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NOTES 
Edited by Ed Scheinerman 

A Property of Parallelograms 
Inscribed in Ellipses 
Alain Connes and Don Zagier 

1. INTRODUCTION. The following surprising property of ellipses was observed 

by the physicist Jean-Marc Richard, in connection with a problem from ballistics [2, 
p. 843]. 

Theorem 1. Let ? be an ellipse and f(d, d') the function of two diameters given by 
the perimeter of the parallelogram with vertices d C\ ? and d H ? (Figure 1). Then 

f(d) := sup/(</,</') 
d< 

is constant (independent of d). 

In other words, the maximal perimeter of a parallelogram inscribed in a given ellipse 
can be realized by a parallelogram with one vertex at any prescribed point of the el 

lipse. 

Figure 1. f(d, d') = 2a + 2b. 

Richard proved this result by a direct computational verification. Jean-Pierre Bour 

guignon told us about the theorem and asked whether one could give a more enlight 
ening proof. In this note we give two simple proofs, one geometric and the other 

algebraic, as well as a small generalization. We also describe briefly a connection 
with billiards that was pointed out to us by Sergei Tabachnikov. A different proof of 
Theorem 1 is given in [1, p. 350]. 

2. GEOMETRIC PROOF. We begin with a proof using classical geometry. The first 

step is to show that the theorem follows from a simple observation: 
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Fact. The map S that associates to d the diameter d' = Sid) where fid, d') reaches 
its (unique) maximum is an involution: S2id) = d for all d. 

This implies Theorem 1. Indeed, with d' ? Sid) one has d/dd' fid, d') = 0, but 
then since S is involutive one also has d/dd fid, d') = 0. Thus the gradient of fid, d') 
vanishes and the derivative of fid) := sup fid, d') = fid, Sid)) also vanishes.1 

d' 

Both the "Fact" and the uniqueness of the maximum follow from the following 
geometric lemma, in which we write d as [P, ?P] and rid) for the tangent to the 

ellipse at P (the two choices are parallel): 

Lemma. Let d and d' be two diameters of E. Then d' ? Sid) if and only if rid) is 

perpendicular to rid'). 

Proof. This is quite easy and has many proofs. We give one that uses only the 

purest definition of a conic, namely, Pascal's projective characterization: six points 
P\, ... , pe of the plane are on the same conic if and only if the three points 

[p\,P2\ n [p4, p5], [pi, Ps] n [p5, p6], [p3, p4] n [p6, px\ 

are collinear. Taking px? p2 
? 

P, p3 
= 

?P, p4 
= 

p5 
= 

P', and p6 
= ?P', we con 

clude that 

[-P,P']\\[0, Y], 

where Y = [px, p2] H [/74, p5] is the intersection of the tangents, O = [p2, P3] H 

IPs, P?] is the center of the ellipse, and [p3, p4] Pi [p6, p{\ is the point at infinity in the 
direction [-P, P'] (see Figure 2). In particular, OY bisects PP'. But at a maximum 
of fid, d') the tangent to the ellipse at P' has equal angles with [P', P] and [P', ?P], 
so the intersection point of OY and PP' is also equidistant from P' and Y. Thus Y 

belongs to the circle with diameter [P, P'], making PYP' a right angle. 

Figure 2. f(d, d') = maximum if and only if ZPYPf = 90?. 

]It is easy to justify the smoothness of the functions involved since one stays away from the diagonal d 
? 

d' 

on which f(d, d') is minimal. 
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Remarks. 1. The well-known geometric object to which the foregoing discussion 
relates is the orthoptic circle of Monge, who proved that the locus of points from 
which one sees an ellipse at right angles is a circle. The parallelism of [?P, Pf] 
and [0, Y] shows that f(d) is four times the distance from 0 to Y. This allows 
us to bypass the first step using Monge's theorem, or (much better) to prove 
Monge's theorem using that differential geometric step. 

2. Another geometric proof of the lemma, due to Marcel Berger [1], is to show, by 
projective reduction to the circle, that for a parallelogram inscribed in an ellipse 
the directions of the tangents to the ellipse at the vertices are in harmonic division 
with the directions of the sides. 

3. ALGEBRAIC PROOF AND GENERALIZATION. In this section we prove a 
somewhat stronger version of the original theorem, in which the two diameters d and 
d' are allowed to belong to different ellipses with the same foci. 

Define a "modified distance function" in R2 by 

E(P, P') = \\P - 
P'\\ + ||P + Pf\\ (P, P' e R2). 

