
ARTICLE OPEN

A property-oriented design strategy for high performance

copper alloys via machine learning
Changsheng Wang1, Huadong Fu1, Lei Jiang1, Dezhen Xue2 and Jianxin Xie1

Traditional strategies for designing new materials with targeted property including methods such as trial and error, and experiences
of domain experts, are time and cost consuming. In the present study, we propose a machine learning design system involving
three features of machine learning modeling, compositional design and property prediction, which can accelerate the discovery of
new materials. We demonstrate better efficiency of on a rapid compositional design of high-performance copper alloys with a
targeted ultimate tensile strength of 600–950MPa and an electrical conductivity of 50.0% international annealed copper standard.
There exists a good consistency between the predicted and measured values for three alloys from literatures and two newly made
alloys with designed compositions. Our results provide a new recipe to realize the property-oriented compositional design for high-
performance complex alloys via machine learning.
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INTORDUCTION

High-performance copper alloys are fundamental to the lead
frames of integrated circuits (ICs). The rapid development of IC
technology towards high density, multifunction, miniaturization
and low cost, desires the copper alloys having higher perfor-
mances on the mechanical strength, the electrical conductivity,
etc.1,2 For example, the traditional copper alloys, including
Cu–Fe–P, Cu–Ni–Si and Cu–Cr–Zr alloys, are hardly be used in
the next generation of very-large-scale integration (VLSI) ICs,
which requires a ultimate tensile strength (UTS) over 800 MPa and
an electrical conductivity (EC) over 50.0% International Annealed
Copper Standard (IACS).3–5

To improve the mechanical and electrical properties of copper
alloys, one or more alloying elements, such as Ti, Co, P, Mg, Cr, Zr,
Be, and Fe, can be introduced. Many efforts have been devoted to
this field and showed that the alloying elements should have little
effect on the EC and possesses a large solid solubility change from
high temperature to room temperature.6–10 However, there is a
lack of a model that quantitatively describes the relationship
between alloy composition and performance. As a result, the
compositional design of high-performance copper alloy mainly
relies on trial and error, or intuitions. Especially, an object-oriented
inverse design that recommends the compositions rapidly and
accurately for desired properties is needed.11–15

Data mining or machine learning builds inference models that
learn the relationship among the composition, processing
conditions, microstructures, and properties of materials based on
materials databases. This allows a “pre-design” strategy which
designs materials before experiments, which is in contrast to the
conventional “post-analysis” strategy.16–20 Recently, neural net-
work (NN), which is able to capture the highly complex non-linear
input/output relationships, has been applied in materials science
to build up the composition–processing–performance

relationships and to directly predict the properties of alloys.21,22

Reddy et al.23 established an inference model from compositions
and heat treatment conditions to mechanical properties of the low
alloy steel by combining the back-propagation (BP) NN and
genetic algorithm (GA). Their model successfully learns the
influence of compositions and heat treatment conditions on the
performance of the steel. Ozerdem et al.24 built a multi-layer BP
NN model to predict the yield strength, UTS and elongation of the
Cu–Sn–Pb–Zn–Ni alloy. These NN models with inputs of composi-
tions and processing conditions can estimate the properties of
alloys. Such forward models from composition to property is
helpful to screen or down-select the potential good candidates.
However, more attractive thing is an inverse design model that
recommends compositions from a targeted property, i.e., a
property to composition predictive model. It allows a fast locating
of property optima in the composition and processing search
space, whereas is a tough problem due to the highly non-linear
relationship among composition, processing, and performance.
In the present study, we propose a machine learning design

system (MLDS) to realize property-oriented compositional design
for high-performance complex alloys. Two kinds of BP NN models
are built to learn the relationship between the materials properties
including mechanical strength and electrical conductivity and the
compositions of copper alloys based on a database with hundreds
of samples. One of the models predicts properties of alloys from
their compositions (i.e., composition→ performance, C2P) and the
other model predicts the compositions of alloys according to the
targeted properties (i.e., performance→ composition, P2C). For a
given property requirement, the P2C model is utilized to screen
the composition space, and then the C2P model is employed to
efficiently recommend the targeted composition within a certain
confidential interval. We demonstrate our MLDS by rapidly design
of several high-performance copper alloys with an ultimate tensile
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strength (UTS) of 600–950MPa and an electrical conductivity (EC)
of 50.0% IACS. The present strategy allows a rapid and accurate
compositional design of high-performance, multi-component, and
complex copper alloys.

