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A proposal for the diagnosis of

uncertain dynamic systems

based on interval models

Esteban Reinaldo Gelso

Doctoral Thesis

Supervisor

Dr. Joaquim Armengol

Girona, Spain
April 2009





Universitat de Girona
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Abstract

The performance of a model-based diagnosis system could be affected

by several uncertainty sources, such as, model errors, uncertainty in

measurements, and disturbances. This uncertainty can be handled by

mean of interval models.

The aim of this thesis is to propose a methodology for fault detection,

isolation and identification based on interval models. Especially a

modal interval based technique, and interval based consistency tech-

nique (ICTs) are considered. The thesis includes some proposals to

perform each stage within the diagnosis process, from the design of

the fault detection tests, to the quantitative fault isolation and iden-

tification stage.

Thus, the methodology includes some algorithms to obtain in an au-

tomatic way the symbolic expression of the residual generators en-

hancing the structural isolability of the faults, in order to design the

fault detection tests. These algorithms are based on the structural

model of the system.

The stages of fault detection, isolation, and identification are stated

as constraint satisfaction problems in continuos domains and solved

by means of interval based consistency techniques. The qualitative

fault isolation is enhanced by a reasoning in which the signs of the

symptoms are derived from analytical redundancy relations or bond

graph models of the system. The quantitative fault isolation and

identification is performed by means of a faulty parameters estimation

approach.



An initial and empirical analysis regarding the diferencies between

interval-based and statistical-based techniques is presented in this the-

sis. Methods included in this comparison are, ICTs on one side, and

a statistical decision technique that combines Extended Kalman filter

and Z-test on the other side.

The performance and efficiency of the contributions are illustrated

through several application examples, covering different levels of com-

plexity.



Resumen

Las prestaciones de un sistema de diagnosis basado en modelos se

pueden ver afectadas por fuentes de incertidumbre como los errores

en el modelo, la incertidumbre en las medidas y las perturbaciones.

Esta incertidumbre se puede tratar mediante modelos intervalares.

Esta tesis propone una metodoloǵıa de detección, aislamiento e iden-

tificación de fallos basada en modelos intervalares. En concreto, se

consideran técnicas basadas en intervalos modales y técnicas de consis-

tencia basadas en intervalos (Interval based Consistency Techniques,

ICT). La tesis incluye propuestas en cada etapa del proceso de diag-

nosis, desde el diseño de las pruebas de detección de fallos, hasta las

etapas de aislamiento cuantitativo e identificación de fallos.

Aśı, la metodoloǵıa incluye algoritmos para obtener de manera au-

tomática la expresión simbólica de los generadores de residuos mejo-

rando la aislabilidad estructural de los fallos. Estos algoritmos se

basan en el modelo estructural del sistema.

Las etapas de detección, aislamiento, e identificación de fallos se re-

presentan como problemas de satisfacción de restricciones en dominios

continuos y se resuelven por medio de técnicas de consistencia basadas

en intervalos. Una mejora en el aislamiento cualitativo de los fallos

se obtiene por razonamiento con los signos de los śıntomas, que se

obtienen de relaciones de redundancia anaĺıtica o de modelos bond

graph del sistema. El aislamiento cuantitativo y la identificación de

los fallos se realiza por medio de la estimación de los parámetros que

fallan.

Esta tesis también presenta un análisis emṕırico inicial de las di-

ferencias entre las técnicas basadas en intervalos y las basadas en



técnicas estad́ısticas. Los métodos incluidos en esta comparación son

las técnicas ICT por una parte y por otra el filtro extendido de Kalman

y la técnica de decisión estad́ıstica Z-test.

Las prestaciones y la eficiencia de las contribuciones de la tesis se

ilustran a través de unos cuantos ejemplos de aplicación, que cubren

diferentes niveles de complejidad.



Resum

Les prestacions d’un sistema de diagnosi basat en models es poden

veure afectades per fonts d’incertesa com els errors en el model, la

incertesa en les mesures i les pertorbacions. Aquesta incertesa es pot

tractar mitjançant models intervalars.

Aquesta tesi proposa una metodologia de detecció, äıllament i identi-

ficació de falles basada en models intervalars. En concret, es conside-

ren tècniques basades en intervals modals i tècniques de consistència

basades en intervals (Interval based Consistency Techniques, ICT). La

tesi inclou propostes en cada etapa del procés de diagnosi, des del dis-

seny de les proves de detecció de falles, fins a les etapes d’äıllament

quantitatiu i identificació de falles.

Aix́ı, la metodologia inclou algoritmes per obtenir de manera au-

tomàtica l’expressió simbòlica dels generadors de residus millorant

l’äıllabilitat estructural de les falles. Aquests algoritmes es basen en

el model estructural del sistema.

Les etapes de detecció, äıllament, i identificació de falles es represen-

ten com problemes de satisfacció de restriccions en dominis continus i

es resolen per mitjà de tècniques de consistència basades en intervals.

Una millora en l’äıllament qualitatiu de les falles s’obté per raona-

ment amb els signes dels śımptomes, que s’obtenen de relacions de

redundància anaĺıtica o de models bond graph del sistema. L’äılla-

ment quantitatiu i l’identificació de les falles es realitza per mitjà de

l’estimació dels paràmetres que fallen.

Aquesta tesi també presenta una anàlisi emṕırica inicial de les diferèn-

cies entre les tècniques basades en intervals i les basades en tècniques



estad́ıstiques. Els mètodes inclosos en aquesta comparació són les

tècniques ICT per una banda i per una altra el filtre estès de Kalman

i la tècnica de decisió estad́ıstica Z-test.

Les prestaciones i l’eficiència de les contribucions de la tesi s’il·lustren

a través d’uns quants exemples d’aplicació, que cobreixen diferents

nivells de complexitat.



Notation and Abbreviations

Notation

Structural Analysis

M A diagnosis model
X The set of unknown variables
Z The set of known variables
c A constraint
v A variable
M A matching
E A set of edges
e An edge
CMSO A collection of MSO sets
ϕ The structural redundancy of a model
u An input variable
y An output variable
p(i,j) A path through the structure graph from input ui to output yj

C A condition associated to a set of equations of the model

Fault detection, isolation and identification based
on Interval Models

Scalars are represented by italics, vectors by bold lower-case letters,

and intervals by upper-case letters.



