
'·
A Proposal for Definitions in ALGOL

by

University of Michigan and Mathematisch Centrum 9 Amsterdam

and

AoJo Perlis2)

Carnegie Institute of Technology and Mathematisch Centrum 9 Amsterdam

'k) l
l '-., /[

1o Introductiono

It has long been clear that no matter what notational devices and

conveniences are defined as primitives of a language 0 its users will in

evitably want others which are equally fundamental for their particular

needso This c.a.n not be taken as a criticism of the language designers,

since it is impossible to forsee and provide in one language every

notational device anyone could ever wante These inevitable omissions can

be mitigated by providing a basic set on which there is general agreement

(such as the arithmetic and relational operators 9 and so on) 9 and by

providing also a framework within which new devices can be defined into

the language by a user for his particular needso

A complete definition facility requires the capability to dynamically

define the syntax of the language 11 as well as the accompanying semantics

(as embodied in the processor or interpreter)o Such a system, which provides

a mechanism for changing the syntax and semantics• has been in use at

Carnegie Institute of Technology since 1964, under the name Formal Semantics

Language [1] o

1)
The work presented here was supported in part by the National Science

Foundation (GP - 4538) and the Air Force Office of Scientific Research

(AF - AFOSR - 1017-66)0

2
) Th~ work presented here was supported in part by the Advanced_Research

Project Agency of the Office of the Secretary of Defense (SD - 146)0

t-'1ATHH·1ATISG' Cf'NTRUh

----,-..... . -!::

A more limited form of definition facility (but still extremely

flexible and powerful in use) has been available for several years in the

MAD [i] language at the University of Michigan o In the latter• for example•

definition packages are now available to introduce into the language

vector and matrix arithmetic, complex number arithmetic 1 and multiple

precision arithmetic~ The importance of the facility is not that these

specific packages are now available 9 but that any user is free to develop

his own within a broad framework that creates no difficulty in their

implementation in the MAD processor and is simple to useo

The definition facility described in the following is similar in

many ways to that which is available in MAD 9 and is intended as a proposal

to extend ALGOL 60o It is not as complete a proposal as one might make 9

since the underlying syntax of the language may not be arbitrarily modifiedo

A strong feature of this proposal is that each new operator 9 or each

new interpretation for an existing operator, is invoked via an implicit

macro call, in fact 9 by the insertion of in-line codeo The advantages

here over explicit calls on procedure (which may already be written in

ALGOL), lie in the notational convenience of composing operations into

expressions using infix notation• ioeo with operators appearing between

their operands instead of as nested procedure calls 0 together with a simple

means of producing efficient ALGOL codeo

The basic proposal presents means by which new operators and/or new

data types may be introduced within programso For each new operator one

must show how to interpret its action on new or old data typeso For each

new data type one must show how it behaves under the action of new or old

operatorso

, ' Moreover, it often is necessary to determine dynamically whether a

variable has been assigned a given typeo We therefore postulate the

generation for each declared type .9a of a Boolean - valued procedure q(x)

which is~ if x has the type£• otherwise fal.seo Exa.mpl;;s would be real(x),

Boolean(x) 9 etco Such procedures would presumably need dynamic access to

a generalized symbol table carrying type inf'o:rmation 9 among other thingso

In order to introduce a new operator into the official ALGOL syntax

specifications 0 it would be necessary to (1) specify how it would appear ,,

=3=

among other syntatic units 0 and (2) relate it to existing operators by

syntax forms which in effect establish its 0 precedence" in the extended

set of operatorso A short study of the treatment of "addition operator"

and "multiplying operator" in the ALGOL 60 Report [3} would suffice to

show how this specification process is achievedo We shall summarize the

insertion of a new operatorll;s syntax form b~ the declarationg

where one choice is made in each set of braces 9 and name is the symbol -
introduced :for the new operatoro The symbol 2E is the name of any operator

already available (whether originally in ALGOL or already declared in this

way) 0 such as +0 v 0 f or to The interpretation of above and below is
c:::icm=~c= e=a=c=o:oaaD

exactly that obtained by carrying out the syntax modification suggested

aboveo In other words 0 ~~! is inserted into the syntax 91 just above" 2E"

and below any other operators already above 2~o For example, a typical

operator declaration such as

~!:!~~ £2~:! & ~~!£=~=~!:= ~~~!= X

modifies the syntax of arithmetic expressions so t~at

<term>bg = <factor>l<term><mu1tooperator><factor>

is replaced byg

<term1>gg = <factor>l<term1>~<factor>

<term>gg = <ter:m.1>l<term><multooperator><te:rm1>o

Similar replacement rules hold for unary opera.torso

In order to describe the behavior of any operator on any particular

data type (and thus include all of the cases mentioned above) 9 we introduce

the context definitions 0 which specif~ those and only those contexts in

which an operator or data type may legally occure and the interpretations

to be applied when these contexts are encounteredo

A typical context definition isi

list a sum list bi= real sum(a 0b)
amca:n:c t:=::i=,=ac ,::::,i::=,=c::, ,;,,,,,,.,

which says that whenever :!~ occurs with two operands of type !f!~t the

code used is a call for a~~!! procedure named sum9 with the actual operands

of type!!!~ becoming the actual parameters in the procedure callo (The

-4-

typed identifier expression appearing as the left side of a context

definition is known as a~ contexto) As will be seen in the detailed

syntax and semantics description given below for the proposed definition

facility, this procedure call form is merely a special case of the ex

plicit array form stipulated after the~= in the syntax of the context

definitiono The explicit array form will normally contain a block

expression involving the variables mentioned in the type context and

local variables declared in the block containing the declaration, and

it w,ill usually produce a value for a result variable !.o
1

)

An explicit array form becomes a block expression when its formal para

meters (those specified in the type context) are replaced by the actual

expressions through which this context has been recognized as applicable.

