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Abstract

With competing risks failure time data, one often needs to assess the covariate effects on the
cumulative incidence probabilities. Fine and Gray proposed a proportional hazards regression
model to directly model the subdistribution of a competing risk. They developed the estimating
procedure for right-censored competing risks data, based on the inverse probability of censoring
weighting. Right-censored and left-truncated competing risks data sometimes occur in biomedical
researches. In this paper, we study the proportional hazards regression model for the
subdistribution of a competing risk with right-censored and left-truncated data. We adopt a new
weighting technique to estimate the parameters in this model. We have derived the large sample
properties of the proposed estimators. To illustrate the application of the new method, we analyze
the failure time data for children with acute leukemia. In this example, the failure times for
children who had bone marrow transplants were left truncated.
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1. Introduction

For medical studies involving competing risks, clinicians often wish to estimate and model
the cumulative incidence probability of a specific cause of failure. In a published study [1]
researchers compared the effectiveness of chemotherapy versus bone marrow transplantation
(BMT) on the leukemia-free survival (LFS) for children with acute lymphoblastic leukemia
(ALL) in second complete remission. The transplant cohort consisted of data from the
International Bone Marrow Transplant Registry (IBMTR). Only patients receiving
transplants were included in the IBMTR cohort, thus, the time to failure was left truncated
by the transplant time. Leukemia patients were subject to competing risks of treatment
failures, cancer relapse and treatment-related mortality (TRM), which is defined as death in
complete remission. To understand the effect of prognostic factors on composite treatment
failure, it is necessary to disentangle their separate effects on the cumulative incidences of
these competing risks. Such analyses must deal appropriately with the left truncation for the
BMT individuals.
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Traditionally, the standard approach for analyzing competing risks data has been to estimate
and model the cause-specific hazards for all causes. Let λk(t; z) be the hazard of the kth
cause, conditional on the covariates z. Assuming k = 1, 2, the cumulative incidence function
of cause 1 given z is defined as

where T is the failure time and ε indicates the cause of failure. For the right-censored
competing risks data, F1(t; z) can be estimated by a plug-in estimator. Here, λk(t; z) must be
modeled. Cheng et al. [2] considered the Cox model for both causes, Shen and Cheng [3]
studied a special additive risk model, and recently, Scheike and Zhang [4, 5] proposed and
studied a flexible Cox–Aalen model allowing some covariates to have time-varying effects.
For left-truncated and right-censored competing risks data, the standard approaches to
dealing with cause-specific hazard functions can be generalized to the left-truncated versions
by adjusting the risk set [6].

For the standard approach, the covariate effect is assessed on each cause-specific hazard,
creating a complex nonlinear modeling relationship for the cumulative incidence function.
Fine and Gray [7] developed a method to directly model the cumulative incidence function

by modeling a subdistribution hazard function, . They
proposed a proportional subdistribution hazards model,

(1)

The cumulative incidence function can be directly modeled as

Sun et al. [8] and Scheike et al. [9] considered some alternative models for the
subdistribution hazard. For the right-censored competing risks data, Fine and Gray proposed
using an inverse probability of censoring weighting (IPCW) technique to estimate β0 and the

cumulative baseline subdistribution hazard function , and derived large
sample properties of proposed estimators.

It is unknown how to fit Fine and Gray’s semiparametric subdistribution hazard model to
left-truncated and right-censored competing risks data. The main focus of this paper is to
find an appropriate weight for Fine and Gray’s method. Directly adopting Fine and Gray’s
approach, one may consider using the left-truncated version Kaplan–Meier estimator of the
censoring distribution for the weight. However, it can be easily seen that for an uncensored
but truncated sample, the censoring probability weight equals to a constant 1, which leads to
an ‘equal weight’ estimating procedure. We showed that, with no covariates, the estimates
of a subdistribution hazard with a constant weight is obviously biased when the failure times
are left truncated [10]. This indicates that IPCW is not an appropriate weight for left-
truncated data.

In this paper, we derived a reciprocal of the truncation–censoring probability weight for a
right-censored and left-truncated sample. We proposed two weights. The first weight
estimator can be explained by a mass distribution algorithm [10], which leads to a standard
left-truncated version of Aalen–Johansen’s estimator for the cumulative incidence function
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for the no covariate case. The second weight was derived from the conditional censoring
distribution after delayed entry time. We have derived large sample properties for the
proposed estimators. The performances of these two weights were studied through
simulation. The estimators based on the proposed weights are shown to be asymptotically
unbiased.

