
 

A proposal for a global task planning architecture using the
RoboEarth cloud based framework
Citation for published version (APA):
Janssen, R. J. M., Molengraft, van de, M. J. G., Steinbuch, M., Di Marco, D., Zweigle, O., & Levi, P. (2012). A
proposal for a global task planning architecture using the RoboEarth cloud based framework. In F. Py, & D.
Musliner (Eds.), Proceedings of the 22nd International Conference on Automated Planning and Scheduling :
Workshop on Planning and Plan Execution for Real-World Systems: Principles and Practices (PlanEx), June 25-
29 2012, Atibaia, Brazil (pp. 51-55)

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/955cc6a4-b465-4785-8b95-b3d7890e5293


22nd International Conference
on Automated Planning and Scheduling

June 25-29, 2012, Atibaia – Sao Paulo – Brazil

PlanEx 2012
Proceedings of the Workshop on 
Planning and Plan Execution for 
Real-World Systems: Principles and 
Practices

Edited by
Frédéric Py, David Musliner



Organization

Frédéric P. Py, MBARI, United States

contact email: fpy@mbari.org

David J. Musliner, SIFT LLC, United States

contact email: musliner@sift.net 

Program Committee 

Mark Boddy, Adventium, United States 

Bradley Clement, JPL, United States 

Paul Morris, NASA Ames Research Center, United States

Nicola Muscettola, Google, United States 

Andrea Orlandini, IP-CNR, Italy   

Kanna Rajan, MBARI, United States

Alessandro Saffiotti, Orebro University, Sweden

Florent Teichteil, ONERA-CERT, France

Gérard Verfaillie, ONERA-CERT, France



Foreword

Early approaches to robot control were based on the Sense-Plan-Act (SPA) paradigm 

with planning as the core of a control-loop. Using this   paradigm, real-world 

applications merging deliberative and reactive   decision have made remarkable 

strides in the last few years. These systems have evolved from the classical concept 

of three-layered   control running off-board, to demonstrate dynamic control of 

a multitude of platforms using onboard and hybrid mixed-initiative techniques. In 

the meantime, automated planning techniques have  evolved substantially in the 

areas of modeling, reasoning methods, and   search algorithms. Together these 

advances open up new possibilities for how planning technology can be applied in 

execution, but also   reveal new concerns like the interaction between different 

decisional   components or the possible conflict between decision and 

environmental reality. The goal of this workshop is to integrate practical experience 

in fielded autonomous systems with theoretical and empirical results in automated 

planning to stimulate new perspectives on the roles and requirements for planning in 

execution.

Frédéric Py, David Muslinner

PlanEx 2012 Organizers

June 2012
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Abstract

Planning a sequence of actions is particularly difficult in
stochastic environments, where actions execution might
fail, which in turn prevents the execution of the rest of
the plan. Also, in many domains, agents cannot wait
a long time for plan generation. In this paper, we pro-
pose the use of Variable Resolution Planning (VRP).
The main idea is based on the fact that if the domain
is stochastic it is usually not worth computing a valid
(sound) long plan, since most of it will not really be
used. So, VRP generates a plan where the first k ac-
tions are applicable if the environment does not change,
while the rest of the plan might not be necessarily appli-
cable, since it has been generated using an abstraction
by removing some predicates. Also, planning with ab-
straction requires less computation time than computing
regular applicable plans. Experimental results show the
advantages of this approach in several domains over a
standard planning approach.

Introduction

Stochastic environments are challenging for Automated
Planning, where a planner has to generate a plan of actions,
and the plan execution may yield unexpected states. This
process can be prohibitively expensive for most real world
scenarios. Besides, depending on the stochasticity level of
the domain, most of the actions of the generated plan will
not be even applied when the execution of the previous ac-
tions in the plan generate an unexpected state. In the worst
case an unexpected state can be a failure state from which
the rest of the plan cannot be successfully executed.

There are different ways to approach planning and execu-
tion in stochastic domains. Different techniques can be ap-
plied depending of the information known about the envi-
ronment. If we have information about the dynamics of the
environment (failure in the actuators of a robot, the struc-
ture of the terrain, accuracy of sensors, etc), we can define
a domain model with probabilistic information (such as in
PPDDL). Then, we can build a conditional plan (Peot and
Smith 1992) where the plan takes into account all possible
alternative problems, or generate a set of policies by solv-
ing it as a Markov Decision Process (MDP) as shown by

Copyright c� 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

LAO* (Hansen and Zilberstein 2001), or LRTDP (Bonet and
Geffner 2004). But, usually, the dynamics of the environ-
ment is not known. Then, in turn we have two alternatives.
First, we can learn the dynamics. However, usually the learn-
ing effort is impractical except for small problems (Zettle-
moyer, Pasula, and Kaelbling 2005). The second solution,
and most used one, consists of using a deterministic domain
model and replan when a failure in execution is detected.

A common solution is using a repair or re-planning sys-
tem (Fox et al. 2006; Yoon, Fern, and Givan 2007; Borrajo
and Veloso 2012). In re-planning, the planner generates an
initial applicable plan and executes it, one action at a time.
If an unexpected state is detected, the system generates a
new plan. This process is repeated until the system reaches
the problem goals. Therefore, at each planning (re-planning)
step, including the initial one, the system is devoting a huge
computational effort on computing a valid plan (applicable
plan that achieves the goals), when most of it will not be ap-
plied. On the other extreme, reactive systems require much
less computational effort. They greedily select the next ac-
tion to be applied according to some configured - or learned
- knowledge. They are “mostly” blind with respect to the fu-
ture; they usually ignore the impact of the selected action on
the next actions and states. Thus, they often get trapped in
local minima, or dead-ends.

We advocate here for an approach in which a deterministic
planner devotes less time to compute a valid first portion of
the plan, and checks that there is a potential continuation of
the plan by means of abstractions, trying to avoid dead-ends
and/or decreasing computational effort. One of the advan-
tages of our approach is that it requires less planning time
than traditional planning approaches that compute a valid
complete plan, while retaining their capability of reasoning
into the future. As explained before, we assume lack of in-
formation about the dynamics of the environment, so we use
a deterministic STRIPS domain model and replan upon fail-
ure.

To design this approach, we have been inspired by the
work of Zickler and Veloso (Zickler and Veloso 2010),
where a motion planning technique is presented. It generates
a collision-free trajectory from an initial state to a goal state
in dynamic environments. They introduced the concept of
Variable Level-Of-Detail (VLOD), which focuses search on
obtaining accurate short-term motion planning, while con-



sidering the far future with a different level of detail, by se-
lectively ignoring the physical interactions with dynamic ob-
jects. This technique decreases the computational cost of the
motion planning process, so that information about different
elements of the environment is not used to search a path to
reach all goals. We introduce Variable Resolution Planning
(VRP) through predicate relaxation, a new approach to re-
duce the computational overhead of planning in stochastic
environments. It is based on two ideas: some effort is de-
voted to compute a valid head of the plan of length k; and
the rest of the plan is checked for potential reachability by
relaxing the complexity of actions and decreasing domain
details through abstraction. Our approach is based on selec-
tively ignoring some domain details, in our case predicates.

This paper is organized as follows: first in Section 2, we
formally define the representation of the planning problem.
In Section 3 we define our abstraction mechanism. In Sec-
tion 4 we describe how to implement Variable Resolution
Planning (VPR). In Section 5 we show an experimental eval-
uation of our techniques over different domains. Section 6
presents some work related with our approach. Finally, in
Section 7 we conclude and introduce future work.

Planning Framework

In this work, we focus on the use of a classical Automated
Planning approach under stochastic environments. A clas-
sical planning problem is defined in PDDL using a lifted
representation in predicate logic, but most current planners
always perform first a grounding transformation. Under that
transformation, a planning problem can be defined as a tuple
P = (F,A, I,G), where:

• F is a finite set of relevant grounded literals (also known
as facts), functions and fluents.

• A is a finite set of grounded actions derived from the ac-
tion schemes of the domain, where each action ai 2 A
can be defined as a tuple ai = (Pre,Add,Del), where
Pre(ai), Add(ai), Del(ai) ✓ F , Pre(ai) are the pre-
conditions of the action, Add(ai) are its add effects, and
Del(ai) are the delete effects. Eff(ai) = Add(ai) [
Del(ai) are the effects of the action.

• I ✓ F is the initial state.

• G ✓ F is a set of goals.

A plan π for a problem P is a set of actions (in the com-
mon case a sequence) π = (a1, . . . , an), 8ai 2 A, that trans-
forms the initial state I into a final state Sn where G ✓ Sn.
This plan π can be executed if the preconditions of each
action are satisfied in the state in which it is applied, i.e.
8ai 2 π Pre(ai) ✓ Si−1 (S0 = I).

Abstractions

An abstraction can be defined as a function that transforms
a planning problem into another (simpler) one, where low-
level details are ignored. Usually, abstractions help on reduc-
ing the problem complexity. In this work, we generate ab-
stractions by removing some predicates from the lifted rep-
resentation of the domain. Thus, since planners work at the

propositional (instantiated) level, it is equivalent to remove
literals from the preconditions and effects of actions in the
grounded representation. We will now define some concepts
related to our abstraction mechanism.

The first definition defines a mapping between a predi-
cate in the PDDL domain definition and its corresponding
groundings for problem P .

Definition 1 g(p, P ) is the set of propositions (facts) of
predicate p in problem P .

For instance, in the Blocksworld domain, if p is
(ontable ?x) and a PDDL problem P1 defines three
blocks (A, B, and C) that are on the table, then:

g(p, P1) ={(ontable A), (ontable B),

(ontable C)}

In this approach, an abstraction of an action a over a pred-
icate p removes all propositions that are groundings of pred-
icate p – g(p, P ) – from the preconditions and effects of ac-
tion a. In order to select which predicates to remove, we
split the set of facts F into three subsets: Fd ✓ F is the
set of dynamic facts, or facts that appear in the effects of at
least one action (Fd = {f 2 F | 9ai 2 A, f 2Eff(ai)}).
Fs ✓ F is the set of static facts, or facts that do not appear
in the effects of any action; and Ff ✓ F is the functions set,
or non-boolean facts that are groundings of PDDL functions
instead of PDDL predicates. We are not going to remove all
domain predicates (or their corresponding facts), so we de-
fine the candidate subset of facts to be potentially removed,
Cabs ✓ F . We will not use all predicates to generate ab-
stractions. First, static predicates are not added or deleted
during the planning process. Therefore, applying an abstrac-
tion over a static predicate does not reduce the number of ac-
tions to achieve the goals. Deleting an static predicate only
increases the number of actions that may be selected during
the search process to reach the goal state. Second, predicates
which are part of the goal subset cannot be removed, because
the planner would not reach a solution. And, finally, we are
only

considering STRIPS domains in this paper. Cabs is com-
posed of all facts except for the static facts (Fs), the func-
tions facts (Ff ) and facts that are part of the problem goals
(G). Thus:

Cabs = F \ (Fs [G [ Ff )

Next, we include our definitions of abstractions:

Definition 2 An abstraction of an instantiated action a 2
A over a predicate p in problem P is defined by function
f(a, p) = (Preabsp (a), Addabsp (a), Delabsp (a)), where:

• Preabsp (a) = Pre(a) \ g(p, P )

• Addabsp (a) = Add(a) \ g(p, P )

• Delabsp (a) = Del(a) \ g(p, P ).

For instance, in the Blocksworld domain, given a prob-
lem P1 previously defined, if a1 is pick-up(A) and pred-
icate p1 is (ontable ?x). If we select to remove p1,
g(p1, P1) = h(ontableA), (ontableB), (ontableC)i.



• Preabsp (a1) = h(clearA)(ontableA)(handempty)i \
h(ontableA), (ontableB), (ontableC)i

• Addabsp (a1) = h(holdingA)i \
h(ontableA), (ontableB), (ontableC)i

• Delabsp (a1) = h(ontableA), (clearA), (handempty)i \
h(ontableA), (ontableB), (ontableC)i.

Definition 3 An abstraction of an instantiated action a over
a set of predicates L = {p1, . . . , pn} in problem P is the
result of iteratively abstracting action a over each predicate
pi 2 L. The process can be recursively defined as:

• f(a, {p}) = f(a, p)

• f(a, {p1, . . . , pn}) = f(f(a, {p2, . . . , pn}), p1)

L will always be composed of PDDL predicates (in the
lifted representation) whose corresponding facts (ground-
ings) belong to Cabs; i.e. candidate elements of L will be in
the set of candidate predicates CL = {p | g(p, P ) ✓ Cabs}.

Definition 4 An abstraction of a PDDL problem P over a
set of predicates L ✓ CL, called P abs

L , is the result of ab-
stracting all components of P over L:

P abs
L = (F abs

L , Aabs
L , IabsL , Gabs

L )

where

• F abs
L = F \ [p∈Lg(p, P )

• Aabs
L = {aabs | a 2 A, aabs = f(a, L)}

• IabsL = I \ [p∈Lg(p, P )

• Gabs
L = G, given that the predicates in the goals are not

candidates to abstract

Definition 5 An abstract plan Π
abs
L that solves a

PDDL problem P is an action sequence Π
abs
L =

{a0, . . . , ak−1, ak, . . . an−1}. The k first actions are
applicable in P if the actions ai, i = 0 . . . k, are all in A,
and there exists a sequence of states (s0, . . . , sk), such that
s0 = I , Pre(ai) ✓ si and si+1 = si [ Add(ai) \Del(ai)
for each i = 0, . . . , k � 1. The rest of actions from
ak are applicable in an abstract P abs

L if the actions

ai, i = k . . . n, are all in Aabs
L , and there exists a sequence

of states (sk, . . . , sn), such that Preabs(ai) ✓ si and
si+1 = si [Addabs(ai) \Delabs(ai) for each i = k, . . . , n.
Thus, a partial abstract plan is composed of a standard
sound plan from the initial state s0 to state sk and an
abstract plan from state sk to a goal state.

Variable Resolution Planning

The goal of VRP in stochastic domains is to quickly come
up with a plan whose first k actions are sound and whose
rest of actions could potentially solve the problem by adding
the removed details. Thus, we will generate a search tree
where nodes of depth less or equal to k use the original
definition of the problem, and nodes below that depth will
use an abstracted version of the problem. In order to use
current planners under this approach, modifications in the
planners code are necessary. In this work, Metric-FF (Hoff-
mann 2003) has been used as a base to implement our ap-
proach. We call the new planner Abstract-MFF. Apart from

the standard inputs of Metric-FF, Abstract-MFF also re-
ceives k and L as input. Once the initial instantiation is per-
formed (computing the instantiated problem and all its com-
ponents, P = (F,A, I,G)), Abstract-MFF generates data
structures to use horizon h and abstractions. It creates two
different spaces for instantiated actions. The first space S is
composed of the actions that can be executed for the stan-
dard problem P . The second space Sabs is composed of the
actions that can be executed for the abstracted problem P abs.
Next, the planner starts the search process using ωA∗ (ω=5),
when the depth of a node is greater than the Temporal Hori-
zon, k, the abstract space, P abs, is activated for all the nodes
in the subtree of that node while the original space, P is de-
activated. The implementation basically changes the space
corresponding to the original problem P for the one cor-
responding to the abstracted problem P abs. So, the nodes
above depth k use S and the ones below that threshold use
Sabs. Finally, the planner generates an abstract plan.

We used, without success, alternative ways of performing
this implementation through compiling the dynamic change
from the original to the abstract space into the PDDL domain
model and searching on that space. For space reasons, we
cannot expand here on why it did not work, but it had to
do with generating bigger problem spaces (complexity), or
representation capabilities of current planners (expressivity).

Experimentation

To evaluate the approach presented in this paper, we have
performed a planning-execution-replanning loop on some
domains and problems. We have used MDPSim for simu-
lation of plans execution.1 We provide it with a probabilis-
tic version of each domain in PPDDL (Younes and Littman
2004), where actions can generate unexpected states with
different probabilities. In our case an state is considered as
an unexpected state when an action could not be executed
in the environment and the execution returns the previous
state. We have chosen the most simple case to define fail-
ures, because we did not have access to a simulator that is
able to introduce exogenous effects and MDPSim does not
offer a way to include them. For instance, in the Rovers do-
main when a robot moves from a waypoint1 to a waypoint3,
three possibilities can be expected in the real world. First,
the robot moves to the right waypoint (the one on the effects
of the deterministic version of the actions). Second, the robot
does not move, so it stays in the same waypoint. Finally, it
can move to another waypoint close to the origin or destina-
tion ones.

The overall system works as shown in the algorithm in 1.
Given a planning task (consisting of a deterministic PDDL
domain and problem descriptions), L (the set of predicates
to be removed) and k (the temporal horizon), the planner
generates an abstract plan (where the first k actions are non-
abstracted actions and the rest are abstracted actions). Next,
it sends every action to MDPSim. MDPSim executes each
action (with the stochastic model of the PDDL domain). If
the resulting state is not the expected one according to the

1It was developed for the First Probabilistic Planning Competi-
tion (Younes et al. 2005).



Algorithm 1: Description of the execution process in the
stochastic environment.

Data: Problem: Π = (F,A, I,G), predicates L, horizon
h

begin
plan = planning(Π, L, h)
lastState = I
while plan is empty at the current state do do

action ←− getAction(plan)
expected ←−

generateState(action, lastState)
state ←− sendActionToMDPSIM(action)
if state <> excepted then

Π ←−

generateP lanningProblem(Π, lastState)
plan = planning(Π, L, h)

else
lastState ←− state

end

deterministic version of the domain, we generate a new plan
from that state. This process is repeated as a re-planning loop
until a goal state is reached. We compare Abstract-MFF with
the standard Metric-FF planner.

Due to the characteristics of the simulator, we assume that
the different elements (robots, trucks, satellites) can wait in
a secure state during the computation or execution of a plan.

Experiments have been done on an Intel Xeon 2.93 GHZ
Quad Core processor (64 bits) running under Linux. The
maximum available memory for the planners was set to 6
GB, the maximum planning time for a problem has been
set to 1000 seconds and the maximum execution time has
been set to 30000 seconds. Each problem has been executed
fifteen times until goals are reached (we call it a run). The
following provides an evaluation of this approach over four
benchmark domains: Rovers, DriverLog, Depots and Satel-
lite domains from IPC-3. First, we present a deep analysis
on the Rovers domain to study the different effects of this
technique changing several characteristics. And second we
show the results on the rest of domains.

Rovers Domain

The technique presented in this paper has been designed
to be applied in stochastic environments. For this reason,
the initial testing of this technique has been performed on
a domain generated for a real world problem, the Rovers
Domain. It was designed for the sequential track of IPC-3
(2002) and was inspired on the Mars exploration rovers mis-
sions where an area of the planet is represented as a grid of
cells, called waypoints. They contain samples of rock or soil
that can be collected by the robots. Each robot can traverse
across different waypoints and can perform a set of differ-
ent actions (analyze rock or soil samples or take pictures of
a specific waypoint). All data collected by robots has to be
sent to the lander, that is placed in a specific waypoint. Tak-
ing in account the large number of possibilities, we have se-

lected a subset of significant values for the different param-
eters (horizon and predicate) and of experiments variables
(probability of any action failure) to test our technique:

• We have considered four predicates for re-
moval: have image, have soil analysis,

have rock analysis and at. In this paper, we only
show results for predicates have rock analysis

and at, because the results generated with the pred-
icates have image, have soil analysis are
similar to those obtained by removing the predicate
have rock analysis.

• We have selected four different horizons for each predi-
cate. k = 3, 5, 10 and 20.

• The probability of an action execution failure is included
in the definition of the action in then PPDDL domain.
We show results with 60% and 30% of failure probabil-
ity. Note that Abstract-MFF does not have access to the
probabilistic version of the domain.

In the Rovers domain, Abstract-MFF greatly reduces
the computational cost over Metric-FF when predicate
have rock analysis is removed. Table 1 and 2 com-
pares the planning time (average of all runs of the sum of
all planning times during the whole re-planing loop of each
run) when using abstraction with different values of k and a
different probability of failure.

On one hand, we have observed that removing a pred-
icate that is part of the preconditions of the actions that
achieve the problem goals provides better performance in
difficult problems, regardless of the level of stochasticity of
the environment. This reduces the difference on time be-
tween the original planner and Abstract-MFF. Abstracting
this kind of predicates allows the planner to achieve goals
more easily, reducing the number of actions required to find
a state where goals are true. For instance, if we remove the
predicate have rock analysis in the action comuni-
cate rock data presented in Figure 1, the number of actions
necessary to get a rock sample and send it to the lander will
decrease, because the robot does not have to move to the
waypoint where the rock is and it does not have to pick the
rock sample up to analyze it; the rover only needs to send
information to the lander.

(:action comunicate_rock_data

:parameters (?r - rover ?l - lander ?p - waipoint

?y - waypoint)

:precondition

(and

(at ?r ?x) (at_lander ?l ?y)

(have_rock_analysis ?r ?p) (visible ?x ?y)

(available ?r) (channel_free ?l)

)

:effects

(and

(not (available ?r)) (not (channel_free ?l))

(chanel_free ?l) (communicate_image_data ?o ?m)

(available ?r)))

Figure 1: Action comunicate rock data in PDDL.



On the other hand, in Tables 3 and 4 compare planning
time when predicate at is removed. In this case, results are
worse than those for the other predicate. Our initial assump-
tion was that predicates like at in domains where a robot
or a vehicle has to move through different positions would
offer better performance than the rest of predicates. But, in
the Rovers domain this is not the case. Thus, the decision
on which predicates to remove is important to obtain a good
performance.

Regarding the value of k, the results shown in the differ-
ent tables for the Rovers domain indicate that there is no
general rule about the influence of the value of k in the per-
formance of the planner. In some problems, lower values of
k are better and in others it is the contrary. We hypothesize
that the efficiency also depends on the percentage of action
failures or the problem to solve. Initially, we expected that
small values of k tend to increase the number of re-planning
steps, since a bigger part of the plan is abstracted, but plan-
ning time will be less, given that the plan is shorter on each
planning episode. However if the percentage of actions fail-
ures is high, the k value do not offer any advantage over the
number of planning episodes. Because if a failure appear on
the first actions of the plan, the k value only decrease the
planning time, but it generates a similar number of planning
episodes, without been affected by the value of k.

In general, results obtained in the Rovers domain confirm
our initial hypothesis: in problems where planning time is
high, abstractions significantly reduce planning time. The
first group of problems are moderately difficult and abstrac-
tion does not show a significant reduction of planning time.
But, in hard problems as 25 or 27, Abstract-MFF obtains a
reduction of the total planning time of 60% when remov-
ing predicate have rock analysis. In addition, when
two predicates (have rock analysis, have image)
are used to generate abstractions in the Rovers domain 5,
the planning time is reduced in an order of magnitude. We
would like to explore in the future other combinations of
predicates to remove.

Results in Other Domains

We report the total planning time, as well as the mean of re-
planning steps. We have selected some benchmark domains:
Depots, DriverLog and Satellite domains from IPC-3 and
Gold-Miner domain from the learning track of the IPC-6.
For each domain, we have selected two problems, two pred-
icates to remove and four different horizons (k = 3, 5, 10
and 20). The probability of an action execution failure has
been set to 30%.

Table 6 shows the results. Our approach obtains good re-
sults in easy and difficult problems. On one hand, it has good
performance in easy problems (13 and 16) in the Depots do-
main; it needs less planning time if it abstracts predicates
in and available. A similar behaviour can be observed
in the Satellite domain, whose results present a similar per-
formance as in the Rovers domain, where it obtained good
results in hard problems.

On the other hand, in the Gold Miner domain, abstrac-
tions can solve problems avoiding dead-ends. When predi-
cate robot-at is removed, the search process can avoid

dead-ends when the abstraction is applied before the dead-
end appears. Removing this predicate allows the robot to ex-
ecute any action at every location, decreasing the complexity
of the problem. However, if predicate holds-bomb is re-
moved, problems can only be solved when the value of k is
high, because the predicate holds-bomb indicates when a
robot is holding a bomb. If the number of actions to hold a
bomb is greater than k, the robot can enter in a cycle using
the abstraction to reach the goals in the last part of the plan.

Finally, these abstractions do not offer good results in all
problems. If we remove the predicate in in the DriverLog
domain, the cost of solving the problem increases, because
predicate in defines the position of the trucks and how they
move among different locations. When it is deleted, it is
possible to move to any location from every other location.
Thus, we hugely increase the branching factor. We observed
a similar behavior in the Gold Miner Domain, when predi-
cate robot-at is removed.

Related Work

This work focuses on applying abstractions over Auto-
mated Planning to reduce the computational overhead in
stochastic or dynamic environments. There have been al-
ready many approaches that generate abstractions. We re-
view some works based on abstraction in classical auto-
mated planning and motion planning, which is closely re-
lated to our work. The first work in abstractions (Sacer-
doti 1972) extended the work of Newell and Simon on GPS
and used it to develop Abstrips, which combined abstrac-
tion with STRIPS. They defined abstraction levels by assign-
ing criticalities to predicates, which define the difficulty of
achieving them. The planner used these criticalities to iter-
atively generate successive abstract plans using only predi-
cates in the corresponding abstract space. Alpine (Knoblock
1991) automatically generates abstraction hierarchies, using
the preconditions of operators. In both cases abstractions are
used to generate an abstract plan. This is refined incremen-
tally until the lowest level of criticality is expanded and goals
have been satisfied. Instead, our approach generates an ab-
stract plan the first k where actions are valid ones, while the
rest of the plan is not necessarily valid.

In recent years, abstractions have been used to generate
heuristic techniques. Hoffmann and Nebel (Hoffmann 2003)
used abstractions to compute the heuristic value of nodes by
building a relaxed plan to guide the search process, where
the delete effects of actions are ignored. Another use of ab-
stractions to build heuristics are pattern databases (PDBs),
which have been shown to be very useful in several hard
search problems (Culberson and Schaeffer 1998) and Auto-
mated Planning (Edelkamp 2001). VRP has been designed
to generate abstract plans in stochastic environments by de-
creasing computation time regardless of the technique used
to guide the search process.

