
Presented at the 24th Digital Avionics Systems Conference, Washington, D.C., October, 2005. Awarded best paper of the Open Systems Architecture
track.

A PROPOSAL FOR MODEL-BASED SAFETY ANALYSIS
Anjali Joshi*, Steven P. Miller+, Michael Whalen+, Mats P.E. Heimdahl*

*Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455
+Advanced Technology Center, Rockwell Collins Inc., Cedar Rapids, IA 52498

Abstract1
System safety analysis techniques are well es-

tablished and are used extensively during the design
of safety-critical systems. Despite this, most of the
techniques are highly subjective and dependent on
the skill of the practitioner. Since these analyses are
usually based on an informal system model, it is
unlikely that they will be complete, consistent, and
error free. In fact, the lack of precise models of the
system architecture and its failure modes often
forces the safety analysts to devote much of their
effort to finding undocumented details of the sys-
tem behavior and embedding this information in the
safety artifacts such as the fault trees.

In this paper we propose an approach, Model-
Based Safety Analysis, in which the system and
safety engineers use the same system models cre-
ated during a model-based development process. By
extending the system model with a fault model as
well as relevant portions of the physical system to
be controlled, automated support can be provided
for much of the safety analysis. We believe that by
using a common model for both system and safety
engineering and automating parts of the safety
analysis, we can both reduce the cost and improve
the quality of the safety analysis. Here we present
our vision of model-based safety analysis and dis-
cuss the advantages and challenges in making this
approach practical.

Introduction
Safety engineers traditionally perform analysis,

such as fault tree analysis [10], based on informal
design models and various other documents such as
requirements documents. Unfortunately, these
analyses are highly subjective and dependent on the
skill of the practitioner. Fault trees are one of the

1 This work was supported in part by the NASA Langley Re-
search Center under contract NCC-01001 of the Aviation
Safety and Security Program.

most common techniques used by safety engineers;
yet different safety engineers will often produce
fault trees for the same system that differ in sub-
stantive ways. The final fault tree is often produced
only through a process of review and consensus
building between the system and safety engineers.

We hypothesize that most of the review effort
is focused on uncovering and resolving misunder-
standings and missing information in the system
design or the informal fault model. By redirecting
some of this manual analysis and review effort to
build formal models of the system and its fault
model and performing analysis based on these
models, an approach we call model-based safety
analysis, we believe we can both reduce the effort
involved (by introducing automated tools) and in-
crease the quality of the safety analysis.

In the remainder of this paper we describe our
model-based safety analysis approach. We begin by
briefly summarizing the traditional safety analysis
process currently practiced in the commercial avi-
onics industry. We then discuss the model-based
safety analysis approach as an extension to model-
based development. We point out the important dis-
tinctions between these two approaches and discuss
the potential changes that might be required to ac-
commodate the model-based safety approach in the
traditional context. We then illustrate this approach
with the help of the wheel brake system example
described in ARP 4761 [1]. We conclude with a
brief discussion of the different organizational and
research challenges in making this approach practi-
cal.

Traditional Safety Assessment Process
The overall safety assessment process that is

followed in practice in the avionics industry is de-
scribed in the SAE standard ARP 4761 [1]. Our
summary in this section is largely adopted from
ARP 4761

Presented at the 24th Digital Avionics Systems Conference, Washington, D.C., October, 2005. Awarded best paper of the Open Systems Architecture
track.

Figure 1: “V” Process for Traditional Safety Assessment

The safety assessment process is an integral
part of the development process. Figure 1 shows an
overview of the safety assessment process as rec-
ommended in ARP 4761. The process includes
safety requirements identification (the left side of
the “V” diagram) and verification (the right side of
the “V” diagram) that support the aircraft develop-
ment activities.

An aircraft level Functional Hazard Analysis
(FHA) is conducted at the beginning of the aircraft
development cycle, which is then followed by sys-
tem level FHA for the individual sub-systems. The
FHA is followed by Preliminary System Safety As-
sessment (PSSA), which derives safety require-
ments for the subsystems, primarily using Fault
Tree Analysis (FTA). The PSSA process iterates
with the design evolution; design changes necessi-
tate changes to the derived system requirements
(and also to the fault trees) and vice-versa.

Once the design and implementation are com-
pleted, the System Safety Assessment (SSA) proc-
ess verifies whether the safety requirements are met
in the implemented design. If not already known,
Failure Modes and Effects Analysis (FMEA) may
be performed to compute the actual failure prob-
abilities on the items (components). The verifica-
tion is then completed through quantitative and
qualitative analysis of the fault trees created for the
implemented design, first for the subsystems and
then for the integrated aircraft.

