Bull. Austral. Math. Soc. Vol. 45 (1992) [105-112]

A PROPERTY OF ANALYTIC FUNCTIONS WITH HADAMARD GAPS

JIE MIAO

In this paper we obtain a sufficient and necessary condition for an analytic function f on D with Hadamard gaps, that is, for $f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}$ satisfying $n_{k+1}/n_k \ge \lambda > 1$ for all k, to belong to a kind of space consisting of analytic functions on D. The special cases of these spaces are *BMOA* and *VMOA*. In view of our result we can answer the open question given recently by Stroethoff.

1. INTRODUCTION

Let $D = \{z : |z| < 1\}$ be the open disc in the complex plane. For an analytic function f on D we set

$$\|f\|_{BMOA} = \sup_{\lambda \in D} \left(\frac{1}{2\pi} \int_0^{2\pi} \left| f(\varphi_\lambda(e^{i\theta})) - f(\lambda) \right|^2 d\theta \right)^{1/2},$$

where

$$\varphi_{\lambda}(z) = \frac{z-\lambda}{1-\overline{\lambda}z}, \qquad z \in D.$$

The space BMOA is the set of all analytic functions f on D for which $||f||_{BMOA} < \infty$. Contained in BMOA is the subspace VMOA, the set of all analytic functions f on D for which

$$\lim_{|\lambda|\to 1-0}\left(\frac{1}{2\pi}\int_0^{2\pi}\left|f(\varphi_\lambda(e^{i\theta}))-f(\lambda)\right|^2d\theta\right)=0.$$

It is well-known that for every analytic function f on D (see [2]),

(1)
$$\|f\|_{BMOA} \approx \sup_{\lambda \in D} \left(\int_D |f'(z)|^2 \left(1 - |\varphi_{\lambda}(z)|^2 \right) dA(z) \right)^{\frac{1}{2}}$$

and $f \in VMOA$ if and only if

(2)
$$\lim_{|\lambda|\to 1-0}\int_D |f'(z)|^2 \left(1-|\varphi_{\lambda}(z)|^2\right) dA(z)=0,$$

Received 5 February 1991 This research was partially supported by a grant from NSF of Peoples Republic of China.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.

105

where A denotes the Lebesgue area measure and " \approx " means equivalently (see [4]). The Bloch space \mathcal{B} is the set of all analytic functions f on D for which $||f||_{\mathcal{B}} = \sup_{z \in D} (1 - |z|^2) |f'(z)| < \infty$. Contained in \mathcal{B} is the little Bloch space \mathcal{B}_0 , the set of all analytic functions f on D for which $\lim_{|z|\to 1-0} (1 - |z|^2) |f'(z)| = 0$. We know that for 0 (see [4]),

(3)
$$||f||_{\mathcal{B}} \approx \sup_{\lambda \in D} \left(\int_{D} |f'(z)|^{p} \left(1 - |z|^{2} \right)^{p-2} \left(1 - |\varphi_{\lambda}(z)|^{2} \right)^{2} dA(z) \right)^{1/p}$$

and $f \in \mathcal{B}_0$ if and only if

(4)
$$\lim_{|\lambda|\to 1-0}\int_D |f'(z)|^p \left(1-|z|^2\right)^{p-2} \left(1-|\varphi_{\lambda}(z)|^2\right)^2 dA(z)=0.$$

It has been known to us that \mathcal{B} and BMOA share many analogous properties, as do \mathcal{B}_0 and VMOA. Comparing the above equivalence (1) with (3), as well as (2) with (4) when p = 2, Stroethoff [4] offered the following open question:

QUESTION: Let 0 and let f be an analytic function on D. Are the following true?

