , (x0, ψr) ]T ∈ Rr.

(14)

The smoothness of the balanced POD modes is important in insuring that Ar,
Br, Cr are well-defined, and hence the reduced order model is also well-defined. If
Tr does not map into the domain of A, for example, the operator Ar is nonsensical.
Although we do not present all the details here, we conjecture that S∗r must map
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into D(A∗) for convergence of the algorithm. Formal manipulation of the approxi-
mations of the infinite dimensional operators can lead to a model that is ill-defined,
and numerical results that are meaningless.

As in balancing for finite dimensional systems, one may choose the order r of
the reduced system so that the balancing error bound (3) is small enough. Of
course, balanced POD will not produce the exact truncated balanced reduced or-
der model; therefore, we cannot expect the balancing error bound to hold. However,
the balanced POD reduced order model can be refined in two ways. First, the dis-
cretizations of the infinite dimensional differential equations (12) and (13) can be
refined to produce more accurate time snapshots. Secondly, as with finite dimen-
sional balanced POD, one may refine the discretization in time by taking a larger
number of snapshots of the differential equations. These refinements will affect the
resulting Hankel singular values, balancing error bound (3), and balancing modes.
As these quantities converge, we anticipate that the balanced POD reduced order
model will converge to the exact truncated balanced system. Thus, it is possible
that the transfer function error will be close to the balancing error bound (3). As
mentioned earlier, we leave this convergence analysis for future work.

3.1. Finite Dimensional Galerkin Approximations

The algorithm presented above is flexible since we may use any procedure to ap-
proximate the solutions wi and zi of the linear differential equations (12) and (13).
We describe the balanced POD algorithm with Galerkin approximations.

Let W1 = span{ξj}kj=1 ⊂ D(A) and W2 = span{ηj}`j=1 ⊂ D(A∗) be finite
dimensional subsets of X. We compute the solutions of the primary and adjoint
differential equations by the finite dimensional Galerkin approximations

wα(t) ≈
k∑
j=1

rjα(t)ξj , zβ(t) ≈
∑̀
j=1

sjβ(t)ηj ,

for α = 1, . . . ,m and β = 1, . . . , p. Here, k is the same for each α and ` is the same
for each β; this is not necessary in general, but it does simplify the resulting al-
gorithm. Using these Galerkin approximations, the balanced POD algorithm takes
the following form:

(i) Form the k×k matrices M̃k = [ (ξj , ξi) ] and Ãk = [ (Aξj , ξi) ]. Approximate the
Galerkin coefficient vectors rα = [ r1α, . . . , rmα ]T by solving the equations

M̃kṙα(t) = Ãkrα(t), M̃krα(0) = [ (bα, ξi) ], α = 1, . . . ,m. (15)

(ii) Form the ` × ` matrices M̂` = [ (ηj , ηi) ] and Â` = [ (A∗ηj , ηi) ]. Approximate
the Galerkin coefficient vectors sβ = [ s1β, . . . , spβ ]T by solving the equations

M̂`ṡβ(t) = Â`sβ(t), M̂`sβ(0) = [ (cβ, ηi) ], β = 1, . . . , p.

(iii) Define the weighted snapshot coefficient matrices R ∈ RN1×k and S ∈ RN2×`

by

R = [α1r1(t1), . . . , αn1r1(tn1), . . . , α1rm(t1), . . . , αn1rm(tn1) ]T ,

S = [β1s1(t1), . . . , βn2s1(tn2), . . . , β1sp(t1), . . . , βn2sp(tn2) ]T .
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Then the weighted snapshot vectors w̃ and z̃ defined in (8) and (9), respectively,
are approximated by

w̃ ≈ R[ ξ1, . . . , ξk ]T , z̃ ≈ S[ η1, . . . , η` ]T .

Also, the matrix Γ is approximated by Γ̂ = SNRT , where the `× k matrix N
is given by N = [(ηi, ξj)].

(iv) Compute the singular value decomposition of Γ̂ as in (10) and choose r <

rank(Γ̂). Then the first r primary and adjoint balanced POD modes are ap-
proximated by

[ϕ1, . . . , ϕr ]T ≈ Σ−1/2
r V ∗r R[ ξ1, . . . , ξk ]T ,

[ψ1, . . . , ψr ]T ≈ Σ−1/2
r U∗r S[ η1, . . . , η` ]T ,

where Σr, Ur, and Vr are appropriate truncations of Σ1, U1, and V1. Let Φ =
Σ−1/2
r V ∗r R ∈ Rr×k and Ψ = Σ−1/2

r U∗r S ∈ Rr×`. Then for each i,

ϕi ≈
k∑
j=1

Φijξj , ψi ≈
∑̀
j=1

Ψijηj .