It is clear that the context declaration not only defines the meaning

of the context; it also acts as a restriction on the allowable combina

tions of operators and data typeso Advantage can be taken of this to

produce desired code constructs from a set of possibilitieso

Another structure in the language which needs an appropriate

notation is the enumerated array, representing explicitly an instance

of a new data typeo Since it is intended that existing ALGOL shall be

a subset of what is proposed here, existing forms of expressions are

acceptable without changeo However, a new form of expression may also

be written; vizo, a list of expressions preceded by a type symbolo An

example would be£~~~!~~ (3, x + z} representing the complex number

usually written as 3 + (x + z)io The representation as a sequence of

components assumes a particular internal representation, ioeo, as a

real arrayo Multi-dimensional arrays are linearized by varying the last

subscript first o

In this definition facility we assume that data structures can be

allocated storage capable of description in terms of ALGOL arrayso

1) As ably demonstrated in CPL [5] ~ block expressions are so useful

that it is assumed that they have already been made av-ailable in

ALGOLo ,,

The declaration of this storage allocation is called the primitive

:i:_e;2resentation belowo Thus, a list is assumed~ in one of the examples

below, to be stored as a one~dimensional ALGOL array with two elementsg

the name of the first list item (stored as the first element of the

array), and the name of the rest of the list (considered also a list),

stored as the second elemento We also assume that primitive procedures

called name of and contents of are available which produce real numbers

representing the~ (or machine location) of the value of a variable,

or vice versao

The code created -from an occurrence of a context involving new data

types will often produce a result which has again one of the new data

typeso In particular, it may very well require an array for its storage,

and the code needed to produce all of the e~ements of this array must

be providedo In particular, when a block expression is executed whose

result has a new data type which requires an array for its storage,it

is necessary that this storage be automatically and dynamically suppliedo

In a larger context, however, the separate parts of the computation

for the general element of a result array can often be combined inside

the outermost iteration structuresj thus eliminating much unnecessary

red-tape and intermediate storage computationo Thus, the code for summing

three n x n arrays (d =a+ b + c)g

for j~=1 ~~~~ 1 until n do

d[i~j] := a[i~jJ + b[i,j]+ c[i,j]

is much preferred over the code produced by treating the sum as two

consecutive binary sums\ as shown belowo The much better code given

first results from the replacement rule given below~ provided the ex

plicit array form in the context definition is written appropriately.

(The matrix aritbmetic package exhibited below does produce the first

form.o)

begin integer i,j 0 ~---- ~-~--~~ ,

for i~=1 ~~~E 1 until n do

for jg=1 ~~~E 1 until n do

d[i,j) g= a[i 1,j] + b[i,j];

for ig=1 ~~~~ 1 ~~~!! n do

for j~=1 ~!~E 1 until n do

a[ii.U. g= d[i,j] + c[i,j] end;

In order to be sure that the best code is produced in a given

situation, it may be necessary to assign more than one type to a

variableo Thus, for a repeated matrix product, Ax Bx c, we shall

find it useful in the examples below to declare Band C to have type

·row of columns (r/~J ~ while A is declared to be of type column of rows

(2,,[.~)a Since Bx Ax C could occur in the same program~ we need to be

able to declare B of type gj__s and A of type r/s 9 alsoo In other words,

a variable may have several types~ and it will have to follow from

the context in which the variable occurs which is intended. Should

more than one context definition apply, the first one is used which

results in a data type which then enters into legitimate larger con

texts9 etco Should a choice of context definition lead eventually to

an undefined context, an earlier choice will have to be changed. In

general, the largest context applicable is used whenever possible.