(i)
$$f \in BMOA \iff \sup_{\lambda \in D} \int_{D} |f'(z)|^{p} \left(1 - |z|^{2}\right)^{p-2} \left(1 - |\varphi_{\lambda}(z)|^{2}\right) dA(z) < \infty,$$

(ii)
$$f \in VMOA \iff \lim_{\lambda \to 1-0} \int_D |f'(z)|^p \left(1-|z|^2\right)^{p-2} \left(1-|\varphi_{\lambda}(z)|^2\right) dA(z) = 0$$

For p = 2 the above question has a positive answer. Making use of the fact that there is a constant C such that

$\|f\|_{\mathcal{B}} \leqslant C \, \|f\|_{BMOA}$

for every analytic f on D, we know a partial answer to the question: for an analytic function f on D and 0 the conditions in (i) and (ii) are sufficient for containment in*BMOA*and*VMOA* $, respectively; for <math>2 \leq p < \infty$ the conditions in (i) and (ii) are necessary for f to belong to *BMOA* and *VMOA*, respectively.

Let 0 . For an analytic function <math>f on D we set

(5)
$$||f||_{B^{p}} = \sup_{\lambda \in D} \left(\int_{D} |f'(z)|^{p} \left(1 - |z|^{2} \right)^{p-2} \left(1 - |\varphi_{\lambda}(z)|^{2} \right) dA(z) \right)^{1/p}.$$

We define the space B^p to be the set of all analytic functions f on D for which $||f||_{B^p} < \infty$ and define B_0^p to be the subspace of B^p , the set of all analytic functions f on D for which

(6)
$$\lim_{|\lambda|\to 1-0}\int_D |f'(z)|^p \left(1-|z|^2\right)^{p-2} \left(1-|\varphi_{\lambda}(z)|^2\right) dA(z) = 0.$$

It is clear that for $0 , <math>B^p \subset \mathcal{B}$ and $B_0^p \subset \mathcal{B}_0$, especially $B^2 = BMOA$, $B_0^2 = VMOA$. The known partial answer now can be expressed as: for 0 ,

$$(7) B^{p} \subset BMOA, B^{p}_{0} \subset VMOA$$

for 2 ,

$$(8) \qquad BMOA \subset B^q, \qquad VMOA \subset B^q_0,$$

According to our definition, Stroethoff's question becomes: are the above inclusions strict?

In this paper we give a sufficient and necessary condition for an analytic function with Hadamard gaps to belong to B^p or B_0^p . In view of the result it is easy to conclude that the above inclusions (7) and (8) are strict. Hence we get a negative answer to the question in general.

2. MAIN RESULT

Our main result is the following theorem.

THEOREM 1. Let $0 . If <math>f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}$ is analytic on D and has Hadamard gaps, that is, if

$$\frac{n_{k+1}}{n_k} \ge \lambda > 1, \qquad (k = 1, 2, \ldots),$$

then the following statements are equivalent:

(I)
$$f \in B^p$$
; (II) $f \in B_0^p$; (III) $\sum_{k=1}^{\infty} |a_k|^p < \infty$.

By Theorem 1 we can give the answer to the question in the introduction. Let $0 . Then <math>f(z) = \sum_{n=1}^{\infty} (z^{2^n})/(n^{1/p}) \in VMOA$, but $f \notin B^p$. Let $2 < q < \infty$. Then $g(z) = \sum_{n=1}^{\infty} (z^{2^n})/(n^{1/2}) \in B_0^q$, but $g \notin BMOA$. Hence the inclusions (7) and (8) are strict. Furthermore we know that the following inclusions, for 0 ,

$$B^p \subset B^q; \qquad B^p_0 \subset B^q_0,$$

are strict.

In order to prove Theorem 1, we need the following two lemmas.

J. Miao

[4]

LEMMA 1. Let $0 . If <math>\{n_k\}$ is an increasing sequence of positive integers satisfying $n_{k+1}/n_k \ge \lambda > 1$ for all k, then there is a constant A depending only on p and λ such that

$$A^{-1}\left(\sum_{k=1}^{\infty}|a_{k}|^{2}\right)^{1/2} \leq \left(\frac{1}{2\pi}\int_{0}^{2\pi}\left|\sum_{k=1}^{\infty}a_{k}e^{in_{k}\theta}\right|^{p}d\theta\right)^{1/p} \leq A\left(\sum_{k=1}^{\infty}|a_{k}|^{2}\right)^{1/2}$$

for any number a_k $(k = 1, 2, \ldots)$.