RESULTS AND DISCUSSION

Construction and analysis of two BP NN models

The first BP NN (C2P) model is trained to predict properties of UTS
and EC from compositions of copper alloys on a condition of
keeping the processing unchanged. The input is compositions and
the outputs are UTS and EC, which were shown in Fig. S1 and Fig.
S2. More details of the C2P model are shown in the supplementary
information.
Figure 1a–d plots the predicted UTS and EC values from the

model as a function of the measured UTS and EC values for the
training set, the validation set, the test set, and all data,
respectively. Data points fall along the diagonal line (as shown
by the dotted line in each panel), indicating that the predictions
are quite consistent with the measured values. We further linearly
fitted the predicted values with respect to the measured values, as
shown by the solid line. Closer the solid line to the diagonal
dotted line is, better the performance of the model is. It can be
seen that our model performs very good on separate data sets
and on all data.
The inverse design of the composition, processing, and

microstructure of alloys with targeted properties will greatly

reduce the time and cost for developing new materials and is the
ultimate goal of material science.25 The greatest obstacle is the
complex relationship among the composition, processing, struc-
ture, and performance. When the processing conditions are given
constantly, the composition is the dominant variable that
determines the microstructures and the properties of an alloy.
Therefore, we build the BP NN model (P2C) with the input of UTS
and EC and output of alloying elements except Cu, which were
shown in Fig. S3 and Fig. S4. More details of the P2C model are
shown in the supplementary information.
The scatter plots in Fig. 2 show that the predicted content

values are very consistent with the measured values and fall along
the dotted diagonal lines. Moreover, the linearly fitted solid curves
are very close to the dotted diagonal lines. Thus, the P2C BP NN
performs fairly well and can be utilized to recommend new
compositions. The P2C model can simultaneously output a set of
10 elements’ concentration values when it is running. For
example, when we input UTS and EC values to the P2C model,
the P2C model outputs 10 elements’ concentration values at the
same time. A set of 10 elements’ concentration values is called an
alloy composition design scheme.
We further validate the prediction accuracy of C2P model and

P2C model by comparing the predictions with the experimental
data which are not in our database. The performance on training
data is also included in this section. Table S1 in the supplementary
information lists the root mean square error (RMSE) of the C2P
model and the P2C model trained with the same database, and

Fig. 1 The predicted UTS and EC values from the composition→ property (C2P) model as a function of the measured UTS and EC values for a
the training set, b the validation set, c the test set, and d all data. (The dotted line represents the output data of the model in exactly the same
as the target data in the data set; the solid line represents the regression results between the output data and the target data.)
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the regression fit correlation data (R) between predicted
performance and target performance under different data sets.
The C2P network training error accuracy and regression fitting
correlation coefficients on verification set and test set are higher
than the P2C model. The above results show that both models
perform well in terms of the training performance, and the C2P
model is still better than the P2C model. The main reasons for this
difference are discussed further below.
In order to validate the predictive performance of C2P model,

we chose alloys that are not presented in our database. There are
many factors affecting the properties of the copper alloys,
especially the processing conditions. The alloy with the same
composition could have different microstructures produced by
different processing conditions, leading to a large deviation in the
properties. We use the best properties of these alloys with the
same composition after solution treatment, deformation, and
aging treatment to validate our C2P model.
The predicted and experimental values for these alloys are

compared in Table 1. Cu–2.93Ni–0.9Si–0.13Mg–0.53Zn alloy is a
commercialized product and Cu–2.20Ni–0.42Si–0.08Mg–0.30Zn
alloy is made and measured in our own lab and the rest four
alloys26–28 are reported very recently. These data are not included
in our database. Table 1 shows that the deviation between
predicted and experimental values are within 5.0%, indicating that
the C2P model can accurately predict the properties of alloys.
In order to validate the accuracy of alloy composition designed

by the P2C model, we set the targeted UTS as 500, 550, 600, 650,
and 700 MPa, respectively, together with the targeted EC of 50.0%