∧ (superscript) estimate
∼ (superscript) measurement
V A set of numeric variables
D A set of domains
C A set of constraints
x A variable/a state variable
y An output variable
u An input variable
θ A parameter

Abbreviations

BG Bond Graph
CBR Case-Based Reasoning
DWT Discrete Wavelet Transform
EKF Extended Kalman Filter
FA False Alarm
FD Fault Detection
FDI Fault Detection and Isolation
FDII Fault Detection, Isolation, and Identification
FSM Fault Signature Matrix
GDE General Diagnosis Engine
IA Interval Analysis
ICT Interval-based Consistency Technique
KF Kalman Filter
MA Missed Alarm
MBD Model-based Diagnosis
MIA Modal Interval Analysis
MSO Minimal Structurally Overdetermined
SO Structurally Overdetermined
TCG Temporal Causal Graph
WT Wavelet Transform
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Chapter 1

Introduction

Nowadays the industrial processes are characterized by a high and increasing

level of automation and technological complexity. Those characteristics have

given a critical role to the systems supervision tasks, because of the need to

anticipate, prevent, detect, and ultimately correct the behavior of the system

when it deviates from its normal expected behavior. In general sense, this kind of

deviation from the acceptable, usual, standard condition is called a fault Isermann

& Ballé (1997).

Faults in process components of industrial plants may have serious impacts

on production, such as increment of operational costs, decrease of the produc-

tion quality, etc. Even more serious could be the consequences, for example on

the people or on the environment, of an accident because of plant operation in

presence of faults.

To increase the system reliability and safety, there is a need to detect and

identify the nature of the fault, and hence, fault diagnosis systems have become

more and more important. Tasks related to fault diagnosis are assigned to the

supervision computers, and a desirable goal of these tasks is to detect faults early

to, for example, initiate recovery actions. Early diagnosis can avoid, in some

cases, big catastrophes (ships, airplanes, great structures) and in other cases, can

reduce the maintenance costs. There are many research works related to fault

diagnosis and their results are now applied to continuous processes of production,

where the availability of the machinery is critical from an economic point of view.

1



1.1 Motivation

A branch within fault diagnosis research area is the model-based one. Model-

based diagnosis methods are based on a set of assumptions, one of them is that

the mathematical model represents accurately the system dynamics. But, an ac-

curate mathematical description of the process is never available. In the same

way, as the complexity of a dynamic system increases, the system and its distur-

bances modeling task becomes more difficult. As a consequence of such difficul-

ties, model-based diagnosis methods must be robust to model errors and other

sources of uncertainty, e.g. the uncertainty associated with the measurements,

and so, the methods must be only sensitive to faults. In order to handle the

problems due to the uncertainty, some approaches, like the ones proposed in this

thesis, use interval models.

1.1 Motivation

The starting point of the research done in this thesis was SQualTrack Armengol

(1999), a software package for fault detection based on Modal Interval Analy-

sis (MIA). The initial research objective was to analyze the capabilities of this

software, and to improve its fault detection performance. In this regard, some al-

ternatives of improvement are proposed. Due to some limitations of SQualTrack,

e.g. it can only be applied to single-equation residual generators, and in order to

include interval-based proposals for fault diagnosis, isolation and identification,

other interval-based approaches are studied.

Thus, the main objective of this thesis becomes: to propose a methodology

for fault detection, isolation and identification based on interval models. This

methodology should include both off-line and online stages within the supervision

process. For instance, the fault detection in complex systems requires a previous

off-line stage, which is the obtention of appropriate residual generators.

In this sense, this thesis includes some algorithms to obtain in an automatic

way the symbolic expression of the residual generators enhancing the structural

isolability of the faults. Fault detection, isolation, and identification are tackled

by means of interval-based techniques to take into account the uncertainty in the

systems.
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1.2 Outline and contributions

1.2 Outline and contributions

Regarding an architecture of a supervision system like the one presented in Fig.

1.1, the scope of this thesis includes contributions in each stage of the supervision

system. The outline of this thesis follows these stages.P l a n t y ( t )~T r a c k i n g&F a u l t D e t e c t i o nu ( t ) Q u a l i t a t i v e F a u l tI s o l a t i o n D i a g n o s i sF a u l t I s o l a t i o n&I d e n t i f i c a t i o nD e s i g n o fR e s i d u a lG e n e r a t o r s o f f l i n e o n l i n e
Figure 1.1: Architecture of the diagnosis system.

Chapter 2 gives an overview of the fault diagnosis techniques. From the wide

variety of techniques, it is focused on model-based ones which use an explicit

model of the system to be diagnosed. The robustness problem is presented,

i.e. the ability to distinguish between faults and several sources of uncertainty,

such as modeling or measurement errors. In particular, bounded approaches, i.e.

approaches which use interval models, are introduced.

In Chapter 3, a residual generation toolbox based on structural analysis and

developed in Matlabr is proposed. The toolbox includes algorithms to find au-

tomatically all minimal structurally overdetermined (MSO) sets in a structural

model of a system, all causal models for each MSO set, and routines to represent

them and to analyze the detectability and isolability of faults. Moreover, it in-

cludes algorithms for investigation of the possibilities of active structural isolation

to enhance the structural isolability of faults.

Contributions related to the stage of tracking and fault detection in Fig. 1.1,

are presented in Chapter 4. During the development of this thesis, mainly two

interval approaches were used for fault detection:

• As a starting point, a software package called SQualTrack based on Modal

Interval Analysis. In this case, two improvements are proposed to increase

the fault detection performance of this software.
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1.2 Outline and contributions

• Interval-based Consistency Techniques - ICTs, a combination between “clas-

sic” interval analysis and constraint propagation techniques. Concerning

the ICTs, the work developed during this thesis includes: (i) state the fault

detection problem as a constraint satisfaction problem, and (ii) design and

develop a fault detection system using the solver called RealPaver Granvil-

liers & Benhamou (2006).

Chapter 4 also includes an empirical comparison between the performance

of the above mentioned approaches and between ICTs and a statistical-decision

technique: Extended Kalman filter and Z-test.

Proposed approaches relative to the qualitative fault isolation stage in Fig.

1.1, are described in Chapter 5. The fault isolation task is improved by using

additional information obtained from the fault models and the effect of faults

on the system. Two different alternatives, that take into account qualitative

information from deviation in symptoms, are assessed. First, a method that uses

the internal form of the consistency relations is proposed to complete the fault

signature matrix. Second, a method based on bond graph models that derives the

qualitative information from a temporal causal graph is analyzed and extended.