To summarize what is being proposed here as extensions to ALGOL

60~ we have new data types (and procedures which test for these types),

and declarations introducing new operators. Explicit instances of these

data types may be written, but more often variables which have been

assigned these types will be involved in expressionso In either cases

the storage requirements of new data types are explicitly declared in

terms of ALGOL arrays {by the primitive representation). By providing

type contexts with corresponding explicit array for.ms, instances of

contexts involving new operators and data types may be replaced by

"open code" generated from the explicit array forms under the replace-

ment rule given belowo This rule is such as to eliminate excessive

iteration control computation whenever possibleo

We also include name of and contents of as primitives, since

they are useful in generating list structures as data typese It was

observed that results of expressions may be assigned new data types,

and thus require temporary storage in the form of arrays~ This use

of temporary storage is considerably reducedj however, by the

elemination of excessive iterations [4] o Multiple type assignments

for variables are introduced to allow the best context recognition

strategyo All of these concepts will appear in the examples belowo

Certain features~ which are an important part of existing macro

systems~ are missing from this treatment; eago, conditional expansions

and "expansion time" variables~ with the implications to scope that

they provideo This treatment, here limited to expressions, could with

the aid of the above featuress be expanded to provide a facility

capable of handling contexts at the statement level, or even at the

program levelo

2o .§zptax

The syntax additions for the proposed extensiqn to ALGOL 60

followo In each case of conflict with the ALGOL 60 report [3] (in

dicated by a bold-face period (,;) in the left margin) ~ the form

given here is to be usedo Forms already defined in the ALGOL 60 report

are not repeated hereo

<boldface character>~;= !:.1 bl coo L!U.J o • "12.IQI +I,, 00 1!.1~1 o O O I ~I

.::.I O O
" bL1.I O O

, l!dil O O 0 L~Ji
<boldface symbol>:~=<boldface character>\<boldface symbol>

<boldface character>

<new operator>~~=<boldface symbol>

<new type>~~= <boldface symbol> I <new type><typed identifier list>

o < operator ~ g=< arithmetic operator> I <relational operator> I

< logical operator> I <sequential operator> I

<new operator>

o <type> fg=

<type declaration list>gg=<type declaration>l<type declaration list>,

<type declaration>

<open set>gg=<type>l<operator>j<open set>,<type>l<open set>,

<operator>

<set>gg= (<open set>)

<set name>gg=<boldface s~bol>

<set declaration>gi=<set name>z=<set>

<primitive representation>gg=<type declaration list>~~~

<array declaration>

<typed identifier>g~=<type><identifier>

<typed identifier list>gi=<typed identifier>j<typed identifier list>,

<typed identifier>

<type context> g g =<any arithmetic,- Boolean or designational

expression built out of typed identifiers and set names

in the sane way that they are normally built out of

identifierso> 2) ;3)

<type context list>gg=<type context>l<type context list>,

<type context>

2) This is a short description of what could be (and should be
considered to be)' a formal syntatic statemento

3) In this treatment g= is taken to be a binary operator whose
precedence is below all arithmetic or Boolean operators in ALGOLo
The semantics of g= as an operator are obviouso

< expression list> t g=c:: expression> I< expression list> 5 <expression>

<enumerated array;,gg=<type><expression>l<type>(<expression list>)

<generated array>g?=<type><expression>

<explicit array>gi=<enumerated array>l<generated arrey>

a <primary>gg=<unsigned number>l<variable>l<function designator>

!<explicit array>l(<arithmetic expression>)

<explicit array form>gg=<generated array>l<enumerated array>

<Context definition>:g=<type context list>g=<explicit arr~y form>

<adjective>g:= unarllbina7

<precedence phrase>::= .§:EOvelsame aslbelow

<Operator definition>::=<adjective><new operator>, m::ecedence

,.:precedence phrase><operator>

3o Semantics

(1) A context~ set~or operator definition is local to the block

containing it and must precede its useo

(2) Operators become defined in the lexicographic order in which

their definitions are writteno

(3). An operator definition must involve only an operator for

which a definition has already been encounteredo

(4) The expression on the right side of a context definition must

involve only operators which have already appeared in operator'

definitions.

(5) An explicit array form becomes an expression only after

certain replacements have been made for· some of the variables which

appear in it. This is explained as part of the replacement rule given

belOWo

(6) A context definition is interp~eted as if it had been a

sequence of separate definitions, each one containing one item from

the type context list on the leftj and_ always the explicit array form

on the righto

(7) The array declarations after the mea_as in a primitive re

pres~ntation may not involve new typeso This declaration is required

whenever an instance of a new data type requires an array for its

storage, and it applies to each of the types involved in the declara

tiono

(8) The primitive representation implies a storage allocation

to be invoked whenever one of the types so declared occurs in a

procedure or block headingo

(9) Whenever an explicit array needs to have storage set aside

for it, such as for the result of a block expression or for an

enumerated array, it is assumed to have the array structure declared

for its type in a primitive representationo Multi-dimensional arrays

will be linearized to accept enumerated arrays by varying the final

subscript first o

(10) In a block expression the value produced by the block is

(by convention) the value of the variable!. on exit from the blockQ

This variable is always local to the smallest block containing ito

(11) In any block expression which appears in an explicit array

form there must be exactly one occurrence of the result!,, possibly

subscripted, and that occurrence must be on the left side of an

assignment statemento A block expression nested within this block ex

pression will have its own single occurrence of its own !.o

(12) In type declarations and in type contexts one may use a new

type with or without a bracketed list adjoinedy(A bracketed list may

not contain bracketed listso) If a match is to be made with a type

context which also contains a list, then the entries in the lists must

agree in type and numbero

If the match is made (according to the replacement rule below),

th~n the list entries declared for the variable in question are sub

stituted for their corresponding entries in the explicit array fom.o

If the type context contains the new type without a list, a match may

be made without reference to the declared list of constants, and no

substitutions result from their presenceo

(13) A set may appear in only one set declarationo

(14) A type context containing one or more set names _is equivalent

to the type context list obtained by substituting all combinations of

representatives from those sets for the set nam.eso

(15) All primitive representations, set, oper~tors and context

definitions are part of the block headingo

4o ~e ~J.acem.ent Rule

The rule for the replacement of defined constructions by ALGOL

code is as followsi We assign a type to each expression on the basis

of the types of its sub=expressionso Identifiers and constants are

assigned types on the basis of declaration and formo Wherever there

is a choice of typess the type is chosen by the following rule;