IACS. These properties are input into the P2C model and some
alloy composition design schemes are recommended, as shown in
Table 2. The elements in brackets were ≤0.01 wt%, which can be
considered to be trivial.
Table 2 shows that with targeted UTS increasing from 550 to

700MPa, the recommended alloys by P2C model change from
Cu–Fe–P series alloy (1#) to Cu–Ni–Si series alloy (2–5#). For 2–5#
alloys, the UTS highly correlates with the content of Ni; but there is
no obvious change in other alloying elements as those <0.01 wt%
are considered as the impurity elements. We found there exist
four experimental alloys in literatures which are very close to the
five designed alloys in Table 2. Their properties and compositions
also listed in Table 3. The best UTS and EC values of
Cu–2.35Fe–0.10Cr–0.03P29 alloy after homogenization, hot rolling,
solution treatment, cold rolling, and aging treatment are 495 MPa
and 58.0% IACS, respectively. Its compositions are very similar with
the 1# alloy in Table 2. The UTS is very close (the difference is only
5 MPa), and the EC is 8.0% IACS higher than that of 1# alloy. The
contents of Ni, Si, and Mg of the second,30 third31, and forth32

alloys in Table 3 are similar to those of 2#, 3#, and 4# in Table 2.
The measured EC of the second alloy is 4.1% IACS lower than the
target EC of 2# alloy, and the measured UTS is 120 MPa higher
than that of 2# alloy (of 21.8%). The experimental EC of the third
alloy is 6.0% IACS (of 12.0%) lower than of that of 3# and 4# alloys,
and the experimental UTS is 30 MPa higher than that of 3# alloy
and 20 MPa lower than that of the 4# alloy. The composition of
Cu–4.00Ni–0.95Si–0.02Cr–0.02P32 alloy in Table 3 is similar to 5#
alloy in Table 2, but their properties are quite different. The

Fig. 2 The predicted content values from the property→ composition (P2C) model as a function of the measured content values for a the
training set, b the validation set, c the test set, and d all data. (The dotted line represents the output data of the model in exactly the same as
the target data in the data set; the solid line represents the regression results between the output data and the target data.)
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measured EC of this alloy is 15.0% IACS lower than 5# alloy, and
the measured UTS is 130 MPa higher than 5# alloy (of 18.6%).
It can be seen that two BP NN models (C2P model and P2C

model) trained by the same data set deviate in training
performance and predictive ability. The C2P model can obtain
satisfactory performance prediction results, and the composition
design results obtained by the P2C model is less reliable. In
machine learning, when the number of training samples is
constant, the prediction ability of the model decreases with the
increase of the prediction dimension (the number of output
variables).33 We anticipate that the main reason for such a
difference relies on the different topologies of the two models.
The C2P model uses more than ten independent variables to fit
two dependent variables, which is a “dimension-reduction fitting”.
The training of model is easy to converge. The P2C model fit more
than ten dependent variables with only two independent
variables, which is a “dimension-increase fitting”. The convergence
of model is poor and it is prone to be over-fitting. In most cases,
high-performance alloys are multi-components. As a result, using
P2C model to inversely design the composition does easily
encounter the “dimension-increase fitting” mentioned above, and
consequently it is difficult to obtain satisfactory compositions. This
could be an important reason for the slow progress in inverse
design of alloy compositions so far. In order to solve this problem,
it is necessary to develop a robust compositional design approach
to rapidly and accurately design a reasonable alloy with targeted
properties.

Construction and application of a property-oriented MLDS

To this end, we propose the following machine learning design
system (MLDS) and its flow chart is shown in Fig. 3. The basic idea
is for high reliability of C2P model and low reliability of the P2C
model, we use C2P model to evaluate the alloy composition
design schemes provided by P2C model, and establish the
criterion of whether the composition design is reasonable (i.e.,
the relative error between target performance and predictive
performance). Through repeated trial and error of MLDS system, a
more reasonable alloy composition design scheme can be
screened automatically and quickly. The specific methods are as
follows:
First, two models of C2P and P2C are established by BP NN.

