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Abstract—The Anderson theory of heterojunctions is reviewed with particular reference to the derivation of the
affinity rule. We consider in detail the fundamental assumptions on which the Anderson model is based, analyzing
arguments which either confirm or dispute these underlying ideas. An alternate model is then proposed, and apain
we discuss the arguments for and against. Our conclusion is that further work must be done both theoretically and
experimentally before a definite determination can be made as to the more appropriate of these two theories.

1. INTRODUCTION

Until recent years the heterojunction occupied a position
of relative obscurity in the hierarchy of semiconductor
topics of current interest. However, with the develop-
ment of heterostructure injection lasers[l] for ap-
plications in optical communications and elsewhere, the
semiconductor heterojunction has now achieved a sphere
of much wider interest (for a comprehensive review, see
c.g. Ref. [2]). In the case of the injection laser, the use of
a double heterojunction structure has made possible the
achievement of room-temperature c.w. operation by
confining the region of radiative recombination to a
well-defined, narrow layer of material. The resulting
structure is, however, a difficult one to analyse from the
viewpoint of a detailed theoretical understanding of the
carrier transport effects. A recent study[3] has revealed
several areas of uncertainty in modelling such a struc-
ture, most of which are due to fundamental questions in
the physics of heterojunctions.

The earliest theoretical model for heterojunction
behaviour, due to Anderson(d], utilised the Schottky
depletion approximation to analyse an abrupt junction
between two semiconductors. An alternative model al-
lowing for a graded transition of energy gaps rather than
an abrupt interface was proposed by Oldham and
Milnes{5]). Other models have included the effects of
interface states{6] and of minority carriers(7]) in the
region of the heterojunction. More recently the fun-
damental question of how the energy band discontinuity
is distributed between conduction and valence bands has
been resurrected (8, 9.

It is this latter problem with which we are concerned
here. In particular the conventional assumption regarding
the division of energy discontinuities at an interface—the
electron affinity rule—is examined with reference to
recent criticisms[8]. An alternative proposal is made for
calculating energy band discontinuities by assuming
continuity of the intrinsic level rather than the vacuum
level. Some results of applying this rule to common
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heterojunctions are given and compared with the results
of the affinity rule. -

We consider throughout this paper the anisotype (p-n)
heterojunction, specifically with n-type energy gap
(EGn) larger than p-type (Egp). However, the arguments
presented are perfectly general and may equally well be
applied to the anisotype case with Egp > Egn and to the
isotype n-n or p-p situations.

2. PERTINENT PROPERTIES OF HOMOJUNCTIONS

In order to show the basis of our proposed
modification of the Anderson model, we briefly review
the pertinent concepts of homojunction physics. Firstly,
for a typical N-type homogeneous semiconductor (Fig.
1), the Fermi level Er will lie a distance K above the
intrinsic level Ej, where K, being a measure of the shift
of the Fermi function from its symmetric position in
intrinsic material, should logically be identified as the
chemical potential. It then follows that the position of E;
with respect to the arbitrary reference level shown
should be identified as the electrostatic energy ~eV. This
confirms to the customary definition[10] of the electro-
chemical potential 4, namely

Ep=ﬁ=K—8V.

The figure also shows the vacuum level E... and the
associated work function W and electron affinity y.

All of these quantities can be applied to the homo-
junction of Fig. 2-(taken as symmetric for simplicity). To
determine the actual shape of the bands in the transition
region, we impose the conditions that Er is everywhere
constant and that the displacement vector D has a con-
tinuous normal component D, at the junction. These are
used in conjunction with the Poisson-Boltzmann equa-
tion, which has the dimensionless form[11]

2
:—;‘, =sinhu-a. )
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Fig. 2. Energy band structure for symmetrical homojunction.