(·t) Defined contexts have priority over ALGOL syntaxo

(2) Among the defined contexts;} priority is assigned in order

of listingo

When using a context definition~ assuming that the sub-expression

matches the type context in form, the type assigned to the sub

expression is that which appears to the right of the 2= in the context

definitiono

Either of two possibilities may now occuri (1) all expressions

are assigned types, or (2) an expression has been encountered for

which no type can be assignedo, In case (2), either (2o 1) this expres

sion has the form E[<subscript list>] 51 where E has the form and_ type

occurring in a context definitionID or (2o2) it doesnuto In the latter

case (2o2), an alternate c~oice of types m~st be made where such a

choice was possible, and the entire process must be repeateda _If no

further choice can be made~ the original text was not syntactica.lly

correct., In the former case (2o1):;i consider the explicit array form

in the context definition associated with Eo Either (2o1a1) it contains

a single pair of boldface parentheses, or (2a1a2) it does noto In the

latter case (2o1a2) it must be an enumerated array~ and the subscript

list must consist of a single integer constant i
0

a Then select the

i
0
-th element of the enumerated arrayo In this expression form sub

stitute the corresponding sub=expression from Ev The resulting ex-

\

pression is then substituted into the text for E[i~], and the type

assignment is performed on the new texto

If the explicit array form does contain a pair of boldface

parentheses (case 2o1o11 select the text bounded by these parenthesesQ

This text must contain a single occurrence of!. (the result of the

block expression containing this text), and this occurrence must be

of the form !_[<subscript list>] g=F, where Fis an expressiono These

formal subscripts must agree in number and type with those occurring

with E~ and then the formal subscripts are replaced in the text by the

correponding actual subscripts" From this resulting expression form an

expression E' is obtained by substitution of the corresponding sub

expressions from Eo Then the "arithmetic context is moved insidej"

as follows~ Substitute F for E[<subscript list>J in the maximal arith

metic expression G containing E9 to obtain G9
o Substitute G9 for

!_[<subscript list>] ~=F in Ev, obtaining E" o (Note that if G follows

a~ or~ in a conditional expression, we may extend G even

fu.rthar by considering the arithmetic context of the conditional ex

pression to be the arithmetic context of each of the arithmetic ex

pressions within the conditional expression~) We now replace G in the

original text by E"l) and the type assignment process is performed on

the new text o

We now consider the case (1) in which all expressions have been

assigned typeso Either (1o1) there are still defined constructions,

or (1o2) there are not In case (1,,1), for each maximal expression E

whose type and form correspond to a context definition~ (i) form an

expression E9 by substituting corresponding sub-expressions from E in=

to the explicit array form associated with E, and (ii) substitute E9

for E in the texto In this substitution, if' E9 consists of' a block

expression, move the arithmetic context of E inside, just as was

done in case (2o1o1)o The replacement rule is applied to the resul

ting texto

If' no defined constructions exist (case 1 "1), then all bold.face

parentheses (together with any immediately preceding type symbols

that may accompany them) are deleted 5 and declarations of new types
'

-13-

are dropped after replacing them, when necessary~ with appropriate

array declarations obtained from the primitive representationso The

resulting text is either a syntactically correct ALGOL 60 program,

or the original program was syntactically incorrecta

The examples which follow were chosen to illustrate the power

and versatility proposed herea Each "package" shows the strategy

employed in choosing appropriate definitions.

5o Examples

Ao l_:!atrix Arithmetic E!ckafl~

(1) .ti! a, s/!f. a means array: a[1 rn, 1: ti] ;

(2) £21. a means arr_&, a.[1 ~n},

(3) !.2!! a means~ a[i in];

(4) Enary T, precedenc!:,_ above t;

(5)]aar;y:: ..!.t l?!~ceden,£E_ above -1-;
4

)

(6) c/s a:= c/s ,£ i -+ n £!£. £2! i;::[iJ := !Li]l ~;5) ,
6

)

(7) r/s a:= ti! E. j -+ n ~ .£21. i::[j]:= a(j]l ~;

(8) !£! ag= !.2!, ,£ j + n ~ ~ i:: [JJ := a [j]l ~;

(9) .£2! a:= .£21_ E. i + n ~ ~ t::@.J:= ! a (i]l ~;

{ 10) c/.s a fJ..nteger k] Lintel@r 1]: = ~ a (!t-,1];

4) -} is the symbol used here for subscription,

5) i ·+ n will be used here as an abbreviation for~

.£2!. i:=1 ste;e_ 1 until n

6) band e are be~in and~, respo
,

ii

-14-

(11) ,! ~ a[integer_ ~ [integer JJ := ~ a[l,ltj ;