Clearly this depends only on the images of P and P' in R2/{?1}. In the situation 
of Theorem 1, if ? has its center at 0 = (0, 0) in R2 and d = [-P, P] and d' = 

[-P', Pr] are two diameters, then f(d, d') = 2F(P, P'). 

Theorem 2. Let ? be an ellipse in R2 with center at the origin, and let ?' be an 

arbitrary ellipse confocal with ?. Then the function R2 ?> R+ defined by P' \-> 

max{F(P, P') : P e ?} is constant on ?'. 

In the special case when ? = ?' this reduces to Theorem 1, while in the limiting 
case when ? is a degenerate ellipse consisting of the line joining two points P0 and 
? 

P0 in K2, it reduces to the standard definition of an ellipse with foci P0 and ? P0 as a 
level curve of the function F(-, P0). 

Proof of Theorem 2. Without loss of generality we can assume that the major and mi 
nor axes of ? and ?' are the x- and y-axes. Then these ellipses have equations 

x2 v2 x'2 va 
?:- + y- = \, ?>:X? + y? = \ (1) 

X ?i X' pt' 

for some X, ?jl, X'', p! > 0 with X ? p ? X' ? p!. Set C = X + p! 
? X' + p. We claim 

that 

F(P, P') < 2VC (2) 

for any P = (x, y) in ? and P' = (x\ y') in ?', with equality if and only if P and P' 

satisfy 

^ + ̂=0. (3) 
XX' pp,' 

Since (3) has a solution (unique up to sign) P ? (x, y) in ? for any P1 = (x\ yf) in ?', 
this shows that max{F(P, P') : P e ?} = 2^/C for all P' in ?'. Note that (3) reduces 
to the lemma of Section 2 if ? = ?'. 

To establish the claim, we first find by an easy calculation that \\P ? Pf\\ = 

VC (1 ? xx'/XX') if (3) is satisfied, so that F(P, P') = 2JC. To see that this is 
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an extremal value (it is then easy to check that it is a maximum), we observe that a 

point near to P on ? has the form P + sP* + 0(e2) with P* = iXy, 
? 

fix) and s 

small. The equation 

|| P+?P*+ OiS2) ? P' || = || P ? P' || + 
g(^.pf ?P 

+ 0(?2) 

shows that, for P' fixed, the function P h> P(P, P') is stationary at P if and only if 
the vector 

P - P' P + P' 

\\P-P'\\ 
+ 

\\P + P'\\ 

is orthogonal to P*. Using the formulas for ||P ? P'|| given earlier, one checks that 
this property is true under assumption (3). 

This algebraic proof is parallel to, but less transparent than, the geometric argument 

given in the previous section. However, now that we know the value 2^J~C for the 
maximum of FiP, P'), we can give a new argument that makes the theorem nearly 
obvious, as follows: 

Let ellipses ? and ?' be given by the equations (1). As already mentioned, they 
are confocal if and only if X ? ?jl ? X' ? \i!, their foci (assuming that c :? X ? /x is 

nonnegative) then being at P0 and ? P0, where P0 = is/c, 0), so the standard definition 
of an ellipse as the set of points with a given sum of distances from the two foci gives 

P eS o FiP, P0) = 2V?, P' e ?' o FiP', P0) = 2V?7. 

The inequality (2) therefore can be restated as 

FiP, P')2 < FiP, P0)2 + FiP', P0)2 
- 

F(P0, P0)2, 

with equality on a 1-dimensional sub variety of ? x ?'. If we define D : R2 x IR2 ?> 

[0, oo) by 

D(P, P!) = l-FiP, P')2 
- 

||P||2 
- 

\\P'\\2 = ||P 
- 

P'U ||P + P'U (P, P' e R2), 

then this inequality translates into the triangle inequality D(P, P') < D(P, P0) + 

D(P0, P'). But this is now obvious, because if we identify E2 with C in the usual 

way and then identify M2/{?1} 
= C/{?1} with C = R2 via P h> z = P2, then 

DiP, P') = \P 
~ 

P'\ \P + P'\ = \P2 
- 

P/2\ 
= \z- z\ 

is just the usual distance with respect to the Euclidean metric in IR2. It is now also clear 
that equality holds if and only if the points z and z' lie on opposite sides of the point 
z0 = P2 = (c, 0) (see Figure 3); in particular, for each z it holds for a unique z!. 

Remarks. 1. A simple calculation reveals that the images under the squaring 
map P \-> P2 of the family of confocal ellipses with foci at y/c 

= i^/c, 0) and 

?^fc 
? 

i?y/c, 0) is the family of confocal ellipses with foci at 0 = (0, 0) and 
c= (c,0). 
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Figure 3. F(P, P') maximal if and only if 
P?? lies between P2 and P'2. 