The above lemma was due to Zygmund [5].

LEMMA 2. Let $\alpha > 0$, p > 0, $n \ge 0$, $a_n \ge 0$, $I_n = \{k : 2^n \le k < 2^{n+1}, k \in N\}$, $t_n = \sum_{k \in I_n} a_k$ and $f(x) = \sum_{n=1}^{\infty} a_n x^n$. Then there is a constant K depending only on p and α such that

$$\frac{1}{K}\sum_{n=0}^{\infty}2^{-n\alpha}t_n^p\leqslant \int_0^1\left(1-x\right)^{\alpha-1}f(x)^pdx\leqslant K\sum_{n=0}^{\infty}2^{-n\alpha}t_n^p$$

The proof of Lemma 2 can be found in [3]. By simple computation we see that the above lemma is still valid for $f(x) = \sum_{n=1}^{\infty} a_n x^{n-1}$, $a_n \ge 0$. Let K still denote the constant in Lemma 2 for $f(x) = \sum_{n=1}^{\infty} a_n x^{n-1}$.

For our purpose we will use the following inequalities, which follow immediately from Hölder's inequality. Let $a_n \ge 0$ and let N be a positive integer. Then for 0 ,

(9)
$$\frac{1}{N^{1-p}}\left(\sum_{n=1}^{N}a_{n}^{p}\right) \leqslant \left(\sum_{n=1}^{N}a_{n}\right)^{p} \leqslant \left(\sum_{n=1}^{N}a_{n}^{p}\right);$$

for $1 \leq p < \infty$,

(10)
$$\left(\sum_{n=1}^{N} a_n^p\right) \leqslant \left(\sum_{n=1}^{N} a_n\right)^p \leqslant N^{p-1}\left(\sum_{n=1}^{N} a_n^p\right).$$

Before proving Theorem 1 we first prove the following result, which is useful for the proof of Theorem 1 and is of independent interest. We state it as a theorem.

THEOREM 2. Let $0 , <math>I_n = \{k : 2^n \leq k < 2^{n+1}, k \in N\}$ and let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be analytic on D. If

$$\sum_{n=0}^{\infty} \left(\sum_{k \in I_n} |a_k| \right)^p < \infty,$$

then $f \in B_0^p$.

PROOF: By the following identity:

$$1-\left|\varphi_{\lambda}(z)\right|^{2}=\frac{\left(1-\left|\lambda\right|^{2}\right)\left(1-\left|z\right|^{2}\right)}{\left|1-\overline{\lambda}z\right|^{2}},\qquad (\lambda,\ z\in D),$$

we have

$$\begin{split} \int_{D} |f'(z)|^{p} \left(1 - |z|^{2}\right)^{p-2} \left(1 - |\varphi_{\lambda}(z)|^{2}\right) dA(z) \\ &\leq \int_{D} \left(\sum_{n=1}^{\infty} n |a_{n}| |z|^{n-1}\right)^{p} \frac{\left(1 - |z|^{2}\right)^{p-1} \left(1 - |\lambda|^{2}\right)}{|1 - \overline{\lambda}z|^{2}} dA(z) \\ &= \int_{0}^{1} \left(\sum_{n=1}^{\infty} n |a_{n}| r^{n-1}\right)^{p} \left(1 - r^{2}\right)^{p-1} \left(1 - |\lambda|^{2}\right) \left(\int_{0}^{2\pi} \frac{d\theta}{|1 - \overline{\lambda}re^{i\theta}|^{2}}\right) r \, dr \\ &= 2\pi \int_{0}^{1} \left(\sum_{n=1}^{\infty} n |a_{n}| r^{n-1}\right)^{p} \left(1 - r^{2}\right)^{p-1} \frac{1 - |\lambda|^{2}}{1 - |\lambda|^{2} r^{2}} r \, dr \\ &\leq 2^{p} \pi \int_{0}^{1} \left(\sum_{n=1}^{\infty} n |a_{n}| r^{n-1}\right)^{p} (1 - r)^{p-1} dr \\ &\leq 2^{p} \pi K \sum_{n=0}^{\infty} 2^{-np} t_{n}^{p}, \end{split}$$

