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1 Introduction

In this paper, we propose a procedure for dealing with Combinatorial Optimization Problems (COP). This procedure
combines features of exact enumeration methods (i.e. branch and bound) with local search procedures. Regarding
the combination of exact and approximate methods for COPs, we are aware of the papers by [5] and [1], but not of
similar designs to the one that we present here.

In this paper, we employ as local search procedure the so-called Complete Local Search (CLM) metaheuristic [2].
CLM handles three lists of solutions. The first one, called LIVE, stores solutions that are available for the heuristic
for future exploration. A second list, called DEAD, contains solutions that were in LIVE at some stage, and have been
already explored. The third list, called NEWGEN is a temporary store for new solutions being generated by the heuristic
during the current iteration. CLM starts with a given input solution(s) stored at LIVE, while DEAD and NEWGEN are
initially empty. On each iteration of CLM, a solution is picked from LIVE and explored, i.e. all its neighbors are
generated and the solution is sent to DEAD. From the set of neighbors, all of them whose objective function is better
than a threshold value τ are checked for membership in LIVE, DEAD and NEWGEN. If not in these lists, the neighbor is
put in NEWGEN. At the end of the iteration, all solutions in NEWGEN are transferred to LIVE for the next iteration of
CLM. By proper parameter setting, CLM can be transformed into exhaustive search, generic local search with steepest
descent or random descent, simulated annealing, or a memory-based metaheuristic in a slightly differ manner than
tabu search. Its performance is controlled by a number of parameters such as the threshold value τ , the memory size
of the lists, etc. For further details on CLM, the reader is referred to [2]. The remainder of the paper is as follows:
first we describe the algorithm and their main features. In section 3 we apply the algorithm to a well-known COP
problem: the permutation flow shop scheduling with makespan criterion. Some preliminary computational experience
is presented, and section 4 is devoted to some comments and lines for future research.

2 Description of the algorithm

The high-level sketch of the proposed algorithm is the following:

procedure Algorithm()

Sbest ← ObtainInitialSolution()

do

for Kb iterations: ExploreTree()

for Kc iterations: PerformCLM()

ClearList(LIVE)

while StoppingCondition() = FALSE

With respect to the procedures employed, procedure ClearList(LIVE) deletes all solutions stored in the list LIVE
employed by CLM. Procedure StoppingCondition() establishes the termination criteria of the algorithm. Finally,
PerformCLM() performs one iteration of CLM, i.e. takes the first solution in list LIVE, examines all neighbors that
have not been explored (they are not in LIVE, DEAD, and NEWGEN), and add those passing a threshold to list LIVE
for further exploration. The only difference with respect to the original CLM is that in our procedure, neighbors are
checked not to belong to list FORBIDDEN (discussed in next subsection). Finally, ExploreTree() is described in the
next subsection.
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2.1 Procedure ExploreTree()

An iteration of ExploreTree() opens a promising node (constituted by a partial solution stored in a list TREE) into a
number of nodes of the next level. A lower bound for the nodes is calculated in order to branch the fathomed nodes,
who are included in the list FORBIDDEN. The purpose is to prevent CLM to explore solutions that are ’children’ of these
nodes, as mentioned before. Among the non fathomed nodes, the most promising one is selected so it can guide the
CLM procedure to a region where good solutions can be found (this is done by employing a weighting function that
will be discussed later). As the CLM procedure requires a complete solution, a complete solution should be generated
from the partial solution represented by this specific node (this procedure is discussed later in subsection 2.1.3). Once
a complete solution is generated, it is added to LIVE so it can be explored by the CLM algorithm. In detail, the
algorithm operates as follows:

procedure ExploreTree()

begin

S ← GetNodeFromTree()

delete selected node from list TREE
if adding a component c to S produces a complete solution:

Sc ← by adding solution component c to S.
if UB(Sc) < f(Sbest), then Sbest ← Sc

add Sc to LIVE

else

for all components i that can be appended to the partial solution S:
Si ← by adding solution component i to S.
LB(Si)← CalculateLowerBound(Si).
if LB(Si) < f(Sbest)

add Si to TREE.
else

add Si to FORBIDDEN.
end

end

select Sr := {Sr : LB(Sr) ≤ LB(Si)}.
S ← ObtainCompleteSolFromNode(Sr).
if f(S) < f(Sbest), then Sbest ← S

add S to LIVE

end

if Sbest has been improved, then UpdateTree()

end of procedure ExploreTree()

Basically, the procedure ExploreTree() selects one node from the list TREE according to a weighting function -if
the nodes in TREE are sorted according to this weighting function, then it simply picks the first node from the list. If
adding a new component to the node makes a complete solution (the maximum level in the depth of the branch and
bound has been reached), then this solution is compared to the best-so-far solution. If it is better, then a new best-
so-far solution is found. The solution is added to LIVE as a solution whose neighborhood is worth to be investigated
by the CLM procedure. In case that adding a new component to the node does not make a complete solution, then a
good complete solution is obtained by making use of procedure ObtainCompleteSolFromNode(), which is explained
in section 2.1.3.

