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À PROPOS DE CANARDS

(APROPOS CANARDS)

MARTIN WECHSELBERGER

Abstract. We extend canard theory of singularly perturbed systems to the
general case of k slow and m fast dimensions, with k ≥ 2 and m ≥ 1 arbitrary.
A folded critical manifold of a singularly perturbed system, a generic require-
ment for canards to exist, implies that there exists a local (k+1)-dimensional
center manifold spanned by the k slow variables and the critical eigendirection
of the fast variables. If one further assumes that the m− 1 nonzero eigenval-
ues of the m × m Jacobian matrix of the fast equation have all negative real
part, then the (k + m)-dimensional singularly perturbed problem is locally
governed by the flow on the (k + 1)-dimensional center manifold. By using

the blow-up technique (a desingularization procedure for folded singularities)
we then show that the local flow near a folded singularity of a k-dimensional
folded critical manifold is, to leading order, governed by a three-dimensional
canonical system for any k ≥ 2. Consequently, results on generic canards from
the well-known case k = 2 can be extended to the general case k ≥ 2.

1. A brief history of canards

Canards were discovered by a group of French mathematicians [3] by means of
nonstandard analysis [15] who studied the van der Pol relaxation oscillator [44]
with constant forcing. In this slow-fast vector field in R

2, the canard phenomenon
explains the transition upon variation of a system parameter from small limit cy-
cles via canard cycles to large amplitude relaxation cycles. To be more precise, this
transition happens in an exponentially small interval of the system parameter and
is thus called a canard explosion. The term ‘canard’ indicates that these ‘creatures’
are degenerate since they only exist in one-parameter families of slow-fast vector
fields in R

2. Furthermore, they are always associated with a nearby singular Hopf
bifurcation which creates the small limit cycles. In practice, only the small limit
cycles or the large relaxation cycles are observed but no canard cycles due to the
exponential sensitivity in the parameter. Even if the exponentially small parameter
interval is known, numerical observation of all canard cycles with standard initial
value solvers is impossible due to extreme sensitivity to numerical errors. Thus,
their discovery seemed more like a hoax in a newspaper – a ‘canard’. Further-
more, certain canard cycles in R

2 resemble (with a little help of imagination) the
shape of a ‘duck’. Voilà, the notion of canard was born and since then the chase
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3290 M. WECHSELBERGER

of these creatures was pursued not only by nonstandard techniques [3, 16] but
also by matched asymptotic expansion techniques [19, 37] and geometric singular
perturbation theory [18, 33].

Besides being the missing link to explain a smooth transition from small to large
amplitude relaxation oscillations in R

2, the relevance of canards in applications was
considered ‘spurious’ in the sciences due to its degenerate nature in R

2. For exam-
ple, in the chemical literature, the abrupt transition from small to large amplitude
relaxation oscillations is referred to as ‘hard’, i.e. making an explicit statement
that canard cycles are not observed.

Fortunately, this degenerate situation does not occur anymore in systems with
two slow variables where canards are generic, i.e. their existence is insensitive
to small parameter perturbations. Benôıt [1, 2] was the first to study generic
canards in R

3. He also observed how a certain class of generic canards (known
as canards of folded node type) cause unexpected rotational properties of nearby
solutions. Extending geometric singular perturbation theory [21, 29] to canard
problems in R

3, Szmolyan and Wechselberger [41] provided a detailed geometric
study of generic canards. In particular, Wechselberger [47] showed that rotational
properties of folded node type canards are related to a complex local geometry of
invariant manifolds near these canards and associated bifurcations of these canards.

Thus contrary to their original discovery in R
2, canards are actually not spurious

but relevant ‘creatures’ and their influence on slow-fast dynamics is readily seen
in applications. For example, coupling this local canard structure with a global
return mechanism can explain complex oscillatory patterns known as mixed-mode
oscillations (MMOs); see, e.g., [6, 10, 35, 47] for details on the theory and see,
e.g., [10, 12, 14] for numerical aspects. There now exists a substantial amount of
literature on applications of canard theory in the sciences including neuroscience
[11, 17, 20, 30, 31, 35, 38, 39, 40, 47, 49, 50], chemistry [13, 35, 36], calcium signalling
[26, 27, 45] and even in high speed machining [7]. This list is far from being
complete, and we refer to detailed tables on relevant literature provided in a review
on MMOs [10] as well as to a focus issue on mixed-mode oscillations [5] and to
a special issue on bifurcation delay [9]. Complex temporal pattern generation is
not the only application area of canard theory. Spatio-temporal patterns such as
travelling and shock waves in advection-reaction-diffusion models with a slow-fast
structure might also be related to generic canards as shown in [48].

1.1. Outline of the paper. In this paper, we show that the generic canard theory
originally developed for systems in R

3 with two slow variables and one fast variable
can be extended to systems in R

n with k slow and m fast variables for any finite
n = k+m ≥ 3 and k ≥ 2. In section 2 we introduce geometric singular perturbation
theory and present a basic center manifold reduction of the singularly perturbed
system with a folded critical manifold (a generic geometric requirement for the exis-
tence of canards) which leads to a (k+1)-dimensional system. In section 3 we define
folded singularities and derive a canonical form for singularly perturbed systems
near such folded singularities. We then give a classification of folded singularities
and introduce their corresponding singular canards. In section 4 we provide the
main results about the existence of canards in arbitrary dimensions. The key ob-
servation is that a cylindrical blow-up transforms the (k+1)-dimensional singularly
perturbed system to a problem with three fast and k−2 slow variables. The limiting
three-dimensional system recovers the canonical form of canard theory in problems
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with two slow variables and one fast variable. Thus, the local (k + 1)-dimensional
dynamics near generic canards are completely described (to leading order) by the
three-dimensional canonical system for any k ≥ 2. We finally conclude in section 5
and remark on degenerate canards and on canard induced mixed-mode oscillations.

2. Geometric singular perturbation theory

We consider a system of ordinary differential equations that has an explicit slow-
fast splitting of the form

(1)
ẋ = g(x, z, ε),

ε ż = f(x, z, ε),

where (x, z) ∈ R
k × R

m are state space variables. The variables z = (z1, . . . , zm)
are denoted fast and the variables x = (x1, . . . , xk) are denoted as slow, the overdot
denotes the time derivative d/dτ and ε � 1 is a small positive parameter encoding
the time scale separation between the slow and fast variables. The functions f :
R

k × R
m × R → R

m and g : Rk × R
m × R → R

k are assumed to be sufficiently
smooth. By switching from the slow time scale τ to the fast time scale t = τ/ε,
System (1) transforms to

(2)
x′ = ε g(x, z, ε),
z′ = f(x, z, ε) .