Model-Based Safety Analysis
In the safety-critical systems domain there is

an increasing trend towards model-based develop-
ment of the digital control systems. In this ap-
proach, various development activities such as
simulation, verification, testing and code-generation
are based on a formal model of the system ex-
pressed in a notation such as Simulink [14] or
SCADE [8]. In model-based safety analysis, we
propose to extend the existing model-based devel-
opment activities to incorporate safety analysis. In
this section, we first briefly discuss model-based
development and then illustrate our model-based
safety analysis approach. We also discuss how we
can modify the traditional safety assessment process
to accommodate model-based safety analysis.

Model-Based Development
In model-based development, the development

effort is centered around a formal specification
(model) of the digital control system. This model
can then be subjected to various types of analysis,
for example, completeness and consistency analy-
sis, model checking (details on page 5), and theo-
rem proving [12]. Ideally, one would then auto-
matically and correctly generate the implementa-
tion from this specification.

Presented at the 24th Digital Avionics Systems Conference, Washington, D.C., October, 2005. Awarded best paper of the Open Systems Architecture
track.

Plant
Model

AntiSkid
Command

Braking +
AntiSkid

Command

Green Pump Blue Pump

Isolation ValveIsolation Valve

Shut
Normal
System

N
O
R
M
A
L

A
L
T
E
R
N
A
T
E

Accumulator
Pump

Meter
Valve

Meter
Valve

Meter
Valve

Accumulator
Valve

Mechanical
Pedal

Selector Valve

Plant
Model

AntiSkid
Command

Braking +
AntiSkid

Command

Green Pump Blue Pump

Isolation ValveIsolation Valve

Shut
Normal
System

N
O
R
M
A
L

A
L
T
E
R
N
A
T
E

Accumulator
Pump

Meter
Valve

Meter
Valve

Meter
Valve

Accumulator
Valve

Mechanical
Pedal

Selector Valve

Figure 2 : Automated Model-based Safety Analysis

There are currently several commercial and re-
search tools that attempt to provide these capabili-
ties. Examples of commercial tools include Esterel
and SCADE from Esterel Technologies [8], State-
mate from i-Logix [15], and SpecTRM from Safe-
ware Engineering [17].

Model-Based Safety Analysis
To perform model-based safety analysis, we

propose to leverage the framework of mature de-
velopment and analysis tools that are successfully
used for model-based development.

Model-based development focuses primarily
on formally modeling only the software compo-
nents of the system. To perform system-level safety
analysis, we also have to consider the mechanical
components involved. Fortunately, similar tools and
techniques can be used to model the physical com-
ponents of interest. By combining the models con-
taining the digital components (software and hard-
ware) with models of the mechanical components
(pumps, valves, etc.), we create a model of the
nominal system behavior. This model can then be

augmented with fault models for the digital and me-
chanical systems to create the Safety Analysis Sys-
tem Model. This model can be used to describe the
behavior of the system in the presence of one or
more faults.

The safety analysis system model can be used
for a variety of simulations and analyses (Figure 2).
First, the models allow trivial exploration of “what-
if” scenarios involving combinations of faults
through simulations. For more rigorous analyses,
we can use static analysis tools, such as model
checkers and theorem provers, to automatically
prove (or disprove) whether the system meets spe-
cific safety requirements. Furthermore, these tools
can also be extended to generate traditional safety
analysis artifacts such as fault trees.

To support model-based safety analysis, the
traditional “V” process (shown in Figure 3) is modi-
fied such that the safety analysis activities are cen-
tered around formal system and fault models.
These models are used both for systems analysis
and design and safety analysis, and are the central
artifact of the systems development process.

Presented at the 24th Digital Avionics Systems Conference, Washington, D.C., October, 2005. Awarded best paper of the Open Systems Architecture
track.

Figure 3: Modified “V” Process for Model-Based Safety Analysis

Given these models, the safety analysis process
consists of defining a set of formal properties to
describe the (informal) safety requirements of the
system, and then using formal analysis techniques
to determine whether the proposed system architec-
ture satisfies the safety properties. Artifacts such as
fault trees and FMEAs can be automatically gener-
ated as a byproduct of the formal analyses.

The main advantage of this approach is that the
system and safety engineers work off a common
model of the system leading to a tighter integration
between the two. The safety engineers will be
automatically notified of changes in the system
model when their analyses fail. System engineers
can run the safety analyses to determine the effect
of design changes. Formally capturing the fault
models reduces ambiguity. Ideally, the use of com-
putational tools such as model checkers will help
automate many safety analysis activities, and the
safety engineer’s task will consist primarily of re-
viewing the generated safety artifacts and confirm-
ing the assumptions made in the system and fault
models. In this way, model-based safety analysis
can lead to more accurate and complete safety
analyses while reducing the manual effort required.

 We now describe the various model-based
safety analysis activities in detail.