2.1.1 Procedure GetNodeFromTree()

This procedure basically picks a node from the node list in TREE. If the nodes in TREE are sorted in ascending order of
the weighting function, then this procedure takes the most promising node of TREE regardless the length of the partial
solution (or equivalently, the level of the node in the branch and bound terminology). In contrast, if the nodes in
TREE are sorted according to their level (length of the partial solution) and ties are broken according to the weighting
function, then the procedure performs a ’first depth search’ in the node tree.

If, when invoking this procedure, there is no more nodes in TREE, then the algorithm stops as the optimal solution
has been found.

Finally, with respect to the weighting function, it is clear that it has a crucial role in the performance of the
algorithm. Some judicious choices for the weighting function include:

• The lower bound (LB) of the node.

• The average between the lower bound and an upper bound (UB) of the node, i.e. (UB + LB)/2

2



2.1.2 Procedure UpdateTree(S)

This procedure deletes from list TREE all nodes whose lower bound is greater than Cmax(S). This procedure is invoked
whenever the current best solution is improved. Or, in the branch and bound terminology, whenever a new upper
bound is found.

2.1.3 Procedure ObtainCompleteSolFromNode(S)

There are several sensible ways to obtain a complete solution from the partial solution represented by the most
promising node. These include:

• LIVE based- procedure. This procedure consists in searching in list LIVE for complete solutions in the vertex
of this node and place them as next solutions to be explored by CLM. When using this option, it should be
taken into account the possibility that no solution in LIVE corresponds to the node selected.

• TREE based- procedure. In this option, a complete solution solely based in the list TREE should be obtained.
Therefore, the node selected should be expanded into child nodes until a complete solution is obtained.

• Heuristic based- procedure. This procedure consists in completing the partial solution by means of some
heuristic. A sensible way to do it is using ad-hoc constructive heuristics for the problem under consideration in
order to obtain a complete solution.

This third option is selected for the implementation of the algorithm to the F |prmu|Cmax problem and will be discussed
in section 3, as it is problem-specific.

3 Implementation: the F |prmu|Cmax problem

In order to test the proposed approach, we have implemented a version of the algorithm for the F |prmu|Cmax problem.
This problem is a well-known combinatorial optimization problem, and we refer the reader to references [3] and [4] for
the latest advances on this problem. In our implementation of the proposed algorithm, the following decisions have
been adopted:

• The solutions for the problem are coded employing the most common codification, i.e. a solution for a n-jobs,
m-machines problem is defined by a vector S = (σ1, . . . , σn) where σi denotes the job being sequenced in order
ith. An insertion-based neighborhood has been defined for CLM, consisting in removing a job from position i
and inserting it into position j. A node of level kth is represented by a partial sequence where the first k jobs
are already fixed. The set of components i that can be appended to a partial solution (node) is constituted by
the set of non-scheduled jobs.

• As procedure ObtainCompleteSolFromNode(), a heuristic-based procedure has been designed. This procedure
is based on the NEH heuristic [6], which is considered the best constructive heuristic for the problem under
consideration. According to the NEH heuristic, jobs are arranged in descending order of the sum of their
processing times. Then, each job kth is inserted on each of the (k + 1)th possible slots of the partial sequence,
and the so-obtained partial sequence yielding the lowest (partial) makespan is retained as partial sequence for
the next step. In our implementation of ObtainCompleteSolFromNode(), already k jobs have been scheduled
(in the first kth positions). Therefore, the same steps in the NEH heuristic are applied for the non-scheduled
jobs, i.e. they are arranged in descending order of the sum of their processing times, and then job ith is inserted
in positions from (k + 1) to (i + 1). The best partial sequence is retained for the next step.

• The selection of the next node to be processed –procedure GetNodeFromTree()– is done such as nodes in TREE
are sorted according to their lower bounds regardless the length of the partial schedule (level of the node). Thus
the weighting function employed is a lower bound of the solution. In this implementation, a fast, simple, lower
bound for the makespan that can be computed in O(nm) has been selected. This lower bound is denoted as
LB1 in the review by [4].

• Parameter setting of the algorithm:

– Kb has been set to 10. As one new solution is added to LIVE on each iteration of ExploreTree(), this
means that 10 solutions are stored in LIVE for CLM.

– Kc has been set to Kc = Kb · |LIVE|. This ensures that all relevant solutions in LIVE are to be explored
before LIVE is cleared.