System (1) respectively (2) is called a singularly perturbed system. Solutions of
such a system frequently consist of a mix of slow and fast segments, i.e. long periods
of small changes interspersed by short periods of dramatic changes. As ε → 0, the
trajectories of (1) converge during fast segments to solutions of the layer problem

(3)
x′ = 0,
z′ = f(x, z, 0),

while during slow segments, trajectories of (2) converge to solutions of

(4)
ẋ = g(x, z, 0),
0 = f(x, z, 0),

which is a differential-algebraic equation (DAE) called the reduced problem. One
major goal of geometric singular perturbation theory [21, 29] is to use these lower-
dimensional subsystems (3) and (4) to understand the dynamics of the full sys-
tem (1) or (2) for ε > 0.

2.1. The critical manifold. The algebraic equation in (4) defines the interface
between the two subsystems, called the critical manifold

(5) S := {(x, z) ∈ R
k × R

m | f(x, z, 0) = 0} ,
which is the phase space of the reduced problem (4) as well as the set of equilibrium
points for the layer problem (3). The basic classification of singularly perturbed
systems is given by properties of the layer problem (3). A subset Sh ⊆ S is called
normally hyperbolic if all (x, z) ∈ Sh are hyperbolic equilibria of the layer problem,
that is, the Jacobian (Dzf)(x, z, 0) has no eigenvalues with zero real part. We call
a normally hyperbolic subset Sa ⊂ S attracting if all eigenvalues of (Dzf)(x, z, 0)
have negative real parts for (x, z) ∈ Sa; similarly Sr ⊂ S is called repelling if all
eigenvalues of (Dzf)(x, z, 0) have positive real parts for (x, z) ∈ Sr. If Ss ⊂ S is
normally hyperbolic and neither attracting nor repelling we say it is of saddle type.
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Normal hyperbolicity fails at points on S where the Jacobian Dzf has (at least)
one eigenvalue with zero real part. Generically, such points are folds in the sense
of singularity theory. We refer to Takens [43] who provided a classification of
possible singularities1 in constrained differential equations. A geometric singular
perturbation analysis of a slow-fast system with a cusp-like critical manifold is given
(in the case k = 2 and m = 1) in [4]. In this paper, the focus is on the generic case
of a folded critical manifold.

2.2. The reduced flow. By definition, the main requirement on the reduced vec-
tor field (4) is that it has to be in the tangent bundle TS of the critical manifold
S. Taking the total time derivative of the constraint f(x, z, 0) = 0 defining S, i.e.
Dzf · ż+Dxf · ẋ = 0, defines a vector field for the z variables that is constrained to
the tangent bundle TS. This leads to the following representation of the reduced
problem (4):

(6)
ẋ = g(x, z, 0),

−Dzf · ż = (Dxf · g) (x, z, 0),
where (x, z) ∈ S. Let adj (Dzf) denote the adjoint of the matrix Dzf , which is the
transpose of the co-factor matrix of Dzf .

2 We apply adj (Dzf) to both sides of the
second equation in (6) to obtain

(7)
ẋ = g(x, z, 0),

− det (Dzf) ż = (adj (Dzf) ·Dxf · g) (x, z, 0),
where (x, z) ∈ S. Suppose that the critical manifold S is normally hyperbolic,
i.e. the Jacobian of the fast subsystem, Dzf , has full rank for all (x, z) ∈ S.
The implicit function theorem then implies that S has a graph representation over
the slow variable base x, i.e. z = h(x), and the reduced flow is simply given by
ẋ = g(x, h(x), 0). Fenichel theory [21, 29] guarantees the persistence of a normally
hyperbolic manifold close to Sh ⊂ S and the persistence of a corresponding slow
flow on this manifold close to the reduced flow of Sh in the following way:

Theorem 2.1 (Fenichel’s Theorem [21]). Suppose Sh is a compact normally hyper-
bolic (sub)manifold (possibly with boundary) of the critical manifold S of (2) and
that f, g ∈ Cr, 1 ≤ r < ∞. Then for ε > 0 sufficiently small and some K > 0 the
following holds:

(i) There exists a Cr-smooth, locally invariant manifold Sh,ε diffeomorphic to
Sh which has a Hausdorff distance O(ε) from Sh.

(ii) The slow flow on Sh,ε converges to the reduced flow on Sh as ε → 0.
(iii) Sh,ε is, in general, not unique but all representations of Sh,ε lie within a

Hausdorff distance O(e−K/ε) from each other, i.e. all r-jets are uniquely
determined.

From this theorem it follows that singularities of the reduced flow, i.e. (x, h(x))
such that g(x, h(x), 0) = 0, that are generically hyperbolic equilibria of the reduced
problem persist as hyperbolic equilibria of the full problem for ε � 1.

If we assume that Sh = Sa is an attracting normally hyperbolic manifold, then
Fenichel theory implies that the reduced dynamics of system (1) are completely

1folds, cusps, swallow tails, hyperbolic umbilics or elliptic umbilics
2In the case m = 1, Dzf = det(Dzf) =

∂f
∂z

is a scalar and adj (Dzf) = 1.
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described3 by the dynamics on the k-dimensional slow manifold Sa,ε, which to
leading order can be completely determined by the reduced flow on Sa.

On the other hand, if S is not normally hyperbolic, i.e. generically a folded criti-
cal manifold, Fenichel theory does not hold in the neighbourhood of the fold. Thus
an extension of geometric singular perturbation theory to nonhyperbolic problems
is needed to understand the local dynamics near such folded critical manifolds.

Assumption 1. The critical manifold S of the singularly perturbed system (1) is
locally folded, i.e. the set of fold points F forms a (k− 1)-dimensional manifold in
the k-dimensional critical manifold S defined by

(8)
F := {(x, z) ∈ R

k × R
m| f(x, z, 0) = 0 , rank (Dzf)(x, z, 0) = m− 1 ,

w · [(D2
zzf)(x, z, 0) (v, v)] 
= 0, w · [(Dxf)(x, z, 0)] 
= 0}

with corresponding left and right null vectors w and v of the Jacobian (Dzf)(x, z, 0).

Looking at the reduced system (7), we observe that det (Dzf) = 0 along F , i.e.
that system (7) is singular along F . Since w · [(D2

zzf)(x, z, 0) (v, v)] 
= 0 along F ,
this implies that det (Dzf) has different signs on adjacent subsets (branches) of the
critical manifold S bounded by F . We rescale time by setting τ = − det (Dzf) τ1
in system (7) to obtain the desingularized problem

(9)
ẋ = (− det (Dzf) · g) (x, z, 0),
ż = (adj (Dzf) ·Dxf · g) (x, z, 0),

where (x, z) ∈ S and the overdot now denotes d/dτ1. From the time rescaling it
follows that the direction of the flow in (9) has to be reversed on branches where
det (Dzf) > 0 to obtain the corresponding reduced flow (7). Otherwise, the flows
of (7) and (9) are equivalent. Obviously, the analysis of the desingularized problem
(9) is preferable.