Second, the initial alloy composition design scheme is performed
by P2C model based on targeted properties. Third, the previous
schemes are input into the C2P model with higher reliability to get
a more accurate prediction. Fourth, the predicted properties are
compared with the targets and an error is obtained. According to
the error, either a selection of composition design scheme or a
retraining of the model will be conducted. If all the errors between
predicted and targeted values exceed a preset threshold, the P2C
model will be retrained until a reasonable alloy composition
design scheme is screened out. The MLDS is divided into three
subsystems, including the model training, the compositional
design and the property prediction. The three subsystems are
interrelated and form a closed system.
To compare the performance of the MLDS and solely the P2C

model on compositional design, we set targeted properties of UTS
to 750 MPa and EC to 50.0% IACS. In total, 20 possible alloys were
designed by MLDS with error threshold of 10% and P2C model
and are listed in Table S2.
The concentration of main components (Ni, Si, Zn, and Cr) of the

alloys designed are plotted in Fig. 4. The fluctuations of Ni, Si, Zn,
and Cr of the alloys designed by P2C model are significant, while
the fluctuations of the alloys designed by MLDS are small and
stable. As shown in Table S2 the average concentrations of Ni, Si,
Zn, and Cr of the alloys designed by MLDS are 2.29 wt%, 0.51 wt%,
0.25 wt%, and 0.06 wt%, respectively. While those of the alloys
designed by P2C model are 2.46 wt%, 0.55 wt%, 0.30 wt%, and
0.12 wt%, respectively, which are 0.17 wt%, 0.04 wt%, 0.05 wt%,
and 0.06 wt% higher, compared with alloys designed by MLDS. In
addition, in terms of the standard deviation, the maximum value
and minimum value of the predictions (i.e., the fluctuation range
of the composition design), the MLDS performs much better than
the P2C model. The above results show that MLDS has higher
efficiency and reliability in solving the problem of compositional
design for targeted properties.
We now set the targeted EC of 50.0% IACS and UTS of

600–950MPa and conduct the MLDS with error threshold of
10.0%. The alloy composition design schemes are shown in Table
4.34–36 With the increase of the targeted value of UTS, the
concentrations of Ni, Si, and Cr elements become larger. In fact,
the Ni, Si, and Cr elements are well-known strengthening

Table 1. Validation of prediction of alloy performance based on composition (C2P model)

Alloy composition/wt% Predictive value Experimental value

UTS/MPa EC/%IACS UTS/MPa EC/%IACS

Cu–2.93Ni–0.9Si–0.13Mg–0.53Zn 646 37.6 627 ± 11 37.5 ± 0.4

Cu–2.20Ni–0.42Si–0.08Mg–0.30Zn 702 47.6 720 ± 12 49.5 ± 0.5

Cu–2.69Ni–1.14Si–0.45Cr26 780 42.8 757 ± 13 44.0 ± 1.0

Cu–2.11Ni–0.54Si–0.21Cr–0.16Zr27 654 47.4 625 48.8

Cu–0.42Cr28 479 83.2 457 85.1

Cu–0.28Cr–0.15Mg28 536 82.6 515 80.8

Table 2. Recommended compositions according to the targeted

properties of UTS and EC based on the P2C model

No. UTS/
MPa

EC/%
IACS

Predicted alloy composition/wt%

1# 500 50.0 Cu–2.66Fe–0.02P–0.1Cr(–0.01Zn)

2# 550 50.0 Cu–1.98Ni–0.45Si(–0.001Mg–0.001Zn)

3# 600 50.0 Cu–2.00Ni–0.60Si(–0.01Mg–0.01Sn–0.01Fe)

4# 650 50.0 Cu–2.20Ni–0.48Si–0.1Mg(–0.01Fe–0.001 P)

5# 700 50.0 Cu–3.50Ni–0.85Si–0.03Cr
(–0.01Zn–0.01P–0.01Sn)

Table 3. Alloys with similar compositions with those listed in Table 2

and their reported properties in literatures

Alloy composition UTS/MPa EC/%IACS

Cu–2.35Fe–0.03P–0.10Cr–0.03 P29 495 58.0

Cu–2.00Ni–0.50Si30 670 45.9

Cu–2.00Ni–0.50Si–0.10Mg31 630 44.0

Cu–4.00Ni–0.95Si–0.02Cr–0.02P32 830 35.0

C. Wang et al.
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Fig. 4 Main components, a Ni, b Si, c Zn, and d Cr, of alloys designed by P2C model and MLDS with the targeted properties as UTS of 750 MPa
and EC of 50.0% IACS