Nominal System Modeling
The primary step in model-based development

(and model-based safety analysis) is creating a for-
mal specification of the system under development.
The behavior of the system can be specified in for-
mal specification languages supporting graphical
and/or textual representation; e.g., synchronous
(textual) languages like Lustre [5], and graphical
tools like Simulink [14] and SCADE [8]. The logi-
cal and physical architecture of the system can also
be specified in these notations or with an architec-
ture description language such as AADL [11].

Formalizing Derived Safety Requirements
To support automated analysis, the safety

properties must be expressed in some formal nota-
tion. The derived safety requirements are deter-
mined in the same way as in the traditional “V”
process. There are several candidate notations, in-
cluding temporal logics like CTL/LTL [16] or
higher order predicate logics. One can also specify
safety requirements as small behavioral models in
some formal specification language.

Fault Modeling
To be able to apply formal verification tools to

perform safety analysis, in addition to formalizing

Presented at the 24th Digital Avionics Systems Conference, Washington, D.C., October, 2005. Awarded best paper of the Open Systems Architecture
track.

the system model, we also need to formalize the
fault model.

The fault model captures the various ways in
which the components of the system (both the digi-
tal controller and the mechanical system) can mal-
function. It could consist of common failure modes
like non-deterministic, inverted, stuck_at, etc. The
fault model could potentially be much more com-
plex, encoding fault propagations, dependent faults,
etc. In this case, the fault model is also dependent
on the architecture of the system. We would also
like to be able to specify both persistent and inter-
mittent failures.

Composing System and Fault Models
To enable model-based safety analysis, the

fault model is merged with the nominal system
model to describe the behavior of the system in the
presence of faults.

There are two approaches to adding fault in-
formation to the system model. First, it is possible
to embed the fault behavior directly into the system
model. Unfortunately, this embedding clutters the
system model with failure information which may
not be of interest to systems engineers. Also, it be-
comes difficult to evolve the system and fault mod-
els separately. This manual composition will also
become error prone as the complexity of the fault
model increases.

A better option is to develop the fault model as
a separate entity from the system model and auto-
matically merge these two models for analysis. By
keeping the system model and the fault model sepa-
rate, they each can be refined somewhat independ-
ently. We hypothesize that keeping the two models
separate will ease evolution, reduce errors and un-
necessary clutter.

Formal Safety Analysis
Once we have the composed model, the safety

analysis involves verifying whether the safety re-
quirements hold in the presence of the faults de-
fined in the fault model. The safety or system engi-
neer can perform exploratory analysis by simulating
faults on specific components and observing the
behavior of the system. For more rigorous analy-
ses, it is possible to use formal verification tools

like model checkers to verify safety properties of
interest.

Model Checkers
Model checking is often called “push-button”

formal methods: given a formal model specified in
the notation of the model checker and a property of
interest, a model checker will automatically deter-
mine whether a property holds of a given model. It
performs this task by exploring the full state space
of the system model to check whether the given
system properties are satisfied by the model. If the
checker determines that the property holds, it guar-
antees that the system satisfies the property under
all possible executions of the system. Alternately,
if the model checker is able to disprove the prop-
erty, it generates a counterexample, which describes
a sequence of execution steps (similar to a test case)
in which the property does not hold.

There are two main advantages of using model
checking compared to other formal verification
methods. First it is fully automatic, and second it
provides a counter example whenever the system
fails to satisfy a given property. The primary limita-
tion of model-checking is the size of the reachable
state space, though recent breakthroughs allow very
large (> 10100 reachable states) state spaces to be
explored in reasonable time.

Proofs of Safety Properties
The safety engineer may want to explore the

fault tolerance for the system; e.g., what is the larg-
est n such that the particular safety requirement
holds in face of n faults? The notion could also be
specialized to a specific combination of faults rather
than random combinations. The safety engineer
may also want to investigate how the system be-
haves in presence of different types of faults, e.g.
permanent and transient faults. We can use compu-
tational tools such as model checkers for verifying
these kinds of safety properties.

Fault Trees
With adequate tool support, the formal verifi-

cation results could be represented in the form of
familiar safety artifacts like fault trees. There is a
great deal of interest in this area, but none of the
existing tools generate fault trees in a format that is
intuitive and amenable for manual review (see the
discussion of related work on page 11).

Presented at the 24th Digital Avionics Systems Conference, Washington, D.C., October, 2005. Awarded best paper of the Open Systems Architecture
track.

Wheel Brake System Example
We illustrate some of the basic activities in-

volved in model based safety analysis with the help
of an example of a Wheel Brake System (WBS)
described in ARP 4761 - Appendix L [1]. We chose
this example primarily because the ARP 4761
document is used as the main reference for safety
assessment by safety engineers in the avionics
community.