This extension includes the analysis of faults that cause a discontinuous change

in a measurement.

Qualitative methods for fault isolation are very useful but can not discrim-

inate faults that show no qualitative differences, or even more, sometimes the

qualitative effect is indeterminate. In Chapter 6, interval-based consistency tech-

niques are used to improve the fault isolation and perform the fault identification.

Basically, this stage is done by refining the fault hypothesis set, and estimating

the magnitude of the fault.

The methods and the theory developed in the previous chapters are applied

to several examples in Chapter 7. The application examples include:

• Positioning control system of an offshore vessel

• Electrical distribution systems

• Automotive engine
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• DAMADICS Benchmark

• Alcoholic Fermentation Process

Finally, Chapter 8 provides some conclusions and orientations for future work.

1.2.1 Publications

During the research work leading to this thesis, the following conference and

journal papers have been published:

• Acosta, G., Gelso, E.R. & Verucchi, C. (2004). Detección en ĺınea de fal-

las de aislamiento en devanados de máquinas de inducción. In XIX Con-

greso Argentino de Control Automático AADECA’2004 , Buenos Aires, Ar-

gentina.

• Prieto, O.J., Gelso, E.R., Pulido, B., Rodŕıguez, J.J. & Maestro, J.A.

(2004). Specification for a versatile data acquisition module for a super-

vision application. In International Workshop of Agents and Multi-agents

Systems IWPAAMS’2004 , Burgos, Spain.

• Pulido, B., Rodŕıguez, J.J., Alonso-González, C., Prieto, O.J. & Gelso,

E.R. (2004). Naive bayesian classifier for fault identification in continuous

processes. In International Workshop of Agents and Multi-agents Systems

IWPAAMS’2004 , Burgos, Spain.

• Pulido, B. & Gelso, E.R. (2005). Viabilidad de una técnica de compilación

de dependencias para diagnosis basada en modelos en tareas de supervisión.

In XI Conferencia de la Asociación Española para la Inteligencia Artificial,

CAEPIA’05 , Santiago de Compostela, Spain.

• Pulido, B., Rodŕıguez, J.J., Alonso, C., Prieto, O.J. & Gelso, E.R. (2005).

Diagnosis of continuous dynamic systems: Integrating consistency based

diagnosis with machine learning techniques. In 16th IFAC World Congress ,

Prague, Czech Republic.
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• Acosta, G.G., Verucchi, C.J. & Gelso, E.R. (2006). A current monitoring

system for diagnosing electrical failures in induction motors. Mechanical

Systems and Signal Processing , 20, 953–965.

• Calderón-Espinoza, G., Armengol, J., Veh́ı, J. & Gelso, E.R. (2007). Dy-

namic diagnosis based on interval analytical redundancy relations and signs

of the symptoms. AI Communications , 20, 39–47.

• Castillo, S.M., Gelso, E.R. & Armengol, J. (2007a). Modelos con incer-

tidumbre: Identificación de parámetros intervalares y simulación usando

cuantificadores. In II Congreso Español de Informatica (CEDI’07), I Sim-

posio en Modelado y Simulación de Sistemas Dinámicos , Zaragoza, Spain.

• Castillo, S.M., Gelso, E.R., Calm, R. & Armengol, J. (2007b). Estimación

de parámetros intervalares para la detección robusta de fallos. In IX Jor-

nadas de ARCA. Sistemas Cualitativos y Diagnosis , 41–48, Lloret de Mar,

Spain.

• Gelso, E.R., Castillo, S.M. & Armengol, J. (2007a). Robust fault detec-

tion using consistency techniques for uncertainty handling. In IEEE Inter-

national Symposium on Intelligent Signal Processing, WISP 2007 , 77–82,

Alcalá de Henares, Spain.

• Gelso, E.R., Castillo, S.M. & Armengol, J. (2007b). Construyendo una

plataforma para detección y diagnosis de sistemas dinámicos basada en

análisis intervalar modal y redundancia anaĺıtica. In IX Jornadas de ARCA.

Sistemas Cualitativos y Diagnosis , 15–21, Lloret de Mar, Spain.

• Gelso, E.R., Castillo, S.M. & Armengol, J. (2007c). Diagnosis based on in-

terval analytical redundancy relations and signs of the symptoms. In IFAC

International Workshop on Intelligent Manufacturing Systems IMS’07 , Al-

icante, Spain.

• Khosravi, A., Armengol, J. & Gelso, E.R. (2007). An interval intelligent-

based approach for fault detection and modelling. In IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE 2007), London, England.
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Chapter 2

Related Work in Fault Diagnosis

Summary

This chapter reviews the basic definitions and state of the art of fault diagnosis

techniques. From the wide variety of techniques, it is focused on model-based

ones which use an explicit model of the system to be diagnosed. This chap-

ter introduces them from the point of view of two research communities: the

FDI (Fault Detection and Isolation) community, formed by researchers with a

background in control systems engineering, and the DX (Principles of Diagno-

sis) community, formed by researchers with a background in computer science

and intelligent systems. The robustness problem is presented, i.e. the ability

to distinguish between faults and modeling uncertainty. In particular, bounded

approaches, i.e. approaches which use interval models, are introduced.

2.1 Fault Definitions

The definition of the term fault exists in the literature in different ways. In

the context of this thesis, the Longman Dictionary Pearson Longman (2008)

defines fault as “something wrong with something: a) something that is wrong

with a machine, system, design etc, which prevents it from working properly; b)

something that is wrong with something, which could be improved; c) a mistake

in the way that something was made, which spoils its appearance”. According to

Frank (1990), a fault is defined as any kind of malfunction in the actual dynamic

system, the plant, that leads to an unacceptable anomaly in the overall system
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2.1 Fault Definitions

performance. Such malfunctions may occur either in the sensors (instruments),

or actuators, or in the components of the process.

The IFAC, the International Federation of Automatic Control, Technical Com-

mittee on Fault Detection, Supervision and Safety of Technical Processes (SAFE-

PROCESS) has made an effort to come to accepted definitions, and some defini-

tions can be found, for example in Isermann (2006); Isermann & Ballé (1997). In

those works, a fault is defined as:

Definition 2.1.1. A fault is an unpermitted deviation of at least one charac-
teristic property or parameter of the system from the acceptable, usual, standard
condition.

Taking into account the mentioned references, in this thesis the term fault

differs from the terms failure and malfunction. In contrast to the term fault, the

notion of a failure suggests a complete breakdown of a system or a component,

and the inability of it to accomplish its function.