Fig. 3 Flow chart of the machine learning design system (MLDS) for rapid and accurate compositional design

Table 4. Design results and verification of composition of high-strength and high-electrical-conductivity multi-element complex copper alloys

No. Targeted properties Composition designed by MLDS/wt% Validation of reference or experimental results

UTS/MPa EC/IACS% Ni Si Mg Zn Sn Cr P Alloy UTS/MPa EC/IACS%

1# 600 50.0 1.47 0.39 – 0.18 0.02 – – Cu–1.37Ni–0.28Si–0.02Mg–0.04Zn–0.04Sn34 607 53.0

2# 650 50.0 1.85 0.43 – 0.18 – 0.04 0.02 – – –

3# 700 50.0 1.93 0.54 0.04 0.16 0.09 – 0.02 Cu–2.00Ni–0.50Si–0.30Cr35 700 49.7

4# 750 50.0 2.32 0.51 0.04 0.26 – 0.06 0.02 Cu–2.20Ni–0.42Si–0.08Mg–0.30Zn (Ref. Table 1) 720 ± 12 49.5 ± 0.5

5# 800 50.0 3.00 0.60 – 0.16 – 0.15 0.03 Cu–3.00Ni–0.60Si–0.16Zn–0.15Cr–0.03P (Ref. Fig. 5) 775 ± 10 48.0 ± 0.5

6# 850 50.0 3.55 0.77 0.09 0.22 – 0.08 0.09 – – –

7# 900 50.0 4.25 0.91 0.07 0.07 – 0.16 0.11 Cu–4.00Ni–1.00Si–0.10Mg36 951 44.0

8# 950 50.0 4.61 0.92 0.11 0.08 0.13 0.20 0.13 – – –

C. Wang et al.
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elements for copper alloys, and can form strengthening phases
such as Ni2Si and Cr3Si, leading to a significant increase of the
UTS.2,26 The main role of trace Zn and Sn elements is to increase
the energy of the stacking faults of the matrix, which improves the
UTS, but has a negative influence on the EC.1 The main role of
trace Mg and P elements is to purify the melt and increase the
fluidity of the melt during melting and casting.32,35 It is also shown
that the addition of P can promote the precipitation of the
strengthening phases and Cr particles,34,35 and thus can enhance
the strengthening effect of Ni, Si, and Cr. It also benefits the EC of
the alloy. Therefore, in the 5#–8# alloys, with the concentration
increase of the strengthening elements such as Ni, Si, and Cr, the
P, the strength is significantly increased as well. In summary, in
Table 4, Ni, Si, and Cr are the main strengthening elements, while
Mg, P, Zn, and Sn are auxiliary elements, which are used to
balance trade-off between the mechanical properties and
electrical conductivity of the alloy. In Table 4, the Fe element is
not present in the design composition of the 1#–8# alloy because
the strengthening effect of the Fe is not as remarkable as Ni, Si,
and Cr. Although adding more Fe can improve the UTS of the
copper alloy, excessive addition of Fe will have a negative
influence on the EC of the alloy. In fact, the current Cu–Fe–P alloy
series are of low UTS and high EC.
As shown in Table 4, the content of Ni, Si, and Cr, as the major

strengthening elements, increases significantly with the increase
of the target UTS in copper alloys designed by MLDS model, and
the mass ratio of Ni/Si remains between of 3.5 and 5.0. These
results are consistent with the basic principles of copper alloy
design based on metallurgy.37,38 On the other side, when the
content of strengthening elements such as Ni, Si, and Cr increases
significantly, the EC of copper alloys will inevitably be adversely
affected. To solve this contradiction, the scheme recommended
by MLDS is to increase the concentration of P element, as the
trace P element can purify the matrix and promote the
precipitation of the second phase of Cu–Ni–Si alloys, which is
beneficial to improving the EC of Cu–Ni–Si alloys.39,40 Thus, the
results obtained by using MLDS model for alloy composition
design conform to the basic principles of metallurgy, and further
confirm the feasibility of alloy composition design by MLDS
method based on machine learning.
Three alloys with similar principal components collected in

literatures are listed in Table 4. Their processing conditions are
solution treatment, deformation, and aging. And they are absent
in our initial database shown in Fig. 6. The UTS and EC of the three
alloys in Table 4 are very close to the targeted properties we set
for MLDS, demonstrating the reliability of MLDS and the rationality
of the design results.
Specifically, the concentration of Ni and Si in