The outline of the remainder of the paper is as follows. In Section 2, we describe the data
structure. In Section 3, we develop the inverse weighted estimation for the proportional
subdistribution hazards model. Simulation studies are given in Section 4. In Section 5, we
analyze a real data set, which was originally studied by Barrett et al. [1], to give an
application of the model of interest. Concluding remarks are given in Section 6.

2. Left-truncated competing risks data

Suppose that there are two competing risks. Let Ti be the failure time and let Li and Ci be
the left truncation time and the right censoring time, respectively. εi ∈ {1, 2} indicates the
cause of failure. For left-truncated and right-censored data, Xi = min(Ti, Ci) and Δi = I{Ti ≤
Ci} are observed only if Li≤Xi, where I{·} is the indicator function. Let Zi be the associated
covariates. We assume that, given covariates Zi, Ti is independent from (Li, Ci). The
observed data {Li , Xi , Δi , Δi εi , Zi} are independent and identically distributed for i = 1,
… , n. Let GL be the distribution function of L.

For left-truncated and right-censored competing risks data, we define the underlying

counting processes  and a modified risk indicator

. Note that  and  are not
observable for all time t. Let ri(t)=I{Li≤(Ti ∧t)≤Ci}, where x ∧ y = min(x, y), then observed

counting process  and observed modified risk

indicator  are computable for all
time t.

3. Inverse weight for right-censored and left-truncated competing risks data

Estimation of the regression parameters in (1) with complete data follows the definition of a
subdistribution hazard. Fine and Gray proposed maximizing the following partial likelihood:

where Ri is the risk set at time Ti and is specially defined to include the alive subjects and
the subjects failing from the other cause prior to Ti. For the right-censored competing risks
data, Fine and Gray proposed using an inverse probability censoring weight and obtaining
the MLE by solving the following weighted score estimating equation:

(2)

where , , ri(t) agree with the definitions in Section 2 with Li = 0, weight

, and  is the Kaplan–Meier estimate of P(C>t). The IPCW
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technique has been routinely adopted for inferences about the cumulative incidence function
with right-censored competing risks data [8, 9].

We propose the new weights to adjust for censoring and truncation and employ a weighted
score estimation equation similar to equation (2) with proposed weights. Let GL,C(t|Z) =
P(L≤t≤C|L≤X, Z). The proposed weights can be explained by E{ri(t)/GL,C(Xi ∧t|Zi)|Ti ,
Li≤Xi , εi , Zi} = 1. In Sections 3.1 and 3.2, we introduce two inverse weights under the
assumption that Ti is independent of Li and Ci given Zi . The large sample inferences are
given in Section 3.3.

3.1. Weight 1

In Appendix A, we show that , where b(t|Zi ) =
P(Li≤t≤Xi|Li≤Xi , Zi) and S(t|Zi)= P(Ti>t|Zi). It follows that GL,C(Xi ∧t|Zi) can be estimated

where  and  are the predicted estimators based on regression models. Here, we
derived a time-dependent weight

Following Fine and Gray’s [7] approach, we consider a modified weight by multiplying a

term  to 

(3)

where ,  is the left-truncated version of Kaplan–Meier
estimator for the overall survival.

3.2. Weight 2

The left truncation time can be considered as delayed entry time since we observe only

subjects from truncation time. Let  and . In theory,  and  may take

negative values, although data are observed only if , i.e. only if

 and . In Appendix A, we show that

where  and K(t|Z)= P(L≤t|L≤X , Z).
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Note that one can estimate  using the right-censored data {Xi–Li , 1–Δi , Zi; i = 1,

… , n} and denoted as  and K(t|Z) can be estimated based on observed data {Li ,

Zi; i = 1, … , n} and denoted as . This leads to an alternative weight

(4)

The proposed weights are unknown in practice. It can be estimated nonparametrically if the
weight function is independent of the covariates, i.e. GL,C(t|Z)= P(L≤t≤C|L≤X, Z) =
P(L≤t≤C|L≤X). When the weight depends on the covariates, it needs to be estimated by a
predicted value for each individual based on regression models, such as Aalen’s additive
regression model. If there are few discrete covariates, a stratified nonparametric weight
estimator can be used. For simplicity, we present nonparametric weight estimators

(5)

(6)

where  is the Kaplan–Meier estimator using the right-censored sample {Xi – Li , 1–

Δi , i = 1, … , n}, and .