Definition 2.1.2. A failure is a permanent interruption of a system’s ability to
perform a required function under specified operating conditions.

Definition 2.1.3. A malfunction is an intermittent irregularity in the fulfillment
of a system’s desired function.

According to the time dependency of faults, the faults can be classified in

three categories, as shown in Fig. 2.1, Isermann (2005).

Abrupt faults Stepwise, i.e. the fault occurs abruptly and then stays present.

An abrupt fault could be, for example, a sudden connection cut-off of a wire

in an electrical circuit.

Incipient faults Driftlike, i.e. a fault that gradually increases in size. An in-

cipient fault could be, for example, the accumulation of sediment in pipes

of hydraulic systems.

Intermittent faults A fault that occurs and disappears repeatedly. A typical

example of an intermittent fault is caused by bad electrical contacts, e.g.

faulty relays.
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Figure 2.1: Time dependency of faults: (a) abrupt; (b) incipient; (c) intermittent.

Since a plant can be split into three kinds of subsystems, i.e. actuators, the

process, and sensors, such a decomposition leads directly to three classes of faults

Witczak (2003):

Actuators faults, which can be viewed as any malfunction of the equipment

that actuates the system, e.g. a blockage in a valve.

Process faults (or component faults), which cause changes within the process,

e.g. a leak in a tank in a two-tank system.

Sensors faults, which can be viewed as serious measurements variations. For

example, they are offsets or drifts of sensors.

The faults can be further classified into one of the following categories Gertler

(1998):

Additive faults: These are unknown inputs acting on the plant, which are nor-

mally zero and which, when present, cause a change in the plan outputs

independent of the known inputs. Such faults best describe plant leaks,

loads, etc.

Multiplicative faults: These are changes (abrupt or gradual) in some plant

parameters. They cause changes in the plant outputs which depend also on

the magnitude of the known inputs. Such faults best describe the deterio-

ration of the plant equipment, such as surface contamination, clogging, or

the partial or total loss of power.
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2.2 Diagnosis Systems

A diagnosis system is one that is capable of identifying the nature of a problem by

examining the observed symptoms Balakrishnan & Honavar (1998). The output

of the system is a diagnosis (and possibly an explanation or justification of it).

Typically a diagnosis system is provided with a set of symptoms (observations

or measurements) as input. The system’s task is to identify a probable cause that

could explain the observed symptoms. These systems are needed to satisfy the

following requirements Patton et al. (2000):

• Early detection of small faults with abrupt or incipient time behavior.

• Diagnosis of actuator, sensor or process component faults.

• Detection of faults in closed-loop systems.

• Supervision of processes undergoing transient variations.

In particular, the goal for early diagnosis is to have enough time for counter-

actions like other operations, reconfiguration, maintenance or repair.

There are several ways in which the different diagnosis approaches can be

classified and some of them are described below.

In Balakrishnan & Honavar (1998), the diagnosis approaches are distinguished

based on (i) the way in which the diagnosis system comes to know of the relation-

ship between the observed symptoms and the consequent diagnosis, (ii) the way of

representing this relationship, and (iii), how the system uses this representation

for diagnosing faults. Therefore, the approaches are classified in model-based

systems, knowledge-based systems, case-based reasoning systems, and machine

learning techniques.

• Model-based systems. The diagnostic knowledge is stored as an explicit

model of the domain. When the system’s observed behavior conflicts with

the system’s expected behavior, the diagnosis task is to identify the (faulty)

system component(s) that explain the anomaly. This approach is useful in

domains where the underlying physical principles are largely known (e.g.,

in artificial systems). Although model-based systems have the ability to
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produce accurate diagnosis, they have several drawbacks which make them

inapplicable in many real world contexts. Their need for an accurate model

of the domain may not be possible to satisfy in many cases.

• Knowledge-based systems. The knowledge (gained through experience) of

human experts is codified in a knowledge-based system. They are useful,

for instance, in many practical scenarios in which precise models of the

domain may be unavailable. Expert systems are an application example

of these systems. They are programs that model the expertise (knowl-

edge) and reasoning capabilities of qualified specialists within fairly narrow

domains. They are typically composed of three essential modules: a knowl-

edge base that captures the expertise of the specialist in some appropriate

form (e.g. rules), an inference engine that mimics the specialist’s reason-

ing process, and a working memory to hold the facts provided by the user

(e.g. symptoms in a diagnosis task) and intermediate conclusions derived

by the inference procedure. The efficacy of this approach depends on the

faithfulness of the encoding as well as the quality of the expert’s domain

experience.

• Case-based reasoning systems. In case-based reasoning (CBR) systems

knowledge is stored in the form of cases, where a case can be thought

of as a situation that was experienced in the past and resulted in some

relevant action. The cases are stored in a library, indexed appropriately to

facilitate efficient retrieval of the cases. Given a current experience or situ-

ation, the attributes of the input are used to index into the case library and

retrieve the best matching case (or set of cases) according to some suitably

defined matching criterion. This approach attempts to circumvent the dif-

ficult task of extracting and codifying the domain knowledge of the expert.

Unlike model-based systems and expert systems, case-based systems neither

model the domain knowledge nor the diagnostic reasoning of the domain

expert. Instead, the knowledge is implicitly represented in the repository

of cases. The drawbacks of CBR systems include the high computational

cost associated with the matching procedure and the storage cost associated

with the organization of the case library.
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• Machine learning techniques. A learning system is essentially one that is

capable of improving its performance at a given task (or a set of tasks)

through experience. They extract knowledge that is implicitly provided by

a large number of examples. These techniques, for example, are based on

artificial neural networks, statistical pattern classification systems, decision

trees, etc.

In Gertler (1998), fault diagnosis methods are classified into two major groups:

those which do not utilize the mathematical model of the plant and those which

do. According to this classification, the model-free methods range from physical

redundancy and special sensors through limit-checking and spectrum analysis to

logical reasoning.

• Physical redundancy (or hardware redundancy). In this approach, multiple

sensors are installed to measure the same physical quantity. Typically, a

voting technique is applied to the hardware redundant system to decide if

a fault has occurred and its location among all the redundant system com-

ponents Simani et al. (2003). There are at least three problems associated

with the use of physical redundancy: extra hardware cost, it requires space,

and adds weight to the system Nyberg (1999).