Similar to the normally hyperbolic case, a (local) graph representation of the
critical manifold S is used to analyse the k-dimensional desingularised flow (9).
From the definition (8) of the folded critical manifold it follows that there exists at
least one slow variable xj , j ∈ {1, . . . , k} with w · [(Dxj

f)(x, z, 0)] 
= 0. Without
loss of generality, let x1 be this slow variable. It follows that one column in Dzf
(we assume, without loss of generality, that this column is Dz1f) can be replaced
by the column of Dx1

f such that rankD(x1,z2,...,zm)f(x∗, z∗, 0) = m. The implicit

function theorem then implies that S is locally the graph of a function h : Rk →
R

m over the base U ⊂ {(x2, . . . , xk, z1) ∈ R
k}, i.e. y = h(x2, . . . , xk, z1), where

y = (x1, z2, . . . , zm). Incorporating this graph representation of S leads to the
projection of the desingularized vector field (9) onto the base U constrained to the

base variables (x2, . . . , xk, z1) ∈ R
k.

2.3. A center manifold reduction. In system (1) near a fold point (x∗, z∗, 0) ∈
F , there exist locally invariant manifolds W̃cs (center-stable) and W̃cu (center-

unstable) where W̃cu ∪ W̃cs spans the whole phase space and W̃c = W̃cu ∩ W̃cs

corresponds to a (k + 1)-dimensional center manifold. The following result gives

a center manifold reduction of system (1) that captures the local dynamics on W̃c

near (x∗, z∗, 0) ∈ F and hence the reduced dynamics of system (1).

3up to an exponentially small error and possibly after some initial transient time
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Theorem 2.2. Given system (1) under Assumption 1, then there exists a (k+1)-

dimensional center manifold W̃c in a neighbourhood of (x∗, z∗, 0) ∈ F . System (1)

reduced to W̃c has the form:

(10)
ẋ = g(x, z1, ε),

εż1 = f1(x, z1, ε)
= x1(d1 +O(x, z1)) + z21(d2 +O(x, z1)) + εO(x, z1, ε),

where d1 and d2 are nonzero constants. The point (x̂, 0, 0) with x̂ = (0, x2∗, . . . , xk∗)
in (10) corresponds to the fold point (x∗, z∗, 0) ∈ F in (1). The corresponding
critical manifold S is given in its canonical form

(11) x1 = ξ1(x2, . . . , xk, z1) = −z21(
d2
d1

+O(x2, . . . , xk, z1)) .

Proof. The first part of the proof is a variant of invariant manifold theory [8, 28] for
singularly perturbed systems [21] which we adapt to the nonhyperbolic case. First,
we translate (x∗, z∗, 0) to (x∗, 0, 0). Then we make a linear coordinate transforma-
tion z̃ = Lz, where L is the left eigenvector matrix of Dzf such that the critical
eigendirection spanned by the right null-vector v becomes the (new) z̃1 direction.
This gives

(12)
ẋ = g̃(x, z̃, ε),

ε ˙̃z = f̃(x, z̃, ε),

with x ∈ R
k, z̃ ∈ R

m, f̃ : Rk×R
m×R → R

m, and function f̃(x, z̃, ε) = L ·f(x, z̃, ε).
In this new coordinate frame, the first row and the first column in Dz̃ f̃(x∗, 0, 0)

have only zero entries. We also have Dxf̃1(x∗, 0, 0) 
= 0 and we assume, with-

out loss of generality, that Dx1
f̃1(x∗, 0, 0) = ∂f̃1/∂x1(x∗, 0, 0) = d1 
= 0. Thus

rankD(x1,z̃2,...,z̃m)f̃(x∗, 0, 0) = m and S is given as a graph y = h(x2, . . . , xk, z̃1),
where y = (x1, z̃2, . . . , z̃m).

The coordinate transformation z̄j = z̃j−hj(x2, . . . , xk, z̃1), j = 2, . . . ,m, rectifies
the fast z̃j components of S to z̄2 = . . . = z̄m = 0, i.e. f̄j(x1, . . . , xk, z1, 0, . . . , 0) = 0
for j = 2, . . . ,m.4 This implies that all partial derivatives of the functions f̄j ,
j = 2, . . . ,m, with respect to (x1, . . . , xk, z̃1) evaluated at (x∗, 0) ∈ F vanish.

Hence, the (k + 1)-dimensional center manifold W̃c is spanned by the k + 1 slow

directions (x1, . . . , xk, z̃1) and the flow on W̃c is described by

(13)
ẋ = g̃(x, z̃1, ε),

ε ˙̃z1 = f̃1(x, z̃1, ε),

with f̃1(x, z̃1, ε) = w · f̃(x, z̃1, 0, . . . , 0, ε), where w is the left null-vector of Dzf .

Following from Assumption 1, we have the following condition on the function f̃1
evaluated at a fold point (x∗, 0) ∈ F :

f̃1 = 0,
∂f̃1
∂x1

= d1 
= 0,
∂f̃

∂z̃1
= 0,

∂2f̃

∂z̃21
= 2d2 
= 0 .

The implicit function theorem now gives a parametrization of the (k−1)-dimensional
manifold F by {(ξ1(y, ζ1(y)), y, ζ1(y)), y = (x2, . . . , xm) ∈ Br(0)} for a suitable

4Note that the same coordinate transformation for x1 is not possible because it would change
the singularly perturbed structure of the system.
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ball Br(0) ⊂ R
k−1 centered at the origin. The final part of the proof uses coor-

dinate transformations x̄1 = x1 − ξ1(y) and z̄1 = z̃1 − ζ1(y) to rectify the set F
to x̄1 = z̄1 = 0. This gives the result (after dropping bars and tilde for conve-
nience). �

Assumption 2. In Assumption 1, the m−1 nonzero eigenvalues of Dzf(x∗, z∗, 0)

have all negative real part. This implies that W̃cs = R
k+m.

Proposition 2.1. Given system (1) under Assumptions 1 and 2, then the (k+1)-

dimensional center manifold W̃c described in Theorem 2.2 is exponentially attract-
ing, i.e. system (10) describes the local dynamics of system (1) near (x∗, z∗, 0) ∈ F .

In the following we focus on such exponentially attracting manifolds Wc and the
corresponding flow described by system (10).

3. Folded singularities and singular canards

The corresponding desingularized problem of system (10) is given by

(14)
ẋj =

(
−∂f1

∂z1
gj

)
(x2, . . . , xk, z1, 0), j = 2, . . . , k,

ż1 = (Dxf1 · g) (x2, . . . , xk, z1, 0),

where the graph representation of S given in (11) is substituted. Ordinary singular-
ities of (14) away from the fold F are defined by g = 0 and correspond to equilibria
of the reduced problem. Of special interest are singularities (x̂, 0, 0) of (14) that
are constrained to the fold F given by z1 = 0.