This section consists of excerpts from the ARP
4761 document giving the informal requirements
for the WBS. The WBS diagram taken from the
ARP 4761 document is shown in Figure 4. The
WBS is installed on the two main landing gears.
Braking on the main gear wheels is used to provide
safe retardation of the aircraft during taxiing and
landing phases, and in the event of a rejected take-
off. Braking on the ground is either commanded
manually, via brake pedals, or automatically (auto-
brake) without the need for pedal application. The
Autobrake function allows the pilot to pre-arm the
deceleration rate prior to takeoff or landing. When
the wheels have traction, the autobrake function
will control break pressure to provide a smooth and
constant deceleration.

Based on the requirement that loss of all wheel
braking is less probable than 5·10-7 per flight, a de-
sign decision was made that each wheel has a brake
assembly operated by two independent sets of hy-
draulic pistons. One set is operated from the Green
pump and is used in the Normal-braking mode. The
Alternate braking system is on standby and is se-
lected automatically when the Normal system fails.
The Alternate system is supplied pressure by both
the Blue pump and an Accumulator, both of which
can be used to drive the brake. The Accumulator is
the reserve pressure reservoir with built up pressure
that can be reliably released if both of the two pri-
mary pumps (the Blue and Green pumps) fail. The
accumulator drives the Alternate system in the
Emergency-braking mode.

Switch-over between the hydraulic pistons and
the different pumps is automatic under various fail-
ure conditions, or can be manually selected. Reduc-
tion of Green pressure below a threshold value, ei-
ther from loss of the Green pump itself or from its
removal by the Brake System Control Unit (BSCU)
due to the presence of faults, causes an automatic

selector to connect the Blue supply to the Alternate
brake system. If the Blue pump fails, then the Ac-
cumulator is used to supply hydraulic pressure. An
anti-skid facility is available in both the Normal and
Alternate system modes. The anti-skid function is
similar to the anti-lock brakes common on passen-
ger vehicles and operates largely in the same man-
ner. In the Normal mode, the brake pedal position is
electronically provided to a braking computer. This
in turn produces corresponding control signals to
the brakes. In addition, the braking computer moni-
tors various signals that denote certain critical air-
craft and system states to provide correct brake
functions, improve system fault tolerance, and gen-
erate warnings, indications and maintenance infor-
mation to other systems.

Nominal System Modeling
As with most informal specifications, the re-

quirements of the WBS as specified in the ARP
document left many questions unanswered. To im-
plement a working model, we had to make several
assumptions about the system that still need to be
confirmed with the authors of ARP 4761. Figure 5
illustrates how the WBS can be modeled in Simu-
link. The model captures both the digital and the
mechanical components of the system and reflects
the structure of the system as given in ARP 4761.

The WBS (the highest level compo-
nent/system) consists of a digital control unit, the
BSCU, and two hydraulic pressure lines, the Nor-
mal (pressured by the Green Pump) line and the
Alternate (pressured by the Blue Pump and the Ac-
cumulator) line. The system takes the following
inputs from the environment – PedalPos1, Auto-
Brake, DecRate, AC_Speed, and Skid. All of the
above inputs are forwarded to the BCSU to com-
pute the brake commands. The BSCU is in turn
composed of two redundant Command (computes
the brake and anti-skid commands) and Monitor
(monitors whether the command outputs are valid)
units.

There are also a number of mechanical com-
ponents along the two hydraulic lines such as the
different types of valves. We have defined a library
of the common components such as the Meter-
Valve, the IsolationValve, the Pump, etc., which are
instantiated at various locations in the WBS. The

Presented at the 24th Digital Avionics Systems Conference, Washington, D.C., October, 2005. Awarded best paper of the Open Systems Architecture
track.

outputs of the WBS are Normal_Pressure (hydraulic
pressure at the end of the Normal line),

Figure 4 : Wheel Brake System Diagram (SAE ARP 4761)

Alternate_Pressure (hydraulic pressure at the end of
the Alternate line) and System_Mode (computed by
the BSCU).

Space does not allow us to describe the Simu-
link model in full detail. To illustrate some aspects
of the fault modeling presented later, we explain the
implementation of the MeterValve component,
which is used in three places in Figure 5: the
CMD/AS MeterValve on the Normal hydraulic line
and the AS MeterValve and Manual MeterValve on
the Alternate hydraulic line. The meter valve im-
plementation takes two inputs, the incoming pipe
pressure and the valve position command, and gen-
erates an output pressure that determined by the
valve position.