• Limit checking. In this approach, plant measurements are compared to

preset limits. Exceeding the threshold indicates a fault situation. This ap-

proach can suffer from the following drawbacks: (i) multitude of alarms and

difficult isolation when, for instance, the effect of a single component fault

propagates to many plant variables, and (ii), difficult or quite conservative

setting of the thresholds due to normal input variations.

According to Samantaray & Ould Bouamama (2008); Venkatasubramanian

et al. (2003a,b,c), fault diagnosis methods can be classified in three general cate-

gories: quantitative model-based methods, qualitative model-based methods and

process history based methods, as illustrated by Figure 2.2. The quantitative

approach relies on advance information processing techniques such as state and

parameter estimation and adaptive filtering. The qualitative approach makes use
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of causal analysis (cause and effect/antecedents and consequences relationships),

which links individual component malfunctions expressed in qualitative form with

deviations in measured values. This approach can be used when precise numerical

models are not available, especially in the design stage. Further sub-classifications

and detailed reviews on each approach are given in the previous references.

Diagnostic

Methods

Qualitative

Model-Based

Quantitative

Model-Based

Process

History Based

Qualitative QuantitativeAbstraction HierarchyParity Space EKFObservers Causal Models

Statistical
Neural

Networks

Qualitative

Trend

Analysis

Expert

Systems
Structural FunctionalDigraphs

Fault

Trees

Qualitative

Physics

PCA/PLS
Statistical

Classifiers

Figure 2.2: Classification of diagnosis methods.

The research that I have done in this PhD thesis includes several methods

within process history based and model-based categories. Regarding process his-

tory based methods, firstly an application of an expert system to induction motors

was developed (see Acosta et al. (2006)). Secondly, the results obtained by using

statistical methods to locate the source of short duration faults (voltage sags)

in a power distribution system, were the starting point for the work presented

in Khosravi et al. (2007, 2008). This thesis is focused on model-based methods,

which are reviewed in detail in the next section.
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2.3 Research within Model-based Diagnosis

The so-called model-based diagnosis (MBD) approaches use an explicit model

of the system to be diagnosed. Models are representations of knowledge about

physical systems. The models used in MBD can be obtained from physical laws,

human experience, data from the process, or from combination of the above.

A model for fault diagnosis should neither be too complex (i.e. include minor

or secondary dynamics) nor be too simple (i.e. exclude some essential dynam-

ics) Samantaray & Ould Bouamama (2008). Therefore, there needs to be some

trade-off to create a reduced order process model, which would reliably replicate

essential process dynamics under given operating conditions.

Since different levels of abstraction can be needed, properties such as precision,

uncertainty or accuracy are reduced, increased or even lost. The properties of

the models used in MBD have strong influence on the diagnosis results Chantler

et al. (1998).

• Accuracy is the degree of closeness of a measured or calculated quantity to

its actual (true) value.

• Precision is the degree to which further measurements or calculations show

the same or similar results.

The applied process models can be classified according to the different de-

scriptions of the variables with respect to time Blanke et al. (2006) :

• Continuous models. The evolution of continuous variables, whose values

are in the set of real numbers, can be described in continuous or in discrete

time. They are, in general, equation-based with further subclasses as linear,

nonlinear, time-variant, time-invariant.

• Discrete-event models. The evolution of qualitative (or symbolic) variables

is best described using discrete-event models such as automata, Petri nets,

set of rules.

• Hybrid models. The time evolution of systems in which continuous variables

and qualitative variables co-exist is described by so-called hybrid models.
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Two research communities work on model-based techniques: the FDI (Fault

Detection and Isolation) community, formed by researchers with a background

in control systems engineering, and the DX (Principles of Diagnosis) community,

formed by researchers with a background in computer science and intelligent

systems. The collaboration between these two communities to develop more

powerful tools for fault detection and diagnosis has been one of the goals of

the European Network of Excellence on Model Based Systems and Qualitative

Reasoning (MONET) MONET (1998), particularly of the Bridge task group. In

the last years, several works have been developed on the “bridge” between DX

and FDI, e.g. de Kleer & Kurien (2003) and in the Special Issue of the IEEE

Transactions on Systems, Man, and Cybernetics − Part B: Cybernetics, titled

“Diagnosis of Complex Systems: Bridging the Methodologies of the FDI and DX

Communities” (e.g. Cordier et al. (2004); Gentil et al. (2004); Pulido & Alonso-

González (2004)).

This thesis is under the influence of the FDI and DX Communities, and be-

cause of this, the main concepts and approaches of both communities are outlined.

2.3.1 DX Community

In the late 1980s a group of Artificial Intelligence researchers independently pro-

posed a fault diagnosis theory based on First-Order Logic. The system is mod-

eled using the set of basic components of the system and the connections between

them. The diagnosis consists in identifying the possible faulty components via an

inference process. The papers laying the foundations of this theory are de Kleer

& Williams (1987); Reiter (1987a). A more recent survey on this approach may

be found, for example, in the collections Hamscher et al. (1992); Struss (2008).

DX community has mainly relied upon consistency-based techniques Reiter

(1987b), but other approaches exist such as abductive methods de Kleer et al.

(1992).

The consistency-based approach to diagnosis uses a model of a system to

predict its expected behavior which can be compared with the actual behavior

of the system (Fig. 2.3) Dressler & Struss (1996). If discrepancies are detected,

there is a diagnosis problem. The device was correctly designed and built, but now
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it exhibits indications of malfunctioning. The diagnosis task is to determine what

is wrong in order to enable the re-establishment of the intended functionality.

Predictions of the
expected behavior

Observations about
actual behavior

Discrepancies

Diagnosis

Figure 2.3: Basic Diagnosis Scheme.

Definition 2.3.1. A system is a triple (SD, COMPS, OBS) where: (1) SD, is
the system description; (2) COMPS, the system components, is a finite set of
constants; (3) OBS, a set of observations, is a set of first-order sentences Reiter
(1987b).

A system is described by its system description, i.e. its model. A component

can be in one of several different behavioral modes. Typically, each component

c ∈ COMPS has an abnormal mode AB(c), a normal mode ¬AB(c), and one or

several specific fault modes. It is sometimes preferable to only consider the AB

and the ¬AB mode where the AB mode does not have a model Biteus (2007).

In this way, only the normal behavior of a component has to be modeled, and

the number of behavioral modes that has to be considered is reduced.