Cu–1.37Ni–0.28Si–0.02Mg–0.04Zn–0.04Sn–0.03P34 alloy is similar
to that of Ni and Si in 1# alloy designed by MLDS. Its UTS is very
close to that of 1# alloy, and its EC is 3.0% IACS higher than that of
1# alloy. The main reason is that the concentration of Zn in the
design alloy is high and there is no P element which can improve
the EC of the alloy. The concentration of Ni and Si in
Cu–2.00Ni–0.50Si–0.30Cr35 is very close to that of Ni and Si in 3#
alloy. Although the 3# alloy does not contain Cr, the total content
of Mg, Zn, Sn, and P elements is 0.31 wt%, which is almost equal to
Cr (0.30 wt%) of the alloy in literature. Although 3# alloy does not
contain significant strengthening effect of Cr, and contains more
Mg, Zn, and Sn which also have solid solution strengthening
effect, the UTS and the EC of the alloy are almost the same as the
target properties of 3# alloy in Table 4. Trace P can promote the
precipitation of δ-Ni2Si, which is conducive to the EC of 3# alloy.
For Cu–4.00Ni–1.00Si–0.10Mg36 alloy, the Ni concentration is
slightly lower than that of 7# alloy, and Si and Mg concentration is
slightly higher than that of 7# alloy. As a result, the UTS is higher
than the targeted UTS of 7# alloy, and the EC is lower than the
targeted EC of 7# alloy. In addition, Cr and Si of 7# alloy can form a

strengthening phase Cr3Si, which is also beneficial to the EC.
Micro-alloyed P also has a positive effect on EC, resulting in a large
difference (the relative error is 12.0%) between the target EC and
the measured EC of 7# alloy.
To further validate the rationality of the compositional design

by MLDS, we prepared and measured two of the recommended
alloys in our own lab, which are also listed in Table 4. The
Cu–2.20Ni–0.42Si–0.08Mg–0.30Zn alloy has been used to evaluate
the C2P model in Table 1. The concentration of its main
components is close to that of the 4# alloy. The error between
the measured properties (UTS of 720 MPa and EC of 49.5% IACS)
and the targeted properties of 4# alloy (UTS of 750 MPa and EC of
50.0% IACS) is <4.0%. The second alloy of
Cu–3.00Ni–0.60Si–0.16Zn–0.15Cr–0.03P was prepared according
to the composition of 5# alloy in Table 4. The UTS and EC of the
samples were measured and the UTS results as a function of aging
time are shown in Fig. 5. The properties are optimized after aging
for 240min, which gives the UTS of 775 ± 10 MPa, and the EC of
48.0 ± 0.5% IACS. The difference between the measured and
targeted properties is 25 MPa and 2.5% IACS (the relative errors of
3.1% and 4.0%), respectively. The measured properties according
to the designed compositions are in good agreement with the
target properties.
The MLDS shown in Fig.3 in the present study has high

reliability in alloy composition design, and can satisfy the
requirements of rapid and accurate compositional design for
given property requirements (targeted properties).
In summary, we first proposed a machine learning design

system that combines a property-composition BP NN model that
designs the compositions and a composition-property BP NN
model to efficiently screen the alloy composition design schemes.
A rapid and more accurate design of alloy compositions is
demonstrated. The MLDS provides a new method for accelerating
the discovery of new materials.
Next, by using the MLDS, the inverse design of eight new

copper alloys with UTS of 600–950MPa and EC of 50.0% IACS is
realized, which can provide good candidates for the research and
development of high-performance copper alloys for large-scale
integrated circuit lead frame and high-end connectors.
Finally, the rationality of the compositional design of the MLDS

is validated by collecting three alloys from literatures and
preparing two new alloys in our own laboratory according to
the recommended compositions by the MLDS. Errors between
measured properties and the target properties are <6%, indicating
a satisfactory compositional design ability of the MLDS.