because of Lemma 2, where

$$t_n = \sum_{k \in I_n} k |a_k| < 2^{n+1} \sum_{k \in I_n} |a_k|.$$

Then we get

$$\begin{split} \|f\|_{B^{p}}^{p} &= \sup_{\lambda \in D} \int_{D} \left|f'(z)\right|^{p} \left(1 - |z|^{2}\right)^{p-1} \frac{1 - |\lambda|^{2}}{\left|1 - \overline{\lambda}z\right|^{2}} dA(z) \\ &\leqslant 4^{p} \pi K \sum_{n=0}^{\infty} \left(\sum_{k \in I_{n}} |a_{k}|\right)^{p} < \infty, \end{split}$$

that is, $f \in B^p$. To prove that $f \in B_0^p \subset B^p$, we note that the integral $\int_0^1 \left(\sum_{n=1}^\infty n |a_n| r^{n-1}\right)^p (1-r^2)^{p-1} dr$ is convergent, for $\sum_{n=0}^\infty \left(\sum_{k \in I_n} |a_k|\right)^p < \infty$. Hence for any $\varepsilon > 0$, there is a $\delta \in (0, 1)$ such that

$$\int_{\delta}^{1} \left(\sum_{n=1}^{\infty} n \left| a_n \right| r^{n-1} \right)^p \left(1 - r^2 \right)^p dr < \varepsilon.$$

Then

4

$$\begin{split} \int_{D} |f'(z)|^{p} \Big(1-|z|^{2}\Big)^{p-1} \frac{1-|\lambda|^{2}}{|1-\overline{\lambda}z|^{2}} dA(z) \\ &\leqslant 2\pi \int_{0}^{1} \left(\sum_{n=1}^{\infty} n |a_{n}| r^{n-1}\right)^{p} (1-r^{2})^{p-1} \frac{1-|\lambda|^{2}}{1-|\lambda|^{2} r^{2}} dr \\ &< 2\pi \int_{0}^{\delta} \left(\sum_{n=1}^{\infty} n |a_{n}| r^{n-1}\right)^{p} (1-r^{2})^{p-1} \frac{1-|\lambda|^{2}}{1-|\lambda|^{2} r^{2}} dr + 2\pi \varepsilon \\ &< 2\pi \frac{1-|\lambda|^{2}}{1-\delta^{2}} \int_{0}^{1} \left(\sum_{n=1}^{\infty} n |a_{n}| r^{n-1}\right)^{p} (1-r^{2})^{p-1} dr + 2\pi \varepsilon. \end{split}$$

If $|\lambda|$ is chosen appropriately so $1-|\lambda|$ may be sufficiently small, then the above quantity can be less than $4\pi\varepsilon$. Hence

$$\lim_{|\lambda|\to 1-0}\int_D \left|f'(z)\right|^p \left(1-\left|z\right|^2\right)^{p-2} \left(1-\left|\varphi_\lambda(z)\right|^2\right) dA(z)=0.$$

According to definition (6), it follows that $f \in B_0^p$. This completes the proof.