Definition 2.3.2. A symptom is any difference between a prediction made by
the inference procedure and an observation. Each symptom indicates that one or
more components may be faulty.

Definition 2.3.3. A conflict is a set of assumptions which support a symptom,
and thus leads to an inconsistency de Kleer & Williams (1987).

Definition 2.3.4. A candidate is represented by a set of assumptions. The as-
sumptions explicitly mentioned are false, while the ones not mentioned are true. A
candidate which explains the current set of symptoms is a set of assumptions such
that if every assumption fails to hold, then every known symptom is explained.
Thus each set representing a candidate must have a non-empty intersection with
every conflict de Kleer & Williams (1987).
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The candidate space is the set of candidates consistent with the observations.

The size of the initial candidate space grows exponentially with the number of

components n. Any component could be working or faulty, thus the candidate

space initially consists of 2n candidates de Kleer & Williams (1987).

Definition 2.3.5. A diagnosis is a set of components △⊆ COMPS such that

SD ∪ OBS ∪ {
∧

c∈△

AB(c)
∧

c∈△c

¬AB(c)}

is consistent de Kleer & Kurien (2003).

The goal in single fault diagnosis is to obtain a unique single fault that can

explain the observations. It may not always be possible to determine a unique

candidate given the type of information used for diagnosis and the sensors avail-

able on the system Daigle (2008). In multiple fault diagnosis, the goal is expanded

to obtain sets of faults that, taken together, explain the observations. Approaches

for multiple fault diagnosis are more complex than the ones for single fault diag-

nosis. This is mainly due to a couple of reasons: (i) the effects of a fault could be

masked or compensated by the effects of another fault, and (ii), the same multiple

fault can manifest in different ways Daigle et al. (2006).

Within consistency-based diagnosis, the General Diagnosis Engine (GDE) is

its most well-known implementation de Kleer & Williams (1987). GDE, as de-

scribed in Dressler & Struss (1996), (i) computes candidates for diagnosis from

minimal conflicts, i.e. minimal sets of component mode assumptions derived

from detected inconsistencies, (ii) handles multiple faults, in contrast to previous

systems, (iii) exploits an assumption-based truth maintenance system (ATMS

de Kleer (1986)) to identify conflicting assumption sets, and (iv) uses it as a

basis for determining optimal probing points. In GDE, four major phases are or-

ganized in an iterative cycle: (i) behavior prediction, (ii) conflict detection, (iii)

diagnoses generation and ranking, and (iv) discrimination between diagnoses by

additional measurements.

The main advantage of diagnosis systems based on consistency is that the

ways in which a component fails are not needed, it is only needed a model of

the correctly functioning device. However, one of the drawbacks of not including

knowledge about possible faults, is that results may be logically possible, but
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physically impossible. This situation can be seen in the example with three light

bulbs described in Dressler & Struss (1996), where the diagnosis with fault modes

is analyzed.

As it is stated in Dressler & Struss (1996), a consistency-based diagnosis

algorithm based on models of correct behavior needs more probes to single out

the final diagnosis. This is a severe limitation when not every point in a device

is accessible for probing. Making use of knowledge about the behavior of faulty

components can compensate for lacking observations. Hypothesizing a fault and

then checking the consistency with what is known sometimes allows one to refute

it. Of course, if no other diagnosis can be found an unknown fault must be

present. If we assume, however, that we can enumerate all possible faults, a

component can actually be exonerated.

Some of the most difficult issues to address in MBD within the DX community

are discussed in de Kleer & Kurien (2003). They are: (i) toleration of noise in

observable variables, (ii) diagnosis of hybrid discrete/continuous systems includ-

ing, for example, continuous degradation in addition to discrete failure modes,

and (iii), development or discovery of models adequate for diagnosis without ex-

cessive human engineering work. These issues are extensively studied in the FDI

community.

2.3.2 FDI Community

This community has approached the diagnosis task from different perspectives as

can be found in extensive surveys Blanke et al. (2006); Chen & Patton (1998);

Gertler (1998); Isermann (2006); Patton et al. (2000); Simani et al. (2003).

A model-based fault diagnosis system normally consists of the following three

tasks: detection, isolation and identification (Fig. 2.4). They are summarized as

follows Chen & Patton (1998):

• Fault detection: to make a binary decision - either that something is wrong

or that everything works under the normal conditions.

• Fault isolation: to determine the location of the fault, e.g. which component

has become faulty.
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• Fault identification: to estimate the size and type or nature of the fault.

FAULT

DETECTION

FAULT

ISOLATION

FAULT

IDENTIFICATION

Figure 2.4: The three tasks of a model-based fault diagnosis system.

A fault-tolerant control system is a controlled system that continues to op-

erate acceptably following faults in the system or in the controller Palade et al.

(2006). An important feature of such a system is automatic reconfiguration, once

a malfunction is detected and isolated.

Moreover, the fault diagnosis process can be viewed as a two-stage process, i.e.

residual generation and decision making based on this residual Chow & Willsky

(1980, 1984), and it has the structure shown in Fig. 2.5.

System

Residual 
Generation

Decision 
Making

measurements

residuals

fault information

input output

Figure 2.5: Two-stage structure of model-based FDI procedure.
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• Residual Generation: its purpose is to generate a fault indicating signal -

residual, using available input and output information from the monitored

system. The resulting difference generated from the comparison of available

system measurements with a priori information represented by the system’s

mathematical model is called a residual or symptom signal. The residual

should be normally zero or close to zero when no fault is present, whilst

distinguishably different from zero when a fault occurs. The algorithm used

to generate residuals is called a residual generator Chen & Patton (1998).

• Decision-Making: this block examines residuals for the likelihood of faults

and a decision rule is then applied to determine if any faults have occurred.

The decision procedure may perform a simple threshold test on the instan-

taneous values or moving averages of the residuals. Moreover, it may consist

of statistical methods, e.g., generalized likelihood ratio testing or sequential

probability ratio testing Basseville (1988); Chen & Patton (1998); Isermann

(2006). Most contributions in the field of quantitative model-based FDI fo-

cus on the residual generation problem.

Generally, the most popular approaches can be split into one of the following

categories Gertler (1998): diagnostic observers, parity (consistency) relation, and

parameter estimation.