Remarks—

1. For the left-truncated and right-censored competing risks data, when there is no
covariate presented, the cumulative incidence function F1(t) is commonly estimated
by an Aalen–Johansen estimator

where  is left-truncated version Nelson–Aalen estimator for cause 1 specific
hazard. Adopting Efron’s [11] redistribution-to-right technique to the left-truncated
and right-censored competing risks data, we showed that F1(t) can be estimated by
a product-limit estimator of the subdistribution hazard using weight 1 given in (5)

and we showed that  (see [10] for detail). However, the product-

limit estimator based on the alternative weight, , is not identical to the

standard Aalen–Johansen’s nonparametric estimator of .
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2. We noted that model mis-specification is a critical issue for the covariate adjusted
weight. Some exploratory study suggests the utilization of Aalen’s model for the
covariate adjusted weight.

3. Our aim of converting  to  is to reduce the high variability

contained in the original weight. The final nonparametric weight, , agrees
with the stabilized form of the IPCW weights adopted in the same model for right-
censored data [7]. The initial application of IPCW is characterized by the inverse of
a censoring probability [12]. In dealing with dependent censoring, Robins and
Finkelstein [13] aimed to discover the effects of covariate processes, V(t), and

suggested a different IPCW weight . For this weight,  is the

Kaplan–Meier estimate and  is the adjusted survival estimate given the

covariate processes up to time t.They stated that the weight  can be
alternatively used, but the first IPCW weight has the advantage of efficiency. The
term ‘stabilized weight’ appeared in the work on the causal inference of treatments
[14] (see Section 6.1), where reduction in variability was mentioned as the
motivation for adopting weight in the stabilized form.

4. Similarly, the stabilized form for weight 2 can be considered

A limited simulation indicates that using this modified weight, the variability
among the regression coefficient estimates has been greatly reduced. However, the
bias becomes much greater (see Table III). More investigation is needed to find out
the stabilized form for weight 2.

3.3. Large sample inferences

The proposed weights can be utilized to estimate the parameters in model (1) by solving a
weighted score estimating equation (2). For simplicity, we present large sample results
based on nonparametric estimated weights. Similar asymptotic results can be derived for
covariate adjusted weights which depend on the regression models used in the weight

estimation. For weight , k = 1, 2, β can be estimated by solving , where

The cumulative baseline subdistribution hazards can be estimated by

Using the basic empirical process theory as in Fine and Gray [7], we show briefly in
Appendix B that, under the standard regular conditions [15] and assumption that Ti is
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independent of (Li, Ci) given Zi,  is a consistent estimator.  converges in
distribution to a zero-mean Gaussian random vector, and its covariance matrix can be
consistently estimated by

where explicit expressions for I(k)(β) and  are given in Appendix B.

Furthermore, we can show that  converges weakly to a zero-mean
Gaussian process, and the variance function can be consistently estimated by

where explicit expressions for  are given in Appendix C.

The predicted cumulative incidence curve for a given set of covariate values is an important
summary curve to show the treatment efficacy for a particular cause of failure over time. It
can be predicted by a plug-in estimator

Using the functional delta method, we show that  converges weakly
to a zero-mean Gaussian process, and the variance function can be estimated by

where explicit expressions for  are given in Appendix D.

3.4. The censoring/truncation time is associated with some covariates

In this subsection, we consider the methods to estimate the covariates adjusted weight.
When the censoring/truncation time depends on some discrete covariates, one can utilize the
stratified nonparametric weight as given below. The data set can be summarized as {Lri, Xri,

Δri, Δriεri, Zri}, for r = 1, ⋯ , R, and i = 1 , ⋯ , nr, where R is the number of strata. Let 

and  be the relevant estimators for the rth strata. The stratified version of weight 1 has
the form,

(7)
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As shown in Appendices B–D, variances of the regression parameter estimators consist of
two parts. The first part corresponds to a model where the weight function is known.
Scheike et al. [9] showed that the results based only on the first part lead to slightly
conservative, but acceptable variance estimators. For simplicity, we present variance
estimation based only on the major (first) part for stratified weight (see Appendix E for
details). In our simulation study, we show that this simplified variance estimation approach
leads to acceptable results.