PROOF OF THEOREM 1: It is clear that (II) implies (I). We first prove that (III) follows from (I). Applying Lemma 1 and Lemma 2 we get

$$\begin{split} \|f\|_{B^{p}}^{p} &\geq \int_{D} |f'(z)|^{p} \left(1 - |z|^{2}\right)^{p-1} dA(z) \\ &= \int_{D} \left|\sum_{k=1}^{\infty} n_{k} a_{k} z^{n_{k}-1}\right|^{p} \left(1 - |z|^{2}\right)^{p-1} dA(z) \\ &\geq \frac{2\pi}{A^{p}} \int_{0}^{1} \left(1 - r^{2}\right)^{p-1} \left(\sum n_{k}^{2} |a_{k}|^{2} r^{2(n_{k}-1)}\right)^{p/2} r dz \\ &\geq \frac{\pi}{A^{p}} \int_{0}^{1} \left(1 - x\right)^{p-1} \left(\sum_{k=1}^{\infty} n_{k}^{2} |a_{k}|^{2} x^{n_{k}}\right)^{p/2} dz \\ &\geq \frac{\pi}{KA^{p}} \sum_{k=0}^{\infty} 2^{-kp} t_{k}^{p/2}, \end{split}$$

where

$$t_k = \sum_{n_j \in I_k} n_j^2 |a_j|^2.$$

Because $n_{k+1}/n_k \ge \lambda > 1$ for all k, the number of Taylor coefficients a_j is at most $\lfloor \log_{\lambda} 2 \rfloor + 1$ when $n_j \in I_k$, for k = 1, 2, ... Then

$$t_k^{p/2} \geqslant 2^{kp} C_p \sum_{n_j \in I_k} |a_j|^p,$$

where $C_p = 1$ for $p/2 \ge 1$ and $C_p = 1/([\log_{\lambda} 2] + 1)^{1-p/2}$ for p/2 < 1, by (9) and (10). Combining the above inequalities yields that (III) holds.

By Theorem 2 it is easy to prove that (II) follows from (III). Assuming that $\sum_{k=1}^{\infty} |a_k|^p < \infty$ and $n_{k+1}/n_k \ge \lambda > 1$ for all k, we have

$$\sum_{n=0}^{\infty} \left(\sum_{n_k \in I_n} |a_k| \right)^p \leq \left(\left[\log_{\lambda} 2 \right] + 1 \right)^p \sum_{k=1}^{\infty} |a_k|^p < \infty,$$

by (9) and (10). Thus $f \in B_0^p$, and the proof is complete.

Theorem 1 should be compared with the following result (see [1]):

THEOREM A. Let $f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}$ be analytic on D. If f has Hadamard gaps, then $f \in \mathcal{B}$ if and only if $a_k = 0(1)$ $(k \to \infty)$; and $f \in \mathcal{B}_0$ if and only if $a_k \to 0$ $(k \to \infty)$.

Setting p = 2 in Theorem 2, we have

COROLLARY. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be analytic on D. If $\sum_{n=0}^{\infty} \left(\sum_{j \in I_n} |a_j| \right)^2 < \infty,$

then $f \in VMOA$.

REMARK. By (10) we have

$$\left(\sum_{j\in I_n} |a_j|\right)^2 \leqslant 2^n \sum_{j\in I_n} |a_j|^2 \leqslant \sum_{j\in I_n} j |a_j|^2,$$
$$\sum_{n=0}^{\infty} \left(\sum_{j\in I_n} |a_j|\right)^2 \leqslant \sum_{n=1}^{\infty} n |a_n|^2 = \frac{1}{\pi} \int_D |f'(z)|^2 dA(z).$$

thus

[7]

$$\int_D |f'(z)|^2 \, dA(z) < \infty.$$

References

 J.M. Anderson, J. Clunie and Ch. Pommerenke, 'On Bloch functions and normal functions', J. Reine Angew. Math. 270 (1974), 12-37.

Π

- [2] J.B. Garnett, Bounded analytic functions (Academic Press, New York, 1981).
- [3] M. Mateljević and M. Pavlović, 'L^p-behavior of power series with positive coefficients and Hardy spaces', Proc. Amer. Math. Soc. 87 (1983), 309-316.
- [4] K. Stroethoff, 'Besov-type characterisations for the Bloch space', Bull. Austral. Math. Soc. 39 (1989), 405-420.
- [5] A. Zygmund, Trigonometric series (Cambridge Univ. Press, London, 1959).

Department of Mathematics Hangzhou University Hangzhou, Zhejiang Peoples Republic of China