Definition 1. Singularities of system (14) defined by

(15)
∂f1
∂z1

(x̂, 0, 0) = 0 and (Dxf1 · g) (x̂, 0, 0) = 0

are called folded singularities.

The set of these folded singularities Mf defined by condition (15) forms a sub-
manifold of codimension one in the (k− 1)-dimensional set of fold points F . Thus,
this set Mf viewed as a set of equilibria of the desingularized system (14) has
generically k − 2 zero eigenvalues and two eigenvalues λ1/2 with nonzero real part.
The classification of folded singularities is based on these two nonzero eigenvalues,
and it follows the classification of singularities in two-dimensional vector fields. In
the case that λ1/2 are complex conjugates and Reλ1/2 
= 0, then the correspond-
ing singularity is called a folded focus. In the case that λ1/2 are real, then the
corresponding singularity is either a folded saddle if λ1λ2 < 0, or a folded node if
λ1λ2 > 0. Necessary conditions for generic folded singularities are

(16) gj(x̂, 0, 0) 
= 0 and
∂

∂xj
(Dxf1 · g)(x̂, 0, 0) 
= 0

for (at least) one common index j ∈ {2, . . . , k}. The second condition is necessary
for Reλ1/2 
= 0 but not sufficient. With the additional condition

(17)
∂

∂z1
(Dxf1 · g)(x̂, 0, 0) 
= 0 ,

a generic folded singularity is guaranteed.
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Remark 3.1. The first condition in (16) corresponds to g 
= 0 in the original system
(9) and implies that generic folded singularities do not constitute equilibria of the
reduced problem. The second condition in (16) does not lead, in general, to a
‘simple’ structure in (9), i.e. the full Jacobian has to be evaluated.

For a generic folded singularity, the algebraic multiplicity of the corresponding
singularities on both sides of the second equation in the reduced problem (7) is the
same (i.e. one). This leads in the case of a folded saddle or a folded node to a
nonzero but finite speed of the reduced flow through a folded singularity.5 Hence,
folded saddles and folded nodes create possibilities for the reduced flow to cross to
different (normally hyperbolic) branches of the critical manifold S via such folded
singularities (x̂, 0, 0) ∈ Mf . This is the hallmark of singular canards in systems
with two or more slow variables, explained in detail in section 3.2, and makes them
an important generic feature of DAEs.

Remark 3.2. In the numerical literature on DAEs (see, e.g., [25]), folds are not
considered. There, critical manifolds S are considered to be either normally hyper-
bolic or degenerate, i.e. det (Dzf) is either not equal or equal to zero on the whole
domain of S.

3.1. A canonical form near folded singularities. System (10) encodes the ge-
ometry of the critical manifold S given by Assumption 1. In the next transformation
step, we will encode the existence of a folded singularity in system (10).

Assumption 3. In system (10), there exists a generic folded singularity (x̂, 0, 0) ∈
Mf ⊂ F defined by conditions (16) and (17). We further assume, without loss of
generality, that (x̂, 0, 0) = (0, 0, 0) is located at the origin and that condition (16)
is fulfilled for j = 2.

This assumption implies the existence of a (k − 2)-dimensional set of generic
folded singularities, Mf ⊂ F , locally near the origin.

Theorem 3.1. Given system (10) under Assumptions 1-3, then there exists a
smooth change of coordinates which transforms system (10) to

(18)

ẋ1 = B2(x3, . . . , xk)x2 + C(x3, . . . , xk)z1
+ O(x1, x

2
2, x2z1, z

2
1) + εO(x1, . . . , xk, z1),

ẋj = Aj(x3, . . . , xk) +O(x1, x2, z1, ε) , j = 2, . . . , k,
εż1 = x1(1 + z1 O(x2, . . . , xk)) + z21(1 +O(x1, z1))

+ εO(x1, x2, z1, ε),

where

(19)
Aj = Aj(x3, . . . , xk) = aj + gj,1(x3, . . . , xk) , j = 2, . . . , k,
B2 = B2(x3, . . . , xk) = b2 + g1,1(x3, . . . , xk),
C = C(x3, . . . , xk) = c+ g1,2(x3, . . . , xk)

with gj,1(0, . . . , 0) = 0, g1,i(0, . . . , 0) = 0, i = 1, 2, and computable constants aj, b2
and c where a2, b2 and c are generically nonzero.

Proof. The implicit function theorem gives a parametrization of the (k− 2)-dimen-
sional manifold Mf by {(0, ξ2(y), y, 0), y = (x3, . . . , xk) ∈ Br(0)} for a suitable ball

Br(0) ⊂ R
k−2. The coordinate transformation x̄2 = x2 − ξ2(y) rectifies the set

Mf to x1 = x̄2 = z1 = 0. A sequence of linear and near identity transformations

5This does not apply to a folded focus; see section 3.2.3.
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then gives system (18), where we drop for convenience the bars from the variables.
The nonzero conditions on the parameters a2, b2, c follow from (16), j = 2, and
(17). �

Assumption 4. The folded singularity in system (10) is a folded saddle or a folded
node, i.e. the two nonzero eigenvalues λ1/2 of the corresponding desingularized
problem of system (10) are real and nonzero.

Theorem 3.2. Given system (10) under Assumptions 1-4, then there exist a
smooth change of time and a smooth change of coordinates that brings system (10)
to the canonical form

(20)

ẋ1 = 1
2μ(x3, . . . , xk)x2 − (1 + μ(x3, . . . , xk))z1
+ O(x1, x

2
2, x2z1, z

2
1) + εO(x1, . . . , xk, z1),

ẋ2 = 1 +O(x1, x2, z1, ε),
ẋj = aj + gj,1(x3, . . . , xk) +O(x1, x2, z1, ε) , j = 3, . . . , k,
εż1 = x1(1 + z1 O(x2, . . . , xk)) + z21(1 +O(x1, z1))

+ εO(x1, x2, z1, ε)

with

(21) μ = μ(x3, . . . , xk) :=
λ1λ2

λ2
.

Proof. Theorem 3.1 gives system (18). The two nonzero eigenvalues λ1/2 of the cor-
responding desingularized problem of system (18) satisfy the characteristic equation
λ2 −Cλ+2A2B2 = 0. These eigenvalues λ1/2 are assumed to be real and nonzero,
i.e. they correspond to a folded saddle or a folded node. A change of time by
dτ̂ = dτA2(x3, . . . , xk) and a sequence of linear and near identity transformations
gives the equations for the variables (x2, . . . , xk, z1) in system (20). Then, the
coordinate transformation

(22) x̃1 = λ2x1, x̃2 = λ2x2, z̃1 = −λz1, ε̃ = −λ3ε, t̃ = λ2t ,

gives system (20), after dropping for convenience the tilde from the variables, where
λ < 0 is one of the eigenvalues λ1/2 and μ is defined by (21). Note, in the case of
a folded saddle, there is always one negative eigenvalue. In the folded node case,
two negative eigenvalues imply that the reduced flow is towards the fold F on Sa

which is the case we are interested in. �

Remark 3.3. In the case k = 2, system (20) is equivalent to the normal form derived
in [47], Proposition 2.1.