More recently, changes in the representation have been
used to automatically generate finite-state controllers from
models (Bonet, Palacios, and Geffner 2009). This represents
a kind of contingent problems where actions are determinis-
tic and some fluents are observable. The controllers could be
considered general solvers in the sense that they do not solve



Prob
Metric-FF AMFF (k=3) AMFF (k=5) AMFF (k=10) AMFF (K=20)

Time SD FT Time SD FT Time SD FT Time SD FT Time SD FT

20 91 6 2 68 10 1 80 10 2 53 4 1 57 6 1

21 299 45 12 292 54 3 269 20 3 91 5 3 167 7 4

22 819 35 15 272 14 4 308 43 3 311 15 4 349 18 4

23 2676 60 32 687 190 8 542 55 7 975 76 6 1149 61 7

24 408 259 17 292 58 5 307 29 5 231 21 7 271 20 4

25 19414 2759 263 4392 269 33 4712 567 74 6340 715 78 7751 398 60

26 2522 229 25 1970 327 21 2125 587 14 648 42 16 895 43 52

27 24062 5984 237 6981 1961 61 6975 1681 80 4858 1215 42 4879 777 34

28 11848 543 228 3308 313 35 3641 559 38 3565 465 32 4451 518 35

Total 62143 18257 18967 17086 20293

Table 1: Planning time for the Rovers domain when removing predicate have rock analysis with a 60% probability of
failure. The first column corresponds to one IPC problem of the Rovers domain, the second column corresponds to Metric-FF
and the rest corresponds to Abstract-MFF with different values of k. For each planner, each column shows the average of the
sum of planning times of each run in seconds, the standard deviation (SD) in seconds and the time of the first planning process
(FT) in seconds. In bold, we highlight the best results per row.

Prob
Metric-FF AMFF (k=3) AMFF (k=5) AMFF (k=10) AMFF (K=20)

Time SD FT Time SD FT Time SD FT Time SD FT Time SD FT

20 32 4 2 20 3 1 26 6 2 21 10 1 27 9 1

21 52 16 12 97 9 3 64 20 3 52 40 3 69 22 4

22 192 26 15 100 11 4 83 14 3 99 46 4 108 39 4

23 528 193 32 260 29 8 153 21 7 177 113 6 170 71 8

24 136 10 17 104 10 5 90 12 6 85 49 7 104 37 5

25 9657 932 263 1880 464 35 1564 219 72 1567 813 78 1796 621 58

26 680 42 25 637 42 23 599 160 15 662 329 16 617 292 54

27 4581 674 237 2187 438 62 1874 585 78 1554 887 44 1989 621 35

28 3132 223 168 1076 250 33 949 175 39 929 461 31 1181 362 36

Total 18983 6365 5385 5149 6065

Table 2: Planning time for the Rovers domain when removing predicate have rock analysis with a 30% probability of
generating an unexpected state. The meaning of columns is the same as previous table.

only the original problem, but also can include changes re-
garding to the size of the problem or the probabilities of the
action effects.

The concept of abstraction has been explored across many
other areas of AI. Our work is inspired by the work of Zick-
ler and Veloso (Zickler and Veloso 2010) in motion plan-
ning. This technique generates a collision-free trajectory
from an initial state to a goal state in dynamic environments.
This work considers the far future with a different level of
detail, selectively ignoring the physical interactions with dy-
namic objects of environment. We try to apply a similar idea
in automated planning and analyze effects of ignoring any
far future information about the environment and decrease
complexity of the problem to get a better performance.

Conclusions

In this paper, we have presented Abstract-MFF, a planner
based in Metric-FF that uses an abstraction mechanism that
dynamically removes some predicates during the planning
process based on a temporal horizon, in order to improve
planning performance in stochastic environments. The main

contribution of this work consists on understanding the ef-
fects of this idea over the planning process, and how it can
be used to improve the application of planning techniques in
real environments.

Regarding the experimentation, we observe that the plan-
ning time is most of the time less than the time required by
Metric-FF. Also, the time needed to generate the first plan
is always lower, which in real environments is critical, as
it allows the execution to begin earlier. Besides, the cost of
the execution (number of executed actions) using the pre-
sented technique is roughly the same as the one of Metric-
FF, with an overall improvement of a 5%. Furthermore, the
experiments hint that combining different abstracted predi-
cates may lead to an increase in efficiency. As further work,
we would like to explore which combinations of predicates
are useful to be removed, automatic ways of selecting those,
and changing the temporal horizon dynamically. Also, it
would be interesting to select a set of problems that can-
not be solved by current planners like Metric-FF (Hoffmann
2003) or LAMA (Richter and Westphal 2008) and analyze
if our technique can solve these problems applying abstrac-



Prob
Metric-FF AMFF (k=3) AMFF (k=5) AMFF (k=10) AMFF (K=20)

Time SD FT Time SD FT Time SD FT Time SD FT Time SD FT

20 91 6 6 42 10 1 39 5 1 53 1 1 573 1 2

21 299 45 12 314 54 3 282 39 3 121 7 3 177 15 2

22 819 35 15 445 14 4 450 43 4 333 29 4 355 28 4

23 2676 60 32 1428 190 8 1530 55 4 965 30 6 1509 88 7

24 408 259 7 308 58 5 327 29 5 254 31 6 255 33 6

25 19414 2759 263 18108 269 31 12652 567 80 6370 285 73 7791 151 60

26 2522 129 25 1493 327 19 1418 587 18 668 53 12 2563 3658 52

27 24062 5984 237 7427 1961 62 10815 1681 81 4718 449 41 4799 382 34

28 11848 543 228 10973 313 35 9491 274 37 3505 313 32 4391 335 42

Total 62143 40544 37004 16987 22413

Table 3: Planning time for the Rovers domain when removing predicate at with a 60% probability of failure. The meaning of
the columns is the same as previous table.

Prob
Metric-FF AMFF (k=3) AMFF (k=5) AMFF (k=10) AMFF (K=20)

Time SD FT Time SD FT Time SD FT Time SD FT Time SD FT

20 32 4 2 20 3 1 26 6 2 21 10 1 27 9 1

21 52 16 12 97 9 3 64 20 3 52 40 3 69 22 4

22 192 26 15 100 11 4 83 14 3 99 46 4 108 39 4

23 528 193 32 312 34 18 321 84 19 297 42 14 301 59 15

24 136 10 17 124 11 12 129 72 13 103 29 10 119 46 12

25 9657 932 263 6721 424 113 6544 328 104 5567 743 98 5996 832 97

26 680 42 25 797 87 30 691 315 28 671 279 25 624 79 37

27 4581 674 237 3971 428 188 3874 498 166 2954 731 110 2973 621 137

28 3132 223 168 4184 328 179 3949 315 142 4128 537 138 3997 512 168

Total 18983 16290 15681 13892 14214

Table 4: Planning time for the Rovers domain when removing predicate at with a 30% probability of failure. The meaning of
columns is the same as previous table.

tions. We would also like to apply this technique to robotics.
In this case, we should define the interactions between the
deliberative and reactive levels taking into account the capa-
bilities and constraints of the robots and the environment, as
in (Lematre and Verfaillie 2007). In our case, it will be nec-
essary to analyze how abstractions are done when dealing
with different level of reasoning.
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Abstract

In many applications, especially autonomous exploration,
there is a trade-off inherent in the way resource usage is es-
timated at planning-time: to maintain the safety of the agent,
the plan must be robust to pessimistic outcomes; yet, to max-
imise the amount of activities undertaken, resources must be
used to their full potential. In this paper we consider a method
of planning that maintains operational safety, by detailing ad-
ditional plan fragments to be performed at execution-time on
an ‘opportunistic’ basis, if conditions permit. We consider
planning problems with soft goals, each with an attached cost
paid if the goal is not achieved. Our plan representation is
a tree structure, with simple execution-time rules: take the
best-cost branch, given some associated resource level con-
straint. We demonstrate the use of such plans can potentially
dramatically increase utility, whilst still obeying strict safety
constraints.

1 Introduction

Opportunities for communication with remote autonomous
agents are often scarce, whether in space, underwater, or in
disaster-recovery environments. The ideal of on-board plan-
ning is currently difficult to achieve due to two primary fac-
tors: the reluctance of controllers to trust fully autonomous
behaviour and the processing and memory constraints of re-
mote agents. It is therefore necessary to provide agents with
plans for long periods, whenever communication is possible.

In such situations conservatism is ubiquitous: the de-
sire for continued safe operation of autonomous exploration
agents restricts the amount of exploration that can be per-
formed. To give an example, it is estimated that the Mars
exploration rover Sojourner spent 50% of its time on the sur-
face idle as a result of either having completed all planned
activities, or due to plan failure (Fox et al. 2006). Space
agencies often generate plans on the ground, primarily by
hand with supporting software, using highly conservative es-
timates of energy consumption (Meuleau et al. 2009).

In this work, we consider the problem of creating plans
that are cost-effective, whilst adhering to the strict safety
constraints required. We consider over-subscription prob-
lems, where each goal has an associated cost, incurred if
it is not reached. Such goals may arise, for instance, from
the many competing science activities a Martian rover could
perform. We first extend a forward-chaining planning ap-

proach to support uncertainty in the numeric effects of ac-
tions, and confidence thresholds on numeric conditions. The
resulting planner is capable of optimising quality in terms of
the goal costs, whilst ensuring the plan completes with the
requisite degree of confidence.

Using such a planner it is possible to set a high confidence
threshold, and find a solution that will succeed under a wide
range of execution outcomes. This is both a strength, and
a weakness: the plan is statistically likely to succeed, but
is also likely pessimistic. At execution time, we have addi-
tional knowledge — we know how much resource past ac-
tions consumed — and although we must remain pessimistic
about the future, we may reach a point where a lower-cost
goal state could be reached, with acceptable confidence. If
the plan is fixed, though, execution will not exploit this.

As on-board replanning is often not possible, it is use-
ful to attempt to predict where potential resource excesses
could lead to lower costs, and generate conditioned branches
for use at execution time, if conditions allow. As high-
confidence plans are pessimistic, it is likely such surpluses
exist, and hence, at execution time, such branches will often
be used. Our approach gives the advantage of maintaining
control over operations (only a finite space of plans could
be executed), whilst allowing better costs through exploit-
ing opportunities that arise during execution. This is related
to the idea of creating policies, but differs in that we do not
have to generate complete policies for all eventualities. To
evaluate our approach, we compare to a single pessimistic
plan, a simulation of what could be achievable by on-board
replanning, and make an indicative comparison to a policy-
based approach. Our results show improved utilities with re-
spect to a single-plan approach, and indicate scalability with
respect to policy based approaches.

2 Background

Here we define formally the problem we are solving and
compare existing approaches in the literature to solving re-
lated problems.

2.1 Problem Definition

A planning problem Π is a tuple hF,v, I, G,A,C, θi where:

• F is a set of propositional facts;

• v is a vector of numeric variables;



• I is the initial state: a subset of F and assignments to
(some) variables in v;

• A condition is a first-order logic formula over facts in F ,
and constraints on the values of v. Such constraints are
Linear Normal Form (LNF) formulæ:

(w.v op l)

...where op 2 {>,�}; l 2 <; and w is a vector of real
values.

• G describes the goals: a set of conditions. Each g 2 G
has an associated cost c(g) 2 <+ if g is not true at the end
of the plan.

• A is a set of actions each with:

– Pre(a): a (pre)condition on its execution;

– Eff −(a), Eff +(a): propositions deleted (added) upon
applying a;

– Eff numd

(a): a set of numeric variable updates
that occur upon applying a. Each is of the form
hv op D(v, params)i where op 2 {+=,=} and D is a
parameterised probability distribution that governs the
range of outcomes of the effect, given v. (For deter-
ministic effects, D is deterministic.)

• C is a set of global conditions: each c 2 C is a condition.

• θ is the required confidence level on successful plan ex-
ecution: the constraints C are always true, and when an
action is to be executed, its preconditions are met.

We adopt the state progression semantics of the planner
RTU (Beaudry, Kabanza, and Michaud 2010). A Bayesian
Network is used to define the belief of each v, and as ac-
tions are applied, the network is updated with additional

variables. In a state Si, for each vj 2 v, a variable v
j

i

is associated with the belief of v. If an action a is ap-
plied, leading to a state Si+1, then for each effect numeric
effect hvj op D(v, params)i, two random variables are

added to the network. The first of these, D
j

i+1
, represents

D(v, params). The second, v
j

i+1
, is associated with the be-

lief of v in Si+1, and it is determined by either:

• v
j

i+1
= v

j

i +D
j

i+1
, if op is +=;

• v
j

i+1
= D

j

i+1
, if op is =.

For each variable unaffected by a, the network variable
associated with the belief of the variable is unchanged.

The Bayesian network is key to determining whether a
plan meets the required confidence level θ. An action a is
applicable in a state Si if Pre(a) is satisfied; and a given
state is valid if all the conditions C are met. A sequential
solution to Π is then a sequence of steps [a0, .., an], implying
a state trajectory [I, S0, .., Sn]. We require that with P �
θ, in a given execution of the plan, all states are valid, and
each action’s preconditions are met. In the general case, this
may require Monte-Carlo sampling of the network, but for
some subsets of the input language, this may be performed
analytically. The cost of this solution is the sum of c(g) for
goals not true in the terminal state.

2.2 Related Work

One popular approach to solving planning problems with
uncertainty, including those with resource-usage uncer-
tainty, is to use Markov Decision Processes (MDPs).
Meuleau et. al. (2009) considered the problem of maximis-
ing reward in over-subscription planning using an MDP ap-
proach and building a complete policy. MDPs are popular as
they can offer optimality guarantees that other approaches
can not. However, this comes at a price: increased com-
putational effort compared to more classical approaches;
and despite recent improvements (Mausam and Weld 2008;
Rachelson et al. 2008) scalability is increasingly challeng-
ing when continuous resources and time are involved. The
size of the policies produced is also related to our work: an
MDP, in encoding many possible plan trajectories, is less
scrutable than if fewer options are maintained, a limitation
when operations staff wish to maintain tight control and con-
fidence in the system, to be certain about the agent’s safety.

A closely related (non-MDP) approach is that of the plan-
ner RTU (Beaudry, Kabanza, and Michaud 2010) which
uses forward-chaining search to generate plans to achieve
a (fixed) set of goals. The plans found complete to within
a deadline to a certain confidence level, given the distribu-
tions on resource/time usage, and optimising some combi-
nation of makespan and cost. We build on these techniques,
addressing the additional challenges of maximising utility
in the presence of soft goals, and considering how a plan
with branches can allow execution-time conditions to dic-
tate which actions to execute. Also related is the planner
Tempastic (Younes and Simmons 2004): as in our work, it
begins with a single plan, and then augments it given the
uncertainty in the problem. The problems being considered
though are very different: Tempastic considers exogenous
events and actions with probabilistic propositional effects,
but not continuous numeric variables and uncertain numeric
effects. Related work in scheduling has considered building
branches ‘just in case’ (Drummond, Bresina, and Swanson
1994): this takes the opposite view to our work generating
optimistic schedules and building alternatives for the case
where the schedule would otherwise fail.

Prior work has considered the development of tools to
assist human activity planners in generating plans on the
ground (Fox et al. 2006). The plan validator, VAL (Howey,
Long, and Fox 2004), was used to note errors in plans; to
suggest plan repair options for use if part of the plan fails
to execute; and to suggest diagnostic actions for inclusion in
the plan. In this work all repair suggestions were to be im-
plemented by the human planners. Despite the limited na-
ture of the permitted suggestions, the approach was shown
to have greater potential than the established approach of re-
ceiving a failure report one sol, uploading a diagnostic plan
the next, and finally resuming operations on the third.

When considering the execution of plans, various exec-
utives support plan structures that contain an element of
choice. A relevant recent piece of work is the Drake sys-
tem (Conrad and Williams 2011). Here, plans are repre-
sented as Disjunctive Temporal Networks, labelling con-
straints with the consequences of the (limited set of) choices
that can be made. In effect, as in our approach, it compactly



represents a small number of plans with differing properties
and requirements, such that the executive then has flexibility
as to which choices to make (i.e. which actions to dispatch)
given runtime conditions.

Several approaches have been proposed for deterministic
over-subscription planning problems. These include work
on problems where the cost constraints are solely in this
form (Smith 2004; Edelkamp and Kissmann 2008, Benton et
al. 2009) and more general approaches for PDDL3 (Gerevini
et al. 2009) preferences (Edelkamp et al. 2006; Baier et
al. 2007; Coles and Coles 2011).

3 Over-Subscription Planning under

Resource Uncertainty

Over-subscription planning problems are characterised by
a surfeit of goals, and some sort of means for determining
which combinations of goals are preferable to others. Each
goal g is assigned a cost c(g), and the metric cost of a plan is
the sum of the costs of the goals which it does not reach. One
plan is then preferable to another if its metric cost is lower.
When planning with resource uncertainty, we have the addi-
tional consideration to make that some plans are more or less
likely to complete. There is an inherent trade-off: a good
high-confidence plan will be more conservative and hence
have worse plan cost than a good less-confident plan.

In this section, we explore the issues arising where over-
subscription and uncertainty meet, and the confidence–cost
trade-off. First, we detail how we adapt a forward-chaining
search approach for over-subscription planning, to consider
the uncertainty in effects on numeric variables and to ensure
the plan succeeeds with the desired confidence. Second, we
discuss a compromise between a single, linear solution, and
a full-policy solution to this class of problems, extending an
conservative initial plan with branches for use at execution
time if conditions are suitable.

3.1 Adapting Forward-Chaining Search

In order to effectively use a forward-chaining approach for
the class of problems being considered in this work, two im-
portant considerations to make are how to manage uncer-
tainty during search, and which heuristic to use.

For the first, we turn to the planner RTU (Beaudry, Ka-
banza, and Michaud 2010) and its Bayesian Network ap-
proach, described earlier in Section 2.1. For a given plan,
the Bayesian network captures the distribution of variables’
values in each of the states along the plan trajectory, given
the effects of the actions. Then, at each state during search,
we can query the network to ensure the plan will succeed
acceptably often: as noted in Section 2.1, with P ≥ θ, each
state S must satisfy the conditions C, and if an action a is
applied in S, S must further satisfy any preconditions of a.

This part of the approach does not change fundamentally
with the shift to over-subscription planing. Rather, what is
more involved is the heuristic guidance needed. As in the
case where all goals are hard, we need some sort of esti-
mate of ‘actions to go’ until all goals are met. Further, as
some goals might not be reachable from a given state, we
would like to identify this too: if we have already have an

incumbent solution with some cost, but carry on searching,
we can prune states based on knowledge of unreachable soft-
goals, i.e. reachable cost. To serve both of these purposes,
we take as our basis the non-LP heuristic proposed used in
LPRPGP (Coles and Coles 2011): a variant of the Metric Re-
laxed Planning Graph (RPG) heuristic (Hoffmann 2003), ex-
tended to handle PDDL3 preferences. As the ‘soft goals’ in
this work are a subset of PDDL3 (corresponding to goal pref-
erences) it suffices to describe the heuristic as follows:

1. The RPG begins with fact layer zero, fl(0): the facts and
variable values in the state S being evaluated.

2. Action layer i, al(i), contains actions applicable in fl(i);
3. fl(i+1) is derived from fl(i) by relaxing the effects of the

actions in al(i): delete effects are ignored, and optimistic
upper/lower bounds on numeric variables are kept.

4. The RPG is expanded by adding alternate fact and action
layers following these rules.

5. Graph expansion terminates at the first fact layer where
expanding the planning graph further would not lead to
more goals or soft-goals being achieved.

6. A relaxed plan is extracted, containing actions to meet
each of the goals that appeared in the RPG.

It is important to note that at point 5 here, graph expansion
only stops when each goal has been met, or has been proven
to be unreachable even under the relaxed semantics. Thus,
if a goal does not appear, it cannot be satisfied in any state
reached from S. This is a rich source of heuristic knowledge
about the cost of reachable states: if the metric comprises
only a weighted sum of binary variables denoting whether
each goal is achieved, an admissible estimate of the cost of
reachable states is the sum of cost of the goals not reached
during RPG expansion. Then, as discussed above, if search
is bounded by the cost of an incumbent solution, any state
with an admissible cost in excess of the cost of this can be
pruned: it cannot possibly lead to a better solution.

The original heuristic described above does not directly
refer to uncertainty: it assumes variables have known val-
ues, and effects have known outcomes. As such, we must
modify it to be suitable for our purposes. First, we must de-
fine the values of the variables in fact layer zero. For this,
we turn to the Bayesian network: the value of each v ∈ v is
taken by querying the network to find the mean value of v in
S. This is a single, fixed value, suitable for the RPG as de-
scribed. Second, for each numeric effect, we assume it has
its mean outcome. Third, if a precondition can be reached
in the RPG, we assume it can be satisfied 100% of the time.
If θ ≥ 0.5, then from Jensen’s inequality we known that,
in effect, we have ‘relaxed’ the uncertainty: the heuristic is
optimistic, so somehow restoring uncertainty would not al-
low more goals to be met. With reference to state pruning,
this is an important property to maintain: it is not reasonable
to prune a state on the basis of what was unreachable in the
heuristic if, actually, it may in fact be reachable.

3.2 Opportunistic Branching

This forward-chaining search approach finds a sequential so-
lution plan to a planning problem which, statistically, will



respect each constraint, given the uncertain nature of exe-
cution. When planning with a high degrees of confidence,
for instance, θ=0.999, the resulting plan is necessarily quite
conservative. It will still occasionally fail (with P < 0.001)
but on average, the plan will not come close to violating its
constraints and may therefore compromise cost.

An alternative to finding a linear solution plan, addressing
this limitation, is to find a policy: state–action pairs that, be-
ginning with the initial state, dictate which action to execute.
In the presence of continuous variables, some sort of approx-
imation is necessary, with each policy state representing a
number of reachable states. Otherwise, in theory, when ap-
plying an effect whose outcome is governed by some distri-
bution, an infinitely large number of states is reached, identi-
cal modulo different values of the variable altered. A linear
plan is a coarse approximation, where all the states reach-
able after an action are collapsed into single policy state,
associated with which is the next step of the plan. Such a
representation is compact, but as discussed, has its limita-
tions. More sophisticated approaches such as (Mausam and
Weld 2008) use discretization approaches, where applying
an action in a state will lead to one of a finite number of pol-
icy states. Such policies have better cost performance than
a linear plan, but are considerable in size, with scalability
being the main limitation of such approaches.

As a compromise measure between these, we build a par-
tial policy. The spine of the policy is a linear plan that,
with P � θ, will execute successfully. Attached to this
are branches for opportunities which, if execution-time con-
dition permits, can be followed to reach a lower-cost goal
state. The structure of such plans can be represented natu-
rally as tree hV,Ei. Each v 2 V is an action from A, with
v0 (the root node of the tree) corresponding to the first step
in the plan. Each (i, j) 2 E is labelled with one or more
condition–cost pairs, hfk, cki, where:

• After applying the action vi, if the state Si reached sat-
isfies one of these conditions fk, execution may continue
with step vj ;

• If there are several (i, j) 2 E with at least one condition
satisfied, some criterion is used to select a single vj . We
select (arbitrarily) one of:

argmin
(i,j)∈E

min{ck | hfk, cki 2 labels(i, j) ^ Si ✏ fk}

Each fk is derived by computing, using the Bayesian
network, the weakest preconditions of a plan with cost ck
rooted at vj . It specifies the constraints on the continu-
ous state variables required to ensure that, statistically, if
the j branch is chosen, it will execute successfully with
P � θ. As a simple example, consider a branch with a single
resource-using action that has an effect of v+=N [�10, 3],
i.e. decreasing v by a normally distributed amount (mean
10, standard deviation 3). If θ=0.99 and there is a condition
c 2 C that states (v � 0), this must be true with P � 0.99
after the effect has occurred. Thus, the weakest precondi-
tion of this branch is calculated as the smallest value of v for
which this holds: approximately, v � 19.35.

Algorithm 1 outlines our branch-planning approach. Ini-
tially, we call BranchPlan(I,1), and hence at line 1, the

Algorithm 1: Branch Plan

Data: S, an initial state; U , a cost-bound on search
Π ← plan(S,U);1

(V,E) ← tree for Π, with vertex i denoting step ai;2

U 0
← cost of Π;3

S0
← S;4

for each ai ∈ Π do5

S0
← apply ai to S0;6

S00
← S0 setting each variable to its mean value;7

(V 0, E0) ← BranchPlan(S00, U 0);8

if V 0 is non-empty then9

j ← root of V 0;10

i0 ← i+ 1;11

while i0 and j have at most one outgoing edge12

∧ are labelled with the same action do

increment i0 and j by 1;13

add subtree of (V 0, E0) rooted at j to (V,E);14

add (i0 − 1, j) to E;15

for each ai ∈ Π do16

for each (i, j) ∈ E do17

label (i, j) with condition–cost pairs of plans from j;18

return A plan tree, (V,E)19

planner is invoked. From lines 5 to 15, the steps of the plan
found are considered in turn. Line 7 is key to our branch-
generation approach: each variable is set to its 50th per-
centile, i.e. assuming resource change so far has been nom-
inal, rather than extreme1. This forms the basis of the initial
state for a recursive call to BranchPlan . If this returns a
non-empty plan tree, then due to the cost bound imposed,
it necessarily reaches a goal state with better cost than that
of Π, and the tree is merged in. As the plan tree may be-
gin with a plan segment identical to that following i, line 12
skips over the first steps of the new plan tree whilst it re-
mains the same as the plan that would be executed anyway.
Then, any remaining portion of the tree, rooted at j, is added
at the point where the plan diverges. Having built the tree,
the final loop (lines 16–18) label the edges out of each step
in the plan with condition–cost pairs: one such pair hf, ci for
each tree traversal (i.e. plan tail) reachable from j, labelled
with its weakest preconditions f , and the cost reached c.

An example of the output from this algorithm is shown in
Figure 1. The initial plan found is the right-most branch
of the tree, terminating with cost 116. The two octago-
nal vertices denote points from which the recursive call to
BranchPlan found a solution with better cost: from the
first, with cost 76.5; from the second, with cost 0. In
both cases, the solutions overlapped with the existing plan,
so the branches are added where they first diverge. After
com soil data w7 w9 w0, we can see an example of multi-
ple edge labels: the right-most path is labelled with two
condition–cost pairs. Which path is taken depends on the
value of energy at execution time: from [219.2, 354.7) the
left path; otherwise, the right path.

As a final remark here, we note that we assume it is rea-
sonable to consider the plans in a sequential order. In the
presence of multiple agents, this is not necessarily reason-

1Other percentiles from the CDFs could be used.