Equation (1) comes from Poisson’s equation by letting
the volume charge density be expressed as p-n+ Np=
Ny, by using Boltzmann statistics in the form n= -
n; exp(K/KT), p = m exp(~ K/kT) (in accordance . with
our discussion above of the significance of the chemical
potential), and by using the reduced variables u = K/kT,
a=(No~ NJ)2n, r=x/Lg where Lp = (ekT12n.e?)'? is

the intrinsic Debye length. The first integral of (1) is

du
oo V(2cosh u - au + C))

where C is an integration constant. This relation is
actually two equations, one for each region of the junc-
tion. Applying appropriate subscripts and using the con-
tinuity of D, (so that du/dr is continuous at r=0), the

value 4(0) of u at the junction becomes

u(o)zu’:_
an —dp

Knowing u(0), we can integrate eqn (2) from r=0 to
each edge of the space-charge region, obtaining equili-
brium band structures which depend on the impurity
concentrations on each side of the junction. The function
u is a measure of the position of E; with respect to Eg:
once the behaviour of E; is known, all other levels are
automatically determined. We shall return to this point
when we consider heterojunctions, and shall also show

how (3) should be modified.

3. THE :ANDERSON THEORY OF HETEROJUNCTIONS

The well-known depletion approximation solutions{10}
to the Poisson-Boltzmann equation, when applied to a
heterojunction, are '_

Vie(2) = ~(eNol2en)(x = x)+ Viva

“@
Ve(x) = (eNal2ep)(x + xp)* + Vpo
so that at the junction r = 0, we obtain
Vn(0) = Vo= Von = ——e&)'a\'w2
€N 2
{3)

Vp(0)= Veo= Vpp = £ Na, 2
€p 2

where Vpy and Vpe are diffusion or barrier potentials
which represent the band-bending on each side of the
junction. Dividing the first relation by the second gives

Von =NL>€PXNz 6)
Vop Naenxp®
To eliminate (xx/xp)* from (6), we differentiate eqn (4) to
obtain the normal components of D = ¢E and use these
derivatives in the boundary condition

dV dv
(&) =er(F), 0
to obtain
Von | _ Nace =
, Vor - Nopen * (8)

From a knowledge of x and some other constants of the
junction, it is now possible to construct an energy band
diagram in accordance with the Anderson modeli{4] as
follows: the position of Ec and Ev on each side of the
junction are located with respect to the uniform Fermi
level by the respective impurity concentrations. The
known values of the electron affinities set the position of
the two vacuum levels, as shown in Fig. 3, and the
difference in energies- between these two levels is
identified as the diffusion potential Vp, where

Vo= Von + Ve )]
Solving (8) and (9) simultaneously gives the individual

components of Vp and these magnitudes are then trans-
ferred down to all other levels: Ee, E, and E,. This

- - ———— s . s %ee e - ea
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Fig. 3. “Conventional™ heterostructure band diagram with con-
tinuity of vacuum level at x =0,

crucial feature of the Anderson theory thus implicitly
assumes that the boundary condition on D, is applicable
to the vacuum level. Figure 3, based on an example of
Milnes and Feucht[2], shows the typical “spike-and-
notch” structure appearing in the conduction band, a
conventional discontinuity in the valence band, and a
somewhat smaller one for the intrinsic level. As Fig. 3
indicates, the quantity A, is the distance from Ey t0 Er
on the P side and Ay is the distance from Er to Ec on
the N side. In terms of these quantities we can write the
conduction band discontinuity as

AEc =(Egn + eVon)~(Eon — An — Ap +Egp ~—eVps)
=An +AP+CVDN+CVDP—EGP OO)

where this result is simply a consequence of the con-
servation of energy, and similarly

AEV="'CVDN+EGN-AN"AP-¢VDP. (11)

But

Egn+xn+eVpy +eVpp =Egn~An~Ap+Egp +xp -

or -
eVon +eVpr +An +8p = Egp + xp = xn. (12)
Using (12) in (10) gives
, AEc=xp~xn 13)
and in (11)
Ev =(Eon - Ege) = (xp = xn). (14)

Equation (13) is known as the affinity rule and eqn (14) is
the form applicable to the valence band.

SSE Vol. 22, No. $-C

4 AN ALTERNATE TREATMENT OF
HETEROJUNCTION THEORY

We have two reservations about the Anderson theory.
The first involves the use of the depletion approximation.
It has been found to give reasonable results in some
instances, such as in determining the equilibrium band
structure of asymmetric junctions| 12). In other situa-
tions, however, its use leads to very unrealistic current-
voltage characteristics{11} and each application chould
be carefully justified. The other difficulty is concerned
with the nature of the boundary condition. If, as in-
dicated in connection with Fig. 1, the position of E;
serves as a measure of the electrostatic potential for the
carriers in a semiconductor, then the continuity of D,
requires that we apply the boundary condition to du/dr
for a heterojunction in a manner like that for the homo-
junction. That is, the relation .