3.2. Singular canards. Let us first focus on the properties of the reduced flow
of system (18) in Theorem 3.1. We have a k-dimensional folded critical mani-
fold S defined by x1 = ξ1(x2, . . . , xm, z1) = −z21(1 + O(x2, . . . , xk, z1)), a (k − 1)-

dimensional manifold of fold points F ⊂ S defined by z1 = ζ̃1(x2, . . . , xk) = 0
and a (k − 2)-dimensional manifold of folded singularities Mf ⊂ F defined by

x2 = ξ̃2(x3, . . . , xk) = 0. The desingularized flow on S, projected onto the base
(x2, . . . , xm, z1), is given by

(23)
ẋj = −2z1(Aj(x3, . . . , xk) +O(x2, . . . , xk, z1)), j = 2, . . . , k,
ż1 = B2(x3, . . . , xk)x2 + C(x3, . . . , xk)z1 +O(x2

2, x2z1, z
2
1) .
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The Jacobian of the vector field (23) evaluated along Mf in a neighbourhood Br(0)
of the origin is given by

(24)

⎛
⎜⎜⎜⎝

0 0 · · · 0 −2A2(x3, . . . , xk)
...

...
...

...
0 0 · · · 0 −2Ak(x3, . . . , xk)

B2(x3, . . . , xk) 0 · · · 0 C(x3, . . . , xk)

⎞
⎟⎟⎟⎠ ,

which has k − 2 zero eigenvalues and the corresponding eigenvectors span the tan-
gent bundle TMf of the set of folded singularities Mf .

6 Additionally, there are
(generically) two nonzero eigenvalues λ1/2. The corresponding eigenvectors span
the (x2, z1)-space. This leads to the following classification of folded singularities
which depends only on A2, B2 and C for (x3, . . . , xk) ∈ Br(0):

(25)
A2B2 < 0 ⇒ λ1/2 ∈ R, λ1λ2 < 0 folded saddle,

C2/8 ≥ A2B2 > 0 ⇒ λ1/2 ∈ R, λ1λ2 > 0 folded node,
C2/8 < A2B2 ⇒ λ1/2 ∈ C, λ̄1 = λ2 folded focus,

where λ̄1 = λ2 denotes the complex conjugate eigenvalue for λ1 ∈ C. In the case
of generic folded singularities (25), Mf represents a normally hyperbolic manifold
in system (23) and (x3, . . . , xk) are slow variables in a neighbourhood of Mf while
(x2, z1) are fast variables. The main difference of this desingularized system (23)
to a ‘classical’ singularly perturbed system (1) is that there exists no uniform time-
scale separation (in the form of a singular perturbation parameter ε � 1) and that
there exists no (nontrivial) reduced flow on the normally hyperbolic manifold Mf .

In the case of Mf consisting of folded saddles or folded nodes, we have derived
the canonical form (20) in Theorem 3.2. Its corresponding desingularized flow is
given by

(26)
ẋ2 = −2z1(1 +O(x2, . . . , xk, z1)),
ẋj = −2z1(Aj(x3, . . . , xk) +O(x2, . . . , xk, z1)), j = 3, . . . , k,
ż1 = 1

2μ(x3, . . . , xk)x2 − (1 + μ(x3, . . . , xk))z1 +O(x2
2, x2z1, z

2
1) ,

and the Jacobian along Mf is given by

(27)

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 −2
0 0 · · · 0 −2A3(x3, . . . , xk)
...

...
...

...
0 0 · · · 0 −2Ak(x3, . . . , xk)

1
2μ(x3, . . . , xk) 0 · · · 0 −(1 + μ(x3, . . . , xk))

⎞
⎟⎟⎟⎟⎟⎠

.

Thus, the two nonzero eigenvalues are given by λ1 = −μ and λ2 = −1. If we fix
λ = λ2 in definition (21), then μ = λ1/λ2 represents the eigenvalue ratio which is
positive for folded nodes and negative for folded saddles.

3.2.1. Folded saddles. In the case μ < 0, there exists a (k − 1)-dimensional center-
stable manifold Wcs and a (k− 1)-dimensional center-unstable manifold Wcu along
the (k − 2)-dimensional normally hyperbolic manifold Wc = Wcs ∩ Wcu = Mf .
Both manifolds, Wcs and Wcu, are uniquely foliated by one-dimensional fast fibers
Ws respectively Wu over the base Mf , where the fibers are tangent to the stable
respectively unstable eigenvector of the corresponding folded singularity on the base
Mf .

6Here, we can identify TMf to Mf .
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Figure 1. (Color online.) Sketch of the reduced flow of system
(20) near the manifold Mf of folded saddles, case k = 3: (a)
two-dimensional manifold of fold points F (blue), two-dimensional
manifold Wcs (green) of singular canards through Mf and two-
dimensional manifold Wcu (brown) of faux canards through Mf ;
view is from below and the x2-axis is pointing towards the observer;
(b) projection of reduced flow on a section x3 = constant. The
attracting part Sa of the critical manifold, z1 < 0, is below the
fold F while the repelling part Sa, z1 > 0, is above F .

Recall that the reduced flow is obtained from the desingularized flow by changing
the direction of the flow on Sr. Thus, trajectories that start in a stable fiber
Ws ⊂ Wcs ⊂ Sa approach Mf in finite time and cross Mf tangent to the stable
eigenvector of the corresponding folded singularity on Mf to the unstable branch
Wcu ⊂ Sr; see Figure 1. This leads to the following.

Definition 2. Given a singularly perturbed system (1) with a folded critical man-
ifold S, a trajectory of the reduced problem that has the ability to cross in finite
time from one branch of the critical manifold to the other via a folded singularity
Mf ⊂ F is called a singular canard.
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Figure 2. (Color online.) Sketch of the reduced flow near the
manifold Mf of folded nodes, case k = 3: (a) two-dimensional
manifold of fold points F (blue), two-dimensional manifold Wss

(green) of singular strong canards through Mf ; view is from below
and the x2-axis is pointing towards the observer; (b) projection of
reduced flow on a section x3 = constant. There exists a sector of
singular canards within the singular funnel (shaded grey) bounded
by Wss (green) and F (blue) which cross tangent to the weak
eigendirection (brown line) of a folded node.

All other trajectories of the reduced flow starting in Sa (close to F ) reach the
set of fold points F/Mf in either finite forward or backward time, where they cease
to exist due to finite time blow-up or they do not reach the set F/Mf at all.