– As stopping criterion, it has been set to stop after 100 iterations without improvement. This number of
iterations have been proved to be more than sufficient to obtain accurate solutions of the problem. In view
of the results shown in table 1, we conjecture that a similar performance could have been obtained with a
lower number of iterations.
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Problem Size Makespan PRD
Instance n m UBT Cmax(ALG) Indiv. Avg.
ta001 20 5 1278 1278 0.000
ta002 20 5 1359 1359 0.000
ta003 20 5 1081 1081 0.000
ta004 20 5 1293 1293 0.000
ta005 20 5 1235 1235 0.000
ta006 20 5 1195 1195 0.000
ta007 20 5 1234 1239 0.405
ta008 20 5 1206 1206 0.000
ta009 20 5 1230 1240 0.813
ta010 20 5 1108 1108 0.000 0.122
ta011 20 10 1582 1582 0.000
ta012 20 10 1659 1659 0.000
ta013 20 10 1496 1496 0.000
ta014 20 10 1377 1379 0.145
ta015 20 10 1419 1419 0.000
ta016 20 10 1397 1397 0.000
ta017 20 10 1484 1484 0.000
ta018 20 10 1538 1543 0.325
ta019 20 10 1593 1593 0.000
ta020 20 10 1591 1591 0.000 0.047
ta021 20 20 2297 2298 0.044
ta022 20 20 2099 2099 0.000
ta023 20 20 2326 2326 0.000
ta024 20 20 2223 2223 0.000
ta025 20 20 2291 2296 0.218
ta026 20 20 2226 2230 0.180
ta027 20 20 2273 2276 0.132
ta028 20 20 2200 2200 0.000
ta029 20 20 2237 2237 0.000
ta030 20 20 2178 2178 0.000 0.057
ta031 50 5 2724 2724 0.000
ta032 50 5 2834 2834 0.000
ta033 50 5 2621 2621 0.000
ta034 50 5 2751 2751 0.000
ta035 50 5 2863 2863 0.000
ta036 50 5 2829 2829 0.000
ta037 50 5 2725 2725 0.000
ta038 50 5 2683 2683 0.000
ta039 50 5 2552 2561 0.353
ta040 50 5 2782 2782 0.000 0.035

Average 0.065

Table 1: Results obtained in a subset of the testbed by [9]

– Regarding CLM parameters, K has been set to 1, and α0 and β have set set to zero. This implies that
the threshold is the makespan of the current solution, that is: the procedure includes in LIVE these solu-
tions whose makespan improves the makespan obtained for the current solution (see [2] for details on the
performance of the different parameters for CLM).

Note that we have not employed in our implementation neither sophisticated (and accurate) lower bounds such as
the ones described in [4], nor problem-specific neighborhoods, such as those described in [3]. On one hand, such
lower bounds are computationally very expensive and their inclusion might distort the balance between the branch
and bound and the local search algorithm. On the other hand, using tailored neighborhoods might hide the general
capabilities of the algorithm. However, we believe that the current results can be improved by the introduction of
these two elements, being this an interesting area of future research (see section 4 with respect to this issue).

To test the performance of the implementation, part of the testbed of problem instances built by Taillard [9]
has been selected. The best-so-far results obtained for these instances are available in the OR Library [7] and are
denoted in this paper as UBT . For each instance, Cmax(ALG) the makespan obtained by the implementation has
been measured in terms of the Percentage Relative Difference(PRD), defined as follows:

PRD =
Cmax(ALG)− UBT

UBT
· 100

The results of the experiments are shown in table 1. The quality of the solutions is extremely good, reaching the
best known solution in 31 out of the 40 instances. Regarding the computation times, they grow rather fast with the
problem size.

4 Comments and final remarks

In this paper we present the outline of a hybrid metaheuristic for COPs. The algorithm combines features of exact
enumeration methods (i.e. branch and bound with some features borrowed from beam search) with local search strate-
gies. The communication between local search and enumeration procedure is ensured so both algorithms efficiently
cooperate. On one hand, the local search provides the enumeration procedure with accurate lower bounds. On the
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other hand, the enumeration procedure drives the local search by guiding the latter to new regions where good solu-
tions can be found and providing a diversification mechanism for avoiding local optima. Finally, it has to be noted
that the procedure yields exact –optimal– solutions if allowed sufficient computation time.

This procedure has been implemented for a well-known COP, the the F |prmu|Cmax problem. The preliminary
results are encouraging, despite the implementation does not use tailored neighborhoods nor sophisticated lower
bounds.

At this stage of the research, our effort concentrates in the following lines:

• Additional features from tree search methods (particularly beam-search [8]) can be incorporated, including the
use of a beam width to reduce the computational burden. However, these new features would imply the loss of
guarantee of optimality.

• Different local search strategies can be incorporated instead of CLM. The most obvious choice is tabu search,
which is also expected to reduce the computational burden of the local search part as it does not need to handle
a list of all explored solutions.

• The procedure should be applied to different COPs. We believe that this could be particularly fruitful in
its application to problems with severe feasibility restrictions (i.e. problems where their natural codification
contemplates unfeasible solutions).

• Regarding the specific implementation that has been presented in this paper, a lot of work has yet to be done.
On one hand, it has been already mentioned that using specific (reduced) neighborhoods and accurate lower
bound is expected to improve the algorithm. On the other hand, a fine tuning of the parameters and decisions
involved in the algorithm should be carried out in order to increase its performance.
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