(navigate w9 w0)

(sample_soil store w0)

(drop store)

(navigate w0 w9)

(com_soil_data w0 w9 w0)

(navigate w9 w6)

(sample_rock store w6)

(drop store)

(navigate w6 w9)

(com_rock_data w6 w9 w0)

(navigate w9 w1)

(navigate w1 w7)

(sample_soil store w7)

(drop store)

(navigate w7 w1)

(navigate w1 w9)

(com_soil_data w7 w9 w0)

(navigate w9 w3)

<(energy >= 219.2), 76.5>

(navigate w9 w8)

<(energy >= 354.7),0>,
<(energy >= 120.5),116>

(sample_soil store w3)

(com_soil_data
 w3 w3 w0)

76.5

(sample_rock store w8)

(navigate w8 w9)

<(energy >= 283.9),0>

(com_rock_data
 w8 w8 w0)

(drop store)

(com_rock_data w8 w9 w0)

(navigate w9 w3)

(sample_soil store w3)

(com_soil_data w3 w3 w0)

0

116

Figure 1: An Example Branched Plan

able as, conceivably, permuting non-related steps in the so-
lution returned by the planner may lead to a more effective
branch plan. For instance, if branching after a but before b
leads to a cost-effective branch, but not vice-versa, this will
not be found if the linear plan happens to order the steps
b, a. An effective solution to this is still an open question.
One option is to fix the division of goals between agents a

priori and plan for them individually. (This would be neces-
sary, in any case, if the agents are unable to communicate or
are not orchestrated, once execution has begun.)

4 Evaluation

To evaluate our approach we investigate its performance on
a Martian rover problem. We extend the over-subscription
variant of the Rovers domain, introduced in the the Fifth In-
ternational Planning Competition (Gerevini et al. 2009). In
this domain the rover must navigate around the surface of
Mars to perform several science-gathering tasks, and com-
municate the resulting data to a lander on the Martian sur-
face. In the original encoding the metric, describing the
costs of violating soft goals, was also augmented by the to-
tal traversal cost incurred by the plan. Since navigation can
account for the majority of energy usage in real applications
we used this variable to measure energy, and made each nav-
igate action use energy according to a normal distribution
with mean equal to the traverse cost and standard deviation
of some constant multiplied by the traverse cost. All other
actions remain unchanged. Then, we added a safety con-
straint to C: (always (≥ (energy) 0)).

When constructing linear plans in this domain, in the
Bayesian networks used, the energy value in each state
is equal to the initial value plus the sum of a number of
normally-distributed effects. Analytically, this reduces to a
single normally distributed variable (sum the means, sum the
variances). As far as we are aware it is not possible to com-
pute the expected cost of our branched plans analytically.
We therefore use a Monte-Carlo approach in our evaluation
to compare the initial plans and branched plans. Each plan
is executed 1000 times using random sampling from the dis-
tributions to simulate the outcomes of stochastic effects.

In the branched plans, when branches are encountered,
the branch to follow is selected according to the values gen-
erated in simulation and the criteria described in Section 3.2.
At the end of each simulated run the plan cost is recorded:
we report the average cost achieved over these 1000 runs and
the number of failures. We consider a failure mode we dub
’standard’ for most of this evaluation: the plan is executed
as given; failure is reported if C or an action’s preconditions
are broken, and the cost of that run is disregarded. We con-
sider a second mode ‘twig’, with execution time checks at
each point, for the final hypothesis.

In order to ensure that planning terminates in a reasonable
length of time we must impose time limits on both compu-
tation of the initial plan (Ti) and each branch plan (Tb). In
theory an optimal plan will eventually be produced for every
call of the planner; in practice, however, this only occurs in
small problems as proving optimality requires exhaustion of
the search space. Imposing a time limit introduces a trade-
off, as restricting the time that the planner has to search for



Ti Tb 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

Cost(O) 900 - 370.4 294.0 370.4 58.9 326.6 198.6 126.1 278.4 192.5 169.9 325.8 292.1 602.1 180.9 1651.4 2429.8 586.1 93.1 949.1 320.7

Cost(O) 60 - 370.4 294.0 370.4 58.9 326.6 198.6 126.1 278.4 192.5 169.9 397.5 293.6 602.1 180.9 1651.4 2429.8 586.1 93.1 949.1 320.7
Cost(B) 60 10 158.3 222.0 158.3 23.5 204.5 98.5 102.2 109.3 192.5 61.6 199.9 59.7 348.8 180.9 766.0 1456.7 385.4 36.5 949.1 135.6
Cost(B) 60 5 158.3 222.0 158.3 23.5 204.5 98.5 102.2 109.3 192.5 61.6 199.9 59.7 365.9 180.9 766.0 1456.7 385.4 36.5 949.1 135.6

Cost(O) 10 - 370.4 294.0 512.2 58.9 501.3 198.6 278.3 278.4 192.5 169.9 397.5 293.6 602.1 180.9 1651.4 2429.8 586.1 93.1 949.1 1318.9
Cost(B) 10 10 158.3 222.0 278.7 23.5 397.4 98.5 170.8 109.3 192.5 61.6 199.9 59.7 348.8 180.9 766.0 1456.7 385.4 36.5 949.1 302.3

Cost(O) 5 - 370.4 294.0 512.2 58.9 501.3 198.6 278.3 278.4 192.5 169.9 397.5 293.6 602.1 180.9 1651.4 2429.8 586.1 93.1 949.1 1318.9
Cost(B) 5 5 158.3 222.0 158.3 23.5 204.5 98.5 102.2 109.3 192.5 61.6 199.9 59.7 365.9 180.9 766.0 1456.7 385.4 36.5 949.1 135.6

Cost(E) 900 370.4 294.0 370.4 58.9 501.3 343.6 126.1 278.4 192.5 281.8 325.8 284.7 585.4 180.9 3243.5 3326.4 586.1 100.5 949.1 320.7

FR(O) 900 - 1.0 0.2 1.0 0.9 0.1 0.4 0.6 0.2 0.4 1.0 0.3 0.8 0.3 0.3 0.7 0.7 0.3 0.8 0.0 1.4

FR(O) 60 - 1.0 0.2 1.0 0.9 0.1 0.4 0.6 0.2 0.4 1.0 0.2 0.7 0.3 0.3 0.7 0.7 0.3 0.8 0.0 1.4
FR(B)* 60 10 0.9 0.4 0.9 0.7 0.0 0.2 0.9 0.3 0.0 0.5 0.0 1.6 0.2 0.3 0.6 0.7 0.3 0.8 0.0 0.8
FR(B) 60 5 0.9 0.4 0.9 0.7 0.0 0.2 0.9 0.3 0.0 0.5 0.0 1.6 0.2 0.3 0.6 0.7 0.3 0.8 0.0 0.8

FR(O) 10 - 1.0 0.2 0.4 0.9 0.0 0.4 0.0 0.2 0.4 1.0 0.2 0.7 0.3 0.3 0.7 0.7 0.3 0.8 0.0 1.0
FR(B) 10 10 0.9 0.4 0.7 0.7 0.0 0.2 0.3 0.3 0.0 0.5 0.0 1.6 0.2 0.3 0.6 0.7 0.3 0.8 0.0 1.7

FR(O) 5 - 1.0 0.2 0.4 0.9 0.0 0.4 0.0 0.2 0.4 1.0 0.2 0.7 0.3 0.3 0.7 0.7 0.3 0.8 0.0 1.0
FR(B) 5 5 0.9 0.4 0.7 0.7 0.0 0.2 0.3 0.3 0.0 0.5 0.0 1.6 0.2 0.3 0.6 0.7 0.3 0.8 0.0 1.7

FR(E) 900 - 1.0 0.2 1.0 0.9 0.0 0.0 0.6 0.2 0.4 0.4 0.0 1.5 0.0 0.3 0.0 0.7 0.6 0.8 0.0 1.4

Twig Cost(O) 60 - 428.7 310.8 428.7 85.7 345.7 218.5 140.7 298.0 193.4 235.4 398.0 300.2 618.7 200.5 2033.2 2808.7 594.3 125.0 949.1 389.3
Twig Cost(B) 60 10 234.5 241.8 234.5 51.2 225.0 125.6 121.3 130.1 193.3 135.9 198.3 67.8 364.6 199.1 1277.0 1982.7 404.9 83.1 949.1 389.3

Cost(R) 60 10 189.5 189.1 190.8 55.5 213.3 120.3 99.3 124.4 118.9 87.4 195.4 49.1 316.7 188.7 1222.8 1699.8 355.3 75.4 918.5 202.2

Twig FR(O) 60 - 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Twig FR(B) 60 10 0.1 0.1 0.1 0.1 0.2 0.0 0.0 0.1 0.0 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

FR(R) 60 10 0.1 0.1 0.1 0.2 0.1 0.0 0.0 0.1 0.0 0.2 0.5 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.0

PlanNodes(O) 60 10 12 18 15 13 10 29 14 27 29 27 20 28 31 21 34 31 30 33 4 39
PlanNodes(B) 60 10 58 22 61 18 26 34 47 40 29 113 39 156 206 21 52 36 34 88 4 132

Table 1: Average Cost and Failure Rates (FR) for the Initial Linear Plan, O; the Branched Plan, B; the Equivalent-Certainty* Linear Plan

(E); and the Simulation of Online Replanning (R). θ = 0.99;σ = µ; Ti, Tb as indicated.

plans may result in higher cost plans; though if no limit
on time is upposed, planning could run (effectively) indefi-
nitely. We explore this issue later. Tests are run on a 3GHz
CPU, all calls to the planner are restricted to 3GB of RAM.

Hypothesis: the failure rate for branched plans will be
higher than for the original linear plans. Table 1 shows
the failure rates and average cost achieved for the original
linear plans and the final branched plans. Note that although
the initial linear plan generated will meet the specified confi-
dence threshold, the branched plan may not necessarily. The
table shows the failure rate for the branched plans versus
the original linear plan. It is pleasing to note that although
the failure rates are slightly higher, many remain within the
threshold, in fact, only on problem 12 does the branched
plan not meet the original threshold. In future work it may
be possible to enforce slightly stricter edge constraints to en-
sure that the plan does meet the specified confidence level;
however, for now it suffices to say that if the plan generated
does not meet the desired confidence level, the initial con-
fidence can be increased, and the planner run again, until a
branched plan is generated with the desired confidence.

Hypothesis: branched plans lead to lower cost than
linear plans to the same confidence (even if more time is
spent generating the linear plan). Observing the anytime
behaviour of LPRPG-P (Coles and Coles 2011), a planner
with similar search strategy and heuristic, we can see that
much of the improvement in plan quality occurs during the
first 10 seconds of runtime. The results presented in that
paper indicate that plans produced after 10 seconds of exe-
cution have 86% of the average quality of those found after
1800 seconds, so we therefore do not expect that limiting
planning time in order to do branching will have a severe
impact on the cost of the plans that can be produced. Fur-
ther, we expect the branching techniques to be able to im-

prove upon cost due to the assumed extra knowledge about
the environment (estimated expected energy levels, which
are checked at execution time) from which they benefit.

Comparing first the cost achieved by the initial linear plan
and that achieved by the branched plan, in Table 1, we
can see that on most problems the branched plan is able to
achieve much lower cost plans upon execution; however, as
discussed above this does also come at the cost of a slightly
increased failure rate. We therefore did further experiments:
setting θ to the failure rate of the branched plan, and find-
ing a linear plan, allowing 15 minutes of planning time. The
results are shown in Table 1 as Cost(E). As can be seen, a
linear plan cannot deliver equivalent performance.

We also tried giving the planner θ=0.99 and 15 minutes
to solve the problem, to confirm that the high cost of the
linear plans found initially is not simply due to limited plan-
ning time. These are shown as cost(O) Ti = 900 in the ta-
ble. There are only two problems (11 and 12) on which the
cost of the original linear plan is improved by planning for
15 minutes versus 60s, and on these the cost reduction is
marginal compared to the further gains made by using the
branched plan. If we reduce Ti to just 10 seconds cost in-
creases by a reasonable amount on 4 problems, suggesting
that it is useful to invest more than 10 seconds in generat-
ing a good initial plan. On a similar note we investigated
what happens if the time to generate each branch (Tb) is re-
duced from 10 seconds to 5 seconds: here there was only a
marginal increase in the cost of the branched plan in a single
problem given the same Ti (60). The problems solved dur-
ing branching are smaller than the original problem, as some
useful activity in moving towards the goals has already been
performed. In this case, therefore, increasing Tb not only
has a bigger impact on overall solving time, but also has less
impact on cost than increasing Ti.



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

B
ra

n
c
h
e
d
 P

la
n
 C

o
s
t

Initial Plan Cost

Plan Cost Varying Standard Deviation

0.125 (5,5)
0.25 (7,10)
0.5 (15,18)

1 (17,20)
2 (12,20)
4 (7,20)

 0

 200

 400

 0  200  400

Figure 2: Effect of Standard Deviation on Cost Improvement

Hypothesis: The cost decrease achieved by the
branched planning process is not simply due to inciden-
tally finding a better linear plan than the one forming the
spine of the plan tree. To assess whether this is the case,
for each plan tree, we enumerated all traversals from the root
node, keeping only those that respect the constraints with the
requisite degree of confidence, i.e. are valid linear plans. In
all cases, the quality of these plans was no better than that
used as the spine of the plan tree, i.e. that found by the first
call to the planner. As such, we can conclude that the bene-
fit of the branching is not simply due to finding better linear
plans due to increased planning time.

Hypothesis: the standard deviation affects the cost-
saving achieved by branching. Figure 4 shows the perfor-
mance of the planner when varying the standard deviation
(σ) of the energy consumption of navigate actions. The fig-
ures indicate the multiplier of the mean used as σ for energy
consumption2. The numbers in brackets after each σ figure
are the number of problems on which cost was improved
by using branching, followed by the number of problems in
which there was potential for improvement (i.e. the linear
plan had non-zero cost). When σ is low there is less uncer-
tainty, so the linear plan reaches zero more often, leaving
only 5 problems in which branching can improve. The suc-
cess rate for improvement is good for low σs as there needs
only to be a small amount of good fortune for branches to
be executable. The peak of success is in problems that are
mid-range σ=µ where the problems are constrained enough
that the linear plan does not solve them to zero, but there is
not such a large amount of uncertainty (compared to σ=2µ)
that even branching struggles to find improved plans.

Hypothesis: decreasing the confidence threshold θ will
decrease the cost-saving achieved by branching. Lower
confidence thresholds allow lower cost to be achieved in the
initial plan. Further, the likelihood that the plan uses less
resource at execution time is decreased if θ is lower. We
compared several confidence levels, and the resulting im-
provement in plan quality between the branched and origi-

2High σs may sometimes lead to negative energy use, but we
include these as the comparison remains theoretically interesting.
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Figure 3: Effect of Confidence Level on Cost Improvement

nal linear plans. As can be seen in Figure 4, when θ is low
the costs of the initial plans are low, so there is little scope
for improvement. At θ=0.6 only two linear plans have non-
zero cost, though both can be improved by branching. It is
worth noting however that when θ is very high (e.g. 0.9999)
the scope for improvement also decreases for a different rea-
son: although the initial plans are not reaching cost zero, the
branches are also often unable to better the cost achievable
at a given state, as there is too much pessimism about future
activities to make further goals achievable. Very high de-
grees of pessimism will by definition render very conserva-
tive overall plans that do not allow for as much extra scope.

Hypothesis: branched plans may scale better than
MDP approaches It is difficult to test this hypothesis con-
clusively. Direct comparison to existing approaches is not
possible as these either reason with uncertainty of a differ-
ent nature, do not consider over-subscription planning, or are
not available as runnable systems. However, we do note the
results in (Meuleau et al. 2009) give indicative scalability for
an MDP approach to solving similar problems. This planner
was also evaluated on Rovers problems: the largest prob-
lems the planner scales to in their paper involve ‘1 rover, 11
locations, 20 paths and 6 goals’ and take ‘20,000 seconds’ to
solve. Whilst we do not have exactly the same problems, nor
the same hardware (they do not specify), an indicative com-
parison can be made to the size of the problems solved using
our approach. The smallest problems we use are compara-
ble to the largest solved by the MDP approach according to
these parameters. The largest problems we use involve 19
locations, 60 paths and 19 goals. As a point of comparison
for time-taken, when we used Ti=60s and Tb=10s, genera-
tion of the largest branched plan took just 540 seconds in
total, whilst the smallest one took just over 90 seconds. This
is promising for the scalability of our approach, and is to
be expected since we do not have the burden of computing
complete, optimal, policies.

An additional consideration is the size of the resulting
plan trees. In memory-limited situations it is not possible to
store large policies, therefore the size of our branched plans,
which are not complete policies, could be advantageous. We
cannot compare to the MDP policies above as the raw data



is not given. The ‘Plan Nodes’ rows of Table 1 show that
the number of nodes in the branched plan for each problem
remains reasonable in relation to the size of a linear plan.

Hypothesis: branched plans can achieve costs compet-
itive with those obtained by online replanning. To test our
final hypothesis we consider an alternative definition of fail-
ure based on ‘twig’ execution semantics. We attach a branch
of the empty plan to each plan node (we refer to such small
branches as twigs), and calculate the weakest preconditions
for continuing with the plan. This has the effect that exe-
cution is less likely to break C: execution terminates if it is
not likely to succeed with P ≥ θ, and the cost achieved so
far is reported; rather than attempting action execution and
potentially violating the constraints.

This allows us to compare to an simulation of online re-
planning using a Monte-Carlo approach. First, we generate
a plan (limited to 60s of CPU time) and then simulate the
execution of the first step (for efficiency this same plan is
used as the initial plan for every simulation run). From the
resulting state S0, we replan, limiting search to 10s. Then,
we execute the first step of the plan from S0; and replan
again; repeating until the planner returns an empty plan, or
C is violated (signalling failure). As a point of efficiency,
if the remainder of the plan from S0 is still acceptable (exe-
cutes with confidence θ), it serves as an incumbent solution
for search, inducing a cost bound. Ultimately, a simulation
run terminates when it fails, or there are no further actions
to execute, whereupon the cost of this state is returned.

The average costs achieved by replanning are included in
Table 1 as Cost(R) and those for the closest analogue Twig
approach with the same Ti and Tb. Clearly, branched plans
are at a disadvantage to replanning as the latter is equivalent
to knowing the values for which to compute a branch at each
point in the plan. However, it is pleasing to note that despite
not knowing the actual execution-time state the improve-
ment between the original plan and the branched plan is
much greater than that between replanning and the branched
plan, meaning much of the benefit of online planning can
be gained through the use of branched plans. Indeed taking
the geometric mean across the ratios Cost(B)/Cost(0) and
Cost(R)/Cost(O) shows that whilst branching reduces cost
to 64% of Cost(O), replanning is not substantially better, re-
ducing the cost to 54% of Cost(O). This is very encouraging
for the use of branching, especially where online replanning
is infeasible.

The failure rates for twig plans, and replanning, are much
lower than those under the original execution semantics: this
is not surprising as the executive has a ‘bail-out’ option prior
to each action. The twigged plans and replanning simulation
have similar failure rates, as would be expected: each uses
the same criterion to determine whether or not to continue
execiting the plan.

5 Conclusions and Future Work
We have introduced a method for generating plans for over-
subscription planning problems in the presence of uncer-
tainty about numeric resources. We have shown how extra
branches can be added to the plan for selection at execution
time if conditions are favourable. We have demonstrated that

the use of branched plans allows lower cost to be achieved
upon execution whilst still adhering to strict safety condi-
tions.

In the future we want to investigate whether further cost
improvements can be made by making more intelligent de-
cisions about where to build branches, and the labels to use.
We wish to further investigate methods for compressing the
representation of trees: our current plan trees still contain
some redundancy. We also wish to explore the application
of our techniques in different problem domains.
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Abstract

Recent attempts to automate business processes and
medical-treatment processes have uncovered the need
for a formal framework that can accommodate not only
temporal constraints, but also observations and actions
with uncontrollable durations. To meet this need, this
paper defines a Conditional Simple Temporal Network
with Uncertainty (CSTNU) that combines the simple
temporal constraints from a Simple Temporal Network
(STN) with the conditional nodes from a Conditional
Simple Temporal Problem (CSTP) and the contingent
links from a Simple Temporal Network with Uncer-
tainty (STNU). A notion of dynamic controllability
for a CSTNU is defined that generalizes the dynamic
consistency of a CTP and the dynamic controllabil-
ity of an STNU. The paper also presents some sound
constraint-propagation rules for dynamic controllability
that are expected to form the backbone of a dynamic-
controllability-checking algorithm for CSTNUs.

Introduction and Motivation

Workflow systems have been used to model business, manu-
facturing and medical-treatment processes. However, as Bet-
tini et al. (2002) observed: “It would greatly enhance the ca-
pabilities of current workflow systems if quantitative tempo-
ral constraints on the duration of activities and their synchro-
nization requirements can be specified and reasoned about.”
Toward that end, Combi et al. (2007; 2009; 2010) presented
a new workflow model that accommodates the following key
features: tasks with uncertain/uncontrollable durations; tem-
poral constraints among tasks; and branching paths, where
the branch taken is not known in advance. Fig. 1 shows a
sample workflow from the health-care domain, similar to
one presented by Combi and Posenato (2009). In this work-
flow, all times are in minutes, and:

• tasks are represented by rounded boxes;

• branching points are represented by nine-sided boxes
called split or join connectors1;

• tasks and connectors have duration attributes, [x, y];

∗Funded in part by the Phoebe H. Beadle Science Fund.
Copyright c� 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Combi and Posenato (2009) used diamonds for connectors.

T1 : [2, 4]

T2 : [5, 20]

B1 : [1, 1]

T3 : [25, 45]

E1 : [1, 1]

T5 : [10, 20]

E2 : [1, 1]

S[136, 150]E

[1, 1][1, 1]

[1, 1]

[1, 1]

[1, 1]

[1, 5]

[1, 1]

[1, 1]

S[0, 90]S S[0, 30]S

[1, 1]

S[0, 150]E

S[40, 80]E

[40, 40]

B2 : [1, 42]

T4 : [80, 90]

Figure 1: A sample workflow

• the flow, represented by solid arrows moving downward,
specifies a partial order among tasks and connectors;

• intervals between consecutive tasks or connectors—called
delays—are bounded by intervals of the form [x, y];

• additional temporal constraints are represented by dashed
arrows, also labeled by intervals of the form [x, y].

The S and E notations on temporal constraints are used to
indicate whether a constraint applies to the starting or end-
ing times of the tasks/connectors it links. For example, the
notation S[136, 150]E on the arrow from T4 to T5 indicates
that the duration of the interval from the start of T4 to the
end of T5 must be in the range, [136, 150].

The tasks and their uncontrollable durations are:

T1: Pre-hospital issues, 2–4 min.

T2: Initial patient evaluation, 5–20 min.

T3: Percutaneous Coronary Intervention, 25–45 min.

T4: Reperfusion Fibrinolytic therapy, 80–90 min.

T5: Ancillary therapy, 10–20 min.

The semantics of execution for workflows stipulates that:



• The agent is free to choose starting times for all tasks, but
does not control their durations; instead, the agent merely
observes the durations of tasks in real time.

• The agent is free to choose starting and ending times for
all connectors, but does not control which branch a split
connector will follow; instead, the agent merely observes
which branch is followed in real time.2

If a workflow admits a strategy for executing its tasks and
connectors such that

• its execution decisions depend only on past observations
of task durations and branch directions; and

• all delays and temporal constraints are guaranteed to be
satisfied no matter how the task durations turn out and no
matter which branches are taken,

then that workflow is said to be history-dependent control-
lable (Combi and Posenato 2009; 2010). The workflow in
Fig. 1 is history-dependent controllable. A successful strat-
egy must restrict the interval for B2 to be [32, 42] if the
branch containing task T4 was taken, or [1, 31] if the branch
containing task T3 was taken. Combi and Posenato (2010)
presented an exponential-time algorithm for determining
whether any workflow is history-dependent controllable.

The rest of this paper introduces a Conditional Simple
Temporal Network with Uncertainty (CSTNU) that provides
a formal representation for the time-points and temporal
constraints underlying workflows. A CSTNU is shown to
generalize three existing kinds of temporal networks from
the literature. Similarly, the concept of dynamic controllabil-
ity for a CSTNU is shown to generalize analogous concepts
for existing kinds of networks, while also being related to
the history-dependent controllability for a workflow.

Related Temporal Networks

This section summarizes three kinds of temporal networks
from the literature: Simple Temporal Networks, Conditional
Simple Temporal Problems, and Simple Temporal Networks
with Uncertainty. For convenience, we replace the Condi-
tional Simple Temporal Problem with an equivalent alterna-
tive: the Conditional Simple Temporal Network.

Simple Temporal Networks

Definition 1 (STN). (Dechter, Meiri, and Pearl 1991) A
Simple Temporal Network (STN) is a pair, (T , C), where T
is a set of real-valued variables, called time-points, and C is a
set of binary constraints, called simple temporal constraints.
Each constraint in C has the form, Y � X  �, where X
and Y are any time-points in T , and � is any real number. A
solution to the STN, (T , C), is a complete set of assignments
to the variables in T that satisfy all of the constraints in C.

Conditional Simple Temporal Networks

A Conditional Simple Temporal Problem (CSTP) augments
an STN to include observation time-points (or observation
nodes) (Tsamardinos, Vidal, and Pollack 2003). Each obser-
vation time-point has a proposition associated with it. When

2This paper restricts attention to conditional connectors. Combi
and Posenato (2009) discuss additional kinds of connectors.

the observation time-point is executed, the truth-value of its
associated proposition becomes known. In addition, each
time-point has a label that restricts the scenarios in which
that time-point can be executed. For example, a label, A¬B,
on a time-point would indicate that that time-point could
only be executed in scenarios where the proposition A was
true and B was false.

Although not included in the formal definition, the authors
made the following reasonability assumptions about CSTPs:

(A1) A CSTP should not include any constraint relating
time-points whose labels are inconsistent.

(A2) If the label on some time-point T includes a propo-
sition Q, then the observation node, TQ, associated with
Q must be executed in all cases in which T is executed,
and TQ must be executed before T (i.e., TQ < T ).3

This section defines a Conditional Simple Temporal Net-
work (CSTN), which is the same as a CSTP except that:

• the CSTN definition explicitly incorporates the reason-
ability assumptions (A1) and (A2) (cf. conditions WD1
and WD2 in Defn. 4, below); and

• each constraint in a CSTN has a label associated with it
that subsumes the labels of the time-points it constrains
(cf. conditions WD1 and WD3 in Defn. 4, below).

Putting labels on the constraints will facilitate the propaga-
tion of constraints, as is discussed later on.

Definition 2 (Label, Label Universe). Given a set P of
propositional letters, a label is any (possibly empty) con-
junction of (positive or negative) literals from P . For conve-
nience, the empty label is denoted by �. The label universe
of P , denoted by P ∗, is the set of all labels whose literals
are drawn from P .

For example, if P = {A, B}, then

P⇤ = {�, A,B,¬A,¬B, AB, A¬B,¬AB,¬A¬B}.

Definition 3 (Consistent labels, label subsumption).

• Two labels, `1 and `2, are called consistent, denoted by
Con(`1, `2), if and only if `1 ^ `2 is satisfiable.

• A label `1 subsumes a label `2, denoted by Sub(`1, `2),
if and only if |= (`1 ) `2).