Formalizing Derived System Requirements
After creating the system model, we would

like to verify that some basic safety properties hold
on the nominal system, an idealized model of the
digital controller and the mechanical system con-
taining no faults. As a first step, we need to formal-
ize the derived safety requirements as safety proper-
ties. Simulink does not directly support any model-
checking tools, so to perform this step we import

the Simulink model into SCADE, whose underlying
textual notation is Lustre. As part of this project, we
have developed a translator framework with which
we can translate Lustre specification into the input
languages of different analysis tools, for example
the NuSMV model checker [9] and PVS theorem
prover [12]. We can also perform such analyses
directly in SCADE, which contains the Design
Verifier model checker. In this paper, we will de-
scribe the analysis performed using the NuSMV
model checker. In [13], a more detailed analysis of
a slightly different version of the wheel brake sys-
tem is described using Design Verifier.

Throughout this paper, we use an example
safety requirement that is given in ARP 4761,

Loss of all wheel braking (unannunciated
or annunciated) during landing or RTO
shall be less than 5·10-7 per flight.

Since we are not considering annunciations in
this model and we are not including any quantita-
tive analysis at this stage, we can simplify this
safety requirement and state it simply as,

Presented at the 24th Digital Avionics Systems Conference, Washington, D.C., October, 2005. Awarded best paper of the Open Systems Architecture
track.

Loss of all wheel braking during landing or RTO shall not occur.

3
System_Mode

2
Alternate_Pressure

1
Normal_Pressure

z

1

z

1

z

1

N
or

_I
n

A
lt_

In

N
or

_O
ut

A
lt_

O
ut

SelectorValve

ValidPower

ValidPower

Pedal1
PedalPos1
PedalPos2

MechPedal
PedalSignals

PosCmd

MechanicalPedal

Pi
pe

Pr
es

su
re

_I
n

Cm
dP

os
Pi

pe
Pr

es
su

re
_O

ut

Manual
MeterValve

V
al

ve
Sh

ut

Pi
pe

Pr
es

su
re

Pr
es

su
re

_O
utGreen Pump

IsolationValve

Green
Pump

[MechPedal]

[Green_P]

[Acc_P]

[Alt_Active]

[AltP_Feedback][NorP_Feedback]

[NorValveCmd]

[AltValveCmd]

[Nor_Out]

[Blue_P]

[Nor_Out]

[MechPedal]

[Acc_P]

[Alt_Active]

[AltP_Feedback]

[NorP_Feedback]

[NorValveCmd]

[AltValveCmd]

[Green_P]

[Blue_P]

false

Pi
pe

Pr
es

su
re

_I
n

Cm
dP

os
Pi

pe
Pr

es
su

re
_O

ut

CMD/AS
MeterValve

V
al

ve
Sh

ut

Pi
pe

Pr
es

su
re

Pr
es

su
re

_O
utBlue Pump

IsolationValve

Blue
Pump

Pwr1

Pwr2

Pedal1

Pedal2

AutoBrakeOn

DecRate

AC_Speed

Skid

Nor_Pressure

Alt_Pressure

Green_Pressure

Blue_Pressure

Acc_Pressure

Out_NorP

Sel_Alt

Nor_Cmd

Alt_Cmd

SystemMode

BSCU

Pi
pe

Pr
es

su
re

R
es

Pr
es

su
re

Al
tA

ct
iv

e

Pi
pe

Pr
es

su
re

_O
utAccumulatorValve

Accumulator Pump

Pi
pe

Pr
es

su
re

_I
n

Cm
dP

os
Pi

pe
Pr

es
su

re
_O

ut

AS
MeterValve

5
AC_Speed

4
Skid

3
DecRate

2
AutoBrake

1
PedalPos1

Presented at the 24th Digital Avionics Systems Conference, Washington, D.C., October, 2005. Awarded best paper of the Open Systems Architecture
track.

Figure 5 : Simulink model of the Wheel Brake System (WBS)

To achieve effective breaking, the hydraulic
pressure at the break calibers must be above a
minimum threshold. The braking pressure can be
commanded either through the AutoBrake or the
brake pedal. The AutoBrake function only works in
the Normal mode of operation whereas the break
pedal is capable of commanding pressure in any
mode of operation. Note here that when the wheels
are skidding, brake pressure is temporarily reduced
or removed to stop the skidding. Based on the ob-
servations above, we can derive a safety property
suitable for formalization,

When the brake pedal is pressed in the
absence of skidding, then either the nor-
mal pressure or the alternate pressure
must be above the threshold.

To state this formally in CTL, we first define
two intermediate variables in SMV to represent
whether the pedal is pressed (PedP_NoSkid) and
whether any pressure is being provided to the
brakes (SomeP).
PedP_NoSkid := ((IsPressed(PedalPos1) |
AutoBrake) & !Skid) ;

SomeP := ((Normal_Pressure > threshold) |
(Alternate_Pressure > threshold)) ;

IsPressed is a predicate that returns true when
the pedal is pressed. PedP_NoSkid and SomeP are
then used in a CTL property as:
SPEC AG(PedP_NoSkid -> SomeP) ;

This property states that it is always globally
true (AG) that when the pedal is pressed in the ab-
sence of skidding we will get break pressure. This
property can be proven to hold in our nominal sys-
tem (where no failures occur) in seconds using
NuSMV.