(&), == (D),
i dx p—eN dx /n

becomes, in terms of the normalized variables previously
used : : -

\/(EPnip)(%'f)P = V(enttin) (%—’;)N |

The use of (2) at r =0 gives

€pnip(cosh u(0) ~ apu(0) + Cp) =
= enmin(cosh u(0) - anu(0) + Cn)

where, as in (3), u(0) is the value of ¥ at r =0, Rearrang-
ing gives

(R -1)cosh u(0) +(an — apR)u(0)+(RCp - Cn) =0
(15)

where

R= Epllip
ENTuN

and where the boundary conditions du/dr = d*u/dr* =0 at
the edges of the space-charge region when applied to (1)
and (2) permit us to ngte

a; = sinh u;

i=N,P. (16
Ci = u; sinh u; — cosh i

Turning again to the Milnes and Feucht example[2), the
appropriate values turn out to be :

up=~866, un=2244, R=4.03x105

A Newton-Raphson solution of (15) shows that there are
two roots, with values u(0) = - 11.075, —2.042 and this is
verified by the plot of eqn (15) over the range of R from
0 to «, as shown in Fig. 4. Note that while this graph
indicates the presence of two roots for any value of R,
only the centre branch of the three-member curve has
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physical significance, Values of u(0) which lie outsjde the  where AEp and AEn are the respective heights of the 8
limits imposed by un and up would cause the bands to intrinsic Jevels above the valence band edges. This sim- i
bend away from cach other at the junction and violate plifies to '
our original continuity condition Because of the effort _ _ _ -
involved in solving transcendenta] equations of the form AEc =(Eon AEw) - (Ecr AEie).

From the usual definition | 10] of the intrinsic level,
amely J
R= cosh #(0) - cosh Un + (un ~ u(0)) sinh Un (17 n
cosh u(0) ~ cosh «, +(up ~ u(0)) sinh gp - Ei-E,=AE, = &_,_3/\4;7'1% (&

2 Hu
This resuit js plotted for v

arious usefy] combinations of
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al branches only, in Fig. 5.
The energy band diagram using the root u(0)=-2.04
will appear as shown in Fj

8. 6. Again using conservation
of energy, we have that

we obtain

AE,_.:EGNZ—EG"-HTTlog(CN/Cp) - (19)

AEC=‘EGP+€VDP+AEIP-€VD‘AEIN+EGN o
+eVpn (18)

c=ulu,.
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Fig. 5. Solutivns of €qn (17) with ui0) plotted v Rfor various values of by, up. Note thay imerchunging Uy and up hyy
the effect of replacing R by R thus giving 3 further set of

solutions,
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Fig. 6. New model heterostructure band diagram with continuity
of intrinsic level at x =0,

Similarly, the corresponding relation for the valence
band discontinuity is

aE, =Fon—For Ml cer)  an)
and it may be further shown that the vacuum level has a
discontinuity given by the equation

AE... EGN Egp ST (o, _XN)—%T-Iog {cnicp).

@n

Since the second term on the right in both (19) and (20) is
usually not more than about 20% of the first term in
these equations, it follows that the discontinuities pre-
dicted by these new versions of the affinity rule are
roughly the same in the two bands; this is in sharp

contrast to Anderson’s rules, which can lead to very

large asymmetries in these quantities.