Remark 3.4. Trajectories starting on an unstable fiber Wu ⊂ Wcu ⊂ Sr approach
Mf in finite time and cross it tangent to the unstable eigenvector of the correspond-
ing folded singularity on Mf to the stable branch Wcu ⊂ Sa. Such solutions are
called singular faux canards.

3.2.2. Folded nodes. In the case μ > 0, the whole phase space S is equivalent to Wcs

(since λ1/2 are negative). Let us define Wss ⊂ Wcs as the (k−1)-dimensional subset
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of unique fast fibers corresponding to the span of the strong stable eigenvectors
along the base Mf . Again, the reduced flow is obtained from the desingularized
flow by changing the direction of the flow on Sr.

Definition 3. The set Wss together with the (k−1)-dimensional set of fold points
F bounds a sector in Sa, called the singular funnel, with the property that every
trajectory starting in the singular funnel reaches the set of folded node singularities
Mf in finite time and subsequently crosses the set F transversely to the unstable
branch Sr in the direction that is tangent to the weak stable eigenvector of the
corresponding folded node singularity on Mf .

Thus, every trajectory within a singular funnel is a singular canard. Trajectories
that start on the boundary set Wss ⊂ Sa also reach the set Mf in finite time but
cross it tangent to the strong stable eigenvector of the corresponding folded node
singularity (by definition); see Figure 2.

All other trajectories of the reduced flow starting in Sa (close to F ) reach the set
of fold points F/Mf in finite forward or backward time where they cease to exist
due to finite time blow-up.

Remark 3.5. In the proof of Theorem 3.1 we assumed that a folded node corresponds
to two negative eigenvalues. Theoretically, we can also assume the case where both
eigenvalues are positive. Thus the whole phase space S is equivalent to Wcu and
we define Wuu ⊂ Wcu as the (k − 1)-dimensional subset of unique fast fibers that
corresponds to the span of the strong unstable eigenvectors along the base Mf .
This set Wuu together with the (k − 1)-dimensional set of fold points F bounds a
sector in Sr with the property that every trajectory starting in this sector reaches
the set of folded node singularities in finite time and subsequently crosses the set
F transversely to the stable branch Sa in the direction that is tangent to the weak
unstable eigenvector of the corresponding folded node singularity on Mf . Thus,
every trajectory within this sector is a singular faux canard. Trajectories that
start on the boundary set Wuu ⊂ Sr also reach the set Mf in finite time but
cross it tangent to the strong unstable eigenvector of the corresponding folded node
singularity.

3.2.3. Folded foci. In this case, all solutions starting in Sa (close to F ) reach the set
of fold points F/Mf in finite forward or backward time where they cease to exist
due to finite time blow-up.7

Corollary 3.1. There exist no singular canards near a folded focus.

4. Maximal canards

In the following we analyse the canonical form (20) by means of geometric sin-
gular perturbation theory to derive results for 0 < ε � 1. In particular, we want to
ask the question if singular canards persist as canards of the full system (20). To
answer this question, we first provide a geometric definition of canards for ε > 0.
Recall that the branches Sa and Sr are normally hyperbolic away from the fold
F . Thus, Fenichel theory implies the existence of an (nonunique but exponen-
tially close) invariant slow manifold Sa,ε up to a section Σ1,a : z1 = −δ1 and an

7The analysis presented in [42] applies to these fold points F/Mf (i.e. they are ‘jump points’).
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(nonunique but exponentially close) invariant slow manifold Sr,ε up to a section
Σ1,r : z1 = δ1, i.e. O(1) away from F . Fix a representative for each of these
manifolds.

Definition 4. A maximal canard corresponds to the intersection of the manifolds
Sa,ε and Sr,ε extended by the flow of (20) into the neighbourhood of the setMf ⊂ F .

Such a maximal canard defines a family of canards nearby which are exponen-
tially close to the maximal canard, i.e. a family of solutions of (20) that follow an
attracting branch Sa,ε of the slow manifold towards the neighbourhood of the set
Mf ⊂ F , pass close to Mf ⊂ F and then follow, rather surprisingly, a repelling
branch Sr,ε of the slow manifold for a considerable amount of slow time. This fol-
lows from the nonuniqueness of Sa,ε and Sr,ε. In the singular limit ε → 0, such a
family of canards is represented by a unique singular canard.

4.1. ‘Blow-up’ analysis. The key to understanding the local dynamics near the
set Mf ⊂ F by means of geometric singular perturbation theory is the ‘blow-up’
technique. The ‘blow-up’ desingularizes degenerate singularities such as the set of
folded singularities Mf . It is a coordinate transformation applied to the extended
system {(20), ε̇ = 0} by which the set of folded singularities Mf is blown up to
a cylinder B = S3 × Rk−2. With this procedure, one gains enough hyperbolicity
on the blown-up locus B to apply standard tools from dynamical system theory.
For a detailed description of the blow-up technique and its application to the cases
k = 1, 2, we refer to [18, 32, 33, 34, 41, 47]. In the following, we will present
the results of this blow-up analysis of the general case k ≥ 2 and point out the
differences to the case k = 2 wherever necessary.

In a first step, the blow-up analysis shows that Fenichel theory and hence the
invariant slow manifolds Sa,ε, respectively Sr,ε, can be extended up to sections Σ2,a :
z1 = −√

εδ2, respectively Σ2,r : z1 =
√
εδ2, i.e. up to an O(

√
ε) neighbourhood of

the fold F . We denote these extended manifolds by Sa,
√
ε, respectively Sr,

√
ε.

Proposition 4.1. For system (20), the sets Sa,
√
ε, respectively Sr,

√
ε, are Cr-

smooth, locally invariant, normally hyperbolic manifolds and O(
√
ε) perturbations of

Sa, respectively Sr. The flow on Sa,
√
ε, respectively Sr,

√
ε, is an O(

√
ε) perturbation

of the reduced flow on Sa, respectively Sr.

Proof. This follows directly from the proof presented in Szmolyan, Wechselberger
[41], case k = 2, since the same blow-up analysis can be used for any k ≥ 2. It
is an application of the center manifold theorem in the extended blown-up system
{(20), ε̇ = 0}; see also [47, 6]. �

Remark 4.1. The section Σ2,a : z1 = −
√
εδ2 is only a cross section of the slow flow

for a certain subset of Sa,
√
ε. In the case of a set Mf of folded nodes, it covers the

essential region of the funnel. In the case of a set Mf of folded saddles, it covers a
neighbourhood of the set of singular canards.

To understand the flow past the set Mf ⊂ F we rescale system (20) by

(28) x1 = εy1, x2 =
√
εy2, z1 =

√
εz2, t =

√
εt2,
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which gives

(29)

y′1 = 1
2μ(x3, . . . , xk)y2 − (1 + μ(x3, . . . , xk))z2 +O(

√
ε),

y′2 = 1 +O(
√
ε),

x′
j =

√
ε(Aj(x3, . . . , xk) +O(

√
ε)) , j = 3, . . . , k,

z′2 = y1 + z22 +O(
√
ε),

with μ given by (21). This system represents a zoom (or microscope) of the vector
field (20) in a neighbourhood of the set of folded singularities Mf .