Fault Modeling
In the WBS example, we consider a simple

fault model containing both mechanical failure
modes and digital failure modes. We can implement
failure modes in Simulink as subsystems (or com-
ponents) with additional failure flags that can be
used to control whether or not the failure has oc-
curred.

Let us consider the digital failure modes for
the BSCU component—the inverted failure mode
for the two Monitor subsystems and the stuck (at
previous value) failure mode for the two Command
subsystems. The inverted failure mode for a Boo-
lean output of the Monitor unit of the BSCU is de-
fined as simply the negation of the input when trig-
gered. The stuck failure mode latches the previous
value of the output when the Fail_Flag input trig-
gers the failure.

For the mechanical components, we consider
basic failure modes such as a stuck_at failure mode
for valves, failure of a pump to provide adequate
pressure and the failure of the power supplies.

1
Out

5
Stuck_Choice

4
Fail_Flag

3
Nominal_In

2
Stuck_Val_0

1
Stuck_Val_1

Figure 6 : Binary_Stuck_at

We create a simple fault model in which a
component can either be stuck open or closed as
shown in Figure 6. The Binary_Stuck_at failure
mode switches between the stuck value and the
nominal value depending on the Boolean Fail_Flag
input (the fault trigger). The stuck value could be
either Stuck_Val_1 (open) or Stuck_Val_0 (closed)
depending on the Boolean Stuck_Choice. We ex-
tend the MeterValve component to Meter-
Valve_Stuck using this failure mode. When
Stuck_Choice is 1 the meter valve is stuck open and
the input pressure is forwarded as is to the output,
ignoring the valve position command. When
Stuck_Choice is 0 the valve is stuck closed and the
output pressure is set to 0.

Composing System and Fault Models
To extend the original model, the nominal me-

chanical components from the original model

Presented at the 24th Digital Avionics Systems Conference, Washington, D.C., October, 2005. Awarded best paper of the Open Systems Architecture
track.

(Figure 5) are replaced by the corresponding com-
ponents extended with failure modes. To control the
fault behavior of the extended model, a number of
fault inputs need to be added to the system. For ex-
ample, all the valve components, extended by the
stuck_at failure mode, have two additional inputs:
Stuck_Flag and Stuck_Val. The rest of the failure
modes require a single input signaling the occur-
rence of a fault. After extension, the model looks
fairly similar to Figure 5, but with some additional
clutter due to the additional inputs needed to de-
scribe the possible faults.

Model-based System Safety Analysis
After extending the model with the faults, we

would like to check that the system is tolerant to a
certain maximum number of faults. In particular,
we would like to investigate two types of faults us-
ing this approach: transient faults and permanent
faults. For this example, we again formalize our
safety properties in SMV. To make it easier to spec-
ify properties we extend our model to compute the
total number of fault inputs that are true in the cur-
rent step (this number given by NumFails).

First, let us attempt to verify that our safety re-
quirement holds in the presence of one (transient)
fault.

In the presence of single transient fault,
when the brake pedal is pressed in the ab-
sence of skidding, then either the normal
pressure or the alternate pressure should
be above the threshold.

SPEC AG (NumFails = 1 & PedP_NoSkid ->
 SomeP);

This property does not hold and NuSMV
comes back with a counterexample indicating that
as soon as a critical component fails (e.g., the green
pump) we will loose pressure at the brake calipers.
From the counterexample, it is clear that we need to
allow the system time to detect failures located on
the Normal system and switch to the Alternate sys-
tem—a process that requires two time steps. We
deem this delay acceptable and refine our property
to reflect this delay.
SPEC AG((NumFails = 1 & PedP_NoSkid) ->
 AX ((NumFails = 1 & PedP_NoSkid) ->
 AX ((NumFails = 1 & PedP_NoSkid) ->
 SomeP)));

This property states that if there is a single
fault and the pedal is pressed in the absence of
skidding for three consecutive time steps, then we
will get pressure at the brakes. However, verifica-
tion of this relaxed safety property is still not possi-
ble as illustrated by the following scenario: If there
is a single transient failure (e.g., the Green pump
fails) then the BSCU will detect this failure (in a
couple of steps) and switch over to the Alternate
system powered by the Blue pump. In this version
of the WBS, the switch over to the Alternate system
is not reversible. Even if the fault that caused the
switch over is transient and is repaired, the system
will not switch back to the Normal hydraulic sys-
tem. In our counterexample, even if the Green
pump recovers, the active hydraulic system will still
be the Alternate system. Now, if some meter valve
along the Alternate system fails closed (stuck at
closed), then the system cannot recover from this
failure and we will not get any braking pressure. So
even though it took two failures (one a transient
failure) to cause the loss of braking pressure, there
was never more than one failure at any particular
instant and our property does not hold. One of the
great advantages of automated tools is that they
force the consideration of such scenarios. Of
course, we can easily change the system model so
that the switch-over to the Alternate system is not
permanent and the system can recover from a tran-
sient fault in a certain number of steps. For a dis-
cussion of the analysis of such a version of the sys-
tem, refer to [13].