To facilitate comparison with the definition of a CSTP,
which is not repeated here due to space limitations, the order
of arguments in a CSTN is the same as in a CSTP.

Definition 4 (CSTN). A Conditional Simple Temporal Net-
work (CSTN) is a tuple, hT , C, L,OT ,O, P i, where:

• T is a finite set of real-valued time-points;

• P is a finite set of propositional letters (or propositions);

• L : T ! P ∗ is a function that assigns a label to each
time-point in T ;

• OT ✓ T is a (finite) set of observation time-points;

• O : P ! OT is a bijection that associates a unique
observation time-point to each propositional letter;

3Simple temporal constraints do not allow for strict inequali-
ties such as Y < X; however, in practice, a constraint such as
Y − X ≤ −✏, for some small ✏ > 0, achieves the desired effect.



• C is a set of labeled simple temporal constraints, each
having the form, (Y � X  �, `), where X, Y 2 T , � is
a real number, and ` 2 P ∗;

(WD1) for any labeled constraint, (Y �X  �, `) 2 C, the
label ` is satisfiable and subsumes both L(X) and L(Y );

(WD2) for each p 2 P , and each T 2 T for which either
p or ¬p appears in T ’s label,

� Sub(L(T ), L(O(p)), and

� (O(p) � T  �✏, L(T )) 2 C, for some ✏ > 0; and

(WD3) for each labeled constraint, (Y � X  �, `), and
for each p 2 P for which either p or ¬p appears in `,

� Sub(`, L(O(p))).

The following definitions will facilitate the proofs of the
subsequent lemmas.

Definition 5 (C�, LT

�
and O∅).

• If C is a set of simple temporal constraints, then C� is the
corresponding set of labeled simple temporal constraints,
where each constraint is labeled by the empty label, �. In
particular, C� = {(Y � X  �, �) | (Y � X  �) 2 C}

• For any set T of time-points, LT

�
denotes the labeling

function that assigns the empty label to each time-point.
Thus, LT

�
(T ) = � for all T 2 T . When the context al-

lows, we may write L� instead of LT

�
.

• O∅ denotes the unique function whose domain and range
are both empty. Thus, O∅ : ; ! ;.

The following lemmas show that any STN or CSTP can
be embedded within a CSTN.

Lemma 1. Let (T , C) be any STN. Then
hT , C�, L�, ;,O∅, ;i is a CSTN.

Proof. We need only check that the conditions WD1, WD2
and WD3 from the definition of a CSTN are satisfied. WD2
and WD3 are trivially satsified since P = ;. As for WD1,
each constraint in C� has � as its label, which is satisfi-
able. Furthermore, L� assigns the empty label to every node.
Thus, the empty label on each constraint trivially subsumes
the empty label on the relevant nodes. ⇤

Lemma 2 (Any CSTP is a CSTN). Let hV, E, L, OV,O, P i
be any CSTP, as defined by Tsamardinos et al. (2003), that
satisfies the reasonability assumptions, A1 and A2. Let S =
hV, C, L,OV,O, P i, where:4

C =
[

(a≤Y −X≤b)∈E

{(a  Y � X  b, L(X) ^ L(Y ))}

Then S is a CSTN.

Proof. Conditions WD1, WD2 and WD3 in the definition
of a CSTN (Defn. 4) are satisfied as follows.

(WD1) Each labeled constraint in C has the form, (V �U 
�, L(U)^L(V )). Note that L(U)^L(V ) subsumes both
L(U) and L(V ). Furthermore, by assumption A1, L(U)
and L(V ) must be mutually satisfiable.

(WD2) WD2 is simply a restatement of assumption A2.

4 For convenience, we use the expression, a ≤ Y − X ≤ b, to
represent the pair of constraints, Y − X ≤ b and X − Y ≤ −a.

(WD3) Each constraint in C has the form, (V � U  �, `),
where ` = L(U) ^ L(V ). By WD2, L(U) must subsume
L(O(p)). But then ` does too. ⇤

Simple Temporal Networks with Uncertainty

A Simple Temporal Network with Uncertainty (STNU) aug-
ments an STN to include a set, L, of contingent links (Mor-
ris, Muscettola, and Vidal 2001). Each contingent link has
the form, (A, x, y, C), where A and C are time-points, and
0 < x < y < 1. A is called the activation time-point; C is
called the contingent time-point. An agent typically activates
a contingent link by executing A. After doing so, the execu-
tion of C is out of the agent’s control; however, C is guaran-
teed to execute such that the temporal difference, C � A, is
between x and y. Contingent links are used to represent ac-
tions with uncertain durations; the agent initiates the action,
but then merely observes its completion in real time.

Definition 6 (STNU). A Simple Temporal Network with
Uncertainty (STNU) is a triple, (T , C,L), where:

• (T , C) is an STN; and

• L is a set of contingent links, each having the form,
(A, x, y, C), where A and C are distinct time-points in T ,
0 < x < y < 1, and:

� for each (A, x, y, C) 2 L, C contains the constraints,
(x  C � A  y) (cf. Footnote 4);

� if (A1, x1, y1, C1) and (A2, x2, y2, C2) are distinct
contingent links in L, then C1 and C2 are distinct time-
points; and

� the contingent time-point for one contingent link may
serve as the activation time-point for another—thus,
contingent links may form chains or trees—however,
contingent links may not form loops.

As will be seen, the semantics for contingent links is built
into the definition of dynamic controllability.

Note that if (T , C) is an STN, then (T , C, ;) is an STNU.

Conditional STNs with Uncertainty

This section introduces a Conditional STN with Uncertainty
(CSTNU) which combines features of CSTNs and STNUs.

Definition 7 (bCc). If C is a set of labeled constraints of the
form, (Y � X  �, `), then bCc is the corresponding set of
unlabeled constraints:

bCc = {(Y � X  �) | (Y � X  �, `) 2 C for some `}.

Definition 8 (CSTNU). A Conditional STN with Uncer-
tainty (CSTNU) is a tuple, hT , C, L,OT ,O, P,Li, where:

• hT , C, L,OT ,O, P i is a CSTN;

• (T , bCc,L) is an STNU; and

• for each (A, x, y, C) 2 L, L(A) = L(C), and C con-
tains the labeled constraints, (x  C � A  y, L(A)).5

The following lemmas show that any STNU or CSTN can
be embedded within a CSTNU.

Lemma 3. If (T , C,L) is an STNU, then
hT , C�, L�, ;,O∅, ;,Li is a CSTNU.

5(x ≤ C − A ≤ y, L(A)) is shorthand for the pair of labeled
constraints, (A − C ≤ −x, L(A)) and (C − A ≤ y, L(A)).
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Figure 2: The CSTNU for the workflow in Fig. 1

Proof. Let (T , C,L) be any STNU. Then (T , C) is an STN.
By Lemma 1, hT , C�, L�, ;,O∅, ;i is a CSTN. In addition,
since bC�c is necessarily the same as C, (T , bC�c,L) must
be an STNU. Finally, for each (A, x, y, C) 2 L, C con-
tains the constraints, (x  C � A  y), which implies that
C� contains the labeled constraints, (x  C � A  y, �).
Since L� assigns the empty label to each node, the last con-
dition of Defn. 8 is satisfied. ⇤

Lemma 4. If hT , C, L,OT ,O, P i is an CSTN, then
hT , C, L,OT ,O, P, ;i is a CSTNU.

Proof. Let hT , C, L,OT ,O, P i be any CSTN. Then
(T , bCc) is an STN, whence (T , bCc, ;) is an STNU. Since
L is empty, the last condition of Defn. 8 is satisfied. ⇤

The CSTNU Underlying a Worklow

Recall the sample workflow from Fig. 1. This workflow has
an underlying CSTNU that is derived by

• replacing each task with a corresponding contingent link;

• replacing each split connector by a pair of (starting and
ending) time-points, linked by a duration constraint, and
where the ending time-point is an observation node for a
proposition whose possible values correspond to the dif-
ferent branching decisions; and

• replacing each join connector by a pair of time-points,
linked by a duration constraint.

Fig. 2 shows the CSTNU underlying the workflow from
Fig. 1. In this CSTNU, each contingent link from Ai to Ci

corresponds to the task Ti from the workflow; and observa-
tion nodes are circled. Note that the branch containing task
T4 is labeled by P , whereas the alternative branch contain-
ing task T3 is labeled by ¬P . Similarly, the branch contain-
ing task T5 is labeled by Q, and the alternative branch is la-
beled by ¬Q. Note, too, that labels on edges subsume the la-

bels on the time-points they connect. Dashed edges are kept
dashed to facilitate comparison with the workflow in Fig. 1.

Dynamic Controllability

This section combines the semantics of CSTNs and STNUs
to generate a definition for the dynamic controllability of a
CSTNU. Because the semantics for the corresponding no-
tions involve similar definitions, in some cases the various
terms, such as history or dynamic will be given prefixes
or superscripts to indicate the kinds of networks or situa-
tions/scenarios they apply to. In addition, we use the term,
history, instead of pre-history, for convenience.

Dynamic Consistency of CSTNs

A CSTP is called dynamically consistent if there exists a
strategy for executing its time-points that guarantees the sat-
isfaction of all relevant constraints no matter how the truth
values of the various observations turn out (Tsamardinos,
Vidal, and Pollack 2003). The strategy is dynamic in that its
execution decisions can react to past observations, but not
those in the future. This section defines the dynamic consis-
tency of a CSTN in an equivalent way; however, for conve-
nience, there are some superficial differences in notation and
organization. Afterward, we provide a second characteriza-
tion of the dynamic property that will be useful later on.

Definition 9 (Scenario/Interpretation Function). A scenario
(or interpretation function) over a set P of propositional let-
ters is a function, s : P ! {true, false}, that assigns a truth
value to each letter in P .6 As is standard practice in propo-
sitional logic, any interpretation function can be extended to
provide the truth value for every possible formula involving
the letters in P . Thus, any interpretation function, s, can pro-
vide the truth value of each label involving letters in P . For
any label, `, the truth value of ` in the scenario, s, is denoted
by s(`). Let IP (or simply I) denote the set of all interpre-
tation functions (or complete execution scenarios) over P .

Definition 10 (Schedule). A schedule for a set of time-
points T is a mapping,  : T ! R that assigns a real num-
ber to each time-point in T . The set of all schedules for any
subset of T is denoted by ΨT (or Ψ if the context allows).

Below, the projection of a CSTN, S, onto a scenario, s,
is defined to be the STN that contains all of the time-points
and constraints from S whose labels are true under s (i.e.,
the time-points that must be executed under s, and the con-
straints that must be satisfied under s).

Definition 11 (Scenario Projection for a CSTN). Let S =
hT , C, L,OT ,O, P i be any CSTN, and s any interpre-
tation function (i.e., complete scenario) for the letters in
P . The projection of S onto the scenario s—denoted by
scPrj (S, s)—is the STN, (T +

s
, C+

s
), where:

• T +
s

= {T 2 T : s(L(T )) = true}; and

• C+
s

= {(Y �X  �) | for some `, (Y � X  �, `) 2 C
and s(`) = true}

6Unlike the prior work on CSTPs, we restrict attention to com-
plete scenarios because the subsequent definition of a history re-
quires a scenario to entail the outcome of all past observations.



Recall that condition WD1 from the definition of a CSTN
stipulates that the label on any constraint must subsume the
labels on the time-points it connects. Thus, for any constraint
in C+

s , the time-points it connects must belong to the set T +
s .

Definition 12 (Execution Strategy for a CSTN). Let S =
hT , C, L,OT ,O, P i be any CSTN. An execution strategy
for S is a mapping, σ : I ! ΨT , such that for each sce-
nario, s 2 I, the domain of σ(s) is T +

s (cf. Defn. 11). If,
in addition, for each scenario, s, the schedule σ(s) is a solu-
tion to the scenario projection, scPrj (S, s), then σ is called
viable. In any case, the execution time for the time-point X

in the schedule σ(s) is denoted by [σ(s)]X .

Below, the history of a time-point, X , relative to a sce-
nario, s, and strategy, σ, is defined to be the set of observa-
tions made before the time at which X is executed according
to the schedule, σ(s) (i.e., before the time [σ(s)]X ).7

Definition 13 (Scenario history for a CSTN). Let S =
hT , C, L,OT ,O, P i be any CSTN, s any scenario, σ any
execution strategy for S, and X any time-point in T +

s (cf.
Defn. 11). The history of X in the scenario s, for the strat-
egy σ—denoted by scHst(X, s,σ)—is given by:

scHst(X, s,σ) = {(p, s(p)) | O(p) 2 T +
s ,

and [σ(s)]O(p) < [σ(s)]X}

Note that any scenario history determines a corresponding
label whose (positive or negative) literals are in a one-to-one
correspondence with the observations, (p, s(p)), in the his-
tory. Thus, we may sometimes (e.g., in the next definition)
treat a scenario history as though it were a label.

Below, an execution strategy is called dynamic if the
schedules it generates always assign the same execution time
to any time-point X in scenarios that cannot be distinguished
prior to that time.8

Definition 14 (Dynamic Execution Strategy for a CSTN).
An execution strategy, σ, for a CSTN is called dynamic if
for all scenarios, s1 and s2, and any time-point X:

if Con(s1, scHst(X, s2, σ)), then [σ(s1)]X = [σ(s2)]X .

Definition 15 (Dynamic Consistency for a CSTN). A CSTN
is called dynamically consistent if there exists an execution
strategy for it that is both viable and dynamic.

The following definitions and lemma provide an equiv-
alent, alternative characterization of a dynamic execution
strategy for a CSTN. First, a scenario history relative to a
numerical time—not a time-point variable—is defined.

Definition 16 (Scenario History∗ for a CSTN). Let S =
hT , C, L,OT ,O, P i be any CSTN, s any scenario, σ any
execution strategy for S, and t any real number. The history∗

of t in the scenario s, for the strategy σ—denoted by

7Tsamardinos et al. (2003) define (pre)histories for arbitrary
schedules, whereas here we restrict attention to schedules of the
form, σ(s), where σ is an execution strategy and s is a scenario.

8Tsamardinos et al. (2003) include a disjunctive condition,
Con(s1, scHst(X, s2, σ)) ∨ Con(s2, scHist(X, s1, σ)). How-
ever, since s1 and s2 play symmetric roles in the two disjuncts,
and since s1 and s2 are both universally quantified (cf. Defn. 14),
it suffices to include just one of the disjuncts.

scHst∗(t, s,σ)—is the set of all observations made before
time t according to the schedule, σ(s). In particular:

scHst
∗(t, s, σ) = {(p, s(p)) | O(p) ∈ T +

s and [σ(s)]O(p) < t}

Note that for all time-points X , scenarios s, and strategies σ,
scHst(X, s, σ) = scHst∗([σ(s)]X , s,σ).

Definition 17 (Dynamic∗ Execution Strategy for a CSTN).
An execution strategy, σ, for an CSTN is called dynamic∗ if
for any scenarios, s1 and s2, and any time-point, X:

if scHst∗([σ(s1)]X , s1, σ) = scHst∗([σ(s1)]X , s2, σ),

then [σ(s1)]X = [σ(s2)]X .

Notice that in this definition, the two histories, one relative
to s1, the other to s2, are taken with respect to the same
(numeric) time, [σ(s1)]X . If the strategy σ yields schedules
for s1 and s2 that have identical histories prior to that one
time, then those schedules must assign the same value to X .

Lemma 5. An execution strategy σ for a CSTN is dynamic
if and only if it is dynamic∗.

Proof.

()) Suppose σ is a dynamic execution strategy for some
CSTN. Let s1 and s2 be any scenarios, and X any time-
point such that scHst∗(t1, s1, σ) = scHst∗(t1, s2, σ),
where t1 = [σ(s1)]X . Now s2 must be consistent with
scHst∗(t1, s2, σ), since the observations contained in that
history are a subset of the observations in s2. Thus,
s2 is consistent with scHst∗(t1, s1, σ), which equals
scHst(X, s1, σ). Thus, since σ is dynamic, we must have
that [σ(s1)]X = [σ(s2)]X . Thus, σ is dynamic∗.

(() Suppose σ is a dynamic∗ execution strategy for some
CSTN. Let s1 and s2 be any scenarios, and X any time-
point such that Con(s1, scHist(X, s2, σ)). Suppose that
[σ(s1)]X 6= [σ(s2)]X . Let t 2 R be the first time at
which the schedules σ(s1) and σ(s2) diverge. Then, t 
min{[σ(s1)]X , [σ(s2)]X}; and there must be some time-
point Y that is executed at time t in one scenario, and at
some later time in the other scenario.

By construction, t  [σ(s2)]X . Thus, scHst∗(t, s2, σ) ✓
scHst∗([σ(s2)]X , s2, σ) = scHst(X, s2, σ). Thus,
since Con(s1, scHst(X, s2, σ)), it follows that
Con(s1, scHst∗(t, s2, σ)). And since s1 is a com-
plete scenario, the observations in scHst∗(t, s2, σ) must
be a subset of the “observations” in s1. And since,
by construction, the schedules, σ(s1) and σ(s2), are
identical prior to time t, it follows that the observations in
the two histories, scHst∗(t, s1, σ) and scHst∗(t, s2, σ),
involve the same sets of observation time-points
with identical outcomes (i.e., truth values). Thus,
scHst∗(t, s1, σ) = scHst∗(t, s2, σ), whence the property
of σ being dynamic∗ implies that [σ(s1)]Y = [σ(s2)]Y ,
contradicting the choice of Y . Thus, it must be that the
schedules, σ(s1) and σ(s2) diverge, if at all, after the
execution of X , in which case, [σ(s1)]X = [σ(s2)]X .
Thus, σ is dynamic. ⇤

Dynamic Controllability of STNUs

Morris et al. (2001) call an STNU dynamically controllable
if there exists a strategy for executing its time-points that



guarantees the satisfaction of all constraints in the network
no matter how the durations of the contingent links turn out.
The strategy is dynamic in that its execution decisions can
react to observations of contingent links that have already
completed, but not to those that have yet to complete.

This section presents a sequence of definitions that cul-
minate in the definition of the dynamic controllability of an
STNU. Most of the definitions are from Morris et al. (2001),
albeit with some slight differences in notation, but history⇤

and dynamic⇤ are from Hunsberger (2009). Parallels be-
tween the definitions in this section and those from the pre-
ceding section are highlighted along the way.

Analogous to a scenario for a CSTN, which specifies the
truth value for each proposition, a situation for an STNU
specifies fixed durations for all of the contingent links.

Definition 18 (Situations). Let S be an STNU having the
k contingent links, (A1, x1, y1, C1), . . . , (Ak, xk, yk, Ck),
with respective duration ranges, [x1, y1], . . . , [xk, yk]. Then
ΩS = [x1, y1]⇥. . .⇥[xk, yk] is called the space of situations
for S. Any ! = (d1, . . . , dk) 2 ΩS is called a situation.
When context allows, we may write Ω instead of ΩS .

Schedules for STNUs are defined the same way as for
CSTNs, except that the domain for each schedule must be
the entire set of time-points, T .

The projection of a CSTN onto a scenario yields an STN
by fixing the truth value of each propositional letter and re-
stricting attention to those time-points and constraints whose
labels are true according to that scenario. Analogously, the
projection of an STNU onto a situation yields an STN by
fixing the duration of each contingent link.

Definition 19 (Situation Projection for an STNU). Suppose
S = (T , C,L) is an STNU and ! = (d1, . . . , dk) is a situ-
ation. The projection of S onto the situation !—denoted by
sitPrj (S, !)—is the STN, (T , C00), where:

C00 = C [ {(di  Ci � Ai  di) | 1  i  k}.

Definition 20 (Execution Strategy for an STNU). Let S =
(T , C,L) be an STNU. An execution strategy for S is a map-
ping, � : Ω ! Ψ, such that for each situation, ! 2 Ω, �(!)
is a (complete) schedule for the time-points in T . If, in ad-
dition, for each situation, !, the schedule �(!) is a solution
for the situation projection, sitPrj (S, !), then � is called vi-
able. In any case, the execution time for any time-point X in
the schedule, �(!), is denoted by [�(!)]X .

Analogous to a scenario history⇤ for a CSTN, a situation
history⇤ for an STNU specifies the durations of all contin-
gent links that have finished executing prior to a (numeric)
time t in a schedule �(!).

Definition 21 (Situation History⇤ for an STNU). Let S =
(T , C,L) be any STNU, � any execution strategy for S,
! any situation, and t any real number. The history⇤

of t in the situation !, for the strategy �—denoted by
sitHst(t, !, �)—is the set:

sitHst(t, !,�) = {(A, C, [�(!)]C � [�(!)]A) |
9x, y s.t. (A, x, y, C) 2 L and [�(!)]C < t}

The definition of the dynamic⇤ property for an execution
strategy for an STNU parallels that of the dynamic⇤ property
for an execution strategy for a CSTN.

Definition 22 (Dynamic⇤ Execution Strategy for an STNU).
An execution strategy, �, for an STNU is called dynamic⇤ if
for any situations, !1 and !2, and any non-contingent time-
point X:

if sitHst([�(!1)]X , !1, �) = sitHst([�(!1)]X , !2, �),

then [�(!1)]X = [�(!2)]X .

Definition 23 (Dynamic Controllability for an STNU). An
STNU S is called dynamically controllable if there exists an
execution strategy for S that is both viable and dynamic⇤.

Dynamic Controllability of CSTNUs

This section extends the notions of the dynamic consistency
of a CSTN and the dynamic controllability of an STNU to
generate a (novel) definition of the dynamic controllability
of a CSTNU. To wit, a sequence of definitions is presented
that parallels those of the preceding sections.

A drama is a scenario/situation pair that specifies fixed
truth values for all of the propositional letters and fixed du-
rations for all of the contingent links.

Definition 24 (Drama). Given a CSTNU S, a drama is any
pair (s, !), where s is a scenario, and ! is a situation. The
set of all dramas (for S) is I ⇥ Ω.

Next, the projection of a CSTNU onto a drama, (s, !), is
defined. The projection restricts attention to time-points and
constraints whose labels are true under the scenario s, while
also including constraints that force the contingent links to
take on the durations specified in the situation !.

Definition 25 (Drama Projection for a CSTNU). Suppose
S = hT , C, L,OT ,O, P,Li is a CSTNU and (s, !) is a
drama for S, where ! = (d1, . . . , dk). The projection of S
onto the drama (s, !)—denoted by drPrj (S, s,!)—is the
STN, (T +

s , C1 [ C0), where:

• T +
s = {T 2 T : s(L(T )) = true}

• C1 = {(Y � X  �) | for some `, (Y � X  �, `) 2 C,
and s(`) = true}

• C0 = {(di  Ci � Ai  di) | (Ai, xi, yi, Ci) 2 L
and Ai, Ci 2 T +

s }

Definition 26 (Execution Strategy for a CSTNU). Let S =
hT , P, L,OT ,O, C,Li be a CSTNU. An execution strategy
for S is a mapping, � : (I ⇥ Ω) ! ΨT , such that for each
drama, (s, !), the domain of �(s, !) is T +

s . � is called vi-
able if for each drama, (s, !), the schedule �(s, !) is a so-
lution to the projection, drPrj (s, !). For any time-point X
and drama (s, !), the execution time of X in the schedule,
�(s, !), is denoted by [�(s, !)]X .

The following definition combines the definitions of
history⇤ relative to a numeric time for CSTNs and STNUs.

Definition 27 (Drama History⇤ for a CSTNU). Let S =
hT , P, L,OT ,O, C,Li be a CSTNU. Let � be an execution
strategy for S, (s, !) some drama, and t some real number.
Then the history⇤ of t for the drama (s, !) and strategy �—
denoted by drHst(t, s,!, �)—is the pair (Hs,Hω) where:

• Hs = {(p, s(p)) | O(p) 2 T +
s

and [�(s, !)]O(p) < t}; and



• Hω = {(A, C, [σ(s, ω)]C � [σ(s, ω)]A) | A, C 2 T +
s ,

9x, y s.t. (A, x, y, C, ) 2 L, [σ(s, ω)]C < t}.

Note that Hs specifies the truth values of all propositions
that are observed prior to t in the schedule σ(s, ω); and Hω

specifies the durations of all contingent links that finish exe-
cuting prior to t in that schedule.

Definition 28 (Dynamic∗ Execution Strategy for a CSTNU).
An execution strategy, σ, for a CSTNU is called dynamic∗

if for every pair of dramas, (s1, ω1) and (s2, ω2), and every
non-contingent time-point X 2 T +

s1
\ T +

s2
:

if drHst(t, s1, ω1, σ) = drHst(t, s2, ω2, σ),
where t = [σ(s1, ω1)]X ,

then [σ(s1, ω1)]X = [σ(s2, ω2)]X .

Definition 29 (Dynamic Controllability for a CSTNU). A
CSTNU, S, is dynamically controllable if there exists an ex-
ecution strategy for S that is both viable and dynamic∗.

The following lemmas show that the above definition
properly generalizes the dynamic consistency of a CSTN
and the dynamic controllability of an STNU.

Lemma 6. Let S = hT , C, L,OT ,O, P i be any CSTN.
Then S is dynamically consistent if and only if the CSTNU,
Su = hT , C, L,OT ,O, P, ;i, is dynamically controllable.

Proof. Let S = hT , C, L,OT ,O, P i be any dynamically
consistent CSTN. Then S has an execution strategy, σ : I !
ΨT , that is both viable and dynamic. By Lemma 5, σ is also
dynamic∗. In addition, since S is a CSTN, Lemma 4 ensures
that Su = hT , C, L,OT ,O, P, ;i is a CSTNU. We must
show that Su has an execution strategy, σu : (I⇥Ω) ! ΨT ,
that is both viable and dynamic∗. Note that since Su has no
contingent links, Ω contains exactly one situation—the null
situation—which we shall denote by ω∅.

Define σu as follows. For any drama, (s, ω∅), let
σu(s, ω∅) = σ(s). Note that σu is an execution strategy for
Su, since the domain of σ(s) is guaranteed to be T +

s .
Since σ is viable, for any scenario s, the schedule σ(s)

is a solution to the scenario projection, scPrj (S, s). How-
ever, for any s, the schedules, σ(s) and σ(s, ω∅) are de-
fined to be the same. Furthermore, since Su has no con-
tingent links, it follows that for any s, the drama projec-
tion, drPrj (Su, s,ω∅), is the same STN as scPrj (S, s) (cf.
Defns. 11 and 25). Thus, for any s, σ(s, ω∅) is necessarily a
solution to drPrj (Su, s,ω∅), whence σu is viable.