Remark 4.2. The rescaling (28) is only part of the full blow-up analysis; see e.g.
[41] for details. Here, we are using a ‘cylindrical blow-up’ that zooms only into
the (x1, x2, z1)-space transverse to Mf . This reflects the fact that we are dealing
with a manifold Mf of folded singularities. In the case k = 2, the same ‘blow-
up’ (28) is used to zoom into a single (and hence isolated) folded singularity; see
[41]. Similarly, the blow-up analysis of a generic fold F (no folded singularities,
only jump points) in a system with k ≥ 2 is also done by a cylindrical blow-up; see
[42].

In system (29) after rescaling, the sections Σ2,a respectively Σ2,r are now given
by z2 = −δ2 respectively z2 = δ2. From Proposition 4.1 it follows that there exist
k-dimensional invariant manifolds Sa,

√
ε respectively Sr,

√
ε that extend from infinity

to these sections Σ2,a respectively Σ2,r. This also holds in the limit
√
ε → 0, i.e.

there exist invariant manifolds Sa respectively Sr.
8

System (29) still has a slow/fast splitting of variables with time scale separation
of O(

√
ε), but now with three fast variables (y1, y2, z2) and k − 2 slow variables

(x3, . . . , xk). Note further that system (29) possesses no (k−2)-dimensional critical
manifold since y′2 in (29) does not equilibrate (y2 is to leading order the intermediate
timescale t2), but it possesses k-dimensional invariant manifolds Sa,

√
ε and Sr,

√
ε

that extend from ‘infinity’ as shown above. It follows that the slow/fast splitting
of the variables persists for the flow of (29) on compact domains and this system
is governed to leading order solely by the

√
ε → 0 limiting system,9 the three-

dimensional ‘layer problem’

(30)
y′1 = 1

2μ(x3, . . . , xk)y2 − (1 + μ(x3, . . . , xk))z2,
y′2 = 1,
z′2 = y1 + z22 ,

where (x3, . . . , xk) are considered as parameters and hence μ is a parameter as well.
System (30) was extensively studied in the folded saddle and folded node case for
singularly perturbed systems with k = 2; we refer to [41, 47, 6, 1] for details. The
most important insight is that there exist two explicitly known algebraic solutions
given by (y1, y2, z2) = (−λ2

1/2t
2
2 + λ1/2, t2, λ1/2t2), where λ1/2 = −1, −μ are the

nonzero real eigenvalues of the folded (saddle or node) singularities Mf . These
special solutions are the ‘blown-up’ extensions of the sets of singular canards and lie
within the invariant manifolds Sa respectively Sr. Thus they provide a connection
between these two distinct invariant manifolds. This enables us to extend these
manifolds into the vicinity of the set Mf . A transverse intersection of Sa and Sr

along a set of singular canards implies persistence of this intersection for Sa,
√
ε and

8We abuse notation and use the same symbol for manifolds Sa,
√
ε respectively Sr,

√
ε in (29)

and in (20) where one is the blown-up version of the other.
9In other words, system (29) is a regular perturbation problem.
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Sr,
√
ε for sufficiently small

√
ε > 0 and hence the existence of a set of maximal

canards. We have the following results:

Theorem 4.1. In the folded saddle case (λ1 < 0 < λ2) of system (20), the (k−1)-
dimensional set Wcs of singular canards perturbs to a (k − 1)-dimensional set of
maximal canards for sufficiently small ε � 1.

Proof. This follows directly from Szmolyan and Wechselberger [41], case k = 2. �

Theorem 4.2. In the folded node case λ1 < λ2 < 0 of system (20), let μ :=
λ2/λ1 < 1.

(i) The (k − 1)-dimensional set Wss of singular strong canards perturbs to a
(k − 1)-dimensional set of maximal strong canards called primary strong
canards for sufficiently small ε � 1.

(ii) If 1/μ /∈ N, then the (k − 1)-dimensional set of singular weak canards
perturbs to a (k−1)-dimensional set of maximal weak canards called primary
weak canards for sufficiently small ε � 1.

(iii) If 2l + 1 < μ−1 < 2l + 3, l ∈ N and μ−1 
= 2l + 2, then there exist l
additional sets of maximal canards, all (k−1)-dimensional, called secondary
canards for sufficiently small ε � 1. These l sets of secondary canards are
O(ε(1−μ)/2) close to the set of primary strong canards in Σ1,a respectively
Σ1,r.

Proof. Statements about the primary canards follow from Szmolyan and Wechsel-
berger [41], case k = 2. Statements about secondary canards follow from Wechsel-
berger [47] and Brøns, Krupa and Wechselberger [6], case k = 2. �

Geometrically, the (k−1)-dimensional set of primary weak canards forms locally
an ‘axis of rotation’ for the k-dimensional sets Sa,ε and Sr,ε and hence also for
the set of primary strong canards and the set of secondary canards; this follows
from [47], case k = 2. These rotations happen in a compact domain of the blown-
up system (29) which corresponds to an O(

√
ε) neighbourhood of F in system

(20). Furthermore, the rotations are confined to the (x1, x2, z1)-subspace of system
(20). The rotational properties of maximal canards are summarized in the following
result.

Theorem 4.3. In the folded node case of system (20) with 2l+ 1 < μ−1 < 2l + 3,
l ∈ N and μ−1 
= 2l + 2,

(i) the set of primary strong canards twists once around the set of primary
weak canards in an O(

√
ε) neighbourhood of F ,

(ii) the j-th set of secondary canards, 1 ≤ j ≤ l, twists 2j +1 times around the
set of primary weak canards in an O(

√
ε) neighbourhood of F ,

where a twist corresponds to a half rotation. Thus each set of maximal canards has
a distinct rotation number.

Proof. This follows directly from Wechselberger [47], case k = 2. �

As a geometric consequence, the funnel region of the set of folded nodes Mf in
Sa is split by the secondary canards into l + 1 subsectors Ij , j = 1, . . . , l + 1, with
distinct rotational properties. I1 is the subsector bounded by the primary strong
canard and the first secondary canard, I2 is the subsector bounded by the first and
second secondary canard, Il is the subsector bounded by the (l− 1)-th and the l-th

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



APROPOS CANARDS 3305

secondary canard and finally, Il+1 is bounded by the l-th secondary canard and
the set of fold points F . Trajectories with initial conditions in the interior of Ij ,
1 ≤ j < l+ 1, make 2j + 1/2 twists around the set of primary weak canards, while
trajectories with initial conditions in the interior of Il+1 make at least [2(l+1)−1/2]
twists around the set of primary weak canards. All these solutions are forced to
follow the funnel created by the manifolds Sa,

√
ε and Sr,

√
ε. After solutions leave

the funnel in an O(
√
ε)-neighbourhood of F they get repelled by the manifold Sr,

√
ε

and will follow close to a fast fiber of system (20). Hence, folded node type canards
form separatrix sets in the phase space for different rotational properties near folded
critical manifolds.