S. THE BEHAVIOR OF THE INTRINSIC LEVEL

Let us now examine in more detail the assumption
about the continuity of the intrinsic level, which was
introduced in an ad hoc manner in the previous section.
It has been previously pointed out by Chang[23] that the
Fletcher boundary conditions[24), which stipulate the
carrier concentrations at the edges of the space-charge
region in a PN junction under low-level injection, can be
generalized to include heterojunctions. In reaching this
conclusion, Chang found that egns (13) and (14) should

be replaced by eqns (19) and (20) in order to use 4 -
definition of barrier potential that would be valid for
structures with discontinuities in energy levels. It is
possible to eliminate any dependence on the Fletcher
conditions and, in addition, any questionable assump-
tions about the nature of the intrinsic level, by starting
with the situation illustrated in Fig. 3 for Ec, E;, and E,.
The energy —eVp, associated with the diffusion potential
will have a contribution from each of the two regions and
thus should be

- CVD =kT ]Og (nON/'l,'N ) +kT log (ﬂ,’r/"op)

k
=%log(no~/m~) + 2T log (miplnop)
kT
= k—z,—T log (non/pon) + 5 log (poslnoe) .

using Boltzmann non-degenerate statistics and the usual
symbols. Hence, for a heterojunction

—eVp = (kT/2) log (nonpor! nOPPONé

and this, of course, reduces to the cuslomary'expression
if the two materials are identical. The argument of the
logarithm is

32 (Ecp-EcnYkT
nONp()P__(methP) e PN

(Eyn—Evp)k?
MopMiN VYN—Evp

NopPoN [4

so that the diffusion potential is now

KT, ¢p

C-eVp =—“]0 +%[(Ecp ~ Ecn)+(Eve - EwN)}.

But the barrier should also be a measure of what is
happening in the conduction band; in fact, it should be
Ecp — Ecn corrected by the discontinuity AEg, or

—eVp=(Ecp — Ecn)+AE..

If these two expressions for the diffusion potential are to
be consistent, it then follows that

_(Eve = Eyn)+(Ecn — Ec ) 3 N
AEc= > e 4leog( )

14
__EGN—EGP__3_ (_Ci)
i 4kT log )

In the same way, there should be an expression
- CVD = (Evp - Evn) - AEV

involving the~discontinuity in the valence band and this,
when combined with the original expression, leads to

AE, = EG’“'zEG” 3kT1o g(CN)

We thus see that if three different possible definitions of
the barrier potential are to be mutually consistent, then
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the discontinuities in the valence and conduction bands
must have the form of eqns (19) and (20).

Although nothing was stipulated in the argument just
given about the specific nature of E; at the junction, we
can deduce an important conclusion about the behavior
of this level from the fact that we have arrived at our
proposed affinity rule, eqns (19) and (20), in 2 different
manner from that of Section 4. Returning to eqn (18), it is
seen that the reason why —eVp and its two components
drop out is because we have implicitly required that

—eVp=-eVDN+-€VDp.

Thus, if E; is the level which represents a measure of the
internal electrostatic potential and if it is taken to be
continuous, then the analysis of Section 4 is valid. These
assumptions, however, are not crucial, as has just been
showrmn,

Another way of comparing the Anderson affinity rule
with the one that we are advancing is based on the
following physical argument: consider a homojunction
with the band structure of Fig. 2 and apply tension to the
N region only. This process will lower the symmetry
from cubic to tetragonal, there will be an associated
change in the size of the energy gap, and we will have
created a heterojunction with a virtually perfect lattice
match at the interface. Some internal level (not neces-
sarily the intrinsic level) can be chosen to specify the
electrostatic potential and it must be continuous; a dis-
continuity implies that work can be done with zero
displacement, and this is possible only if the field is
infinite. Furthermore, the final arrangement of the energy
levels and of the inevitable discontinuities will depend
only on the internal rearrangements in the distorted
lattice, so that—as we are predicting—the new band
structure depends only on inherent parameters of the
two parts of the junction and not on work functions. On
the other hand, the change in the surface dipole layer
should result in a discontinuity in the vacuum level, and
this effect is also a feature of our model.

6. THE DOUBLY-INTRINSIC HETEROJUNCTION

In our search for specific physical situations which
might );€ serve as a basis for using one model in pref~
erence to the other, it was realized that it is possible to-
integrate eqn (1) twice and express the relative chemical
potential u in terms of standard functions (i.e. to derive
an analytic expression for the shape of the bands) in one
special case—namely, intrinsic material. In fact, this is a
situation for which the depletion approximation would be
completely invalid in any case, so that the Anderson
approach would require some modification. As pre-
viously noted, however, this is not regarded as a serious
objection.