(v) Substitute the approximate modes into the reduced order model matrices (14):

Ar = [ (Aϕj , ψi) ] ≈ Ψ[ (Aξj , ηi) ]ΦT ,

Br = [ (bj , ψi) ] ≈ Ψ[ (bj , ηi) ],

Cr = [ (ϕj , ci) ] ≈ [ (ξj , ci) ]ΦT ,

a0 = [ (x0, ψ1), . . . , (x0, ψr) ]T ≈ Ψ[ (x0, η1), . . . , (x0, η`) ]T .

3.2. Comparison to the Finite Dimensional Method Applied to a Discretized
Infinite Dimensional System

A common method to compute a reduced order model for an infinite dimensional
linear system is to first discretize the system and then apply a finite dimensional
model reduction algorithm. The Galerkin method presented above gives one way to
compare the infinite dimensional balanced POD algorithm presented here, which
we term “balance POD then discretize,” with the finite dimensional balanced POD
algorithm applied to a discretization of an infinite dimensional system, which we
call “discretize then balance POD.” In this section, we compare the two approaches.

In the “discretize then balance POD” approach, one applies the Galerkin method
(or some other discretization scheme) to the linear system (1) to obtain the ordinary
differential equation system (15) in step 1 above along with the finite dimensional
output equation yk = C̃krα, where C̃k = [ (ξj , ci) ]. Finite dimensional balanced
POD is then performed on this system to obtain a reduced order model.

If certain conditions are satisfied, the “balance POD then discretize” approach
presented here produces the same reduced order model as the “discretize then
balance POD” approach outlined above. It can be checked that the following con-
ditions are sufficient:

• The Galerkin subspaces W1 and W2 must be equal (therefore, k = ` and M̃k =
M̂k).
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• The Galerkin scheme must satisfy Ã∗k = Âk (i.e., the conjugate transpose of the
matrix approximation of A must equal the matrix approximation of the adjoint
operator A∗).

• The same quadrature points and weights are used.
• The inner product for the finite dimensional balanced POD must be weighted

by the matrix M̃k, i.e., (a, b) = aT M̃kb.

In this case, the matrices ΦT and Ψ are produced by the finite dimensional balanced
POD algorithm, and the same reduced order model results from both approaches.

We note that certain problems and numerical schemes may not satisfy the first
two conditions above. For example, if the domain of A does not equal the domain
of A∗, the first condition may be difficult or impossible to satisfy. Also, certain
Galerkin schemes may not satisfy the duality property required in the second con-
dition; for an example with a delay equation, see [12]. In these cases, the “discretize
then balance” approach may not produce an actual approximate balancing trans-
formation.

In Section 4.4 we demonstrate numerically that if the inner product in the finite
dimensional balanced POD is not weighted by the matrix M̃k, then “discretize then
balance POD” can produce incorrect results.

4. Numerical Results for a Model Problem

In this section, we present numerical results for the convection diffusion system

wt(t, x) = µwxx(t, x)− κwx(t, x) + b(x)u(t),

y(t) =
∫ 1

0
c(x)w(t, x) dx,

w(t, 0) = 0, w(t, 1) = 0, w(0, x) = w0(x).

with µ a positive constant, κ a real constant, t > 0 and 0 ≤ x ≤ 1. The functions
b(x) and c(x) are piecewise constant with b(x) = 1 when b1 < x < b2, c(x) = 1
when c1 < x < c2, and both are zero otherwise. First, we discuss properties of this
system and give an explicit formula for the transfer function. Next, we approximate
the Hankel singular values, balancing modes, and transfer function and compare
the results with standard balancing computations and the exact transfer function.
Finally, we show that incorrect implementation of finite dimensional balanced POD
applied to a discretization of the system results in an inaccurate reduced order
model.