(12) ! c/s a~= r/s ! a;

(13) l c/s a:= c/s inv(a);

(11~) 11 ili ag= c/s a;

(1 5) c / s a + c / s b : = c / s }?_ i -+ n _ge ·!2!! i:: G-J g = a [i] + b [i]l ~;

(16) r/s a + r/s b g= r/s J2. j -+ n ~ ~ 1::[j] := a[j] + bl:Jll ~;

(17) c/s a+ c/s b := r/s (Ta+ Tb); - "- ---- --
(18) ~ a + £2!. b g= ~ }?_ j -+ n ~ £!:!1 £r[j] := a[jJ + b[j]l ~;

(19) c / s a x r / s b : = c / s }?_ i + n ~ !.£!, i:: [i} g = ~ !£! t ,

t : = a [i] ; !. g = t x b =2 ~;

(20) !2!. a x r / s b g = !2!. }?_ j -+ n ,Ee ~ i,:: [j] ~ = a x b [jJ l !:J

(21) row ax col b ~= ~.!?. inteej_er j; real t; tg::::0; 12!, j:=1 ,ste,I?

1 until n .Ee t:=t + a.[5] x ! b[j]; !. := t ~;

(22) c/:}_, a := Eis b := c/s }?_ i-+ n ig_ !£! £r[i] g= a[iJ g= b[iJl ~;

(23) ~ a := !£;! b := ~ }?_ j -+ n ~ ~ £r(j] := a(j] := bQ]l ~;

col a:= col b := col (Tag= Tb); - ~ - ... - - -
(25) c/s ax r/s b + c/s ax r/s c := c/s ax (b+c),

- - <I,~ ~ -

Statements 1 to 3 give the primitive representations for the new

data structures being created~ in terms of basic ALGOL arrayso State

ments 4 and 5 introduce the two new operators! (the transpose) and 1
(the inversei implement by a procedure named inv)oStatements 6 through

9 show how each level of structure is defined in terms of the next

lower levelo Statement 10 provides the accessing function needed to

actually reach a valueo (Here it is a trivial mapping, but in the

file maintenance package below, for example, it is more complicatedo)

Statements 11 to 14 define the behavior of the two new opera.torso

Note that the cancellation of pairs of applications l or! will be

effected during.the reduction to ALGOL code. and thus lead to no

unnecessary code. Statements 15 to 21 define the action of+ and x

on the various combinations of data types .that may occur; while

statements· 22 to 24 define the "store11 op~ration for the new data

structures. Statement 25 takes advantage of an identity appropriate

to matrix arithmetic; e.g. the distributive lawt to effect a simplifi

cation before any other substitutions can occur, thus leading to better

code at the highest levelo In view of the action of the replacement

rule, statement 25 will automatically ext.end to more than two terms,

so that

a x b + a x c + a x d + a x e

will first be transformed to

ax (b + c + d + e)

with a dramatic reduction in the a.mount of code subsequently generated.

This set of context definitions does not provide correct ALGOL

code for expressions where an array appears on both side of the t= and

on the r~ght side not only as the left most factor in a term. Additional

definitions can be added, at the expense of efficiency~ should this

case have to be handled6

(22)

(19)

{6,151123)

(6,7;89105

201123)

W ":::: .

J2. i + n .9:2. w(:i] ;;i: ((x+y) x z) [i]_!;

J2. i-+ n £:2_ ll £2!. t; t:= (x.+y) [iJ; w[i] ~= t x z ! : ;

J2. i-+ n !2, J2. r.ow t; t:m x[i) + y[:tJ; J2. j + n §..2. w[i] Cj] ~=

JI:! (t X Z) (j] = : !: ;

J2. i + n ~}l.~9,! ti l?. j + n ,S;2. t[j]~= (x[i] + y[i])(j1!;

J2. j + n £!.2. w[i,J]~= t x z[.j]:: !;

J2. i -+ n ~ }l E.2!. t; l2, j 4 n .s2, t [J] ~= x[i] [J] + y[i1 l:Jl!J

l?. j + n .9£. ,1?. ,inte.J1ie,r. k~ :r-e~l s;sguQ~ for k:=1 ,s.te;e

1 until n
£9_ s: = s+t [J1 x ! z QJ Qt] 1i w l) ~ jJ : m s : ! ! ! ~ ·-

E. j ➔ n _ge E. integer k, ~ s; s~=O, .f2!. kg=1 step

1 until n do

~ arrE;Y x$y,,z,w-.U gn, , gn];

E, i ➔ n £2. _£ array t[1 ai]; b j ➔ n _ge t[j] g= xCi»jJ +

+ y[i,J.1 ~J

E. j ➔ n ~ intege~ k; re~ s; s~=O; !£!: kg=1 step 1

until n do -

In this example the numbers to the left of each line show the
'

definition declarations which were invoked to obtain that lineo The

first statement of the examplei containing the type declarations 9

was suppressed during the intermediate steps of-the expansiono The

use of k ands (instead of j and t) was introduced for clarity, the

block structure of ALGOL would make this unnecessary in practiceo

Note that in the application of (22) and (23)j the r_[i] ~= was deleted.