Let us therefore extend the treatment of Section 2 to a
heterojunction composed of intrinsic germanium and in-
trinsic gallium arsenide. Equation (1) then reduces to

2

Y sinhu @
dr

with a first integral

duldr = v/[2(cosh u + C)). (23)
To evaluate the arbitrary constant C, we use the boun-
dary condition that u =0 for intrinsic material in the
equilibrium regions of the junction, where du/dr
vanishes, so that
C=-1.
Hence

dujdr = £v/[2coshu - 1)) = 2sinh (u/2).  (24)

There is an ambiguity of sign in this result which we shall
discuss shortly. Rearranging (24)

dr = duf{2 sinh (4f2)} = § cosh (4/2) du
and integrating again
r=log. tanh (u/d) + C". (25)

To evaluate the second arbitrary constant C, let

u=u at r=0. (26)
Then
C' = ~log tanh {1(0)/4}
and
r=log [t—ai:—m)/)%}] (v)]
N :
4 =4 arc tanh [e” tanh {u(0)/4}]. (28

This expression for u is equivalent to one obtained for
the potential in the semiconductor part of a metal-in-
trinsic Schottky diode by McKelvey[25].

To apply these relations to a specific heterojunction,
we again consider the Ge-GaAs pair. Equation (17) in the
case of a doubly-intrinsic structure simplifies to

_ cosh u,(0) -1

"~ cosh u5(0)— 1 @)
where the subscripts 1, 2 refer to GaAs and Ge, respec-
tively. Using the constants cited by Milnes and
Feucht{2], we obtain the Anderson-model energy band
diagram of Fig. 7, which shows that the barrier is
0.27 ¢V. It therefore follows that

s O)] + [ux0)] = 0.27/K T 30)

Using R =4.03x 10%, as indicated on Fig, 4, we must
solve (29) and (30) simultaneously using a numerical
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Fig. 7. Energy band diagram for a doubly-intrinsic Ge/GaAs heterojunction, assuming a continuous vacuum level.

method; the Ncwton—Raﬁhson procedure (which turned
out to be somewhat difficult to apply) gives magnitudes
of
AT
Jux(0) = 0.0001 2 Jux(0)] = 0.26987 /< T

and these results are also incorporated into Fig. 7.

Because of the tremendous difference in these two
values of relative chemical potential at the junction, Fig.
7 cannot show the band bending with any kind of
reasonable scale. Furthermore, it is also difficult to show
the continuity of the normal component of D across the
junction, since the band diagram indicates du/dr, which
is a measure of E, rather than D,. It is simple to show,
however, that in the normalized units of eqn (1), we may
write

= —\/(2niekT) dujdr.

The significance of this remark lies in the way in which
we resolve the sign ambiguity mentioned in connection
with eqn (24). The positive sign is valid on the GaAs side
of the junction and the negative sign only on the Ge side.
Thus dufdr must change sign as the junction is crossed
and this prevents D, from being continuous unless we
require that du/dr be identically zero on both sides.

A similar difficulty arises in connection with the final
solution in eqn (28). In the equilibrium part of the Ge
region, & can go to zero as required because of the term
exp (), where r is now large and negative. This same
term, however, will prevent the boundary condition from
being satisfied in the GaAs equilibrium region, and again
we reach the conclusion that the resolution of this
difficulty is for u(0) to be zero.

The energy band structure based on these con-
siderations is shown in Fig. 8, and it indicates a sharp
disconinuity in the vacuum level. Although this may

appear to be an objection to the model we are proposing,
we believe that there is precedent for such a conclusion.
As an example, Ashcroft and Mermin[21] discuss the
work involved in removing an electron from the interior
of a crystal through a face with, say, a (100) orientation
and returning it via a (111) face. It is well established,
both theoretically and experimentally, that there is a
difference in work functions for these two orientations.
Conservation of energy then implies that there will be a
redistribution of charge between the faces and a field
between them. Thus, there can be a comparatively ab-
rupt change in the vacuum level over a relatively short
distance. We shall return to this important question in
Sec 8. .