4.1. Properties of the System

The convection diffusion system can be written as an infinite dimensional linear
system as follows. Let the Hilbert space X equal L2(0, 1), the space of square
integrable functions, with the standard inner product (f, g) =

∫ 1
0 f(x)g(x) dx. The

system operators are defined by

Aw = µwxx − κwx, D(A) = H2 ∩H1
0 ,

Bu = b(x)u, Cw = (c, w) =
∫ 1

0 c(x)w(x) dx.
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Here, Hm is the standard Sobolev space of functions with m derivatives all of
which are square integrable; also, any function w ∈ H1

0 must satisfy the Dirichlet
boundary conditions w(0) = 0 and w(1) = 0. The input space U and the output
space Y both equal the real numbers. Note that B : U → X and C : X → Y are
finite rank and bounded since they are of the form (7). We will also require the
adjoint of A given by A∗w = µwxx+κwx on the domain D(A∗) = D(A) = H2∩H1

0 .
We now briefly show that A generates an exponentially stable C0-semigroup and

provide an exact formula for the transfer function of the system.

Proposition 4.1 The convection diffusion operator A defined above generates an
exponentially stable C0-semigroup. The transfer function G(s) = C(sI − A)−1B
defined for s in the resolvent set of A is given by

G(s) =
∞∑
n=1

1
s− λn

(∫ c2

c1

fn(x) dx
)(∫ b2

b1

gn(x) dx
)
, (16)

where

λn = −µn2π2 − κ2/4µ,

fn(x) =
√

2eκx/2µ sin(nπx),

gn(x) =
√

2e−κx/2µ sin(nπx).

Note that the integrals in the formula for the transfer function can be computed
exactly.

Proof It is easily shown that −A takes the form of a Sturm-Liouville operator;
therefore, the results in [13] show that A generates a C0-semigroup and the con-
vection diffusion system (A,B,C) is a Riesz-spectral system (as in [11, Def. 4.1.1]).

It can be shown that the eigenvalues of A are given by λn and the corresponding
eigenfunctions are given by fn(x). Furthermore, the eigenvalues of A∗ equal the
eigenvalues of A and the eigenfunctions are given by gn(x). The eigenfunctions of
A and A∗ form a biorthogonal sequence, i.e., (fj , gk) = δjk.

Since the convection diffusion system is a Riesz-spectral system and the eigen-
values of A are all negative and bounded away from the imaginary axis, the C0-
semigroup generated by A is exponentially stable [11, Theorem 2.3.5 d]. Further-
more, once again using the Riesz-spectral property of the system gives [11, Lemma
4.3.10]

G(s) =
∞∑
n=1

1
s− λn

CfnB
∗gn.

Since B∗w = (b, w) =
∫ 1

0 b(x)w(x) dx, the result follows. �

4.2. Hankel Singular Values and Balancing Modes

We now consider the numerical approximation of the Hankel singular values and the
balancing modes. We do not have explicit expressions for these quantities, therefore
we compare the results of balanced POD with standard balancing computations
applied to a finite element discretization of the system. For the balanced POD
computations, the solutions of the primary (12) and dual (13) linear differential
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equations were approximated with standard piecewise linear finite elements using
equally spaced nodes. The solutions were integrated over 0 ≤ t ≤ 2 using Matlab’s
ode15s solver with default error tolerances. The quadrature points were chosen
as the time points returned from ode15s and the trapezoid rule was used for
the quadrature weights. Time refinement was performed by decreasing the error
tolerances of the ODE solver. For all computations, we chose the system parameters
given in Table 1.

Table 1. System Parameters

µ κ b1 b2 c1 c2
0.1 1 0.1 0.3 0.6 0.7

For this model problem, balanced POD gives identical results with the standard
balancing computations when both methods are refined until convergence. In the
balanced POD computations, spatial refinement was more important for conver-
gence than time refinement. This is not surprising since the solutions of the primary
and dual linear systems are not highly variable in time.

In Figure 1, we show the first 20 approximate Hankel singular values using bal-
anced POD and the matrix representation approach. The methods produce identi-
cal results. For each computation, we used 256 equally spaced finite element nodes.
The singular values are converged — further refinement in space (and in time for
balanced POD) produces little change. The remaining singular values are below
machine precision; it is doubtful that these values are accurate.

0 5 10 15 20
10

−20

10
−15

10
−10

10
−5

10
0

Figure 1. Approximate Hankel singular values for standard balancing (�) and balanced POD (×).

The nuclear norm of the Hankel operator is the sum of the Hankel singular values.
When refined, both methods give 0.0143 as an approximation to this sum. The last
digit does not appear to converge for either method as they are refined. This is
most likely caused by inaccuracies in the singular values below machine precision.
However, we may still conjecture that both methods approximate the nuclear norm
accurately to the third decimal place.