To show that σu is dynamic∗, suppose (s1, ω∅) and
(s2, ω∅) are any dramas in I ⇥ Ω, X is a non-
contingent time-point in T +

s1
\ T +

s2
, t = [σu(s1, ω∅)]X ,

and drHst∗(t, s1, ω∅, σu) = drHst∗(t, s2, ω∅, σu). Note
that t = [σu(s1, ω∅)]X = [σ(s1)]X . Furthermore, since
there are no contingent links, drHst∗(t, s1, ω∅, σu) =
drHst∗(t, s2, ω∅, σu) if and only if scHst∗(t, s1, σ) =
scHst∗(t, s2, σ) (cf. Defns. 16 and 27). But then σ being
dynamic∗ ensures that [σ(s1)]X = [σ(s2)]X (cf. Defn. 17),
and hence [σu(s1, ω∅)]X = [σu(s2, ω∅)]X . ⇤

Lemma 7. Let S = (T , C,L) be any STNU. Then S
is dynamically controllable if and only if the CSTNU,
hT , C�, L�, ;,O∅, ;,Li, is dynamically controllable.

Proof. The proof is omitted for space reasons. It has the
same general structure as the proof of Lemma 6.

YXW

αβ, u + v

α, u β, v

Figure 3: Basic constraint propagation in a CSTNU

Toward a DC-Checking Algorithm for CSTNUs

This section addresses the problem of finding an algo-
rithm for determining the dynamic controllability of arbi-
trary CSTNUs. Given that CSTNUs combine the features of
CSTPs and STNUs, one approach would be to combine ex-
isting algorithms for determining the dynamic consistency
of CSTPs and the dynamic controllability of STNUs. How-
ever, those algorithms employ very different techniques. For
example, in the CSTP algorithm, Tsamardinos et al. (2003)
first derive a related Disjunctive Temporal Problem (DTP),
and then solve it using a dedicated DTP solver that is op-
timized by a variety of constraint-satisfaction heuristics. In
contrast, the fastest algorithm for determining whether ar-
bitrary STNUs are dynamically controllable is the O(N4)-
time algorithm developed by Morris (2006), which is a
constraint-propagation algorithm that focuses on the reduc-
ing away of lower-case edges in an STNU graph.

Another problem is that the CSTP algorithm uses ex-
ponential space and time. Conrad and colleagues (Conrad
2010; Conrad and Williams 2011) developed the Drake sys-
tem for propagating labeled constraints in temporal net-
works with choice.9 The aim was to reduce the space re-
quired to generate dispatchable plans, while accepting slight
increases in the time requirements. Although their choice
nodes are dramatically different from the observation nodes
in a CSTNU—because choice nodes are controlled by the
agent—their use of labeled value sets in constraint propaga-
tion inspired our use of labels on the edges of a CSTNU.

Constraint Propagation for CSTNUs

Consider the propagation of labeled constraints illustrated in
Fig. 3. Any dynamic execution strategy that observes the la-
beled constraints from W to X , and from X to Y , must also
observe the derived constraint from W to Y . Notice that the
label on the derived constraint is the conjunction of the la-
bels on the original constraints. The proof that this propaga-
tion rule is sound is omitted, due to space limitations.

Label Modification in a CSTNU

Morris et al. (2001) showed that the presence of contingent
links in an STNU requires new kinds of constraint propaga-
tion when checking dynamic controllability. Those kinds of
rules will also be needed for a CSTNU. However, in addi-
tion, the presence of observation nodes requires new kinds
of propagation rules. One such rule is presented below.

Consider the CSTNU fragment in Fig. 4, where 0  w,
v  w, α,β and γ are labels that do not share any proposi-
tional letters, and p is a propositional letter that does not ap-
pear in α,β or γ. The time-point, p?, is the observation time-

9In the earlier paper, they incorporated contingent links and pre-
sented a preliminary extension of their dispatchability algorithm.
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Figure 4: The context for label modification in a CSTNU

point for p. Thus, when p? executes, the value of p becomes
known. The arrow from p? to X represents the labeled con-
straint, (X − p? ≤ −w, αβ). Thus, in scenarios where αβ
is true, X + w ≤ p? must hold. Thus, in those scenarios,
X must be executed before p is observed. The arrow from
X to Y represents the constraint, (Y − X ≤ v, βγp). Thus,
in scenarios where βγp is true, Y ≤ X + v must hold—in
which case, Y must execute before the value of p is known.

Lemma 8 (Label Modification Rule). If σ is a dynamic exe-
cution strategy that satisfies the labeled constraints in Fig. 4
in all scenarios where their labels are true, then σ must
also satisfy the labeled constraint, (Y − X ≤ v, αβγ),
in all scenarios where αβγ is true. Moreover, the original
labeled constraint, (Y − X ≤ v, βγp), can be replaced
by the pair of labeled constraints, (Y − X ≤ v, αβγ) and
(Y − X ≤ v, (¬α)βγp).

Proof. Let σ be as in the statement of the lemma. However,
suppose that there is some drama, (s, ω), such that: (1) the
label αβγ is true in scenario s; but (2) the schedule, σ(s, ω),
does not satisfy the constraint, (Y − X ≤ v). Let s2 be
the same scenario as s, except that the value of p is flipped.
Now, by construction, in one of the scenarios, s or s2, the
label, αβγp, is true. Let ŝ be that scenario, and σ(ŝ, ω) the
corresponding schedule. By construction, that schedule sat-
isfies both of the labeled constraints from Fig. 4, since their
labels are true in ŝ. Thus,

[σ(ŝ, ω)]Y ≤ [σ(ŝ, ω)]X + v , since Y − X ≤ v

≤ [σ(ŝ, ω)]X + w, since v ≤ w

≤ p? , since X − p? ≤ −w

Let s̃ be the scenario that is the same as ŝ, except that the
value of p is flipped. Let t be the first time at which the
schedules, σ(ŝ, ω) and σ(s̃, ω), differ. Thus, there must be
some time-point T that is executed in one of the schedules
at time t, and in the other at some time later than t. But
in that case, the corresponding histories at time t must be
different. But the only possible difference must involve the
value of the proposition p, since all other propositions and
contingent durations are identical in the dramas, (ŝ, ω) and
(s̃, ω). Thus, p? must be executed before time t. Since t is
the time of first difference in the schedules, it follows that
p? is executed at the same time in each of these schedules.
Furthermore, since X and Y are both executed before p?
in σ(ŝ, ω), and hence before the time of first difference, it
follows that X and Y are also executed at those same times
in σ(s̃, ω). Thus, regardless of the value of p, the constraint
Y − X ≤ v is satisfied, contradicting the choice of (s, ω).

For the second part, consider the following constraints:

• C1: (Y − X ≤ v, βγp)

• C2: (Y − X ≤ v, αβγ)

• C1.1: (Y − X ≤ v, αβγp)

• C1.2: (Y − X ≤ v, (¬α)βγp)

C1 is the constraint from X to Y shown in Fig. 4. C2 is
the constraint derived in the first part of this proof. Now,
C1 is equivalent to the pair of constraints, C1.1 and C1.2,
since βγp ≡ (αβγp) ∨ ((¬α)βγp). Thus, the constraint set
{C1, C2} is equivalent to the constraint set {C1.1, C1.2, C2}.
However, since the label on C2 is subsumed by the label on
C1.1, the constraint C2 dominates the constraint C1.1. Thus,
the constraint set {C1, C2} is equivalent to {C1.2, C2}. ⇤

This and other label-modification rules are expected
to play an important role in the dynamic controllability-
checking algorithm that is a major goal of this work.

Conclusions

This paper presented a temporal network, called a CSTNU,
that generalizes CSTPs and STNUs from the literature. The
semantics of dynamic controllability for CSTNUs also gen-
eralizes the related notions for CSTPs and STNUs. The mo-
tivation for this work was to provide a framework for the
temporal constraints underlying workflows for business and
medical-treatment processes. In future work, we aim to show
that any workflow is history-dependent controllable if and
only if its underlying CSTNU is dynamically controllable.

References

Bettini, C.; Wang, X. S.; and Jajodia, S. 2002. Temporal reasoning
in workflow systems. Distributed and Parallel Databases 11:269–
306.

Combi, C., and Posenato, R. 2009. Controllability in temporal
conceptual workflow schemata. In Dayal, U. et al., ed., Business
Process Management, volume 5701 of Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer-Verlag. 64–79.

Combi, C., and Posenato, R. 2010. Towards temporal controllabili-
ties for workflow schemata. In Proc. of the 17th International Sym-
posium on Temporal Representation and Reasoning (TIME-2010),
129–136. Los Alamitos, CA, USA: IEEE Computer Society.
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Abstract

Intelligent agents in real environments are required to act
quickly and to deal with the uncertainty about the world.
Nevertheless, they must act in an effective way to achieve
their given goal. A possible solution for this problem is to
have an on-line planner that can interleave planning and exe-
cution to rapidly discover a near optimal first action without
having to determine an optimal policy. In this paper, we dis-
cuss what is required from an online planner, present some
strategies that are suited for this type planning and select two
state-of-the-art algorithms, and their extensions, for solving
probabilistic planning problems based on simulation: Real
Time Dynamic Programming (RTDP) and Upper Confidence
bounds applied to Trees (UCT)

Introduction

Probabilistic planning problems are difficult to solve, and,
usually, there is not enough time to find an optimal plan. In
this case, interleaving planning and acting can lead to better
results than offline planning. There are four important as-
pects that an online planning agent must be concerned about.
i) Focus its search around the initial state and look for the
best initial action visiting as few states as possible. ii) Max-
imize the expected reward even considering we won’t find
the optimal action, i. .e, discard very bad choices quickly
and keep the probability of chosing a near optimal action
high. iii) Reason about the planning and acting times, the
should have a ways to know if he has found the optimal ac-
tion, or how close to it, or how long it will probably take to
find it. For instance, have a bound on the value function and
an estimate of how many iterations will be needed to con-
verge some states. iv) Think big, even when at any planning
step we only need to find the best action, a planning agent
should control its resources considering all the problem and
try to use every step to make the following steps easier and
eventually find the optimal solution. These are interesting
but complex goals for a multi-purpose online planning agent
and we will see how some of these can be followed.

In this paper, we have selected two state-of-the-art algo-
rithms for solving probabilistic planning based on simula-
tion to discuss the properties they have to efficiently inter-
leave planning and execution. The selected algorithms are:
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Real Time Dynamic Programming (RTDP) and Upper Con-
fidence bounds applied to Trees (UCT). Since the winners
(1st, Prost (Keller and Eyerich 2012) and 2nd, Glutton (An-
drey Kobolov and Weld 2012b), respectively) of the IPPC
2011 (The International Probabilistic Planning Competition
of 2011) (Sanner and Yoon 2011) were based on these al-
gorithms, UCT and RTDP respectively. they provide many
insights to efficiency improvements on probabilistic plan-
ning. . We first define a formal model of the planning task
as a Markov Decision Process (MDP) and give a brief de-
scription of the RTDP (Barto, Bradtke, and Singh 1993)
and UCT (Kocsis and Szepesvri 2006) planning algorithms.
After that, we present some possible requirements and prop-
erties that a planning and execution problem might have and
discuss how RTDP and UCT planners can deal with them.

Probabilistic Planning Problem
A very used mathematical model for probabilistic planning
problems is the Markov decision process (MDP), which is
formally defined as a tuple hS,A, T,R, γi (Puterman 1994),
where S = {s1, . . . , sn} is a finite set of fully observ-
able states; A = {a1, . . . , am} is a finite set of actions,
T : S⇥A⇥S ! [0, 1] is a known stationary Markovian tran-
sition probability function; R : S⇥A ! R is a fixed known
reward function associated with every state and action; and
γ is a discount factor s.t. 0  γ  1 where rewards t time
steps in the future are discounted by γ

t. In a probabilistic
planning problem, there is a set of initial states I ✓ S, and a
possibly empty set of absorbing goal states G ⇢ S where all
actions lead to a zero-reward self-transition with probability
1, this special subclass of MDPs is called Shortest Stochas-
tic Path (SSP). For some planning problems, the goal is to
accumulate reward before achieving a given goal state, for
others, the goal is to maximize the expected discounted re-
ward for a time horizon H . In a finite horizon MDP we
define the augmented state space SH = S⇥ {0, 1, 2..H}, of
pairs state and number of remaining steps.

A policy π : S ! A (or π : SH ! A) specifies the
action a = π(s) to take in state s 2 S (or s 2 SH ). Our
goal is to find an optimal policy π

∗ that maximizes the value
function, defined as the sum of expected discounted rewards
following that policy.
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with s ∈ S if H = ∞ and s ∈ SH otherwise, and where
rt is the reward obtained at time t, and we define H = ∞

for infinite horizon problems. We define V ⇤(s) the optimal
value of the state s equals to the value it achieves in the
optimal policy, V ⇤(s) = Vπ

⇤(s).
Let X be S or SH for infinite or finite MDPs respectively.

The quality(Qπ(s, a)) of an action a ∈ A at a state s ∈ X
under a policy π is defined as the expected reward of ap-
plying action a at s assuming policy π will provide the next
rewards.

Qπ(s, a) = R(s, a) + γ ∗

X

s02X

P (s, a, s0) ∗ Vπ(s
0) (2)

where R is the reward function and P is the probabilis-
tic transition function. We also define the optimal quality
Q⇤(s, a) of a at s as the quality achieved by the optimal pol-
icy, Q⇤(s, a) = Qπ

⇤(s, a).
Regret is the difference between the discounted reward

obtained by the optimal policy π
⇤ and a given policy π, i.e.:

regret(π, s) = V
⇤(s)− Vπ(s), s ∈ X (3)

The regret of one possible first action a is the minimum re-
gret of a policy π containing that first action. Moreover, it is
how much reward is lost by choosing this action instead of
the optimal, the difference between the optimal action qual-
ity and this action‘s quality.

regret(a, s) = min
π|π(s)=a

regret(π, s) = Q
⇤(s,π⇤(s))−Q

⇤(s, a)

(4)

Simulation Based algorithms

On-line simulation based algorithms perform a search of the
best action to be executed in the current state. They ini-
tially consider the immediate rewards and make simulations
to obtain information about the possible rewards for each
of the available actions and attempt increase the expected
rewards, or equivalently, to minimize the regret of the next
action to be executed. First we’ll give an outline on the basis
of the selected algorithms and then move to online planning
strategies. Although the RTDP planning algorithm (Barto,
Bradtke, and Singh 1993) has been proposed to produce op-
timal policies, it can be an on-line algorithm, as we explain
in the next section. The UCT (Kocsis and Szepesvri 2006)
planning algorithm has already been proposed to be an on-
line planner, performing a large number of simulations to
efficiently estimate the quality of every action on the current
state with a search horizon h.

RTDP planning

One of the state-of-the-art solutions for MDP problems is the
real-time dynamic programming (RTDP) (Barto, Bradtke,
and Singh 1993) algorithm. RTDP uses asynchronous dy-
namic programming approach that applies the Bellman up-
date to states in an arbitrary order, that is, it updates states
encountered during trial-based simulations of an MDP. The
simulation trials explore the state space in a sequence of
states, updating the value of each visited state. RTDP se-
lects the next state to be visited (Figure 1) by drawing next
state samples s0 from the transition distribution for the cur-
rent greedy action a and current state s, i.e.,

CHOOSENEXTSTATE(s, a) := s
0
∼ T (s, a, ·). (5)
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Figure 1: a) RTDP Bellman update and b) RTDP next state choice.

Given an admissible upper bound Vh on the optimal value
V ⇤(s) (i.e., Vh(s)

0 ≥ V ⇤(s); ∀s), RTDP converges to the
optimal value function in the infinite limit of trials. How-
ever, in a planning and execution setting, the RTDP algo-
rithm can be interrupted at any time, generally yielding a
better solution the longer it is allowed to run.

One weakness of RTDP is that unlikely paths tend to be
ignored and as a consequence the convergence of RTDP is
slow (Bonet and Geffner 2003). Thus, some extensions of
RTDP were proposed in order to improve the convergence
such as Labeled RTDP (LRTDP) (Bonet and Geffner 2003)
and Bounded RTDP (BRTDP) (McMahan, Likhachev, and
Gordon 2005).

Upper Confidence bounds applied to Trees (UCT)

The UCT algorithm was proposed by Kocsis and Szepesvari
(2006) to solve MDPs. It is an on-line planning algorithm
where a large number of simulations are used to estimate the
quality (Q̄⇤(s, a, h)) of the best action on the current state
with a search horizon h, i.e., the total discounted reward in
h steps for each possibly applied action in the current state.
The estimative is based on the sampled rewards obtained in
rollouts (similar to RTDP trials), episodic simulations, i. e.
sequence of state, action, reward triplets according to the
MDP model, with depth equal to the search horizon. These
rollouts are performed following a heuristic or simply ran-
dom policy to decide for an action and using model simula-
tor calls to obtain a new state. Like the RTDP trials, Rollouts

occur in a limited search horizon. After finishing a simula-
tion (performing a set of rollouts for each decision step), the
action with greatest estimated reward is selected.

The UCT algorithm (Kocsis and Szepesvri 2006) builds a
tree (Figure 2) by storing previously sampled results to guide
the choices in each node. The nodes of the tree correspond
to pairs (state, search horizon). Initially the tree contains
only the initial state with the desired search horizon as a sin-
gle leaf. The UCT search strategy uses two policies (Figure
2 b)): (i) a tree policy, that is applied in the explored part
of the tree choosing actions according to previous result un-
til reaching a tree leaf and; (ii) the rollout policy, applied
only to a tree leaf choosing one of the available actions and
performing a rollout following a random policy to retrieve
a total discounted reward. UCT uses this value to estimate
the quality of the chosen action. The number of times each
action was chosen is used to calculate the average of the ob-
tained rewards to estimate Q⇤(s, a, h). After the rollout is
finished for a leaf, the reward obtained is back-propagated



upwards in the tree.

Q̄∗(s, a, h) =
(occurrences(s, a, h) ∗ Q̄∗(s, a, h) +Rew

occurrences(s, a, h) + 1
(6)

where Rew is the total reward obtained from the rollout or
the corresponding value back-propagated from a leaf up-
wards and occurrences(s, a, h) is how many times this ac-
tion was updated, incremented by one at every update.

The tree policy decides which action to choose based on
the upper bound of the actions quality (Auer, Cesa-Bianchi,
and Fischer 2002) using the exploration bias modifier con-
stant C in the following equation:

TreePolicy(s, h) =

argmaxa∈A

(

Q̄(s, a, h) + C

s

ln(occurrences(s, h))

occurrences(s, a, h)

)

UCT planning is an approach that can find near-optimal so-
lutions for large state-space planning problems. Thus, using
UCT as an on-line algorithm, it can return the most promis-
ing next action.

Online Planning

Many planning algorithms allow online planning setting,
by choosing a best action for the current state s. Offline
planning aims to solve the problem completely, obtaining a
closed optimal policy that guarantees that no further plan-
ning will be needed and executing the policy will lead the
best results. When executed online, a planning algorithm
does not need to compute a complete or even closed policy,
it only needs to focus on the choice of the action to exe-
cute in the current state. After executing the chosen action
it will plan again for the next state, possibly using informa-
tion of the previous computations to make the choices better
and faster, so that it uses less resources, in the following
steps. Executing an action can lead the agent to a smaller
state space. Note that in many domains the effects of a sin-
gle action do not last too long, due to probabilistic effects,
for instance on the SysAdmin domain from IPPC2011 even
if we have recently rebooted a computer it may soon stop
running, making long plans for this domain is meaningless
because it is hard to predict the actual future states.

Interleaving Planning and Execution

Depending on the planning and execution problem the agent
has to solve, there are different requirements that it has to
meet, related to time, horizon and quality of its decisions
(i.e., with bounded regret), in order to accomplish a given
task. In this section we discuss some of this requirements.

Focused Search

In a planning and execution problem, the time an agent can
use to decide the next action is usually short and insufficient
to complete a total plan, requiring it to restrict its search.
Recent strategies for that are:

Initial State Restriction. Online planners should perform
only partial updates, i.e. only states reachable from the ini-
tial state s0 should be updated.

Limited Horizon. For several problems with large or in-
finite horizon it is prohibitive to make unrestricted simu-
lations. Thus considering a smaller horizon to choose the
next action can be more efficient. For instance, when solv-
ing an infinite or very large horizon MDP, UCT (Kocsis
and Szepesvri 2006) or RTDP can chose a smaller horizon
size for their simulations. This is good because the sim-
ulations are faster and for most problems the current state
neighborhood can be more thoroughly explored. However,
the optimal policy for a shorter horizon may not be suited
for a some long horizon problem, causing possibly great re-
grets. One such planning domain is the Navigation from
IPPC2011(Sanner and Yoon 2011) where there is only non-
negative reward for a single goal state and initial choices
may lead to a dead-end state. Finding an appropriate hori-
zon is hard and it must be is empirically determined: for
dense transition models only small horizons are tractable
whereas for a very sparse transition model longer horizons
may be more informative. Glutton (Andrey Kobolov and
Weld 2012b) overcomes this difficulty by using reverse it-
erative deepening to solve finite horizon MDPs with in-
creasing horizon. The results from smaller horizons, value
function and labeled states, are reused for the next iteration
so it solves problems as large as the limited time permits.
Another strategy is used by the Short Sighted Probabilis-
tic Planner() is defining and solving smaller t-short-sighted
SSP, SSPs with only the states reachable in t steps. Solv-
ing a t-short SSP gives the greedy policy for the next t steps
and allows for simulation of the next t steps. This can re-
duce the number of planning stages on a simulation and find
a good approximation for the value function for states in a t
neighborhood of s0.

Bounded Error

Another possible assumption about planning time would be
a scenario where the agent is supposed to return only a safe
action in the least time, that is, the agent can only tolerate a
predefined ✏ maximum regret (Equation 4), however it must
act as soon as possible. As UCT does not have guarantees on
expected error, it can only know that increasing the number
of rollouts the chance of choosing a suboptimal action de-
creases. Thus, UCT is not fit for bounded error applications.

Bounded RTDP (BRTDP) (McMahan, Likhachev, and
Gordon 2005) maintains upper and lower bounds on the op-
timal value function, Vu(s) and Vl(s) respectively, and focus
search in areas with high value uncertainty. The gap between
upper and lower bounds provides a measure of the value un-
certainty for state s. BRTDP finishes a trial if finds a goal
state or at a limited depth or there is low value uncertainty
for all states. An interesting property of BRTDP for a plan-
ning and execution setting is that the uncertainty on the state
value can also be used to know how close we are to the opti-
mal value of the current state and then choose an action with
some optimality guarantee: a small gap between upper and
lower bound means we are near to the optimal action choice.

Efficient time Managing

An online planning agent must be able to do its best in a
given time.



Figure 2: a) UCT rollout and b) UCT tree policy (Extracted from http://videolectures.net/icaps2010 fern mcpbprp/ ).

Fixed time. In a real world problem we can also assume
we have a fixed time t before acting. For instance, in the
Mars Rover domain, the Rover must take n pictures dur-
ing the light time. When the agent starts to plan, it knows
how much time it has and this information can be used to
make an efficient plan. For instance, an online planner in a
finite horizon MDP knows how many steps he will need to
perform and it can distribute the total time among the steps
considering that the final steps will need less time due to
their smaller remaining horizon and the accumulated infor-
mation. A practical example is Gourmand (Andrey Kobolov
and Weld 2012a) whose iterative deepening strategy pro-
vides estimates on how long it takes to solve a finite horizon
MDP for each horizon h. Gourmand initially gives equal
time to all steps, but as more information is gathered it con-
siders how much time he can take from each future step
without reducing the largest solvable horizon for that step.
This spare time can be invested in trying to solve the current
step with a greater horizon.

Since UCT and RTDP are any-time algorithms, they both
can also work well with a fixed time t returning the near
optimal action they can find during this time. However, typ-
ically they do not use the time information to improve their
performance.

Meta Planning

Solving a planning task online involves a sequence of stages
where the agent can plan to decide an action and execute it.
The agent must reason to solve each stage, but in order to
perform better it should also reason on the global task. An
already mentioned strategy is the time distribution among
the stages, possibly using estimates of the time needed in
each stage, e.g. a function of the remaining horizon (An-
drey Kobolov and Weld 2012a). Another common global
strategy is the reuse of previous computations. In simulation
based algorithms for infinite horizon MDPs the estimates
of the value function or action quality can directly be ap-
plied for the next stage. However, keeping all this informa-
tion might consume too much space therefore it is possible
to make approximations to compress the reused informa-
tion. The default policies investigated by GLUTTON(An-
drey Kobolov and Weld 2012b) can also be seen as a meta

planning strategy. They are simple policies, such as cyclic
or random, which can be used as heuristics or be compared
to the planner’s solution, eventually chosen instead of the
calculated policy.

Conclusion

The main motivation of this paper is to discuss the desired
features for online probabilistic planning. Specifically, on-
line planners need to focus their search on the relevant states
w.r.t. s0 restricted to time, space and bounded error limi-
tations. We show some possibilities to efficiently deal with
time constraints and also some meta planning strategies for
on-line planning. To illustrate this discussion, we used two
very popular approaches, Monte Carlo planning and Real
Time Dynamic Programming, and their extensions which
implement most of the presented ideas. Since there has not
been much literature on using UCT and RTDP in a online
setting, this paper tries to put together most of the recent im-
provements used in the IPPC 2011, plus some insights from
our own experience on the area, that we hope to be useful
for new developments.
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Abstract

In dynamic environments unexpected malfunctions or
conditions can cause plan failure. Research has shown
that plan-repair on failure can be more efficient than
building complete conditional plans from scratch to
handle all contingencies. The effectiveness of replan-
ning depends on knowledge of exactly which plan ac-
tions failed and why. Conventional Model Based Diag-
nosis (MBD) can be used to detect such faulty compo-
nents but the modeling cost (to generate the fault model)
outweighs the benefits of MBD. In this paper, we pro-
pose an Extended Spectrum Based Diagnosis approach
that efficiently pinpoints failed actions and does not re-
quire the fault models. Our approach first computes the
likelihood of an action being faulty and subsequently
proposes optimal probe locations to refine the diagno-
sis. We also exploit knowledge of plan steps that are
instances of the same plan operator to optimize the se-
lection of the most informative diagnostic probes. This
reduces costs and improves the accuracy of diagnoses.