7. NUMERICAL EXAMPLES OF THE TWO RULES

In this section we take two common semiconductor
pairs which have been extensively studied in the hetero-
junction literature and compare the predictions of the
two affinity rules discussed in Sections 3 and 4 respec-
tively, with experimental results. These heterojunction
systems are (i) Ge-GaAs, and (ii) GaAs-Al,Ga,-.As. A
third system which has received equally extensive study,
viz. Ge-Si will not be discussed here; the 4% lattice
constant mismatch implies less accurate measurements
of AEc, AEy, in view of the presence of interface states.

For the p-Ge/N-GaAs heterojunction example given
by Milnes and-Feucht® the appropriate numerical values
are ynv =4.07eV, xp =4.13eV, Egy =1.45¢eV, Egp =
0.7eV at room temperature. Hence the electron affinity
rule, eqns (13) and (11), yields AE- =0.06¢V, AEv =
0.69eV. The other parameter values for. this exam-
ple[2] are (Np-Nan=10"cm™, (Na=Nb)p =
3Ix 10‘6 cm". An = 0.1 CV, Ay =0.14 eV, EN = 11.5. €p =
16. Hence eqns (8) and (9) may be solved for Vpn, Vop
to yield eVpg=0.42¢V and eVpp =0.10eV.

Applying the new model to this same example, with
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Cn =21.67, C, =2 at room temperature, eqns (19) and
(20) give AE-=0.33eV. AE, =0.42¢V.

It follows that for the new model eVpn =
—K(-®)+K(0)=0.17¢V and eVD, = K(»)-K(0)=
0.62eV. For comparison we note that the available
experimental values of AEc are in the range 0.15-
0.19 eV[2]and it would seem to be impossible to decide the
relative accuracies of the two models from these figures.
fpures_

For a typical heterostructure laser containing a p-
GaAs/n-Alo2GaosAs heterojunction, the appropriate
parameters are yp =4.07eV, Egp=145eV, Egn =
1.70eV; however, the value of yy is in some doubt. We
may estimate the value of yn by interpolation from the
values for AlAs and GaAs. Using the values given in
Ref. [2], this estimate yields yy =3.96eV. Hence the
conventional affinity rule, eqns (13) and (14), yields
AE-=0.11eV, AE,=0.14eV. From the new model
assuming Cn = Cp [13] (and noting that any small devia-
tions from this will have negligible effect), eqns (19) and
(20) give AE-=AE, =0.125eV. Hence the two models
seem to give fairly close agreement. An experimental
value[14] for p-p heterojunctions in this material yields
AEc=022eV, AE,=0.03eV in sharp disagreement
with both models. Further experimental evidence{15, 16}
on laser junctions confirms this trend, although the
results are open to discussion as a result of possible
band-gap grading[17] in the immediate vicinity of the
heterojunction.

A recent attempt[9] to verify the conventional affinity
rule used InP/CdS junctions for which eqn (13) yields a
negative value of AF. Whilst this is in direct conflict
with our result (19), we would question the validity of
obtaining Vpn, Vpp values from a capacitance-voltage
plot[9]. Since in this case the wide-gap region was highly
doped. we refer the reader to the warnings on this
procedure given by Cserveny([7], Hampshire et al.[18)
and Tansley{19).

8. THE BEHAVIOUR OF THE VACUUM LEVEL

We have indicated that one of the principal changes
which we are proposing in the Anderson model is the
shift of the continuity condition involving D, from the
vacuum level to the intrinsic level and this change has
resulted in a discontinuity AE,,. in the vacuum level, as
well as a new form of the affinity rule. The validity of the
original form has recently been discussed by Kroemer[8]
at considerable length. Briefly his criticisms are: (i) the
affinity rule, eqn (13), is in most practical cases a small
difference between two large numbers yp, x~ and there-
fore difficult to determine accurately. (ii) the values of
Xxp, X~ are different for different crystal planes and this
variation alone can swamp the differences A Ec, AEy. (iii)
the affinity rule is implicitly based on conditions
measurable only at a free surface, whereas the true
situation at a semiconductor heterojunction interface is
likely to be quite different as a result of interactions.