When the censoring/truncation time is associated with a large number of covariates, one
should consider constructing appropriate regression models and find the covariate adjusted
weight. The covariate adjusted version of weight 1 requires estimation of P(T>t|z), P(L>t|
L≤X, z) and P(X>t|L≤X, z). We consider Aalen’s model as the underlying regression models
allowing time-varying effects. Let λT(t; z), λL|L≤X(t; z), λX|L≤X(t; z) be the hazard rate

functions of the relevant random variables. We use the estimators ,

, , where the cumulative hazard
estimates are obtained from the corresponding Aalen’s models. We further estimate

, and then the adjusted weight has the form

Using the regression model-based weight, the asymptotic expression of the weighted score
function can be extended similarly, which contains some complex terms. The simple
variance estimation method may be considered.

4. Simulation studies

We considered two simulation studies. For the first simulation study, the weight function is
assumed to be independent of the covariates. We examine the performances of two
nonparametric weight estimators. In the second simulation study, we simulated data similar
to the BMT example data analyzed in Section 5, for which the weight function depended on
a binary covariate. We compared the performances of a stratified nonparametric weight
estimator with a non-stratified weight estimator.

4.1. Study 1

The underlying regression models include two covariates. Given covariate values z1 and z2,
the cumulative incidence functions are given by

and

The covariate effect on the cumulative incidence function of cause 1 can be assessed via a
proportional subdistribution hazards model. γ1 and γ2 were set at 0.7 and 0.5, respectively.
We let p = 0.7 to generate settings with a dominant risk, and p = 0.5 for settings with
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roughly equivalent risks. We considered both continuous covariates and discrete covariates.
The continuous covariates Z1 and Z2 were generated from a standard normal distribution,
and we set (β11, β12)=(0.5, –0.5) and (β21, β22)=(0.5, 0.5). The discrete covariates Z1 and Z2

were generated from a Bernoulli distribution with equal probability to fall on 1 or 0, and we
set (β11, β12)=(1, 1) and (β21, β22)=(−1, 1).

In our simulation, the failure time is independent of the censoring and truncation time.
Regarding C and L, they can be independent or C depends on L. Both were considered in
our simulation to illustrate the difference in performance between weight 1 and 2. For the
settings with independent C and L, the truncation time was generated from an exponential
distribution with a hazard rate γl, and the censoring time was generated from a Uniform
distribution in the interval [a, b]. A simulated observation would be discarded if either T <L
or C <L. In order to obtain a sample with size n, a larger number of realizations of (T, C, L,
Z1, Z2) need to be generated. The truncation rate is the percentage of the discarded
observations out of all generated realizations. The censoring rate is the percentage of the
censored observations out of n, based on the observed sample. In this study, we considered
two levels of truncation rate (25 and 50 per cent) and three levels of the censoring rate (0, 25
and 50 per cent). Values of γl, a and b were selected so that the average truncation rate and
censoring rate, based on 1000 replicates, coincided with the predetermined rates.

For the settings in which C depends on L, the left truncation time was still generated from an

exponential distribution, and  was generated from N(μ, σ2). To obtain the predetermined
censoring and truncation rates, μ and σ vary in the ranges 0.6–2.9 and 0.3–0.9, respectively.

If T≤L or , the observation would be discarded; if not, we let the censoring time to be

the sum of L and . T would be censored if it is greater than the censoring time.

For each setting, we simulated 1000 replicates with n = 200. The regression coefficients β11

and β12 should be estimated by the methods described in Section 3.3. We report the average

estimated regression coefficients, , the sample standard deviation of ,  and the

average of estimated standard error, . Tables I and II show the simulation results.

It can be concluded from the above tables that the regression parameter estimates using the
proposed weight estimators are very close to the true values under all the settings considered

in this simulation study. For most of the settings,  and  yield indistinguishable results.