Introduction

Classical planning assumes that the world is deterministic
so that every action produces the intended effects. However,
this assumption is not true in real world planning domains
where actions can fail because of unexpected events. Execu-
tion of a plan will lead to an unexpected goal state if one or
more actions are behaving abnormally. When such incidents
happen one possible way to achieve the desired goal state is
repairing the original plan by adding/removing some actions
(van der Krogt and de Weerdt, 2005). For example, consider
a multimodal freight logistics system, where a planner such
as TIMIPLAN generates optimal plans to deliver goods from
one location to another (Flórez et al., 2011). TIMIPLAN has
a plan monitoring component checking whether the execu-
tion of plans deviates from the expected outcome and trig-
gers a replanning module if needed. To avoid replanning
from scratch, the planner uses plan repair to change the ini-
tial plan as little as possible. For example, a damaged truck
is replaced by a new truck and TIMIPLANS greedily se-
lects such a truck with the least estimated total cost. This,
however, assumes full observability of the health state of the
trucks which in general might be too costly or in some cases
infeasible.

Model based diagnosis is used to infer the set of faulty
component(s) in a system from observations and back-
ground knowledge (Reiter, 1987). It exploits a descriptive
behavioral model of components together with a structural
model of how the components are connected to compute the
implications of observations. The idea of MBD can be fur-
ther extended to diagnose faulty actions in a plan where the
plan can be seen as a system and the action can understood
as a component MINI-MAX (Roos and Witteveen, 2009).
This view enables the application of well known diagno-
sis techniques to plan descriptions. For instance, knowing
that a road must be clear for a truck to pass, and observing
that a truck has arrived from a distant city allows the sys-
tem to infer that the road from that distant city is clear even
though this cannot be directly observed. Methodology such
as the pervasive diagnosis framework (Kuhn et al., 2010),
has demonstrated how diagnosis can be performed on sys-
tems controlled by plans, but makes the simplifying assump-
tion that the planning goal is a single output for the system
and that any failed action has a direct observable effect on
the output. It is therefore unsuitable for domains such as the
logistics domain where many goals must be achieved simul-
taneously and action failures have local effects that are only
indirectly related to the goals.

While powerful, model-based techniques require accurate
fault models which are expensive to develop and in some
cases the required data cannot be obtained at all. For exam-
ple, it may be difficult to model all the ways in which a truck
can fail to deliver a package to a destination. The proposed
Spectrum Based Diagnosis (SBD) approach makes use of
abstract frequency statistics to reveal possible causes of a
problem without a fault model of the system. SBD has been
successfully applied for software fault localization (Abreu et
al., 2009) and hardware diagnosis (Arjan Van Gemund and
Abreu, 2011). In our approach we use SBD to determine the
health state of a plan step which infers the health state of
corresponding action. In the planning domain, it is common
for a single plan operator to be instantiated many times for
different plan steps. For instance, a transport operation might
be instantiated with the same truck to carry packages on sev-
eral different routes in a plan. All plan steps that are instan-
tiated from the same operator will fail if there is something
wrong with the plan operator. For instance, every attempt to
schedule a shipment on a blocked road will fail. In the online



replanning context, we are given the plan ahead of time, so
we can exploit knowledge about the operator dependencies
of actions within a plan. We propose Extended Spectrum
Based Diagnosis which is able to exploit available informa-
tion about such dependencies in the plan by elegantly ex-
tending the spectrum matrix. Finally, in domains, such as the
logistics domain, we often have the ability to take informa-
tion gathering actions. Perhaps we could get the dispatcher
to call drivers and ask for a report on road conditions along
a particular segment. However, each of these actions has
costs involved. We address this, by combining our extended
spectrum based diagnosis with an optimal probing strategy,
which uses a mutual information criteria. Given the result-
ing information, standard replanting techniques are used to
repair the plan. The result is a practical approach to planning
for online systems with dynamic failures that works with in-
completely described systems but exploits the known infor-
mation to efficiently repair plans with the lowest cost. In the
following sections we develop the mathematical framework
for extended spectrum based diagnosis and demonstrate it
on a notional multimodal transportation problem.

Preliminaries

Our planning formalism is modeled after the STRIPS plan-
ner (Fikes and Nilsson, 1971). Our specific notation is cov-
ered in following subsections.

State The world can be described by a finite set Var =
{v1, v2, . . . , vn} of variables and their respective value do-
mains Di. A particular state is denoted by an n-tuple σ =
(σ(v1), . . . ,σ(vn)) 2 D1 ⇥D2 ⇥ · · ·⇥Dn. In multimodal
transportation system, the variables would represent the lo-
cations of individual items such as trucks and goods to be
shipped.

Actions, plan operators and plan steps An action refers
to an activity that results in some change of the (current)
state of the world. A plan operator refers to a description of
such an action in a plan. More exactly, a plan operator o is a
function mapping state (σ0) to another state (σ1).

An instantiation of an operator o with specific arguments
is called a plan step. It maps a specific state into another
specific state. Therefore, given a set O of plan operators, we
consider a set S = inst(O) of instances of plan operators in
O, called the set of plan steps. A plan step will be denoted
by a small roman letter si. For example, a plan operator can
be understood as a shipping action by a specific mode of
transportation, i.e., a truck, a train or a ship. Such a shipping
action can be used at several places in the plan using the
same truck. Each specific occurrence of such a truck trans-
portation is a plan step.

If plan step s is an instantiation of operator o, we say
that o(s) = o. If for two plan steps s and s0 it holds that
o(s) = o(s0) they are said to be related to each other. In
other words, s and s0 are sharing same resource therefore
there resource dependency between these two plan steps.
For example, if the same truck (plan operator) is used to ex-
ecute two different transportations (plan steps), these plan
steps are related. Note that here plans differ from systems

where normally components operate quite independently
from each other. In plans, it seems rational to assume that
a structural fault in the truck might affect at least a subset of
its instantiations (plan steps).

If two plan steps are instantiated from the same operator,
we say that they are related. Let o(s) be the operator that
step s is instantiated from. Given two plan steps s and s0, if
o(s) = o(s0) then they are related. For example, if the same
truck (plan operator) is used to execute two different trans-
portations (plan steps), these plan steps are related. Note that
unlike typical physical systems in which components that
make up the system fail independently, plans which contain
related plan steps need to model the dependence in the fail-
ures between the related plan steps.

Plan and plan execution We represent our plans as a
partially ordered set of steps. Formally, a plan is a tuple
P = hO, S,<i where S ✓ inst(O) is a set of plan steps
occurring in O and (S,<) is a partial order (Cox, Durfee,
and Bartold, 2005). If step s0 < s then s0 must be executed
before s. Same < relation can be used to denote the rela-
tive order between states. Figure 1 gives an illustration of a
partially ordered plan.
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Figure 1: A partially ordered plan graph in which an initial
state σ0 is transformed by plan steps (si for i = 1, 2, . . . , 8)
into a goal state σgoal. Each state characterizes the values of
five variables v1 , v2 , v3 , v4 and v5 . Plan steps having the
same color (e.g. s1 and s7, and s2 and s5 are instantiations
of the same plan operator.

Observations Our framework enables us to observe a set
of values of the variables making up a state of the world.
We denote an observation of variable v in state σ by σv . We
assume that a cost is associated with any observation, except
for observing the initial state (σ0) and the goal state σgoal.
For ease of exposition, we assume all probes have equal cost.



Plan Diagnosis

We use conventional MBD notation to represent the plan we
are diagnosing.

Definition 1 A system is a pair (P,OBS) where P is a plan
tuple hO, S,<i and OBS is the set of values of the observed
variables at the initial state σ0 and the goal state σgoal.

Plan execution is validated by continuously monitoring the
goal state. The difference in the observed value σgoal(v)0

of any variable v in the goal state from the expected value
σgoal(v) implies the plan execution failure, i.e., some plan
steps are not executed in a correct way. For example, con-
sider the plan shown in Figure 1. Suppose this plan rep-
resents a multimodal transportation plan where five goods
(v1 . . . v5) need to be delivered from initial location to goal
location using different transportation modes (s1 . . . s8). In
the final destination, it is observed that two goods (v2 and
v3) have not arrived which implies one or more plan steps
are faulty.

Let hj 2 {ok, ab} be the health state of plan step sj where
ok represents normal behavior and ab abnormal behavior. In
establishing which part of the plan fails, we are only inter-
ested in those plan steps qualified as abnormal. Therefore, a
plan diagnosis can be defined as following:

In establishing which part of the plan fails, we are only in-
terested in those plan steps qualified as abnormal. Therefore,
a plan diagnosis can be defined as following:

Definition 2 (Diagnosis) A diagnosis PD of a plan P =
hO, S,<i is a tuple PD = hO, S,<,Di, where D ✓ S
is the subset of plan steps qualified as abnormal (and there-
fore, S �D is the subset of plan steps qualified as ok).

Spectrum Based Diagnosis

In absence of a detailed fault model of plan operators and
plan steps, SBD is a suitable diagnosis methodology for the
problem in hand. The basic principle of SBD can be de-
scribed as follows: if the value of a variable in the goal state
is incorrect, then one or more plan steps involved in genera-
tion of that variable are abnormal.

Obtaining the Spectrum Matrix The spectrum matrix
shows for every variable in σgoal which plan steps are in-
volved from the state σ0 to σgoal. It records, in the goal
state, whether a particular variable vi has the expected value
or not. Together with the information about involvement
of plan steps, the resulting spectrum gives debuggers hints
about the plan steps which are more likely related to failure,
and hence have higher possibility to contain the faults.

The spectrum matrix (A, e), where A = [aij ] is the plan
spectrum and e is the error vector can be constructed as fol-
lows: The plan spectrum A has N rows (one for each vari-
able) and M columns (one for each plan step). We have
aij = 1 if a plan step sj is involved in the generation of vari-
able vi in σgoal, else aij = 0. The vector e stores whether
the outcome for variable vi has the expected value (ei = +)
or not (ei = �).

For example, suppose that in the plan presented in Figure
1, the value of variable v2 and v3 is not what we would ex-

pect in the goal state. Therefore ei = � for i = 2 and i = 3
and the following spectrum matrix can be obtained:

s1 s2 s3 s4 s5 s6 s7 s8 e
v1 1 0 1 0 0 1 0 0 +
v2 1 0 1 0 0 1 0 0 -
v3 1 1 1 1 0 0 1 0 -
v4 1 1 0 1 1 0 0 1 +
v5 1 1 0 1 1 0 0 1 +

In any row with an unexpected outcome, at least on of the
components used must be faulty. A minimal hitting set al-
gorithm, STACCATO (Abreu et al., 2009), can be applied to
the set of rows with unexpected outcomes to generate the set
of diagnoses candidates (ck) {c1 =< s1 >, c2 =< s3 >
, c3 =< s2, s6 >, c4 =< s4, s6 >, c5 =< s7, s6 >}.

The Spectrum Matrix for Plan Steps with Shared Re-
sources The candidate < s2, s6 > implies that the opera-
tor associated with s2 may be faulty but it could be expensive
or difficult to probe the output of s2. From our knowledge of
the plan, we know that s2 is instantiated from the same op-
erator as s5. Therefore s5 is also likely to fail, if s2 fails.
In this case, the failure of s5 may have been intermittent or
the failure may not have been relevant to the preconditions
of the subsequent step s8 so it did not have an effect on the
final goal state σgoal. This is called a masked fault and it
is not picked up by standard SBD methods. This insight is
important, because probing at s5 may be easier and cheaper
than probing at s2. Imagine a scenario in which steps s2 and
s5 use the same truck. Suppose in s2, the truck is used at a
distant location where it is difficult to inspect. If it is later
used in a plan step s5 at a location with inspection facilities
it will be much easier to measure the health of this resource.
There is one small complication. If an operator is used more
than once in a plan, it could be heathy earlier in the plan and
then fail at some later point.

To take these related plan steps into account, we modify
the spectrum matrix in such a way that these relations are
encoded in the matrix A itself. Suppose that the plan steps
s and s0 are related. If s is detected as faulty and s < s0, it
seems reasonable to consider s0 as faulty as well. Formally,
we calculate the extended spectrum matrix A0 = [a0ij ] from
A as follows:

a0ij =
_

j0<j,o(j0)=o(j)

a0ij0 _ aij (1)

In the plan depicted in Figure 1, plan steps with the same
background are related. So s1 and s7 are related and s2 and
s5 are related. The extended spectrum matrix would be (new
entries appear in bold face):

s1 s2 s3 s4 s5 s6 s7 s8 e
v1 1 0 1 0 0 1 1 0 +
v2 1 0 1 0 0 1 1 0 -
v3 1 1 1 1 1 0 1 0 -
v4 1 1 0 1 1 0 1 1 +
v5 1 1 0 1 1 0 1 1 +

Similar to other MBD engine our diagnosis engine as-
sumes that plan steps are failing independently while com-
puting posterior probability for every diagnosis. Therefore,



if we have a diagnosis in plan steps are related to each other
our engine will compute incorrect posteriors. Hence diagno-
sis must not contain related plan steps. The extended matrix
ensures that application of MHS algorithm on that matrix
will produce diagnosis comprises of independent plan steps.

Application of minimal hitting set algorithm on extended
matrix A0 will generate diagnoses candidates (ck) {c1 =<
s1 >, c2 =< s3 >, c3 =< s7 >, c4 =< s2, s6 >, c4 =<
s4, s6 >, c5 =< s7, s6 >, c6 =< s5, s6 >}.

Theorem 1 Introducing related plan steps into the extended
matrix ensures that the MHS algorithm will never return a
diagnosis that includes two related plan steps.

Proof Two plan steps will only appear together in a diag-
nosis if they individually explain distinct error observations.
When we insert a pseudo observation for one of the steps
into the matrix, the second step becomes an explanation for
both error outputs and becomes a singleton diagnosis break-
ing up the joint diagnosis. Schematically,



1 0
0 1

�

⇒



1 1
0 1

�

Keeping related actions from appearing in the same diag-
nosis prevents us from multiplying these correlated failures
together as if they were independent failures. This preserves
the accuracy of the diagnosis. The diagnosis set for the ex-
tended matrix is ck = {c1 =< s1 >, c2 =< s3 >, c3 =<
s7 >, c4 =< s2, s6 >, c4 =< s4, s6 >, c5 =< s7, s6 >
, c6 =< s5, s6 >}.

Probability Calculation Having corrected the spectrum
matrix, we can use the BARINEL (Abreu et al., 2009) di-
agnostic engine to compute a fault probability for every di-
agnosis candidate using Bayes rule. For each variable obser-
vation σgoal(vi), the posteriors are update according to the
following rule for every candidate c.

Pr(ck|σgoal(vi)) =
Pr(σgoal(vi)|ck) · Pr(ck|σgoal(vi�1))

Pr(σgoal(vi))
(2)

.
The recursion bottoms out with the prior for the candidate,

Pr(ck), which is computed from the individual step priors
assuming independent failures. Note that the candidate <
si > implies health variable hi = ab. Generally:

Pr(ck) =
Y

i

⇢

pi if hi = 1
1− pi otherwise

(3)

where pi is the prior probability that plan step si is faulty.1

The BARINEL engine propagates failure probabilities
along the plan step dependencies to calculate the probabil-
ity Pr(σ1(vi)|ck) for each output variable i using maxi-
mum likelihood estimation (Abreu, 2009). The final poste-
rior probability is computed by combining Equations 2, 3
and Pr(σ1(vi)|ck), and fault probabilities are assigned to
plan step as shown in Table 1.

1In our case, the prior probability of every plan step is assumed
to be to be 0.1.

si Pr(si) Pr0(si) I(X;Y ) I 0(X;Y )
s1 0.200 0.160 0.512884 0.512884
s2 0.002 0.002 0.008762 0.008762
s3 0.800 0.762 0.016707 0.016707
s4 0.002 0.002 0.264348 0.264348
s5 0.000 0.002 0.004198 0.011041
s6 0.007 0.008 0.000000 0.000000
s7 0.003 0.160 0.000000 0.000000
s8 0.000 0.000 0.074128 0.074128

Table 1: Pr(si) and I(X;Y ) are derived for original matrix
A. Pr0(si) and I 0(X;Y ) are derived for extended matrix A0

Probing Strategy

A major challenge for a diagnostician is to identify a suit-
able location for a new probe. In conventional MBD, mutual
information criterion can be used to evaluate and compare
measurement choice based on their information contribution
(de Kleer and Williams, 1987), we have adapted this crite-
rion to probing plan based systems with related steps. To
illustrate the formulation, assume X is a diagnostic state of
a plan and Y is the measure value of a variable at a prob-
ing location where X and Y are both random variables. The
mutual information between X and Y is defined as:

I(X;Y ) =
X

x,y



p(x, y) · log
p(x, y)

p(x)p(y)

�

(4)

For example, suppose we derive mutual information
about the value of location l1 and l2 as I(X;Yl1) and
I(X;Yl2), respectively. In choosing between l1 and l2, we
will choose l1 to probe if I(X;Yl1) > I(X;Yl2). As de-
scribed in (Juan Liu and Zhou, 2008), the above expres-
sion can be estimated using entropy calculation, which is
given as I(X;Y ) = H(Y ) − H(Y |X), where H(Y ) =
P

y

h

p(x) · log 1
p(x)

i

is the entropy of Y and H(Y |X) =
P

x,y

h

p(y|x) · log 1
p(y|x)

i

is the conditional entropy. For the

plan example shown in Figure 1, observations are already
given and fault probability has been computed from SBD,
shown in Table 1. Estimated fault probabilities and obser-
vations in the goal state are used to compute H(Y ) and
H(Y |X) as described in (Juan Liu and Zhou, 2008). Mu-
tual information for different probing location in our exam-
ple (Figure 1) is summarized in Table 1.

Exploiting Related Plan Steps in Diagnosis

In the plan described in Figure 1, s3 has the strongest partic-
ipation in the unexpected goal state outcomes for variables,
v2 and v3. In the first column of Table 1, Pr(si), we see that
the diagnoser assigns s3 the highest probability of failure.
The standard spectrum A assigns different probabilities to
plan steps s1 and s7. The extended spectrum, which recog-
nizes that s1 and s7 are related, increased the fault probabil-
ity of s7 and now s7 and s1 have equal probability. Similar
conclusions can be made for other related plan steps s2 and
s5.



The mutual information results shown in Table 1 pro-
vides us some interesting conclusions. Without any ambi-
guity both the spectrum matrices suggest that s1 is the most
informative location to probe and that s7 is the least. There-
fore, probing at the output of s1 is going to improve the diag-
nosis by the maximum amount. Since s7 is in the goal state
(no cost) of the plan therefore no extra information can be
gained which matches our mutual information computation.
At the same time, extending the matrix reveals the informa-
tion content at the output of plan step s5 to the diagnoser.
In this case, s5 is closer to the middle of the plan than s2

which means that it better splits the hypothesis space about
possible causes of failure and therefore is more informative.
In some cases, s5 may not be more informative, but may be
cheaper or easier to measure. In any case, the extended spec-
trum matrix opens up new options to increase the accuracy
and decrease the cost of diagnosis in plans with related plan
steps.

Conclusion

Continuous planning in online dynamic real world environ-
ments requires accurate diagnosis to pinpoint which plan
steps need to be repaired. Spectrum based diagnosis ap-
proaches are a natural approach as they do not require ex-
plicit fault models to provide useful diagnostic information.
We have seen that extended spectrum based diagnosis ex-
tends the advantage of traditional spectrum based diagnosis
to systems controlled by a plan which can have related plan
steps. The extended spectrum matrix also increases the op-
tions for probing potentially leading to more accurate and
cheaper diagnosis. The technique can be easily extended in
many ways such as computing explicit expected probe costs
and considering other ways in which operators can be re-
lated. Extended spectrum based diagnosis therefore repre-
sents an important technology option for robust, practical
and efficient plan based control of real world systems.
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Abstract

Future robotic missions will involve numerous and het-
erogeneous autonomous robots. The management of
these robots, in order to achieve a mission, requires
interoperability, not only at low-level communication
protocols and operational HMIs, but also at the deci-
sion level, to ensure a robust plan execution and repair
framework. Through a formal representation of multi-
robot knowledge using an ontology, we show how such
a model is of high interest in autonomous mission mon-
itoring, as it provides relevant information all along the
mission execution and how it helps to define commu-
nication and execution protocols from initial planning
computation to plan repair in a multi-robot context.

Introduction

Planning, executing and repairing a mission plan is quite
easy... in a simulated, deterministic, well-defined and closed
environment. In real world, things are more challenging
when different autonomous vehicles must achieve together
a team mission.

Robots have already reached a high level of autonomy.
They are used in many different situations, and most of the
time, their autonomy settles on a well-defined embedded
software architecture. Many architectures have been pro-
posed in the literature (McGann et al. 2008; Doherty, Kvarn-
ström, and Heintz 2009; Teichteil-Königsbuch, Lesire, and
Infantes 2011) and are currently in use for complex real-
world situations where autonomous robots must manage the
execution of their own tasks.

The advance of the work in this field has led researchers
wonder for many years to what extent robots would be
able to be integrated into a team, not only concerning one
or more human operators, but most importantly other au-
tonomous and heterogeneous robots, with complementary
functionalities. Such situations will indeed become more
and more common, as robotic missions are becoming more
and more complex, looking for more and more autonomy.
We can already suppose that robots will be deployed incre-
mentally, because of the cost and time required for setting
up such technologies. For instance, in spatial exploration,
robots (rovers, satellites) are deployed one after the other,

Copyright c� 2012, Association for the Advancement of Artificial
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and missions can last a couple of decades. It is reasonable
to consider that the number of robot collaborations will in-
crease in the future, for the benefits of science (Visentin
2007).

Robots will then be intrinsically heterogeneous, as they
will be developed gradually, and probably by different
builders. Hence, their embedded architecture may even be
different. Therefore, it would be worthwhile to reuse all the
robots’ skills, often developed in a mono-robot concern, to
allow a team of robots to achieve a specific mission, with-
out re-designing all their control architecture. But, even as-
suming that this interoperability issue is solved, we are then
confronted with the existing gap between planning and exe-
cuting a real mission in nearly complete autonomy. Having
a team of autonomous vehicles achieve a mission needs first
the computation of a mission plan. Then, in order to exe-
cute this plan and monitor the execution, a protocol must
be defined to interface ”plan actions” to ”robot’s tasks”. Fi-
nally, while executing such a plan, failures will occur, as the
autonomous vehicles will have to face environment distur-
bances whatever the assumptions made in the plan are. So,
plan-repair (or complete re-plan) is compulsory in achiev-
ing mission goals. In order to generate on-line a relevant
planning model, information about the current state must be
gathered from the vehicles. Again, interfaces are required
between the individual heterogeneous architectures and the
planning system.

In this paper, we propose a formalization of knowledge
representation in multi-robot autonomous missions. This
formalization aims to lay the basis for interface needs in
planning, plan execution and plan repair for a team of au-
tonomous vehicles.

State of the art

Mission execution involving several autonomous vehicles
has been widely studied. We examine in the following state
of the art how links between planning and execution are con-
sidered, and how on-line replanning activities are managed.

The BErkeley AeRobot (BEAR) project1 studies multi-
agent probabilistic pursuit-evasion games with heteroge-
neous robots. In this project, (Vidal et al. 2002) developed
a distributed, hybrid and hierarchical architecture system,

1 http://robotics.eecs.berkeley.edu/bear
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in order to manage partial knowledge of states among the
team. They take into account a dynamic environment, het-
erogeneous agents, faults on robots, and sensor imperfec-
tions. Contrary to the sense-model-plan-act architectures,
robot’s dynamics is taken into account at the higher level of
the decision process, and they take a particular care to limit
communications to the minimal needs. However, in spite of
the modular aspect of this architecture, connections between
modules are numerous, which leads to a complex adaptation
process to re-use existing mono-agent architectures. The en-
vironment knowledge is well defined for feeding a tactical
and a strategy planner, but specific to the current mission.

The ALLIANCE architecture (Parker 1998) is a behavior-
based approach to cooperation and allows the robot team
members to respond robustly, reliably, flexibly and coher-
ently to unexpected environmental changes. They demon-
strate successfully the feasibility of their architecture in an
implementation example. The robots are of the same type
(but with different abilities) and are controlled by the same
architecture. In the same way, (Chaimowicz et al. 2001) pro-
poses an architecture system for tightly coupled multi-robot
cooperation. The robot team is organized in a flexible leader-
follower structure in which the local robot architecture is
independent of the robot control manager. The system is de-
signed for a specific mission.

In Hierarchical Task Network-based approaches (Nau et
al. 2003), the planning problem is modeled in a hierarchi-
cal way. The Retsina architecture (Paolucci, Shehory, and
Sycara 2000) manages the execution of such a hierarchi-
cal plan: a dynamic list of objectives is stored as a priority
queue, and each agent selects a task to be executed. Thanks
to their ability to achieve planning tasks interleaved with ex-
ecutive tasks, the agents are thus highly adaptable to the en-
vironment. Concrete interaction with a real environment is
not yet described, and they seem to remain only in a plan-
ning point of view. Partial replanning is addressed by insert-
ing new tasks into the priority queue in order to have a new
resolve of the partial planning problem. Nevertheless, they
do not manipulate an explicit global team plan, making it
difficult to reason at team level and to manage team orga-
nization. (Fazil Ayan et al. 2007) emphasizes local repair in
such a hierarchical plan structure in a mono-agent context.
A dependency graph between HTN tasks is built, that al-
lows the replanning module to know which tasks need to be
replanned in case of failure. Hence, they avoid recomputing
well on-going parts of the plan. Considered data is adapted
for re-planning processes, but they are not dealing with real
robotic missions.

(Sotzing, Johnson, and Lane 2008) explicitly deal with
knowledge representation and update in multiple AUV (Au-
tonomous Underwater Vehicle) operations. Mission execu-
tion and multi-vehicle coordination is supported by BI-
IMAPS (Blackboard Integrated Implicit Multi-Agent Plan-
ning Strategy). All vehicles have a complete copy of the BI-
IMAPS plan, so the vehicles’ actions can be predicted when
there is no communication. When communication is anew
available, robots refresh the knowledge coming from other
vehicles. Communication management is a well known is-
sue in multi-robot architectures. Furthermore, entities which

are interacting must agree on the communication protocol,
and the exchanged type of data. An implicit agreement about
data is often considered in robotic team mission, but not
formally described. When the same architecture is control-
ling all the robot team, (Tambe 1997) points out that the
more the team is flexible and robust, the higher communi-
cation load is required. Thus, he emphasizes the importance
of communication management in team mission execution,
as this represents the most critical resource and may lead
to a mission failure. In robotic space exploration missions,
mainly because of communication constraints, it is impossi-
ble to consider a fine coordination of a set of vehicles from
a mission control based on Earth. Part of this coordination
must therefore be done on site, by the robotic agents them-
selves. Consequently, local communications between vehi-
cles and a significant degree of autonomy in the vehicles’ in-
teractions will be assumed. Different space agencies (ESA,
NASA...) already started to evoke future needs concerning
standards and interoperability (Tramutola and Martelli 2010;
Chien et al. 2006; Merri et al. 2002). Meanwhile communi-
cation standards and procedures are already used by (Kazz
and Greenberg 2002), but at the equipement level.