In Figures 2 and 3, we show primary and adjoint balanced POD modes. All modes
are converged and the standard balancing computations produce identical results.
In general, the higher numbered modes are slower to converge under refinement
for both methods. This behavior is most likely due to the fact that the higher
numbered modes tend to oscillate more than the lower numbered modes. For these
computations, 128 equally spaced finite element nodes were used.
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Figure 2. Balanced POD mode 1 (left) and mode 2 (right).
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Figure 3. Adjoint balanced POD mode 3 (left) and mode 5 (right).

4.3. Transfer Functions

Recall that the difference between the transfer functions of the convection diffusion
system and the exact rth order truncated balanced system satisfies the error bound

‖G−Gr‖∞ ≤ 2
∑
k>r

σk, (17)

where σk is the kth ordered Hankel singular value. In this section, we numerically
investigate the error in the H∞ norm using the transfer function of the rth order
truncated balanced POD system. We use the same implementation of the algorithm
and the system parameters as above.

Figure 4 shows the magnitude of the transfer function of the convection diffusion
system evaluated at s = iω for 10−2 ≤ ω ≤ 104. The transfer function is evaluated
using (16); the integrals are computed exactly and 40 terms are taken of the infinite
sum (this is sufficient for convergence). Recall that the H∞ norm of a transfer
function is the maximum singular value of the transfer function evaluated along
the imaginary axis. Since the convection diffusion system is single input-single
output, the H∞ norm of the convection diffusion transfer function is given by the
largest value of |G(iω)| for ω real. Thus, figure 4 gives ‖G‖∞ ≈ 0.016.

We now check whether the transfer functions from converged balanced POD
meet the error bound (17). Figure 5 shows the magnitude of the balanced POD
transfer function Gr(s) for r = 2 and the error |G(s)−Gr(s)| evaluated at s = iω
for 10−2 ≤ ω ≤ 104. We used 128 equally spaced finite element nodes for the com-
putations. The balanced POD transfer function is very close to the true convection
diffusion transfer function. For r = 2, the error bound is approximately 9.5×10−4.
Over the range of ω given above, we have max|G(iω)−Gr(iω)| = 9× 10−4. Thus,
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Figure 4. The magnitude of the transfer function of the convection diffusion system given in (16)
evaluated at s = iω for 10−2 ≤ ω ≤ 104. The integrals are computed exactly and 40 terms are taken in

the infinite sum.
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Figure 5. Magnitude of the balanced POD transfer function |Gr(s)| for r = 2 (left) and transfer function
error |G(s)−Gr(s)| (right) both evaluated at s = iω for 10−2 ≤ ω ≤ 104.

the balanced POD transfer function satisfies the error bound (17) in this case. Stan-
dard balancing computations using finite element matrix approximations produced
identical results.

For r = 3, the error bound is approximately 8.7×10−5. In this case, 1200 equally
spaced finite element nodes are required to bring the error below the bound (see
Figure 6). Although a very large number of nodes is required to satisfy the error
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Figure 6. Balanced POD transfer function error |G(s)−Gr(s)| for r = 3 evaluated at s = iω for
10−2 ≤ ω ≤ 104 using 128 and 1200 nodes (left) and the same plot over the range 10−2 ≤ ω ≤ 1 (right).

bound (17), 128 equally spaced nodes gives an error of approximately 2 × 10−4,
which is quite near the error bound. Again, standard balancing computations using
matrix representations produced identical results.

The balanced POD algorithm is intended to give an approximate truncated bal-
anced realization of the original system. The numerical results presented here indi-
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cate that the balanced POD reduced order model is a good approximation to the
exact truncated balanced reduced order model. We have seen that an extremely
fine discretization of an infinite dimensional system may be necessary for the bal-
anced POD transfer function to satisfy the balancing error bound (17). However,
our results also demonstrate that a coarser discretization may still yield a trans-
fer function that nearly satisfies the bound. Therefore, in many cases balanced
POD with a coarser discretization may yield a low order model that is a good
approximation to the infinite dimensional system.

4.4. Discretize then Balance POD: An Example with Incorrect Results

In this section, we first discretize the convection diffusion system and then ap-
ply finite dimensional balanced POD to the discrete system. In Section 3.2, we
gave conditions that guarantee when this procedure yields the same reduced order
model as balanced POD applied to the infinite dimensional convection diffusion
system (with the differential equations discretized by the Galerkin method). The
last condition for discretization to “commute” with balanced POD was that the
finite dimensional inner product is weighted by M̃k, the matrix of inner products
of the Galerkin basis functions. Below we do not weight the finite dimensional in-
ner product by the matrix M̃k. The numerical results below demonstrate that this
incorrect implementation leads to nonconvergent Hankel singular values, balancing
modes, and transfer function.