Only with highly truncated settings,  departs slightly more from the true value than .
The proposed variance estimators seem to satisfactorily measure the variations of the

regression parameter estimates.  gives well performance with discrete covariates, but
slightly overestimates the true variance with continuous covariates. For the settings we

considered,  slightly underestimates the true variance. It can be observed that, in all the

settings, the standard errors of  are noticeably higher than those of . This is due to the

utilization of a stabilized weight for  as suggested by Robins and Finkelstein [13], as well

as Robins et al. [14]. Weight 2 used for  is an unstabilized weight. A stabilized form for
weight 2 is provided in Remark 4 of Section 3.2. We conducted a limited simulation to
compare estimation performances between weight 2 and modified weight 2. Table III shows
the simulation results, revealing that, for the modified weight, the variation among
regression coefficient estimates is greatly reduced, but the bias increases. Further study is
needed to investigate the proper stabilized form for weight 2.
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4.2. Study 2

We conducted a simulation study to investigate the problem of dependent censoring and
truncation, as well as the performance of the covariate adjusted weight. We generated a
single binary covariate and let the underlying cumulative incidence functions to be

and

The censoring time and truncation time were generated from exponential distributions with
the following hazard functions:

βC and βL have been set to different values for the first four settings. For the last setting, we
generated the truncation times for z = 1 group only, which is similar to the BMT example
data considered in Section 5.

Both the nonparametric weight estimator given in equation (5) and its stratified version have
been implemented on the simulated settings. The simulation result given in Table IV shows
that the stratified weight performed very well for the settings with dependence between the
covariate and the truncation time, as well as the censoring time. The results based on the
nonparametric weight are acceptable although the required assumptions are not fully
satisfied. For the stratified weight, the estimated standard errors based on the simple
variance estimation method are very close to the degree of the variability among the
regression parameter estimates. It is practically feasible to employ this method to obtain a
computationally efficient estimator.

5. A real example

Chemotherapy should be administered to children with relapsed leukemia until they achieve
their second remission. There are two options to continuously treat children in their second
remission: chemotherapy or BMT. Barrett et al. [1] conducted a study to compare
effectiveness of these two treatments on the LFS. The response variable of their study was
the time from the beginning of second remission to either leukemia relapse or TRM. The
study cohort consisted of reported cases from two sources, the International Bone Marrow
Transplant Registry (IBMTR) and the Pediatric Oncology Group (POG). The IBMTR cohort
consists of 376 children who received transplantation in second complete remission, and the
POG cohort collects 540 children who had been continuously treated by chemotherapy. It
should be noted that the patients who died while waiting for BMT were not reported to
IBMTR. Thus, the survival times of the children in the transplantation group were left
truncated by the transplantation times. Meanwhile, the survival time in both groups was
subject to right censoring. The censoring rate is 29 per cent for the BMT, and 44 per cent for
the chemotherapy group. The end of the study was the major reason of censoring.

The goal of our study was to compare two treatments on the cumulative incidences of
leukemia relapse and TRM, respectively, adjusting for significant risk factors. We
considered the following risk factors: sex (0 if female; 1 if male), age (0 if ≤10 years; 1 if
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>10 years), leukocyte count at diagnosis (0 if ≤100000 cells/mm3; 1 if >100000 cells/mm3),
the T-cell phenotype (0 if no; 1 if yes), duration of the first remission (0 if ≤18 months; 1 if
>18 months), and year of diagnosis (0 if before 1984; 1 if after 1984). For each competing
risk, we constructed both the proportional cause-specific hazards model and the proportional
subdistribution hazards model. A forward stepwise selection procedure was used to identify
significant risk factors with criterion 0.05.

For this example, the nonparametric weight is not appropriate since left truncation is present
only in the transplantation group, thus, the truncation time is associated with the covariate
for the treatment group. We utilized the stratified weight discussed in Section 3.4, with
treatment groups serving as strata. The results of model construction for leukemia relapse
are given in Table V. For the model on the cause-specific hazard, duration of the first
remission (DCR) and the T-cell phenotype were identified as significant risk factors.
However, DCR was the only risk factor significantly associated with the subdistribution
hazard. For TRM (see Table VI), T-cell phenotype, year of diagnosis (DXYR84) and sex
(Male) were identified as significant risk factors for both models. Age was marginally
significant for the model on the cause-specific hazard, but was not significant for the model
on the subdistribution hazard.

The predicted cumulative incidence curves of leukemia relapse for two treatments are given
in Figure 1, where the significant risk factor, duration of the first remission, is set at >18
months. A 95 per cent log–log transformed pointwise confidence interval is also plotted in
the figure. Figure 2 gives the predicted cumulative incidence curves of TRM for a boy
without the T-cell phenotype and diagnosed after 1984, together with a 95 per cent log–log
transformed confidence interval.