2. It would be interesting to see whether the more general assertion of Theorem 2 

implies a generalization of Monge's theorem and of the notion of orthoptic circle 
to the case of two confocal ellipses. A first step would be to give a geometric 
interpretation of equation (3) generalizing the statement that the tangents x(d) 
and x(dr) are orthogonal in the case ? = ?'. 

4. A CONNECTION WITH BILLIARDS. In the proof of Theorem 1 given in Sec 
tion 2, we mentioned that if J andd' are diameters of ? suchthat J7 maximizes f(d, ), 
then the tangent to ? at P' forms equal angles with [P', P] and [P\ 

? 
P]. Moreover, 

we saw that in this case d also maximizes /( , d'), so the tangent to ? at ? P also 
makes equal angles with [? P, P'\ and [? P, 

? 
P'\ Hence the polygonal path with 

vertices ... ,P,P', ?P, 
? 

P', P, ... is a billiard trajectory (i.e., the path of a light 

ray inside a curved mirror) of period 4. The theorem proved in this note is therefore 

clearly closely related to the theory of billiards in an ellipse. In fact, it can be deduced 
from the main theorem of this theory, the so-called complete integrability of the sys 
tem (see [3, Theorem 2.1.2] or [4, Theorem 4.4]), which asserts the following: if ? is 
an ellipse centered at 0 with foci P0 and ? P0, if [P, P'\ is a chord of ? not intersecting 
the line [-P0, P0], and if [P\ P"] is the result of the billiard (optical reflection) of PP' 
in ? at P', then the chord [Pf, P"] also does not intersect [?P0, Pc,] and both chords 
are tangent to the same ellipse ?* confocal with ?. Iterating, we infer that the entire 
billiard trajectory P, P', P", P'", ... obtained by successive reflections in ? consists 
of segments tangent to ?*. More conceptually, we have a phase space S consisting of 
oriented chords of ? not intersecting [? P0, Po] and a map T : S -> S sending a chord 
to its reflection at an end-point (billiard map), and S is foliated by T-invariant circles 

consisting of the chords tangent to a given confocal ellipse of ?. On any such circle, in 
a suitable coordinate, T is just rotation by a fixed angle. In particular, if one trajectory 
of such a circle is n-periodic for some n (we are concerned here with the case n ? 4), 
then all are [4, Corollary 4.5]. On the other hand, n-periodic billiard trajectories are in 
scribed ft-gons of extremal length. On the invariant circle of S corresponding to n = 4 

(or any other fixed value of n), the perimeter length of the corresponding quadilateral 
(or n-gon) is constant, since this circle is a critical manifold for the perimeter length 
function. It follows that, for any point P of ?, the greatest perimeter of an inscribed 

quadilateral with one vertex at P is independent of P. But it is also easy to see that a 

4-periodic (or ̂ -periodic with n even) billiard trajectory is necessarily centrally sym 
metric, so this is just the statement of Theorem 1. 

This argument requires more sophisticated mathematics and more knowledge than 
the proofs presented in Sections 2 or 3, but it also yields a more general result: 
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for any even n the maximal length of a centrally symmetric inscribed n-gon in ? 

having a given point P of ? as a vertex is independent of P. Theorem 2 can be 

proved and generalized along the same lines. The generalization reads as follows: if 

?\,... ,?k are confocal ellipses, then the maximal length of a centrally symmetric 
2fc-gon (Pl5 ... , Pk, -Px, ... , -Pk) with Pi in ?,-, as P2, ... , Pk vary with Px fixed, 

is independent of Pi. 
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An Elementary Proof of the 
Wallis Product Formula for pi 

Johan W?stlund 

1. THE WALLIS PRODUCT FORMULA. In 1655, John Wallis wrote down the 
celebrated formula 

13 3 5 2 

Most textbook proofs of (1) rely on evaluation of some definite integral like 

nn/2 

/ (sinx)n dx 
Jo 

by repeated partial integration. The topic is usually reserved for more advanced cal 
culus courses. The purpose of this note is to show that (1) can be derived using only 
the mathematics taught in elementary school, that is, basic algebra, the Pythagorean 
theorem, and the formula tc r2 for the area of a circle of radius r. 

Viggo Brun gives an account of Wallis's method in [1] (in Norwegian). Yaglom and 

Yaglom [2] give a beautiful proof of (1) which avoids integration but uses some quite 
sophisticated trigonometric identities. 

2. A NUMBER SEQUENCE. We define a sequence of numbers by sx = 1, and for 
n > 2, 

3 5 2n-l 
sn = 

- - -. 
2 4 2n-2 
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