As a result of these criticisms Kroemer([8] proposes
discarding the affinity rule and attempting to calculate
AEc, AEy from a detailed knowledge of the band struc-
tures of the two materials. Since then, Frensley and
Kroemer[20] have performed this calculation and believe
that they have in fact confirmed the Anderson form of
the affinity rule. However, their approach involves a
number of assumptions—plus the approximations which
are inherent in the pseudopotential method—and there is
no really satisfactory way of accurately determining lhc
validity of this calculation.

With regard to the location of the discontinuity, Ash-
croft and Mermin{21] have pointed out that there are
some inconsistencies in the common definitions of work
function and the associated concepts. They point out that
when an electron leaves a periodic structure, within the
first few lattice spacings it is subject to a potential and a
force which arise from the very complicated charge
arrangement left behind and not. as usually stated, to an
image force which falls off as 1/ and hence requires the
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vacuum level to be placed at infinity. Instead. the force
ficld is the well-known multipole expansion. but with one
significant difference: the monopole term vanishes for an
essentially neutral material, the dipole term does likewise
if there is inversion symmetry. and for a simple cubic
lattice (which is not unreasonable for some metals) even
the quadrupole term will disappear. Hence, the lowest
order non-vanishing contribution involves 1/r*, and this
falls off so rapidly. that the potential energy is essentially
zero very close to the surface. This is the proper position
for the vacuum level, provided we bring the electron to
rest (in principle). Furthermorc, the energy involved in
reaching this location should depend on the nature of the
surface as well as the position of the Fermi level and this
indicates why there is a difference in work functions
associated with different crystalline directions. As a
corollary, there must be a discontinuity between the
vacuum levels associated with surfaces of different
orientation on a given crystal, and this statement agrees
with experimental results, We thus conclude that there is
nothing inherently objectionable about a discontinuity in
the vacuum level, provided one understands what is
meant by the term. This point has been discussed at
length by Hagstrum[22], who speaks about a near-sur-
face vacuum level and a second one at infinity.

9. SUMMARY AND CONCLUSIONS

Our purpose here has been to present the evidence for
and against each of two possible models for the ideal
heterojunction. On the theoretical side, we have shown
that the customary affinity ruie leads to an identification
of the barrier or diffusion potential in terms of external
rather than internal characteristics of the junction, and
objections to this can be raised. On the other hand, if our
proposed conclusion about the continuity of the intrinsic
level is correct, then other criticisms have to be an-
swered. Those that have been expressed are (1) since the
intrinsic level is fictitious in the sense that it normally
does not correspond to occupied states and (2) elec-
trostatic potential can only be specified to within an
arbitrary constant, it is not proper to attribute special
properties to E; or to identify it as the absolute potential.
Our reply to these points is that our use of £ (following
Shockley{26]) is simply to express Boltzmann statistics
in a symmetrical form, which results in a very simple
version of the Poisson equation, namely eqn (I). We
have aiso discussed the original objections of
Kroemer|[8} and his later[20] reversal of this position.
Here we should remark that pseudopotential calculations
require approximations which are sometimes difficult to
justify, so that some skepticism might be in order. The
example of the doubly-intrinsic heterojunction worked
out in Section 6 appears to support our alternate model,
but it can be argued that the associated questions that are
then raised about the nature of the vacuum level have
not been fully answered.

The experimental aspect of choosing one model in
preference to another is equally difficult. Although we
have mentioned some prior work in which the fit be-
tween theory and experiment is not very satisfactory, it
must be recognized that obtaining reliable data in the first

place is not an elementary matter. Materiu) parameters,
such as< impurity concentrations and diclectric constants,
must be accurately known and the preparation of a
heterojunction with good lattice match and little or no
surface states is not a trivial matter. We are therefore
justified in saying that the examples we have cited in-
dicate that there is some difficulty with present theory,
but the evidence is not overwhelming as yet.

We consequently summarize our survey of the
Anderson model and our proposal for an alternate band
structure by expressing the opinion that a strong case for
the most appropriate of these two alternatives cannot be
made at this time. What is needed, we believe, are more
basic theoretical studies—with regard to both band
structure and current-voltage diode characteristics—as
well as more extensive experiments designed to confirm
or contradict some of the ideas that we have raised.
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