We would also like to verify that the system
will recover from a single permanent failure. In our
extended model, the fault triggers are modeled as
inputs as we want the engineer to be able to control
the triggering of faults during simulation. During
analysis, the model checker will consider all com-
binations of inputs, including the cases where faults
are transient and cases where faults are permanent.
If we truly want to consider only permanent faults
during analysis, we must latch the corresponding
fault triggers when they become true.

Now, we try to prove the same property noted
above (with delays) in the presence of permanent
faults. NuSMV verifies that this property holds.
Thus, the WBS model can recover from one perma-
nent failure in three steps. However, we can easily
observe that the system is not tolerant to two (or

Presented at the 24th Digital Avionics Systems Conference, Washington, D.C., October, 2005. Awarded best paper of the Open Systems Architecture
track.

more) simultaneous continuous failures. NuSMV
immediately comes back with a counterexample
where two meter valves along both the Normal and
the Alternate hydraulic lines fail. Note that, the
safety engineer can explore different combinations
of faults that the system can tolerate.

Related Work
Most of the work in automating safety analysis

has been in automatically generating fault trees.
FSAP/NuSMV-SA [4] is a tool, developed as part
of the ESACS project [3], for automating the gen-
eration of fault trees. The ESACS methodology
supports integrated design and safety analysis of
systems. The FSAP tool requires the system model
to be specified in NuSMV and has support for fail-
ure mode definition and model extension through
automatic failure injection. FSAP uses the NuSMV
model checker to generate a fault tree given a top
level event in temporal logic. Though FSAP is a
very powerful tool, it has disadvantages which
might limit its applicability to practical systems.
First, a fault tree generated by FSAP has a flat
structure; the structure of the generated fault trees is
an “or-and” structure, i.e., it is a disjunction of all
the minimum cut sets, with each minimum cut set
being a product of basic events. On a large system,
this can yield a fault tree with a root node that has a
single or-gate with hundreds or thousands of
branches. Also, we observed that there isn't a lot of
flexibility in defining the fault model - no good way
of specifying fault propagation, simultane-
ous/dependent faults, and persistent/intermittent
faults. Also, FSAP cannot describe even moderately
complex faults, such as stuck at, as it can only af-
fect the output of a component.

HiP-HOPS (Hierarchically Performed Hazard
Origin and Propagation Studies) [7] is a method for
safety analysis that enables integrated assessment of
a complex system from the functional level through
to the low level of component failure modes. The
failure behavior of components in the model is ana-
lyzed using a modification of classical FMEA
called Interface Focused-FMEA (IF-FMEA). One
of the strong points of this approach is that the fault
tree synthesis algorithm neatly captures the hierar-
chical structure of the system in the fault tree [6].

Conclusions and Future Directions
In this paper, we proposed Model-Based Safety

Analysis, an approach for automating portions of
the safety analysis process using executable formal
models of the system. We also illustrated this ap-
proach in a step by step process using a wheel brake
system model as described in the ARP 4761.

Model-based safety analysis represents a large
and significant change from current practices. There
are several research challenges that need to be ad-
dressed if it is to be smoothly integrated into current
safety engineering practices.

Nominal and Fault Modeling

The current process of adding faults into the system
model is cumbersome and significantly clutters the
nominal system model with fault trigger inputs.
Such models can be difficult to create, difficult to
read, and difficult to update as the system evolves.
To make this approach practical, we need to address
several important questions. For example, which
languages and tools are the most applicable? What
information would a fault model encode? Can we
automate the process of merging the fault model
and the nominal model?

Flexibility and Scalability of Analysis
Due to the size and complexity of system models,
the analysis we have described will probably ex-
ceed the limitations of automated tools such as
model checkers. Scaling up to significantly larger
systems will require additional research into tech-
niques for model abstraction and partitioning or the
use of manually guided tools such as theorem
provers, e.g., PVS. Ideally, we would like to allow
the systems and safety engineers to easily check the
effects of different combinations of fault models
and system designs, both through simulation and
automated analysis. This is not cleanly supported in
any of the currently available tools.