These results on the dynamics near folded nodes have been numerically confirmed
(in the case k = 2) in [22, 24, 47] by using sweeping methods and in [12] by using
boundary value solvers and continuation methods; see [10] for applications and for
an overview on numerical methods for singular perturbation problems.

5. Conclusion

In this paper, we have shown that the canard theory developed in [1, 41, 47]
for the case of k = 2 slow variables and m = 1 fast variables can be extended to
the case of arbitrary slow dimensions k ≥ 2 and arbitrary fast dimensions m ≥
1. The existence of a folded critical manifold, a necessary generic condition for
canards to exist, implies immediately that the additional m − 1 fast hyperbolic
(generalized) eigendirections do not alter the dynamics significantly, which follows
from the application of the center manifold theorem. This result was already shown
in [6] for the case k = 2. Thus the local dynamics near a folded critical manifold
(independent of the existence of canards) are governed by a (k + 1)-dimensional
system.

The remarkable insight obtained in this paper is that the local (k+1)-dimensional
dynamics near generic canards can be understood by understanding the three-
dimensional system (30); this is true for any k ≥ 2. System (30) can be written as
a second-order inhomogeneous differential equation

(31) z′′2 − 2z2z
′
2 + (1 + μ(x3, . . . , xk))z2 =

1

2
μ(x3, . . . , xk)t2

with parameter μ(x3, . . . , xk) under the convention that μ(x3, . . . , xk) = μ in the
case k = 2. This equation (31) serves as a local canonical form for generic canard
problems in singularly perturbed systems with arbitrary slow dimensions k ≥ 2.
This is similar to the Riccati equation z′′2 − 2z2z

′
2 = 1 which serves as a local

canonical form in the case of a k-dimensional folded critical manifold, k ≥ 1, without
folded singularities [42].

The evolution of the (k + 1)-dimensional flow in the canard problem (20) splits
into three distinct phases reflecting three distinct time scales of the problem, the
slow time scale of O(1), the fast time scale of O(1/ε) and an intermediate time
scale of O(1/

√
ε), in the following way:

(i) Away from the fold F the flow gets quickly attracted on the fast time scale
O(1/ε) along one-dimensional fast fibers to the k-dimensional critical manifold S
as described by Proposition 2.1. Then solutions follow the k-dimensional slow flow
on the slow time scale O(1) towards the fold F .
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(ii) As the slow flow reaches the vicinity of the (k − 1)-dimensional fold F and
hence that of the (k−2)-dimensional set of folded singularitiesMf , the original slow-
fast time scale separation in (20) breaks down and is replaced by a slow-intermediate
time scale separation with three variables evolving on the intermediate time scale
O(1/

√
ε) which includes two of the original slow variables and the original fast

variable, and the other k − 2 original slow variables are evolving still on the slow
time scale O(1). By the flow box theorem, the dynamics are governed by the
three-dimensional system (30) on the intermediate time scale O(1/

√
ε) to leading

order which describes the transition in finite (intermediate) time near the set of
folded singularities Mf . All rotations happen in this region, which is an O(

√
ε)

neighbourhood of the set Mf in system (20).
(iii) Finally, after passing the O(

√
ε) vicinity of the set of folded singularitites

Mf , solutions either follow the slow manifold on the repelling branch Sr on the
slow time scale O(1), i.e. they are canards, or they jump along a fast fiber away
from the fold F on the fast time scale O(1/ε) of system (20).

5.1. Remarks on degenerate canards. A folded singularity (x̂, ẑ, 0) in a singu-
larly perturbed system (1) with k = 1 is necessarily degenerate since (x̂, ẑ, 0) has
to fulfill g(x̂, ẑ, 0) = 0, which violates the nondegeneracy condition (16). In this
case, an equilibrium of the reduced flow crosses the fold F as a system parameter is
varied. Recall that this degenerate case relates to two phenomena, a singular Hopf
bifurcation and an associated canard explosion as described in section 1. For de-
tails, we refer to the literature on planar singularly perturbed systems (k = m = 1);
see, e.g., [16, 18, 33].

In the case k = 2, there exist two different types of degenerate folded singulari-
ties. Suppose that the first nondegeneracy condition in (16) is violated. Then we are
dealing with a folded saddle-node (type II) [35, 41, 34] and an associated singular
Hopf bifurcation [23]. This case corresponds to the unfolding of the planar canard
case and was first studied by Milik and Szmolyan [35] in a three-dimensional auto-
catalator model. Closely related to this case are also singularly perturbed problems
that have three distinct time scales; see e.g. Krupa, Popovic and Kopell [30].

On the other hand, suppose that the first nondegeneracy condition in (16) is
satisfied but the second is violated. Then this leads to the case of a folded saddle-
node (type I) [34, 41, 46]. Here we have a true saddle-node bifurcation of folded
singularities and this type I case does not involve a Hopf bifurcation. The most
prominent example is the periodically forced van der Pol relaxation oscillator where
the forcing period evolves on the slow time scale; see e.g. [41].

Degenerate canards in the case k > 2 have not been studied so far, and this will
be part of future work.

5.2. Remarks on canard induced mixed-mode oscillations. Mixed-mode os-
cillations, a mix of small and large amplitude oscillations in a periodic pattern,
are frequently observed in applications such as chemical reaction systems, neuronal
dynamics and cell signalling. In recent years, canard induced mixed-mode oscilla-
tions, i.e. a folded node structure coupled with a global return mechanism, was
identified as one likely explanation for systems with a local slow-fast structure with
two slow variables and one fast variable; see e.g. [6, 47] for details. Closely re-
lated to this phenomenon is the folded saddle-node type II structure coupled with
a global return mechanism and an associated singular Hopf bifurcation [23, 34]. A

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



APROPOS CANARDS 3307

comprehensive review of these and other related mechanisms can be found in [10]
and the references therein.

We have shown that the canard theory developed in the case k = 2 can be
extended to arbitrary slow dimensions k ≥ 2. This implies that the theory of canard
induced MMOs developed in the case k = 2 can also be extended to arbitrary slow-
fast systems. Thus, a (local) model reduction to two slow variables, a task usually
hard to establish, is, in principle, not necessary to identify canard induced mixed-
mode oscillations. Hence, we will focus in future work on slow-fast models where a
(local) reduction to two slow variables is not possible or rigorously justified. A first
application of this general canard theory deals with intracellular calcium dynamics
[26] where k = 3. We are certain that there are many applications that can benefit
from the results presented in this paper.
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