In the literature of heterogeneous multi-robots missions,
we can notice that protocol formalization is not satisfying.
First, regarding protocols for plan execution and repair, ad-
hoc interfaces (between planners and vehicles) are implic-
itly used to translate the mission plan into a language un-
derstandable by an autonomous vehicle. Plan repair is of-
ten considered from a planning point of view, not from the
point of view of the generation process of the data that
must be provided to the planner, and coming from heteroge-
neous sources. Besides, regarding protocols for multi-robot
communication, a common assumption is made that all au-
tonomous vehicles of a same team are implicitly working
with the same standards.

For these reasons, we propose to formalize the common
knowledge involved in (re)planning and executive phases.
We describe first our knowledge representation, based on an
ontology describing what the vehicles are able to achieve,
and how interactions are managed. Afterwards, we present
the use of an instantiated version of this ontology for mission
planning, plan execution, and on-line plan repair.

Knowledge Representation

Ontologies in robotics

An ontology is a common representation of a specific do-
main that allows different individuals to share concepts and
rich relations (Baclawski and Simeqi 2001).

In robotics, ontologies are used to specify and conceptu-
alize a knowledge accepted by a community, using a formal
description to be machine-readable, shareable (Sellami et al.
2011) and to reason over that knowledge to infer additional
information (Schlenoff and Messina 2005). Ontologies offer
significant interests to multi-agent systems such as interop-
erability (between agents and with other systems in hetero-
geneous environments), re-usability and support for multi-
agent system development activities (Tran and Low 2008).



Ontologies must be used with care (Lortal, Dhouib,
and Gérard 2011): an ontology (specification) must not be
confused with a knowledge base (which actually includes
knowledge). In the following, an instantiated ontology will
refer to the knowledge base. Ontologies depend highly on
their builders, and allow sharing of information between
agents (Deplanques et al. 1996).

Ontologies are already being used in many different
projects. In the context of Web Service the system of (Sirin
et al. 2004) executes a plan computed with SHOP2 (Nau et
al. 2003) over the web. It is able to execute information-
providing Web Service during the planning process. We
must note that they provide a sound and complete algo-
rithm to translate OWL-S2 service description into a SHOP2
domain. The Robot Earth European project (Waibel et al.
2011) aims at representing a world wide database repos-
itory where robots can share information about their ex-
periences, with abstraction to their hardware specificities.
But it is a starting project, without exploitable results yet,
and it deals more about environment knowledge represen-
tation and sharing. In the Proteus project (Lortal, Dhouib,
and Gérard 2011), complex ontologies are used for scientific
knowledge transfer between different robotics communities.
However, the developed ontology cannot be used directly
for code generation and exploitation: authors have to per-
form semi-automatic transformation from the ontology to a
UML representation. The ontology is also quite specific to
their application scenarios problems. For space applications,
the SWAMO NASA project (Witt et al. 2008) uses ontol-
ogy as a prototyping method to provide standard interfaces
to access different mission resources (sensors, agent capa-
bilities...). In a similar approach, the A3ME (Herzog, Ja-
cobi, and Buchmann 2008) ontology defines heterogeneous
mobile devices, to allow communication interoperability.
(Schlenoff and Messina 2005) has also worked on robots’
capabilities representation in the context of urban search and
rescue missions.

Those studies are very interesting and represent a starting
point for our work, but the proposed ontologies are there at
a lower level of knowledge representation. They focus more
on the description of the capacities of mobile agents than on
high level services representation for autonomous agents, as
we aim to do. Because of these limitations, we choose to
define a new ontology.

Formal robot description

The information we need to model in our ontology must take
into consideration (1) robots involved in the mission and the
information they are able to provide, (2) a description of the
environment, and (3) a description of the mission goals. We
must note that many ontologies already define services in the
Web Service domain (e.g. OWL-S, or WSDL3). Our goal is
to use a simple, effective ontology to support plan execu-
tion and repair. Different kinds of languages exist to model
ontologies in computer readable text format. Our choice nat-
urally falls on the most used in the domain of Artificial In-

2 http://www.w3.org/Submission/OWL-S/
3 http://www.w3.org/TR/wsdl

telligence which is the Web Ontology Language (OWL), de-
fined by the World Wide Web Consortium4 (W3C). OWL is
an XML-based format for writing ontologies in Description
Logic (DL). Many tools have been developed to design and
manipulate ontologies. We have used Protégé5 to design our
ontology which is partially depicted in Fig. 1 and explained
below.

To define this ontology, we were inspired by real robots
execution management that we have been experimenting be-
fore and on the paradigm of programming by contract for
the services that a robot can provide (Brugali and Scandurra
2009).

Robot Services Robots are classically defined by the ser-
vices that they provide, and how agents can be interfaced
with them (Brugali and Scandurra 2009). A Service is
a task or an activity that a robot (or a software agent)
can achieve in its environment (including what its sen-
sors capabilities are able to get at a high level, e.g. tar-
get detection, rock analysis...). A service must implement
a Contract (SerContract). It may need input param-
eters (ConNeed) to be executed and may return output pa-
rameters (ConReturn). It may be associated with specifi-
cations such as preconditions (ConRequire), postcondi-
tions (ConEnsure) or invariants (ConInvariant).

A Service is defined by its name (SerName) and a
description (SerDescription). SerAccess describes
how a distant entity (distant robot, team executor manager...)
can call the service of the robot, to make the robot achieve it.
SerType distinguishes direct services that can be directly
called (goto action, take a picture, process data, etc.), and an
execution result from them is expected, and daemons, which
are running as background tasks and may return particular
events (target detection, communication link broken, ...).

Robot Internal Variables A description of the knowl-
edge manipulated by the robot is also required, all the more
as these values are involved during the planning process.
For example, if the robot has a GPS, it is a good assump-
tion to have a RobotPositionGPS variable. A variable, in
the ontology, has classical entities: an identifier (VarId),
a type (VarType) and optionally an informal text descrip-
tion (VarDescription). VarGetter and VarSetter
are comparable to classical accessors in Object Oriented
Programming, meaning the way to access the value of the
variable, and a potential way to modify its value. The lo-
calization (place where the value is stored) of the variable
(VarLoc) is defined, which is indirectly linked with the
VarInfluencers. This last entity indicates which ele-
ments (vehicles, operators, variables...) may have an influ-
ence on the variable, and which elements must be observed
during the execution process to detect particular evolution of
the variable value. For instance, a robot ”controls” its own
position variable, other robots cannot ”influence” this vari-
able but can only read it.

Environment, Models and Relations Environment vari-
ables (areas, objects of interest, ...) and goals are also mod-

4 http://www.w3.org/standards/techs/owl
5 http://protege.stanford.edu/

http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/wsdl
http://www.w3.org/standards/techs/owl
http://protege.stanford.edu/
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Figure 1: Partial view of the developed ontology, free adaptation from Protégé-Ontograf viewer

eled as Variable entities. In addition to traditional vari-
able type, we use a particular type (Model) corresponding
to robotic models: they allow to link some variables with ex-
ternal models, such as estimations of communication avail-
ability, estimations of the fuel consumption of a robot, etc.
Relation entities allow to interconnect variables when

needed, and to add particular characteristics to them. For in-
stance, a zone z1 can be a sub-zone of a zone z2, without
creating new specific types for these variables.

With this ontology, we have a description of what the ve-
hicles are able to achieve, how interactions are managed, and
in what kind of environment they are dived into. Finally, this
ontology regroups both planning and execution information.

Ontology in practice
The ontology described before is meant to be instantiated.
The ontology provides the interface between both execution
and plan-repair processes, and between the execution pro-
cess and the vehicle’s architecture.

In the following we present how to use the instantiated
ontology, named KOPER (KnOwledge base for Planning,
Execution and Repair) for (1) generation of planning model,
(2) plan execution monitoring and (3) on-line repair. In each
case, we discuss a generic use-case of the ontology, and then
give a more concrete example of our own HTN-based archi-
tecture.

Planning Model Generation

We discuss here a mean to generate from the KOPER ontol-
ogy the required information destined for a planner, which
is then able to compute a mission plan.

Generic Planning Model Generating a complete plan-
ning model from an external data base without human
intervention is far from being easy when confronted with
real world missions, unless these real world missions are
already fully described in a planning language. For that, we
propose an automatic generation of the domain file from a
KOPER instantiated ontology. While such a generation pat-
tern can be generalized to almost all the planning languages,

we illustrate this generation on the classical PDDL language
(Drew McDermott et al. 1998). In PDDL, a planning model
is made of a planning domain (that describes predicates and
actions) and a planning problem (that instantiates domain
variables, and defines the initial and goal states).

PDDL Domain: A PDDL domain is made of a set of
actions. A PDDL action is described by a name, some pa-
rameters, a precondition and an effect. We can use Model
to Model (M2M) transformation to generate the correspond-
ing PDDL action from each Service of the instantiated
ontology. SerName corresponds to the PDDL action name.
ConNeed provides the PDDL action parameters informa-
tion, ConRequire corresponds to the action preconditions,
while ConEnsures and ConInvariant determine the
action effects. Some Variable of the instantiated ontol-
ogy can be involved in the domain generation, since they can
be ”influenced” by services. Listing 1 presents the instantia-
tion of a goto Service provided by an instantiated V ehicle,
an AAV (Autonomous Aerial Vehicle). The corresponding
PDDL action is shown in listing 2, in which the ?v variable
corresponds to a V ehicle.

PDDL Problem: A PDDL problem is made of a set of
objects, an initial state and a goal. We use again a M2M
transformation to generate the PDDL problem by consider-
ing entities Variable and Relation. The set of PDDL
objects is generated from the VarId and the VarType

of each Variable. The initial state description requires
an exhaustive cover of the Variable values, accessed
with combined VarGetter and VarLoc information. The
Variable planning value is then formatted depending on
the VarType documentation. The Relation entities are
then interpreted, since written variables may be inter-linked.
Finally, the goal is similarly generated, corresponding in our
instantiated ontology to a particular Variable. Listing 3
presents a variable definition in the ontology and some rela-
tions, and listing 4 the generated PDDL problem.

HTN Planning Model in HiDDeN HiDDeN (Gateau,
Lesire, and Barbier 2010) is a High level Distributed De-



1 <S e r v i c e>
<SerName>go to< / SerName>

3 <SerType>D i r e c t T a s k< / SerType>
<S e r D e s c r i p t i o n>

5 The v e h i c l e moves t o t h e ? wptTo l o c a t i o n
< / S e r D e s c r i p t i o n>

7 <S e r C o n t r a c t>
<ConNeed>

9 <Arg>
<ArgName>? wptFrom< / ArgName>

11 <ArgType>Waypoint< / ArgType>
< / Arg>

13 <Arg>
<ArgName>? wptTo< / ArgName>

15 <ArgType>Waypoint< / ArgType>
< / Arg>

17 < / ConNeed>
<ConReturn>

19 <Arg>
<ArgName>? msgReturn< / ArgName>

21 <ArgType>S i m p l e R e t u r n< / ArgType>
< / Arg>

23 < / ConReturn>
<ConRequire>

25 <Cond>( t h i s . pos == ? wptFrom )< / Cond>
<Cond>( t h i s . s t != t h i s . onGround )< / Cond>

27 < / ConRequire>
<ConEnsure>

29 <Cond>( t h i s . pos == ? wptTo )< / Cond>
<Cond>( t h i s . pos != ? wptFrom )< / Cond>

31 < / ConEnsure>
<C o n I n v a r i a n t>

33 <Cond>( t h i s . enoughFue l )< / Cond>
< / C o n I n v a r i a n t>

35 < / S e r C o n t r a c t>
<SerAcces s

37 ComBase=” So cke t ”
O u t P o r t =” 60100 ”

39 ParamUsed=” ? wptTo ”
OutMsgFormat=” SocketMsg ( ’GOTO’+ Waypoint ) ”

41 I n P o r t =” 60101 ”
InMsgFormat=” SocketMsg ( S i m p l e R e t u r n ) ” />

43 < / S e r v i c e>

Listing 1: Example of possible ”goto” service contract for
an AAV in XML representation transformed from the OWL
description ; the this keywords refers to the service owner

1 ( : a c t i o n go to
: p a r a m e t e r s ( ? wptFrom ? wptTo − Waypoint ? v

− V e h i c l e )
3 : d u r a t i o n (= ? d u r a t i o n (

f u n c t i o n g o t o D u r a t i o n ? wptFrom ? wptTo ?
v ) )

: c o n d i t i o n ( ( enoughFue l ? v ) ( p o s i t i o n ? v ?
wptFrom ) ( n o t ( onGround ? v ) ) )

5 : e f f e c t ( and ( ( n o t ( p o s i t i o n ? v ? wptFrom ) ) (
p o s i t i o n ? v ? wptTo ) ) ) )

Listing 2: ”goto action” in pddl style

1 <V a r i a b l e>
<VarId>a a v 1 P o s i t i o n< / Var Id>

3 <VarType>Waypoint< / VarType>
<V a r G e t t e r>S e r v i c e : : g e t G P S P o i n t< / V a r G e t t e r>

5 <V a r S e t t e r>none< / V a r S e t t e r>
<VarLoc> l o c a l< / VarLoc>

7 <V a r R e l a t i o n s>
<RelName>a a v 1 P o s i t i o n R e l a t i o n< / RelName>

9 <R e l V a r i a b l e s>
<VarId> t h i s< / Var Id>

11 < / R e l V a r i a b l e s>
<RelOrde r>s i m p l e< / Re lOrde r>

13 < / V a r R e l a t i o n s>
<V a r I n f l u e n c e r s

15 v a r =” t h i s ”
s e r =” S e r v i c e : : g o t o ” />

17 < / V a r i a b l e>

Listing 3: Example of a variable in XML representation
transformed from the OWL description; the this keywords
refers to the variable owner

1 ( : o b j e c t s
aav1 − V e h i c l e

3 a a v 1 P o s i t i o n − Waypoint
wpt2 − Waypoint )

5 ( : i n i t
( aav1 a t a a v 1 P o s i t i o n ) )

7 ( : g o a l
( aav1 a t wpt2 ) )

Listing 4: Partial PDDL problem: aav1Position is
described in Listing 3. Variable wpt2 comes from similar
OWL descriptions, alike a goalV ariable which precises
that aav1 must reach waypoint wpt2; aav1 is an instantiated
vehicle; a relation exists between aav1 and aav1Position
(RelVariables field in Listing 3) that leads to the
generation of the initial state line.

cisioN layer that monitors execution and plan repair for a
team of autonomous robots. The underlying planning model
is based on HTNs (Nau et al. 2003). An HTN is a hierar-
chical set of abstract and elementary tasks. One or more
methods are assigned to an abstract task and describe the
way to achieve it, using other abstract or elementary tasks.
The selection of a method is constrained by the fulfillment
of preconditions. Theoretically, if the recipe provided by a
method, picked out amongst the possible methods of the
task, is followed, then the objectives of the task will be
achieved. The interests of HTN are their flexibility, their hi-
erarchical structure and their convenient modeling of human
knowledge. Besides, multi-agent planners have been specif-
ically developed to deal with HTN formalism (Dix et al.
2003).

Regarding our instantiated ontology, we can add the HTN
structure (i.e. the abstract tasks corresponding to human
expertise) either in the knowledge representation as ”high
level” Service entities, or directly in the generated plan-
ning model. We chose the second solution as human exper-



tise is in a sense more related to the planning model (an ex-
pert can add abstraction, but also domain-specific heuristics
or constraints) than to robot or mission description.

One of the modeled missions is a mine hunting scenario
involving an AAV and an AUV. The instantiation of the
KOPER ontology for this scenario is composed of 18 robots’
services. 34 variables are described (including goals and
models), with 10 relations. The generated HTN domain con-
tains 18 elementary tasks, increasing to 23 when we add
HTN abstraction from a human expert. The generated HTN
problem contains 26 objects, and 92 conditions in the initial
state.

We have solved this problem using SHOP2, and our HTN
planner. Both planners generate a plan containing 48 abstract
tasks and 60 elementary tasks.

Plan Execution

After generating a planning model from the KOPER instan-
tiated ontology, we can use an off-the-shelf planner to com-
pute a mission plan. In this section, we describe how the
KOPER ontology can assist in monitoring the plan execu-
tion, assuming that a mission plan has been computed.

Generic Plan Execution Plan execution consists in
executing each action written in the plan by the concerned
robot(s). Since robots have specific protocols for external
interaction with them, the plan action must be translated
according to this protocol, which describes how to make the
robot execute the desired action. Thanks to the KOPER in-
stantiated ontology, the action encountered by the execution
manager is automatically mapped with this communication
protocol, in particular with the SerAccess. In fact,
SerAccess precises the type of communication mode,
the associated configuration and also the data format and
content that must be sent. When a robot executes an action,
a report is expected to indicate whether the task has been
completed or not. Once again the format and the manner
are described in the KOPER instantiated ontology through
ConReturn and SerAccess. The service contract
(SerContract) allows failure detection means during the
execution process. The execution manager may check that:
(a) action’s precondition (ConRequire) is true before
executing, (b) action’s actual effects are consistent with
the action model (ConEnsure) and (c) action’s invariants
remain true during the execution.In fact, KOPER provides a
mapping between execution variables and planning (logical)
variables.

For instance, we take the action ”goto wpt1 wpt2 aav1”
from a PDDL planner output plan: AAV aav1 must go from
waypoint wpt1 to wpt2. The execution manager finds in
the KOPER instantiated ontology the corresponding service
with the SerName ”goto” (listing 1). It is then aware that
communication with the local architecture is based on sock-
ets (line 38), with a given port and a message format to send
the execution order to the robot. The ”Waypoint” parameter
(from the ConNeed field) is passed to the robot, after get-
ting its value through the VarGetter function. Finally, the
plan execution process can send a socket message formatted

into understandable data to the robot architecture. When this
message has been sent, the execution manager waits for a
”SimpleReturn” type message, on another socket, that cor-
responds to waiting for a boolean report (true if the robot
has reached wpt2, false otherwise).

Daemon services are not triggered by the execution pro-
cess: they are active all along the mission and can send in-
formation to the execution process according to the protocol
described in the ontology. Such information can correspond
to specific observations (e.g., a detected target) and most of
the time will result in a plan adaptation or repair.

HTN-based Plan Execution in HiDDeN In HiDDeN, we
directly use the HTN structure of the mission plan (hence
resulting in an instantiated HTN, see (Gateau, Lesire, and
Barbier 2010) for details) as the core model of plan execu-
tion monitoring.

HiDDeN is a distributed architecture that settles on the ex-
isting robots’ architectures, takes care of what specific action
has to be executed by which robot, and controls the coordi-
nation between robots (Fig.2). Each local supervisor is then
able to communicate with all the rest of the team, depending
on communication availability.

Local Supervisor

Com. Com.

The HiDDeN layer

Embedded 
Control 

Architecture

Local Supervisor

Embedded 
Control 

Architecture

Local Supervisor

Embedded 
Control 

Architecture

Dynamic Environment

Figure 2: The HiDDeN layer monitoring a team of hetero-
geneous robots.

The main purpose of the local supervisor is to provide the
action that the robot has to execute, depending on the local
plan. The local HTN tree plan is followed in a depth first
and left first manner. When an elementary task (a leaf) is
reached, the corresponding action execution is requested to
the local architecture (as explained in Generic Plan Execu-
tion). For instance, in Fig. 3, the root task to achieve is R.
The execution manager enters into task T1, itself decom-
posed into T2. E1 must then be executed first by the robot.
If this execution is successful (i.e. the report is true), E2

must then be executed. At the end of E2, T1 is considered
as done. Afterwards, the execution manager enters into T3,
and so on.

Failure detection in HiDDeN is based on monitoring ac-
tions’ contracts (as described in Generic Plan Execution),
analysing returned values after the execution (ConReturn),
and timeouts events.6.

6To avoid freezing, the execution engine arms a timer when run-



Abstract 
Task

Elementary 
Task

Task successfully 
executed

Task currently 
executed

E1T1

Execution : step1 Execution : step2 Execution : step3

R

T1 T3 T5

E3 T4 E6T2 T6

E1 E2 E7E4 E5

R

T1 T3 T5

E3 T4 E6T2 T6

E1 E2 E7E4 E5

R

T1 T3 T5

E3 T4 E6T2 T6

E1 E2 E7E4 E5

Figure 3: Execution of an instantiated HTN: the elementary
execution order is E1, E2, E3, E4, E5, E6, E7.

Regarding multi-robot coordination, HiDDeN plans are
computed in order to ensure regular rendezvous between ve-
hicles all along the mission. These rendezvous are 4D space
(location and time) where two vehicles are able to commu-
nicate. During these rendezvous, the distributed supervisors
of HiDDeN will update their team knowledge. This update
is based on the KOPER instantiated ontology, that defines
the team variables, their varInfluencers (which own
the actual value of the data) and variable getters and setters
(to access the data and store it).

Plan Repair

While executing the plan mission, the autonomous team will
encounter failures. The team must then find an alternative
plan to achieve the mission. For that, thanks to the KOPER
instantiated ontology, an up-to-date planning model can be
provided to an embedded planner, which can repair the cur-
rent plan or compute a new plan.

Generic Plan Repair We consider here that plan repair is
the responsibility of the execution process, in the sense that
it consists in defining a new planning model corresponding
to the part of the plan that needs to be repaired.

This process is hence very similar to the initial generation
of planning domain and problem. However, variables’ val-
ues have been modified during the execution process (e.g.
the position of the vehicle has changed after a ”goto” action).
Updating these variable values is done through the KOPER
instantiated ontology thanks to VarLoc and VarGetter.

The services list description can also change (e.g a ser-
vice has an unexpected result and is ”desactivated”, or is not
provided any more by a robot, a robot is out of service...),
impacting then a different planning domain generation.

HTN Plan Repair in HiDDeN Plan repair in HiDDeN is
globally done the same way as in Generic Plan Repair: by
defining the local planning model to solve. However, we ex-
tensively use the HTN hierarchy in this process: once an el-
ementary action failed, we first try to repair it (by defining
a planning model corresponding to performing this action).
If this repair succeeds, we replace the task and go on with
execution. If the repair fails (either because no solution to
the local problem can be found, or because the problem can-
not even be defined due to unavailable data), HiDDeN goes
up in the hierarchy and tries to repair the task just above the

ning an action. When the timer has expired, the action is interrupted
and a failure is detected

previous one (i.e. the abstract task containing the previous
task), and so on until a repair plan is computed (Fig. 4).

As in our scenarios communication between the vehicles
is not always available and is subject to disturbances, the
KOPER instantiated ontology is very useful in providing the
localization of variables that must be accessed to define the
new planning problem. It limits communication to the re-
quired ones and allows to determine which communication
links must be established to repair the plan and achieve the
mission.
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Figure 4: The repair process : elementary task E5 fails,
which implies a repair of task T4 (top, left). If a new plan is
available, the corresponding instanciated HTN branch is re-
placed (top, right); else, the first hierarchically superior task
of T4, here T3, is repaired (bottom).

Conclusion

In this paper, we have defined an ontology, KOPER, to
represent the necessary knowledge used during planning,
plan execution and plan repair for a team of heterogeneous
autonomous robots. KOPER is based on a description of
robots’ services with associated parameters and contracts,
a description of variables with their access means and influ-
encers, and a description of environment and robot models.
KOPER holds at the same time information dedicated to the
planning process and to the execution phase.

We have shown how an instantiation of KOPER can be
used to (1) generate a planning model for off-line compu-
tation of an initial plan, (2) monitor the plan execution by
inferring the execution protocol, and (3) help in defining a
new planning problem for plan repair. We have discussed a
generic use case of KOPER, and illustrated our personal ex-
perience using the HiDDeN architecture with concrete ex-
periments on multi-robot missions. In this context, KOPER
also helped us in managing necessary and sufficient commu-
nication in order to ensure the best possible execution of the
mission.
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Abstract 

In this article we explain our position concerning the re-
quirements of decision-making, planning, and plan execu-
tion engines for future unmanned military systems. We jus-
tify why we think that the application, modification, and 
generation of procedures in mixed-initiative interaction 
seems the most promising approach to effective human-
machine systems, and refer to past and preliminary work. 
The procedure thereby becomes the common representation 
for planning, execution, and more or less supervised learn-
ing.   The   system’s   behavior   is   then   regulated   by   a   slightly  
dynamic database of procedures and a very dynamic set of 
currently applied human-generated constraints.  

Introduction 

Whereas   the   term   ‘robot’   can   refer   to   wide   range   of   sys-

tems with different maturity levels and different function-

ality demonstration backgrounds, an uninhabited military 

vehicle (UMV) has special requirements concerning safety 

and intervention possibilities for the human operator(s). 

However, there are multiple  reasons  for  raising  the  UMVs’  
autonomy, e.g. to lower the taskload for the human opera-

tor(s) or to handle situations in which there is no commu-

nication link (Billman and Steinberg 2007). In the latter 

case, rules of engagement (RoE) have to be readily defined 

in order to guarantee purposeful vehicle behavior with low 

risk of damage and injury. The human operator shall have 

the overall responsibility over the human-machine system, 

and therefore he/she shall be able to actively set and modi-

fy the rules of engagement. The ability to follow and effec-

tively maintain action plans as well as RoE can be reached 

by providing a) onboard systems for decision autonomy of 

the UMVs and in addition to that b) a decision support 

system for the human operator. This dual constellation is 

also explained in (Linegang et al. 2006). In principle, both 

proposed systems can be built with the same a-priori world 

models and decision engine, which is why we do not dif-

ferentiate between the two in the remainder of this article. 

 This article is intended to explain our position concern-

ing the requirements imposed by future unmanned military 

systems in the areas of planning, decision-making, plan (or 

procedure) execution engines, corresponding hybrid archi-

tectures, automated learning, and human-robot interaction. 

We justify why we think that the application, modification, 

and generation of procedures in mixed-initiative interaction 

seems the most promising approach to well-performing 

human-machine systems in the field of UMVs. 

Planning and Decision-Making 

A UMV that is able to make decisions and re-plan its ac-

tions in case of a data link loss can be seen as an autono-

mous system. However, as explained in the beginning, 

there are special requirements concerning safety and hu-

man operator intervention associated with UMVs. Possible 

methods of intervention are given in (Strenzke and Schulte 

2012) and can be summarized as giving a set of con-

straints, which can be either hard   or   soft,   to   the   UMV’s  
decision engine. The essence is that, whatever the UMV 

autonomously decides or plans in the mentioned situation, 

it must consider the following constraints: 

 Physical or technical hard constraints concerning the 

vehicle itself (e.g. min. airspeed, current fuel level) 

 Phys./technical soft constraints (e.g. prefer short routes) 

 Tactical soft constraints (e.g. prefer reconned routes) 

 Hard constraints set  by  the  human  operator  (e.g.  “UMV  
one will in no  case  use  corridor  Alpha”) 

 Soft  constraints   set  by   the  human  operator   (e.g.  “UMV  
one  should  use  corridor  Charlie”,  i.e.  prefer Charlie) 

 The UMV operator receives mission constraints, which 

state the main goals of the mission and some mission-

specific regulations, from another entity (e.g. headquarter). 