We again use standard piecewise linear finite elements with equally spaced nodes
for the spatial discretization. The finite element basis functions are not orthonor-
mal with respect to the L2 inner product, therefore the matrix M̃k is not the
identity matrix. The finite dimensional balanced POD algorithm was implemented
in exactly the same manner as the infinite dimensional version of the algorithm
described in Section 4.2 above. The system parameters were again chosen as in
Table 1.

Figure 7 shows the Hankel singular values for 32, 64, 128, and 256 equally spaced
nodes. The values no longer converge; the values increase as the refinement level
increases. Figure 7 also shows the results of balanced POD applied to the infi-
nite dimensional convection diffusion system. In this case, as the refinement level
increases, the Hankel singular values converge (also see Figure 1).
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Figure 7. Hankel singular values for “discretize then balance POD” (left) and “balance POD then
discretize” (right).

Figure 8 shows the first balanced POD mode for 32, 64, 128, and 256 equally
spaced nodes. The mode no longer converges; the shape of the mode stays the same
yet the size of the mode decreases under refinement. Figure 8 also shows the results
of balanced POD applied to the infinite dimensional convection diffusion system.
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In this case, as the refinement level increases, the balanced POD mode converges
(also see Figure 2). Similar results were observed for other balanced POD modes.
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Figure 8. The first balanced POD mode for “discretize then balance POD” (left) and “balance POD
then discretize” (right).

Figure 9 compares the exact transfer function of the convection diffusion system
with the balanced POD transfer functions of order r = 4 and r = 7 computed with
32, 64, 128, and 256 equally spaced nodes. The magnitudes of the transfer functions
are evaluated at s = iω for 10−4 ≤ ω ≤ 104. The balanced POD transfer functions
do not converge to the true transfer function as the refinement level increases; in
fact, the transfer functions do not appear to converge at all. Furthermore, increasing
the order r of the reduced order model does not make the balanced POD transfer
functions closer to the true transfer function; in fact, increasing r produces no
visible change in the balanced POD transfer functions.
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Figure 9. Exact convection diffusion transfer function versus the “discretize then balance POD” transfer
function for r = 4 (left) and r = 7 (right).

This example shows that one must be cautious when discretizing an infinite
dimensional system and then using balanced POD to construct the reduced order
model. In particular, if the finite dimensional inner product is not weighted by the
matrix M̃k, then the resulting reduced order model may not be close to the infinite
dimensional system. Furthermore, if either of the first two conditions in Section
3.2 are not satisfied by the discretization scheme, then the resulting reduced order
model may also suffer from a loss of accuracy. We note that a lack of convergence of
the Hankel singular values or balancing modes should be a good indication that the
balanced POD reduced order model may not be near the true infinite dimensional
system.
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5. Conclusions and Future Work

In this paper, we extended Rowley’s balanced POD algorithm to a class of infinite
dimensional systems. Numerical results for a convection diffusion system indicate
convergence of the algorithm by comparing balanced POD with standard balancing
computations and the exact transfer function. In addition, we compared finite and
infinite dimensional algorithms and gave conditions when balanced POD “com-
mutes” with discretization. Numerical results for the convection diffusion system
demonstrated that an incorrect implementation of balanced POD applied to a dis-
cretization of an infinite dimensional system can result in an inaccurate reduced
order model.

This method shows promise for reduced order model design. In particular, it is
computationally tractable for infinite dimensional systems, even if approximating
finite dimensional systems have very high dimensions. Additionally, it is applicable
even if matrices from approximating systems are not available. One only needs to
be able to approximate solutions of standard and dual linear evolution equations.
Moreover, there is potential to use error estimators for the solutions of the linear
equations to show where to refine to improve accuracy.

We point out, however, that balanced POD may not be feasible for (1) systems
with solutions that decay slowly to zero or are highly oscillatory in time because
they may need a large number of time quadrature points, or (2) systems that have
a large number of inputs and outputs. We note that Rowley’s paper treats the case
of a large number of outputs using a POD projection.

In a future paper, we will complete the convergence analysis of this method
and examine Rowley’s output POD projection. In addition, we will compare this
approach with balanced truncation methods using large scale matrix Lyapunov
solvers (see [3, 4] and the references therein). Even in the case that the matrix
solvers are faster, balanced POD may still be preferable due to the advantages listed
above. Future work includes extending this approach to systems with unbounded
input and output operators.
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