This is in accord with the natural interpretation of the use of block

expressionso

If one wished to take advantage of special properties of arrays,

eogo triangularity, symmetry, or to organize their store by using a

column vector of row names to speed up accessing (hereafter denoted

as a ~~lumn-arra~) 9 then new contexts must be appropriately inserted

so as to cause their application before those of the original set,

such as:

column-arral a means arr~ a[1 gn] ;

9o9g c/s Gcolumn-arra;y: aj a1 ~integer :f] Ginteger j] g::

~ contents of (a[i] + j).

140 1 ~, column-array Gc/s a1] a g= 2/s a1;

In any use an actual declaration would be like

One may also incorporate into the original set of definitions

an explicit dependence on the row length n by using bracketed type

listso Then modified storage mappings could be introduced to accomo

date symmetric and triangular arrays by making them depend in the

same way on the row index io In these cases one would also introduce

alternate access functions just before statement 10, so that the new

storage mappings could be effected., Details are left for the reader~

Bo File Maintenance Package

Bi= (A,v), Ai= (+ 9 -, Xs / 9¾, ~=);

R g= (=~ -/:, <, ~t >11 ~); £!i g: (~, ~),

(1) !! a, ~ a means !,;'.,~Y a[1 gm] ;

(2) ~ a means !!_ray a [1 rn] ,

(3) !lli, a := ~ £ i + m .2-2, ~ i:::DJ i= a[ill ~,

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11 a)

~ a g = ~ k j + n ,2:2, ~ i:.: QJ g = a[j]l ~,

TV a g= TV b i ·+ m do Boolean (r[i] g,i= a[i]) e,
--=- .-0- - ..-:rDII "'""'"-- -- - ...

file_ a~ntege;: iJ@Eteger j] g= ~ contents of (a[i] + j-1);

unary count of$ precedence below v;

binary 2£, precedence above count of;

count of !Y, a g = ~-£ ~ .£,; integer i; c g =O,

!2!, ig=1 step 1 .£!:~il m .2;2,

C g: C + i! a[i] ~ 1 ~ 0; ,!_ ga: C ~,

Boolean a on fili x g = !Y, £ i + m .2;2, Boolean i:: [i] g = a. ~ x [iJ 2~,

Boolean a B Boolean b £a~ c g= Boolean a£!!, c ! b ,2n. c;

(11b) , Boolea~ b ,2!1 !!:£. c ~= Boolean b E!l c;

(12) rat a R rat b on rec c ~= Boolean a on c Rb on c;
~ --- -- ---- - -

(13) ~ ~nteger, JJ a ,2!l rn C g: ~ c[J1»

(14) ~ a .2E. ~ c g= ~a;

(15) ~ a .2!:. file_ x, attr a .2!:. ~ x ~= !ili, E. i -+ m ~ ~

i:Ji] ~ = a .2!:. x [i] l:!;

(16) ~a!£!ib2E:,~c ~=~a2,12c!b£!lc,

(17a) if Boolean a~~ b E!l !lli x i= ~ E. i -+ m ~ ~

i::[i] g= i! a .2!l x[i] then 1:i £!:_ x[f.ll ~;

(17b} if]3001~~ a~~ b ~ !,§)8.1, c ,2n ~ x~=~ l?_ i-+ m

~ rec5,~UJ ~= i! a E!l x[iJ~ b £!l. x[i] ~ c .2!!_ x[i]2~;

(18) £!:!?. a ! £!i b g = Boolean a ! b;

(19) !!ia.,!mb g=~a,!b;

(20) ~ ag= ~ b g= fil~E. i + m .2:2_~ ~::[{J ~= a[i}g= b[ill~;

(21) ~ a g= ~ b ~= ~ E. j + m !!£ ~ i::Ll] g= a[j] ~= b[.i] l=;

(22) !Y. a g= :£Yb i= !Y. .E. i + m £2. Boolean i::[il g= a[i] ~= b[i]l~,

Statements 1 and 2 define the new data types that need storage

alloca.tiono Statements 3 1 l~ and 5 show how each type is construc

ted out of the others .. Statement (6) gives the explicit access for these

data typesn Statements 7 and 8 define two new operators, while 9

through 17b define their behavioro Statements 18 and 19 are used

to assign types to subexpressions while looking for a matcho State

ments 20 through 22 define the behavior of g= with the new data

typeso

,!~ample of u~e~

~a;~ [1] name,~ [2] sex; !fil [3] height;

~ cnt; cnt~= count of sex= 1 A height! 6 ~ x;

Expansion of assignment statement~

(9 5 10~ 17) la~ c; integer i; c~=O; ,!2:: ig=1 stEU?, 1 until m ~

C := C + if -
(sex = i A height ! 6 ~ x) [i] ~ 1 ~ O; cnt:= c !;_;

Using only the Boolean expression after if:

(10)

{11a.)