• Observer-based approaches. The basic idea in behind the observer or filter-

based approaches is to estimate the outputs of the system from the measure-

ments (or a subset of measurements) by using either Luenberger observer(s)

in a deterministic setting or Kalman filter(s) in a stochastic setting. Ob-

servers are dynamic systems that are aimed at reconstructing the states x

of a state-space model on the basis of the measured inputs u and outputs

y Pouliezos & Stavrakakis (1994). Then, the (weighted) output estimation

error (or innovations in the stochastic case), is used as a residual Chen &

Patton (1998).

• Parity (consistency) relation. The parity space approach yields a systematic

exploitation of the analytical redundancy provided by the mathematical
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model of the system Pouliezos & Stavrakakis (1994). The basic idea in

the parity relation approach is to provide a proper check of the parity

(consistency) of the measurements of the monitored system Chen & Patton

(1998). The parity relation approach and the observer-based approach have

been widely compared, and they are equivalent in certain conditions, see

for example Christophe et al. (2002); Patton & Chen (1991).

• Parameter Estimation. This approach is based on the assumption that the

faults are reflected in the physical system parameters such as friction, mass,

viscosity, resistance, inductance, capacitance, etc. The basic idea of the de-

tection method is that the parameters of the actual process are repeatedly

estimated on-line using well known parameters estimation methods and the

results are compared with the parameters of the reference model obtained

initially under the fault-free condition. Any substantial discrepancy indi-

cates a fault Chen & Patton (1998).

2.4 Robustness in MBD

Uncertainty has been a common theme in several fields, including statistics, en-

gineering, science and management. It is a term used to express that nothing is

perfect in this world, at least in the sense that we perceive it.

Considering a system it is possible to identify several sources of uncertainty,

even both internal and environmental sources. For instance, there is always a

gap between the intrinsic properties (or conditions) and the explicit knowledge

about materials and machines, for that reason perfectly identical results accord-

ing to design are never produced. On the other hand, external interferences may

enter the system and alter its performance and modify the output signal. It is

well known that all components experience drifts related to their natural deteri-

oration and the working environmental conditions. Other sources of uncertainty

always present in a system are related to the human resources. In this way, one

engineering challenge is to control under uncertain conditions the uniformity and

consistency of the processes.
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In addition, any measurement system consists of many components, includ-

ing sensors. Thus, no matter how accurate the measurement is, it is only an

approximation or estimate of the true value of the specific quantity subject to

measurement. Never the measured values can be totally assured due to noise,

errors in the analog-to-digital conversion, bias, drift, nonlinearities, inaccuracies

due to calibration, etc. The result of a measurement should be considered com-

plete only when accompanied with a quantitative statement of its uncertainty.

Model based diagnosis makes use of mathematical models of the physical

system, but a perfectly accurate and complete model is never available. Usually

the parameters of the system may vary with time in an uncertain manner, and the

characteristics of the disturbances and noise are unknown so that they cannot be

modeled accurately. Hence, there is always a mismatch between the actual process

and its mathematical model even under no fault conditions. Such discrepancies

constitute a source of false and missed alarms Chen & Patton (1998); Simani

et al. (2003). So there is a need to develop robust fault diagnosis algorithms.

The robustness of a fault diagnosis system means that it must be only sensitive

to faults, even in the presence of model-reality differences Chen & Patton (1998).

Definition 2.4.1. The robustness problem in FDI is defined as the maximization
of the detectability and isolability of faults together with the minimization of the
effect of the uncertainty and disturbance on the FDI procedure Patton (1997).

Two main families of approaches have been proposed to solve the robustness

problem in the FDI community Chen & Patton (1998). One, based on an at-

tempt to account for the uncertainty in designing the residual, is known as active

robustness in FDI. It includes different techniques as for example, unknown in-

put observers, robust parity equations, frequency domain design techniques (e.g.

H∞-norm optimization), etc. The second family of approaches is called passive

robustness in FDI and consist in enhancing the robustness of the fault detection

procedure at the decision-making stage. In this latter case, robustness can be

achieved by finding and using the most effective threshold.

The robustness problem has also been treated in the DX community, and

appears in several books and papers of the artificial intelligence conferences and

journals.
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As it is described at the end of this section, the approaches can be put into

three categories depending on the nature of the information: quantitative, quali-

tative, and semiqualitative.

2.4.1 Bounding Approaches

When the uncertainties are structured, i.e. the model structure is known and only

the parameters undergo imprecisions, they can be handled with interval models in

which the equation parameter values are allowed to vary within numeric intervals

Armengol et al. (2000). By using interval models for fault detection, the actual

behavior of the system is compared to a set of expected behaviors obtained by

varying the uncertain parameters within their corresponding intervals. These ap-

proaches, known as set membership or unknown-but-bounded, are an alternative

to statistical ones assuming a probabilistic description of uncertainty. They can

be applied when, for example, there is a shortage of probabilistic information (e.g.

it is not known the probability density function, pdf, that characterizes the un-

certainty) because nothing is said about the behavior of the uncertain parameter

or variable between the bounds Milanese et al. (1996); Norton (1994).

In many practical cases a bounded error assumption is more realistic and less

demanding than statistical assumptions, or even more when the very random

nature of uncertainty may be questionable Milanese & Vicino (1991); Milanese

et al. (1996). For example, the real process generating the actual data may

be very complex (large scale, nonlinear, time-varying) so that only simplified

models can be practically used. Then, the residuals of the estimated model have

a component due to deterministic structural errors, and treating them as purely

random variables may lead to unsatisfactory results.

2.4.2 Robustness by using Quantitative, Qualitative, and
Semiqualitative Information

For fault detection, the prediction of the normal behavior using interval models

can be performed by several means, including quantitative, qualitative, and semi-

qualitative or semiquantitative methods. Armengol et al. (2000) surveys the state

of the art of interval model simulators (considering a simulation as a prediction
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across time) and their properties related to fault detection. The main properties

include soundness, completeness, and stability. An estimate is complete if it in-

cludes all possible behaviors. On the other hand, if the estimate is too wide, it

includes zones that cannot be reached by any of the quantitative models belong-

ing to the set. Hence, the estimate is not sound. An overbounded estimate is

complete but not sound, and this can result in missed alarms. A sound but not

complete estimate is an underbounded estimate and may result in false alarms.

The exact estimate is complete and sound but, in general, a way to obtain it is to

solve a global optimization problem Hansen (1992), which usually requires con-

siderable computational effort. Finally, the stability of an estimate is a desirable

property related to the growth of the estimate width with time. If the estimate

width grows with time, as the input signal remains the same, it is unstable.

• Quantitative simulation. It makes numeric predictions of the system states.