Fig. 5 The ultimate tensile strength as a function of aging time at
450 °C of Cu–3.00Ni–0.60Si–0.16Zn–0.15Cr–0.03 P alloy

C. Wang et al.
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METHODS

Data preparation
Developing copper alloys with high-strength and high-electrical-
conductivity has been an attractive field for decades and has accumulated
a large amount of literatures. We collected the data from these literatures
of Cu–Fe–P, Cu–Ni–Si, and Cu–Cr–Zr based copper alloys, including the
compositions and the corresponding materials properties of UTS and EC.
To ensure that the recommended alloys can be synthesized experimentally
in our own lab, we restrict the data from alloys with conventional
strengthening methods, including solid-solution, precipitation, and defor-
mation. Although some of alloy process parameters studied in the
literature are not clear, they all adopt thermo-mechanical treatment
process. Ignoring the different effects of process parameters, the default
process is consistent. We abandon the data of alloys strengthened by
unconventional methods, such as cryogenic treatment, equal channel
angular pressing, high pressure torsion, and accumulative rolling bond-
ing.32,41–43 Moreover, data from alloys containing the toxic elements of Be
and Cd, and the noble metal elements of Ag and Pt are also discarded.44

Finally, a database containing around 300 well-labeled samples is
established for the following machine learning process. Table 5 lists the
upper and lower limits of various elements and the range of the properties
of UTS and EC within our database. Figure 6 shows the Ashby plot of UTS
and EC for all the data in our database and the empty area of upper-right is
our design target.

Modeling method
BP NN was proposed by Rumelhart and McCellando, which is a multi-layer
feedforward network trained by error reverse propagation algorithm, and
it is one of the most widely used NN models at present. BP NN uses the
fastest descent method to learn the input and output data, and
continuously adjusts the weights and thresholds of the network through
the reverse propagation of errors, so that the error squared and minimum
of the network.45–47

In principle, the BP NN is able to approximate any function and map
highly non-linear relationships. The method of BP NN modeling is a
statistical modeling method based on more data, and the result is a
statistical law. This method does not require that all sample data (data set
data) are generated under strictly comparable conditions, and the results

obtained can not be called exact solutions in the strict sense. But when
there is enough data, the accuracy of the results can be high enough,
which is why big data’s method can solve many problems that are difficult
to solve by strict mathematical methods. The BP NN model includes an
input layer, hidden layers, and an output layer.48,49 The BP NN module of
MATLAB was used to build two kinds of BP NN models of C2P and P2C.
The collected database is normalized to avoid possible influences from

the large deviation in magnitude among the compositions and properties.
The database is randomly divided into a training set, a verification set, and
a test set according to a ratio of 60%, 20%, and 20%, respectively. The
verification set is used to determine the best training times and prevent
the over-fitting, and the test set is used to test generalization performance
of the networks. It is noted that the results of the models trained at
different times are slightly different, as the separation of the three sets are
random.

Experimental procedures
The preparation procedure of the experimental alloy is the same as the
main procedure in the actual industrial production, as follows: about
99.99% pure cathodic electrolytic copper, Ni, Si, Zn, Cr, and Cu–14P were
selected as raw materials, and Cu–3.00Ni–0.60Si–0.16Zn–0.15Cr–0.03P alloy
was prepared by induction melting in ZG-25 medium frequency vacuum
introduction furnace; the as-cast ingot was homogenized at 950 °C for 2 h
in SGM-M30/12A resistance furnace, and then rapidly hot rolled at 850 °C
from a thickness of 50 to 10mm (80% reduction), followed by water
quenching; the hot-rolled plate was then cold rolled with 90% reduction in
thickness (1 mm) and then aged at 450 °C for 0–6 h. The UTS values of
aged samples were tested by CMT6000 testing machine with a constant
strain rate of 0.5 mm/min, and EC values were measured by Sigma2008B
eddy current conduct-meter.
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Table 5. The upper and lower limits of various elements and the range of the properties of UTS and EC in the training data

Content of alloy elements (wt%) Performance

Fe P Ni Si Mg Zn Sn Cr Zr RE UTS/MPa EC/%IACS

0 0 0 0 0 0 0 0 0 0 340 22.0

– – – – – – – – – – – –

2.50 0.32 4.00 1.80 0.30 2.50 1.25 0.90 0.30 0.81 1020 92.0

Fig. 6 Ashby plot with respect to the electrical conductivity and
ultimate tensile strength from all data in our database
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