(12)

(13i14)

(6)

sex = 1 A height ! 6 .S'E. x[1]

(sex =1) ,2E. x[i] A (height ;: 6) 2:1 x[i]

sex~ x[i]= 1 .2!l x[i] A height .2!! x[i] ! 6 .2.E:. x[i]

x[i] [2] = 1 A x[i] [3] ;: 6

~tents of (x[i] + 1) = 1 A contents of (x[i] + 2) ! 6

The full expansion is thang

array x[1 ~m]; ~ cnt; .£, ~ c; intes,er i; c:=0 9

!2£ ig=1 !l<;.-e, 1 .BP..i!l m .2£_ c:= c + if contents of

(x[i] + 1)=1 A £?Etellts of (x[i] -~ 2) ! 6 ~ 1 else O;

cnt g = c .!:_;

JJ:xam.:ple of use g

Expansion of assignment sta.tementg

Using only the right side of the assignment statementg

(1Tb, 18)

(12 9 13,14)

(6)

if. height! 6 ~ x[i] ~ 1 .£!!.. x[i.] ~ 0 ~ x[i]

if. x [i] [3] ::.· 6 ~ 1 e~se 0

i! .£2P,tent!..,Q_f (x[iJ + 2) ::_ 6 ~ 1 ~lse 0

The full expansion is~

arr~ y[1 :m]; E, i -+ m -2:-.2. y[i] ~= g contents of. (xti] + 2)! 6

Co ~~ex Ari ~~~tic Pac;__a_ge

(0) Ai= (+ 9 -);

(1) 9omplex a means~ a [1 ~2];

(2) Ju:nari i» 12,recedeE~ !}?o~ _x ;

(3) jg!ari P.<;alpart t ;ereced.enc,!;, ,2.e];9.? "t ;

(4) unary lmagpart, 12~.£..,E:4ence .3ame as r~_~J;J;!~tl,;

(5) unari ™' preceden,c!:?, JLap.e !! real;eart;

(6) J!!!ar;y a.rs, precedence same as realpart;

(7) unary _c,onJ 9 preceden~ same as real;par~_;

(8) _real;ear,! com;rzlex a:=~ a.(1];

{9) £!agpart .£,9m;plex a:=£!!!. afFJ;

(10) ~ a i ~ b:= com;12lex ~omple!(a,b};

(11) complex a Ji J:,Q1!1..'Qlex b i = complex, comp_J.ex (a [1 J ! b [1 J ~

a[2] :!, b[2]);

(12) complex a. x ~ b ~= complex compJ.~1S,(a[1] x b [1]-

a[2J x b[2)1Ja.[2J x b[1] + a.[1] x b[2]);

(13) £ .. W.Pl~. a / compl1:;x b g = comJ?lex

(a :x con_j_ b)/(b(1J t 2 + b(2] t 2);

(14) ~ a x ,2,9,.mplex b : = .£.,omplex ,,compleJS, (a x b [j] & a x b [2J) ,

(1'.) ~om;elex b x ml ag= compl.filf a x b;

(16) Jnag comple~ ag = ~ sqrt (a [1] + 2 + a.[2] t 2),

(17) .,!~ complex ag= ~ arctan(a[g}/a[1]);

(18) _£Q.nj_ com;12lex ag= somple_! complex (a[1] ,-a[2]);

(19} ,spm;glex a= complex b ~ = Boole!!!, a. [11 = b [1] A a [?1 = b (2J $

Do List Package (based on the LISP [g} primitives)o ·

(1) ll!i x means ,a;rray x C1 ~ ~J;
(2) binacy, ~ons, 1;:receden~ same as x:;

(3) unarr .£!:::, ;erecedence !,bov~ rn;

(4) unarr .£9-!.• precedence same as .,£!£;

(5) ~ a~~ b ~=~name of' ll_!l(a,b);

(6) £!!:. !2d:. a ; = ~ a QJ;

(7) .£2-!_ ~ a ~=~a [g];

Theng £!!,(a rn b) = .£!!..!:!!!!!,e of_ ~(a,b) = a

and ~(a .£2!!! b) =~name of' list(a,b) = b ----
and ~(a)~ ~(a) =~name of ~(aQJ,a[2J) = b,

where equal(b,a) is~ (in the LISP sense)o

LiflP C~position:

(8) .2£ f' 0 ~ g ~= ~ f' ~ g;7)

(9) ~ f' 0 ~ x g:: ~ :grocedure E(f',x); ,2E, f; ,real x;

E := if' atom(x) then eval(f',x) else - - -

7) r©x means f(x), and this operator is now being extended to new

context so

~he procedure eval(f 1x) is defined as follows~

if atom(f) then f(x) else eval(cdr f, (car f)(x));
~ ~ ~ ~ -

Context definitions (8) and (9) provide an e~ficient rule for

sequencing through a composition of operations on lists (such as f and

g of type .212,), each one of which operates only on atoms to produce

atoms or even listso The sequencing is organized in this case (others

are of course possible using different constructions) so that as each

atom is encountered the remaining operators in the composition are

applied to it. Thus the lists are not totally decomposed and composed

for each successive operatoro

Exam_pl~_of use g

begiE_ ~ g,h; ,2J2. F ,G;