He/she then gives execution constraints to the (mul-

ti-)UMV system. The execution constraints will, in most 

cases, be more detailed than the mission constraints. Figure 

1 shows symbolically how the execution constraints limit 

the UMV autonomy. In certain cases some mission con-

straints may also be loosened by the UMV operator, e.g. 

he/she may sacrifice one UMV on the battlefield, whereas 

the mission constraints include that this UMV should be 

safe and home at the end of the mission (see how the light 

grey box leaves the dark grey box in Figure 1). 

Plan Execution and Procedures 

After a mission plan has been agreed upon by the UMV 

system and the human operator, it has to be executed by 

the UMV system and   the   human  operator’s   role  becomes 

more passive as a monitor (supervisory control paradigm, 

see above). However, in a real-world environment with 

uncertainties concerning the distribution and behavior of 

mission-relevant objects and uncertainties concerning the 

success of action execution, reporting all unexpected high- 

and low-level events to the human operator may easily lead 

to cognitive overload. Therefore, certain events should be 

retained and resolved automatically by the UMV system. 

In order to keep the human in the loop of understanding the 

situation as well as the system’s decisions, this automated 

event handling has to be common sense between the sys-

tem and the human operator.  

 One way to accomplish this is the use of predefined 

procedures, i.e. schematic plans which may contain condi-

tional branches as well as loops. If the number of proce-

dures in the procedure database is small enough or if there 

is only a small set of frequently used, the operator is sup-

posed to be able to know the procedures to an extent suffi-

cient to understand and anticipate the system behavior in 

contingency situations. 

Figure 2 illustrates the concept of procedures by the ex-

ample of an Uninhabited Aerial Vehicle (UAV) flight 

mission. There, the procedure   “Reconnoiter   stationary  
target”  is  defined.  It specifies the steps involved in carrying 

out a reconnaissance order. Additionally, it defines the 

reactions to various possible outcomes of each step. For 

example, the procedure has to be continued in a different 

way if a reconnaissance picture has been taken successfully 

than in the case that the target was not properly visible 

from the camera angle. 

Procedure-Based Hybrid Architectures 

When combining the requirements stated in the last two 

chapters, i.e. deliberative planning and procedural execu-

tion, we end up with a hybrid system architecture, which is 

centered on a procedure database. Examples for such sys-

tems are OpenPRS (Open Procedural Reasoning System) 

(Ingrand and Despouys 2001) or the 3T (Three Tier) archi-

tecture (Bonasso et al. 1997). The three layers in such 

architectures   can  be   compared   to  Rasmussen’s   scheme  of  
human performance (Rasmussen 1983). On the lowest of 

its three levels (skill-based behavior), the human performs 

unconscious control subroutines. In the center (rule-based 

behavior), signs are recognized and rules (procedures) are 

triggered depending on the current state and task. These 

procedures, which sequence the mentioned control subrou-

tines, 

[…] may have been derived empirically during previ-
ous occasions, communicated from other persons' 
know-how [...], or it may be prepared on occasion by 
conscious problem-solving and planning.  […]  During 
unfamiliar situations, faced with an environment for 
which no know-how or rules for control are available 
[...], the control of performance must move to a higher 
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If target area entered

Approaching 

target

If reconnaissance speed 

and altitude reached

Overflying target 

& taking pictures

If target detected
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different target 
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target not clearly visible
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proximate area

If at specified position &

target not found

End of procedure

If pictures taken &

target clearly visible

If target detected

Figure 2: Example of a procedure with conditional 

branching and loops (UAV to recon stationary target) 

Figure 1: Different constraints limit the planning and deci-

sion space of the entities involved in UMV missions 



conceptual level, in which performance is goal-
controlled and knowledge-based. (Rasmussen 1983)  

By using such procedure-based hybrid architecture for a 

UMV planning and execution engine, the procedure con-

stitutes the common vocabulary between the human opera-

tor and the UMV system, which shall keep the operator in 

the loop and his task load low, as described before. 

 Our definition of a procedure bears resemblance to the 

so-called   “plays”   in   the Playbook Approach (Miller et al, 

2004), which in contrast lacks the possibility of on-line 

procedure definitions. Instead, we suggest providing a 

manual as well as a mixed-initiative in-flight creation and 

modification of procedures. In addition to that, we see 

procedures not only in the mission-level context (i.e. pro-

cedures which can span multiple UMVs and are designed 

to fulfill goals or parts of the mission), but also in the con-

text of solving low-level problems like a technical failure 

onboard of a UMV. 

 Interestingly, (Frank, 2010) shows how humans are 

guided through manual procedures by automation support. 

This constellation is due to the even higher criticality in 

manned space missions. In our case, it will rather be the 

other way round, i.e. the human operator supports the au-

tomation to adapt its procedures to situations unprecedent-

ed by the system designers. 

Automated Learning of Procedures 

It is important to note that in this model, new procedures 

may be learnt by (low-level) planning, i.e. reasoning about 

a problem that is not similar to any previously encountered 

and solved problem. Using this functionality for UMV 

systems may greatly improve their performance. This idea 

is not at all new (Sussman 1973). Today there are non-

deterministic (Cimatti et al. 2003) and probabilistic ap-

proaches to generate contingency plans either for remedy 

or prevention of problems, i.e. procedures containing con-

ditional branches and loops. However, automated learning 

of procedures may entail risks in case of world model 

limitations, e.g. missing side-effect descriptions for some 

actions may lead to system damage when executing certain 

action combinations. This problem does not so much apply 

to the learning of macro procedures which merely consist 

of the combination multiple already defined procedures by 

high-level planning (i.e. treating whole procedures as plan-

ning operators). 

Human-Robot Interaction 

UMV behavior is defined by its more or less static proce-

dure database and the constraint set, which is depending 

on the mission goals, the situation development, and pref-

erences of the human operator. In this chapter, we explain 

our approach to human-robot interaction, which comprises  

 mixed-initiative planning and mixed-initiative plan exe-

cution – two independent concepts that can benefit 

from each other when combined to mixed-initiative 

operation (Strenzke and Schulte 2012), 

 mixed-initiative constraint definition, designed to sup-

port mixed-initiative plan execution, as well as  

 mixed-initiative procedure generation and modification. 

Mixed-Initiative Planning 

As depicted in figure 1, the relationship between the hu-

man operator and the UMV system (white robot-heads) can 

be described as supervisory control (Sheridan 1992), which 

means that the operator first plans an operation (or mis-

sion) in his own mind, then teaches (in our case gives con-

straints to) the system, which then plans the mission. From 

then on he/she monitors the execution of the mission, and 

intervenes (i.e. re-teaches) if necessary. In contrast to this, 

the relationship between the human operator and the deci-

sion support system (or assistant system, grey robot-head) 

is of more cooperative nature, therefore called cooperative 

control. It knows the execution constraints, but it is not 

bound to those. Thereby, it is able to support the UMV 

operator in his job of defining and modifying the planner 

constraints, resulting in mixed-initiative planning. This 

setup has already been prototypically implemented 

(Strenzke and Schulte 2011) and evaluated in human-in-

the-loop experiments (Strenzke and Schulte 2012). 

Mixed-Initiative Plan Execution 

Mixed-initiative plan execution means that in certain cases 

the human operator is somehow involved in triggering 

critical actions, as in (Cummings and Mitchell 2005), and 

in changing the plan in case of disturbing unforeseen 

events. In our concept of mixed-initiative operation 

(Strenzke and Schulte 2012), we propose to re-use the 

constraints defined by the human operator during the 

mixed-initiative planning process for later decisions during 

mission execution. These constraints then define the levels 

(degrees) of automation (Sheridan 1992), which define 

human operator involvement in system decisions. 

Mixed-Initiative Constraint Definition 

The problem with the mixed-initiative operation approach 

is that in some cases the UMV operator might only give 

few constraints to the system and nevertheless be satisfied 

with the resulting plan, thereby revealing only a small part 

of his overall intentions (i.e. actions that should take place, 

actions that should not take place). If this happens, the 

system should be able to infer  about  the  human’s  intent  and  
generate relevant contingency cases. It can then ask the 

operator for his recommendations or propose constraints 



on its own in order to gather more human-approved con-

straints, which ease automated or mixed-initiative decision 

making before time-critical problems arise during mission 

execution. This field of work seems yet unexplored. 

 As an example, the human operator defines the con-

straints that UMV1 should not use corridor1 for ingress 

and UMV2 should not use corridor1 as well. The system is 

then able to infer either by analogy that the question if 

UMV3 also should not use corridor1 remains open. Of 

course, the system is able to decide by itself which corridor 

UMV3 will use, but as long as the operator’s  workload   is  
low - which has to be measured or estimated (Donath et al. 

2010) - , it makes sense to clarify this question. However, 

in the same situation, the system could infer that in a re-

connaissance mission it makes sense to cover as many 

corridors as possible. This would lead to the question if 

UMV3 should do use corridor1, since corridor1 may re-

main uncovered.  

Mixed-Initiative Procedure Generation and Modi-

fication 

In addition to the execution constraints, the human opera-

tor should be able to generate new and modify existing 

low-level or high-level (macro) procedures for the UMV 

system, in order to master unforeseen problems during 

mission execution. However, in high task load situations, 

computer-assistance will be necessary. As explained be-

fore, it is risky to create or modify procedures completely 

automatically. The cooperation of human and machine 

during procedure generation or modification therefore 

seems to be the concept of choice for future UMV guid-

ance approaches. After finding out that there is or will be a 

heat problem with the standard procedure in a new envi-

ronment, the computer may recommend inserting the con-

ditional   action   ‘decrease-speed’   (with   the   condition   ‘out-

side-temperature > x’)  before   the   lengthy  search   task  and  
an ‘increase-speed’ before the critical overfly. The prob-

lem may be detected by projecting future states during 

procedure simulation. Of course, the world model of the 

low-level planner must have sufficient detail in order to 

come to this conclusion, i.e., for this example, include the 

temperature variables. Then, whether the procedure is 

modified accordingly, is  the  human  operator’s responsibil-

ity. If the procedure is modified, the next time the system 

automatically decreases its speed in case it is too hot, with-

out having to ask the human operator for permission, 

thereby lowering the task load and raising safety. 

Human-Machine Interface 

In the first place, to obtain system behavior predictable for 

the human operator, the human-machine interface should 

be mainly graphically-based (e.g. as in figure 2). However, 

there will be at least supporting dialogs for mixed-initiative 

interaction, which can be realized as natural language dia-

logs, as described by (Bonasso, 2002; Allen et al., 2007). 
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Rob Janssen and René van de Molengraft
and Maarten Steinbuch

Department of Mechanical Engineering
Den Dolech 2

5600 MB Eindhoven
the Netherlands

Daniel Di Marco and Oliver Zweigle
and Paul Levi

Department of Image Understanding
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Abstract

As robotic systems become more and more capable
of assisting in human domains, methods are sought
to compose robot executable plans from abstract hu-
man instructions. To cope with the semantically rich
and highly expressive nature of human instructions, Hi-
erarchical Task Network planning is often being em-
ployed along with domain knowledge to solve planning
problems in a pragmatic way. Commonly, the domain
knowledge is specific to the planning problem at hand,
impeding re-use. Therefore this paper conceptualizes a
global planning architecture, based on the worldwide
accessible RoboEarth cloud framework. This architec-
ture allows environmental state inference and plan mon-
itoring on a global level. To enable plan re-use for fu-
ture requests, the RoboEarth action language has been
adapted to allow semantic matching of robot capabili-
ties with previously composed plans.

Introduction

During the last couple of years a lot of effort has been put
in the integration of assistive systems in human-oriented do-
mains. One of the main reasons, is that robots are well-suited
to execute tasks that are either dangerous, strenuous or sim-
ply too boring for humans to be performed.

A major advancement in integrating robotic helpers in
human environments would be the ability to autonomously
plan and execute tasks that are described in a highly ex-
pressive, symbolic way. Symbolic planning methods that
make use of domain knowledge have been shown to be quite
successful in real-world applications (Au, Kuter, and Nau
2005).

For plan construction, these planning systems typically
require to infer the current state of the world. For large
environments however, this inference might be difficult
or even impossible to accomplish if the planning system
(usually a personal robot or household application) has
no awareness beyond its own perceptual range. Examples
can be found for instance in hospitals, where patients
might change their locations, or in office environments,
where doors close, elevators become occupied or other
robots might require priority over certain appliances. In the

Copyright c� 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

RoboEarth project (Waibel et al. 2011), a global represen-
tation of the world, i.e. a global world model, is proposed
which is continuously updated by all systems operating
in that specific environment. If something changes in the
environment relevant to the executing robot, a new plan can
be directly provided, without having to wait until the robot
reveals the discrepancy itself.

Planning robot tasks globally on a database instead of
locally on an isolated system also brings in the possibility
to re-use earlier constructed plans in future plan requests,
hereby speeding up the search and enabling autonomous
generation and memorization of task descriptions between
robots. This paper will therefore conceptualize a planning
architecture that allows to

• compose plans based on a globally and continuously up-
dated view of the world,

• re-use full or partial plans that were constructed during
previous planning requests.

In addition, a formal language describing a taxonomy of ac-
tions will be adopted, which will be expanded in this paper
to be used in a state-of-the-art planning component. Plan re-
finement will be based on this taxonomy, where suitable de-
compositions will be based on a robot’s unique capabilities.

Related work

Service robots are nowadays provided with countless
possibilities to share the knowledge they have gained during
planning or execution of earlier tasks. With the arrival
of common machine-readable web languages (Yu 2007;
Group 2009), open standardized component interfaces
(ORIN, OROCOS, ORCA, ROS), task-centered ser-
vice robot domain ontologies (Kang et al. 2009) and
task-attribute related databases (Shilane et al. 2004;
Waibel et al. 2011), there are now multiple ways to share
and re-use task related knowledge between systems operat-
ing in this domain.

In the Rosetta project (Björkelund et al. 2011) a knowl-
edge framework for sharing information of robot skills
on a semantic level was conceptualized that allows to
share formal knowledge between robots. To convert plant
data into a formal representation, extensions were made



on AutomationML which allows this information to be
stored as RDF triples on the semantic web. Exploiting the
semantic web as means to share knowledge between robots
has been done in the Proteus project (Lortal, Dhouib, and
Gérard 2011), where the focus is to integrate ontological
knowledge into a common robot Domain Specific Language
(DSL). Because no concrete effort has been made yet to
elaborate specifically on the descriptions of robot tasks, the
RoboEarth action language (Tenorth et al. 2012) has been
developed to allow a suitable, hierarchical representation of
task related knowledge in this domain.

Because human task instructions usually only provide
information on an abstract high level, decomposition of
these instructions into robot executable primitives requires
to solve a planning problem. Hierarchical Task Network
(HTN) planning (Ghallab, Nau, and Traverso 2004) has
been proposed to decompose high level plans into sub-plans
(methods) and eventually into executable operators.

There exists a large amount of work on the integration
of HTN planning methods with OWL descriptions for com-
positing web services. In (Hartanto and Hertzberg 2008)
a method is proposed to extract a reduced HTN planning
domain from an OWL encoded knowledge base. The con-
cept described in this article is similar to a method pro-
posed in (Sirin et al. 2004), where HTN planning was ap-
plied to OWL-S description logics after converting them to
the SHOP2 domain.

RoboEarth Planning Architecture
The work described in this article presents a first pro-
posal for the RoboEarth planning architecture, for which
a schematic visualization is given in figure 1. On the
RoboEarth Cloud Framework, a SHOP2 planner (Nau et al.
2003), is implemented that requires a triple (S0, T,D) to
generate plan P . When the robot receives a user instruc-
tion, it queries the RoboEarth cloud framework for an ex-
ecutable plan. With this query, the abstract user instruction
is uploaded and directed in binary format to an intelligent
processing service on the RoboEarth database, where it is
parsed into a set of partially ordered set of tasks describing
a SHOP2 problem T (Kemke 2006).

To derive the initial state of the world S0, a global rea-
soning and inference system (Tenorth and Beetz 2009) is
adopted, that is capable of deriving predicates describing the
current state of the world. This derivation is based on two
knowledge bases,

• a global world model (Elfring et al. 2011), that continu-
ously tracks the state of the world by receiving updates
from all connected robots (e.g. where a certain cup is lo-
cated, or what floor an elevator is currently at),

• a global knowledge base, consisting of facts (e.g. if
a cup can be used to transport liquids), and computa-
bles (Tenorth and Beetz 2009) that can be used to derive
new facts (e.g. if a cup is on top of a table, based on their
geometric relation),

A concept of this combined tracking, reasoning and infer-
ence system is described in (Waibel et al. 2011).

The SHOP2 planning domain D is constructed by a ca-
pability matching component, that composes usable sets of
methods and operators based on a semantic description of
the robot’s capabilities. Details of this semantic descrip-
tion language (SRDL) are described in (Kunze, Roehm, and
Beetz 2011).

After construction, the composed plan P is sent as a re-
sponse to the robot through the SeRQL RDF query inter-
face (Prud’hommeaux and Seaborne 2008). In parallel, the
composed plan is also fed back to the RoboEarth compound
plan database to be used as a sub-task in future planning re-
quests.

To execute the received plan on the robot, the knowledge-
driven execution engine CRAM (Beetz, Mösenlechner, and
Tenorth 2010) is adopted. This execution engine allows
to execute highly expressive, symbolic plans for which
the specific plan parameters are derived at run-time. This
parametrization is achieved by a reasoning and inference
system running locally on the robot. This inference com-
ponent decides on whether to use the robot’s local knowl-
edge base, e.g. for visual-servoing purposes, or if the global
RoboEarth global knowledge base should be consulted, for
instance if the numerical coordinates for an imperceivable
navigational goal in another part of the building needs to be
inferred, or if a proper set of grasp points for a locally un-
known object are required.

The CRAM engine also allows to pre-define error han-
dling methods to notify the RoboEarth database if a certain
part of the plan cannot be performed and another plan is re-
quired. To compose a new plan, a different refinement will
be selected in the planning process, hereby excluding the
part of the plan that could not be accomplished. Methods
for selecting preferable refinement strategies are described
in (Tsuneto et al. 2007) and (Sohrabi, Baier, and McIlraith
2009).

It is also possible for the RoboEarth database to pre-empt
the currently executed plan on the robot. This will happen,
if the global reasoning component on the database discovers
a relevant change in the initial state of the world that was as-
sumed during plan construction time. An example could be
that another robot discovers an elevator becoming unavail-
able, or the displacement of a task relevant person to another
location.

RoboEarth Action Language
The RoboEarth action language (Tenorth et al. 2012) aims
to be a semantic representation language that robots can use
to autonomously exchange information among each other.
It is based on the W3C-standardized Web Ontology Lan-
guage (Group 2009), more specifically on the description
logics variant OWL-DL. The language allows a formal,
machine-readable specification of actions, objects, locations
and also more abstract entities like unit types and robot ca-
pabilities.

Complex actions are stored in separate OWL files and
are called action recipes (Di Marco et al. 2012). They are,
similar to HTNs, constructed by compositing primitive ac-
tions and other compound actions. In contrast to classical
HTN planning methods, the capability matching system on
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Figure 1: Proposed RoboEarth planning architecture.

the RoboEarth cloud selects the available actions suitable
for execution by matching the capabilities of the respective
robot platform with the capability requirements of the ac-
tion. Additionally, it also checks whether the robot can be
provided with missing task-related components, e.g. an oc-
cupancy grid map for navigation (Waibel et al. 2011).

Because the RoboEarth language was not designed for the
purpose of domain-independant task planning, but with the
idea of exchanging plan descriptions between different robot
platforms in mind, the language has to be extended. In the
following subsections these extensions will be presented.

Grouping methods by action hierarchy

HTN planning requires different methods that achieve the
same task to be grouped together. In classical approaches,
e.g. as implemented by the popular SHOP2 planner (Nau et
al. 2003), methods implementing the same goal for different
contexts are grouped by having the same name.

An alternative to this concept is to make the task the par-
ent node of the methods implementing the goal. The re-
quired parameters for methods need to be stored as OWL
properties in the parent node, because all methods imple-
menting a task require the same parameters.

Action effects and preconditions

An HTN planning system synthesizes complex plans from a
set of basic actions. For this, it requires a way to project the
effects of these actions to a world state, hereby taking the
imposed preconditions of each action into account. A com-
mon solution in planning literature to this problem is the use
of predicates for describing symbolic changes in the world
state for action preconditions and effects (Ghallab, Nau, and
Traverso 2004). Thus, the extensions required to our lan-
guage for describing actions in this work are: Action pre-
conditions (for both methods and operators) and Action ef-
fects (for operators). Both can be added to the language as
additional OWL object properties.

As the main purpose of the project is to enable different
robot platforms to re-use action recipes, this opens the ques-

tion of how to ensure consistent usage of predicates for de-
scribing the effects and preconditions of basic actions. Or
formulated in terms of HTN planning: how can we describe
different sets of operators (one set for each robot platform)
such that they can be used by the same set of methods?

One solution would be to provide an additional ontology
predefining these predicates and necessary logical operators
like and, or, not, etc. Even though there are multiple stan-
dards available for describing first order logic formulas in
OWL ontologies (as e.g. RIF1) we choose to provide our
own. This primarily has two reasons:

• The knowledge representation semantics commonly cho-
sen for description logics and thus OWL-DL make use of
the open world assumption, i.e. facts not explicitly prov-
able are assumed to be unknown. Symbolic planners usu-
ally implement the closed world assumption and consider
facts that are not provable by the provided knowledge to
be false.

• The mentioned standards focus on extending OWL-DL
rules working on the knowledge base with methods of
logic programming, whereas our goal is merely to de-
scribe a set of changes to a set of predicates. Higher ex-
pressivity comes at the cost of computational power for
planning, so we tried to reduce the expressivity of the lan-
guage as far as possible.

Capability matching and domain size reduction

As the number of methods in the intended system can be ex-
pected to be large, it is important to reduce the complexity
of the planning search by removing methods that are not rel-
evant to the task under consideration. We can achieve a first
reduction of size by including solely the methods and pred-
icates required by the tasks, using the method proposed in
(Hartanto and Hertzberg 2008).

As was described in (Tenorth et al. 2012), the current
RoboEarth system is able to reason about the requirements

1http://www.w3.org/TR/2010/REC-rif-core-20100622/



(:- (hasAllRequiredComponents ?robot ?cap)

(or (not (capDependsOnCompRec ?cap ?comp))

(hasComponent ?robot ?comp)))

(:- (capDependsOnCompRec ?cap ?comp)

(or (capDependsOnComp ?cap ?comp)

(and (capDependsOnCap ?cap ?cap2)

(capDependsOnCompRec ?cap2 ?comp))

(and (capProvidesCap ?cap ?provcap)

(capDependsOnCompRec ?provcap ?comp))))

(:operator (!download-comp ?robot ?comp)

((downloadableComp ?comp)

(not (hasComponent ?robot ?comp)))

(())

((hasComponent ?robot ?comp)))

(:method (prepareCap ?robot ?cap)

((capDependsOnCompRec ?cap ?comp)

(not (hasComponent ?robot ?comp)))

((!download-comp ?robot ?comp)

(prepareCap ?robot ?cap))

((hasAllRequiredComponents ?robot ?cap)

())) ;; NOP

Figure 2: SHOP2 domain for capability matching















Figure 3: Example task hierarchy

of actions and capabilities of robots to find out whether an
action can be executed by a robot platform, and which down-
loadable components would be required to do so2. Currently,
this is done by several Prolog rules in the knowledge pro-
cessing framework KnowRob (Tenorth and Beetz 2009). For
a more coherent system in the sense of this work, we could
transform the capability matching process into a HTN plan-
ning problem, where we define the download-comp operator
and a recursive prepareCap method (fig. 2). An example is
given in figure 3: The task under consideration is BaseMove-
ment, which can be achieved by the methods BaseMoveIn-
sideRoom and BaseMoveBetweenRooms, respectively. As-
sume for the sake of the example that BaseMoveInsideRoom
implements a simple operator call to a 2D navigation method
(MoveBasePrimitive), while BaseMoveBetweenRooms is a
compound task incorporating sub-tasks for detecting and
opening closed doors. In classical HTN notation, the meth-

2SRDL description can include additional information about
robot capabilities, but currently only the mentioned capability
checking is used.

BaseMoveBetweenRooms
task: BaseMovement(from, to)
precond: inRoom(from, room1) ^

inRoom(to, room2) ^
doorConnecting(door, room1, room2)

subtasks: hBaseMovement(from, door1),
DoorOpen(door1),
NavigateThroughDoor(door1),
BaseMovement(door1, to)i

BaseMoveInsideRoom
task: BaseMovement(from, to)
precond: inRoom(from, room) ^

inRoom(to, room)
subtasks: hMoveBasePrimitive(from, to)i

Figure 4: Example methods in HTN syntax

ods could be described as shown in figure 4 (assume a se-
quential ordering for the subtasks).

To generate a SHOP2 planning problem, the first step
would be to collect all action recipes that achieve the Base-
Movement task and translate them into the planner’s syntax.
We also need to retrieve recursively all the methods that are
used in any BaseMovement methods, in this case DoorOpen
and NavigateThroughDoor. We then can apply the capability
matching process mentioned before on each of the methods
retrieved so far to further decrease the number of methods
and to retrieve missing data from the database.

Having collected these, the current state of the world has
to be formulated as a set of predicates. Again, it is sufficient
to collect predicates that are referenced by any of the meth-
ods remaining after the previous step. Finally, we can apply
the SHOP2 planner on the reduced method set and world
state description and create a sequential CRAM plan from
the result, provided that planning succeeds.

Discussion & Future Work

We proposed a way to combine HTN planning with a global
world model to enable robots to share task descriptions and
synthesize plans.

An important possible improvement relates to the well-
known lack of flexibility we have to accept when we create
a static plan based on a snapshot of the world state. We in-
tend to investigate ways on how to improve on that by in-
tegrating planning and execution more tightly, e.g. as pro-
posed in (Kaelbling and Lozano-Perez 2011) and how to ex-
plicitly deal with unforeseen changes in the assumed state
of the world state (Au, Kuter, and Nau 2005) (Ayan et al.
2007), (Warfield et al. 2007), (Keller, Eyerich, and Nebel
2010)
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