6. Concluding remarks

In this paper, we have extended the proportional subdistribution hazards model to the right-
censored and left-truncated competing risks data. The crucial adjustment with truncated data
is to adopt the reciprocal of the truncation–censoring probability GL,C(Xi ∧t|Zi ) as the
weight. When the weight does not depend on the covariates Z, we proposed two
nonparametric estimators for GL,C(Xi ∧t). The first estimator uses the estimate of the
survival probability of the all-cause failure time T and the second estimator includes the
estimate of P(C – L>t). We have shown that the first weight estimator can be fully explained
by the mass of a subject at time t [10] and leads to the Aalen–Johansen estimator of the
cumulative incidence function, yet the second weight estimator does not have this property.

For the first weight estimator, the stabilized version was proposed and utilized, which causes
a noticeably lower degree of the variability in the regression parameter estimates. Further
study is needed to improve the second weight estimator and hence reduce the variability of
the regression parameter estimates.

The covariate adjusted weight can be potentially adopted. We have shown in this paper that
the stratified nonparametric weight is a proper solution when the censoring/truncation time
is associated with some discrete covariates. One may consider the covariate adjusted weight
based on some regression models. However, it is difficult to choose proper models when
certain type of the subdistribution hazard model is given. Such a problem has been indirectly
addressed by Latouche et al. [16] by clarifying that a proportional subdistribution hazards
model does not coexist with a proportional cause-specific hazards model. We suggested
using Aalen’s model and further study in this direction is needed.
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Appendix A

Here, we show that GL,C(X ∧t|Z)=b(X ∧t|Z)/S(X−∧t−|Z) under the assumption that T is
independent of L and C given covariates Z . Since

it follows that

Next, we show that , where

 and K(t|Z)= P(L≤t|L≤X, Z). For the left-truncated and
right-censored data, individuals are observed only if L≤X, which is equivalent to

. It follows that

Appendix B: Weak convergence of n−1/2U(k)(β0)

For k = 1, 2, define the following notations:

Let

Taking a Taylor expansion on U(k)(β) around U(β0), we obtain
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Considering weight 1 and following Fine and Gray’s [7] arguments, we have

where  and

 is a martingale.

The first term is the main term, whereas the second and third terms account for the influence
due to random weight. The left-truncated Kaplan–Meier estimator in the second term can be
further expressed by

where  is the martingale with
respect to the self-exciting filtration (see [17, pp. 433 and 434]), and λ(u) is the hazard rate
for the failure of all causes.

For the third term,

Summarizing the above derivations, we obtain the asymptotically equivalent expression of
n−1/2U(1)(β0)
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where

Note that ’s can be viewed as zero-mean iid random vectors. Using the multivariate
central limit theorem, n−1/2U(1)(β0) converges in distribution to a zero-mean Gaussian
random vector and the covariance matrix can be consistently estimated by

where

When utilizing weight 2, we can similarly show that n−1/2U(2)(β0) is asymptotically

equivalent to , which has a zero-mean normal distribution and the covariance
matrix can be consistently estimated by

where
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Appendix C: Weak convergence of n1∕2{Λ^10∗(k)−Λ10∗(t)}

By Taylor expansion

where

By the central limit theorem,  converges in finite-dimensional
distribution to a zero-mean Gaussian process. Using the empirical theory as in Fine and

Gray [7], and in Lin et al. [18], we can show that  is tight. Thus,

 converges weakly to a zero-mean Gaussian process and its variance can
be consistently estimated by
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where

Using weight 2, it can be similarly shown that  converges weakly to a
zero-mean Gaussian process and its variance can be consistently estimated by

Appendix D: Weak convergence of n1∕2{F^1(k)(t;z)−F1(t;z)}

Utilizing the functional delta method

Similarly, if follows that  weakly converges to a zero-mean
Gaussian process, and the variance can be consistently estimated by

where
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For weight 2, the variance of the limiting distribution of  can be
consistently estimated by

where

Appendix E

Let  be the solution to the score estimating equation using stratified weight (7). For

simplicity, treating the weight function known, the variance of  can be estimated
by

where

Let  be the estimator of the cumulative incidence function given z. Similarly, we

estimate the asymptotic variance of  by

where
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Figure 1.
Predicted cumulative incidences of leukemia relapse for chemotherapy (solid) and BMT
(dashes) based on a child with duration of first remission >18 months.
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Figure 2.
Predicted cumulative incidences of TRM for chemotherapy (solid) and BMT (dashes) based
on a boy without T-cell phenotype and diagnosed after 1984.
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