~ _E"Ocedur,2_ subst(x,y,z); ~ x,z; ~ y; subst g=

if atom(z) then real b r g= if eq(z,y) then x else z e - -~-- ~ ---- ~ -
else subst(x,y,car z) cons subst(xjy~cdr z), ---- - - ~

~ procedure F(x); ~ x; F~= subst(a,g,x);

~ 12rocedure_ G(x); ~ x; G~= subst(b,h~x);

c~= G 0 F 0 b ~;

1 0 JoAo Feldman,

2. B., W. Arden,

BoA. Galler,

and R.M. Graham,

3. P. Naur ed.

4. BoAo Galler

and A.J. Perlis,

5o D.W. Barron 9

J.No Buxton,

D.F. Hartley,

E. Nixon,

and Co Strackey

6. J. McCarthy,

et al

-23-

References

A Formal Semantics for Programming Languages,

Proc. I.F.I.Po (1965).

"Michigan Algo:i,ithm Decoder",

University of Michigan Press, Ann Arbor,

Michigan, 1963.

"Revised Report on the Algorithmic Language

ALGOL 60 11
,

Num. Math. 4(1963), P• 420-453.

"Compiling Matrix Operations",

Comm. A.C.M., vol. 5(1962), P• 590-594.

"The main features of C.P.L.",

The Compo Journ. 6(1963), P• 134-142.

"LISP 1.5 Programmers Manual",

MIT, Cambridge, Mass. 1962.

Errata for "A Proposal for Definitions in ALGOL"

by B.A. Galler and A.J. Perlis

Title page Insert as 1.-1 March 29, 1966

p. 6

P• 7

P• 9

P• 10

P• 11

P• 14

1.11

1. 1

1.-10

1.-3

1. 3

Insert
after

1.10

1.16

1.17

(<arithmetic expression>)) <e .e .·>

(5) The revision ...
[i,jJ

k ... represents (A) ..•
1J

such <procedure>s ...
... <actual parameter> I <a.t.s.p,>

<actual type set para.meter (a.t.s.p.)>
1.6

<a.t .> I <c .t .s .n. >

. . . <a.t.> I <a.t.s.p.>array •••

<operators(o.)> ::= •••

... I <relational operator> I, l+lt 1
)

Move footnote from page 15 to page 9,

1.. 9 ...
1.16 ...
1.-2

l. 2 • • 'e

<c.t.i.> I <a.t.s.p.> (j;,rogra.m}

<r.t.><string> I <c.> := <r.t.>

. ..

ignore it since <delimiter> has no

<context>s.
1

) •••

. ·-.. -

...

1.-2 ... every <context definition> which 4as a <string> and

<result

P• 15 1. 1 (+):

Delete footnote here after moving it to P• 9.

P• 16 1. 6 ••• units let L be the ••• legal strings in
X

1. 7 ALGOL x. To each D there ••• analyzer ~ which has ...
1. 8 • •• that : if PE:1n then ~(p) = t(p) 9 where t(p)E:LC'

or t(p)

1.14 ••• necessity ••• when~

1.17 ••• The analyzer ~, for one of <arithmetic •••

p. 21 1. 7

1. 8 K[i,j] .- C x s ~~;

p. 21 1.-4, ••• ,-1 · This .program requires only 2n+2 locations for temporary

storage, but it takes more time. Should one wish to produce

the faster code, definitions could be written to generate

1.-2

P• 25 1.14

1.15

P• 27 1.18

1.19

1.20

1.-4

P• 28 1.3

P• 29 1.-9

P• 31 1.-5

1.-4

P• 33 1.-1

P• 37 1.-1

the full temporary storage required. The key definitions would

reflect. ·a "bottom.;.up" syntax·.a.nalysis. For example:

matrix(u,v)a x matrix(y,w)b := matrix(u,w) 'matrix(u,w)

b array P[1:-11~1:v], Q{,~v,1:w];·p := a;·Q := b; £_ integer i,j,k;

rE?al;· ~- _;. _ i ➔, u do j + w do b· s : = 0; k -+ v do s : =

s + P[i,k] x Q[k,j]; ::_[i,j] := s !. !. !.';

Some of the transitional states of the tree for the second

expansion were as foliows (numbers in parentheses refer to

definitions invoked):

. . . follows (numbers in ...
•••~'~b~c; •••

C := C + if a [i] •, •

...
(10) £E. (F)f .2.f. list x •••

(11) .2E, (F)f of 2.-e, (G)g :=

(12) list y .2.f. .2E_ (F)f :=

such as 2.-e, (H)h, the •••

...

~ E(~ f, (pie of •••

• • • 'complex (a x b [1], a x b [2]) ' ;

tion 5. Then a <context definition> and <declaration>

are:

complexmatrix (b,c)a := complexmatrix 'b,c';

matrix (complex, m, m) means array D :m, 1 :m, · 1 :2];

••• naming techniques, as in COMIT and SNOBOL, for

example.

p. 38 Insert after 1.11 (ii) Create another <context definition> using

the <result type> y of Q:

P• 39

1.12

1.14

l.1Q

1.-5

y [Program] [[bound pair list]] : = y - ~ - -
Now for each <context definition> use •••

(iii) If there is already

(iv) Represent P •••

...

Successive replacements ...