User-interface and presentation issues

Currently, the results generated by model checkers
and theorem provers do not look like the artifacts
expected by safety analysts. There is research that
has begun to address turning counterexamples into
fault trees, but the current results are unacceptable
for real safety analyses (see Related Work section).
To better fit with existing safety analysis guidelines,

Presented at the 24th Digital Avionics Systems Conference, Washington, D.C., October, 2005. Awarded best paper of the Open Systems Architecture
track.

we need to be able to present analysis results in fa-
miliar forms, such as fault trees, that better map to
current safety analysis practice.

Process Issues
Finally, there are numerous process issues to be
addressed. For example, will the system engineers
run the automated safety analysis tools as they build
their system models, or will that be done by the
safety engineers. Will the fault models be created
by the system engineers and reviewed by the safety
engineers, or vice-versa? As the system models are
updated, who will be responsible for redoing the
safety analysis? Many of these issues will depend
critically on how much of the safety analysis can be
automated and how much will remain a manual
process.

Acknowledgements
The authors wish to thank Ricky Butler, Kelly Hayhurst,
Celeste Bellcastro, and Carrie Walker of the NASA
Langley Research Center for their ongoing support of
this work.

References
[1] SAE ARP4761, December 1996, Guidelines and

Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment.

[2] Pierre Bieber, Charles Castel, Christel Seguin.
2002, Combination of fault tree analysis and model
checking for safety assessment of complex system,
In Proceedings of the 4th European Dependable
Computing Conference on Dependable Computing,
pages 19 - 31.

[3] M. Bozzano, A. Villafiorita, O. kerlund, P. Bieber,
C. Bougnol, E. Bde, M. Bretschneider, A. Cavallo,
C. Castel, M. Cifaldi, A. Cimatti, A. Griffault, C.
Kehren, B. Lawrence, A. Ldtke, S. Metge, C. Papa-
dopoulos, R. Passarello, T. Peikenkamp, P. Persson,
C. Seguin, L. Trotta, L. Valacca, and G. Zacco,
2003, ESACS: An integrated methodology for de-
sign and safety analysis of complex systems. In
Proceedings of ESREL, pages 237 - 245.

[4] Marco Bozzano and Adolfo Villafiorita, 2003, Im-
proving system reliability via model checking: the
FSAP / NuSMV-SA safety analysis platform, In
Proceedings of SAFECOMP, pages 49 - 62.

[5] N. Halbwachs, P. Caspi, P. Raymond, and D. Pi-
laud, 1991, The synchronous dataflow program-

ming language Lustre, In Proceedings of the IEEE,
79(9):1305- 1320.

[6] Yiannis Papadopoulos and Matthias Maruhn, 2001,
Model-based synthesis of fault trees from Matlab-
Simulink models, In The International Conference
on Dependable Systems and Networks.

[7] Yiannis Papadopoulos and John A. McDermid,
1999, Hierarchically performed hazard origin and
propagation studies, In Proceedings of the 18th In-
ternational Conference, SAFECOMP'99.

[8] Esterel Technologies. SCADE suite product des-
cription, http://www.estereltechnolgies.com.

[9] IRST, The NuSMV Model Checker, Trento Italy,
http://nusmv.irst.itc.it/.

[10] Nancy G. Leveson, 1995, Safeware: System Safety
and Computers, Addison-Wesley Publishing Com-
pany: Reading Massachusetts.

[11] SAE, The SAE AADL Standard: A Language
Overview, An Overview of the SAE AADL Lan-
guage - extracted from the draft standard document.
http://la.sei.cmu.edu/aadlinfosite/LinkedDocuments
/AADLLanguageSummary.pdf

[12] SRI International, The PVS Specification and Veri-
fication System, http://pvs.csl.sri.com.

[13] Anjali Joshi and Mats P.E. Heimdahl, 2005, Model-
Based Safety Analysis of Simulink Models using
SCADE Design Verifier, To appear in Proceedings
of SAFECOMP’05.

[14] The Mathworks, Simulink Product Description,
http://www.mathworks.com

[15] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M.
Politi, R. Sherman, A. Shtull-Trauring, M.
Trakhtenbrot, 1990, STATEMATE: A Working
Environment for the Development of Complex Re-
active Systems, IEEE Transactions on Software
Engineering.

[16] Clarke, Edmund M., Orna Grumberg, and Doron A.
Peled, 2001, Model Checking, The MIT Press,
Cambridge, Massachusetts.

[17] Nancy G. Leveson, Mats P.E. Heimdahl, Jon
Reese, 1999, Designing Specification Languages
for Process Control Systems: Lessons Learned and
Steps to the Future, in Proceedings of Foundations
on Software Engineering.

24th Digital Avionics Systems Conference

Presented at the 24th Digital Avionics Systems Conference, Washington, D.C., October, 2005. Awarded best paper of the Open Systems Architecture
track.

October 30, 2005