The simulation of the behavior of interval models can be achieved (i) by

using superimposed thresholds (constant or variable/adaptive), (ii) by se-

lecting randomly (Monte Carlo) or systematically a number of quantitative

models belonging to the set and then extracting conclusions for the whole

set, and (iii) finding the maximum and the minimum of a function into a

parameter space, i.e. solving a global optimization problem.

• Qualitative simulation. It makes a prediction of the qualitative states in

which the system will be by using qualitative information about the rela-

tions between the variables. The qualitative simulation can be classified

into two types: non constructive and constructive. Non constructive qual-

itative simulation consists of two phases Coghill (1996): TG (Transition

Generation), in which the transitions are generated, and QA (Qualitative

Analysis), in which the states are filtered using the model to eliminate the

ones that do not fulfil the constraints (constraint propagation). Most of

the qualitative simulators of this type are not causal and do not hence con-

sider time explicitly. Some qualitative simulators are, for example, QSIM

(Qualitative Simulator) Kuipers (1990, 1994), PA (Predictive Algorithm)

Wiegand (1991).
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• Semiqualitative simulation. Some numerical knowledge is available, as in

interval models. In this manner, qualitative methods can be enhanced,

as for example in Q2 Kuipers & Berleant (1988), Q3 Berleant & Kuipers

(1992), SQSIM Kay (1996). Moreover, some semiqualitative simulators

are based on fuzzy sets, or interval arithmetic, e.g. Ca En (Causal Engine)

Bousson & Travé-Massuyès (1994); Travé-Massuyès et al. (2001), Simulator

of Gasca et al. (2002, 1996).

2.4.3 Interval Techniques used for Fault Detection

Over the last years, many works using interval techniques for fault detection have

appeared.

These techniques mainly include the ones based on:

• Classical interval analysis, e.g. in Fagarasan et al. (2004); Karim et al.

(2008).

• Modal interval analysis, e.g. in Armengol et al. (2003, 2009b).

• Set membership identification methods, e.g. in Combastel et al. (2008);

Ingimundarson et al. (2005, 2009); Janati-Idrissi et al. (2002); Watkins &

Yurkovich (1996).

• Constraint propagation techniques, e.g. in Gelso et al. (2007c); Stancu et al.

(2003).

A more in depth description of this kind of fault detection techniques is pre-

sented in the related work of Chapter 4.
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Chapter 3

Residual Generation

Summary

Structural models can provide much useful information for fault diagnosis and

fault-tolerant control design, since structural analysis is able to identify those

components of the systems which are, or are not, monitorable, to provide de-

sign approaches for analytical redundancy based residuals, and to identify those

components whose failure can, or cannot, be tolerated through reconfiguration

Blanke et al. (2006).

In this chapter, a residual generation toolbox based on structural analysis

and developed in Matlabr is proposed. The toolbox includes algorithms to find

automatically all minimal structurally overdetermined (MSO) sets in a structural

model of a system, all causal models for each MSO set, and routines to represent

them and to analyze the detectability and isolability of faults. Moreover, it in-

cludes algorithms for investigation of the possibilities of active structural isolation

to enhance the structural isolability of faults.

The work presented in this chapter was partially developed during my re-

search stays in Denmark, under the supervision of Prof. Mogens Blanke, and in

Valladolid, under the supervision of Prof. Belarmino Pulido.
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3.1 Related Work

The task of designing efficient diagnosis procedures becomes more difficult when

the complexity of the system increases because of, for example, the increase of

the number of components. Therefore, an important task to develop is the design

of detection and isolation tests in order to overcome faults quickly by obtaining

a fast and correct diagnostic. In the context of this thesis, an abstraction of the

behavior model of a system, the structural model, is used to obtain the complete

set of overconstrained, or overdetermined, subsystems, and thus, to achieve an

optimal diagnostic.

These fault tests can take the form of parity relations or analytical redundancy

relations (ARR) Blanke et al. (2006), and can be deduced by means of Structural

Analysis (Section 3.2). Once they are designed (off-line), the fault detection

procedure checks on-line the consistency of the observations with respect to every

of these tests. When discrepancies occur between the modeled behavior and the

observations (non-zero residual signals), the fault isolation procedure identifies

the system component(s) which is (are) suspected of causing the fault Cordier

et al. (2004).

Being the obtainment of minimal structurally overdetermined (MSO) sets

Krysander et al. (2008) a really complex task, some authors have developed ap-

proaches to deal with this issue.

A Matlabr toolbox called SaTool is presented in Blanke & Lorentzen (2006).

It is an implementation of the structural analysis theory Staroswiecki (2002) and

extends the work of Staroswiecki and co-workers. A ranking algorithm Blanke

et al. (2006) is used to find a complete matching in the structure graph. The

overdetermined sets are obtained by means of the constraints that are not involved

in the complete matching. This version of the toolbox, which does not deliver all

the MSO sets, is the starting point of the algorithm proposed in this chapter.

In Izadi-Zamanabadi (2002), as contrasted with the algorithm cited above, an

algorithm based on determining several matchings is presented. Different match-

ings result in different overdetermined subsystems. The definition presented in

this paper of a minimal overdetermined subsystem is equivalent to the definition

of a MSO set.
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Furthermore, in Düştegör (2005), an algorithm generates the set of all com-

plete matchings by performing a depth-first-traversal of the bipartite graph. By

this way, it is possible to gather all the possible residuals structure, without loss

of information, in order to be able to distinguish different faults from each other.

In the worst-case, for a fixed order of structural redundancy, the computational

complexity of this algorithm is factorial in the number of equations. Because

of this reason, this algorithm can be very time consuming, or even worse, for

large systems it can be impossible to apply. One improvement is also proposed

in Düştegör (2005) to decrease the number of matchings to consider. This im-

provement is based on the connectedness property of the König-Hall blocks.

In Krysander et al. (2008), an efficient algorithm based on a top-down ap-

proach is presented. It starts with the entire model and then reduces the size of

it step by step until an MSO set remains.

Each constraint of a MSO set can be interpreted in a causal way (in the sense

of each variable may be deduced from the others), leading to different causal

interpretations, see Section 3.5. In this sense, information about causality can be

taken into account to discard unachievable overdetermined sets, as it is done in

e.g. Düştegör et al. (2004); Ploix et al. (2005); Pulido & Alonso-González (2004);

Travé-Massuyès et al. (2006).

In Ploix et al. (2005), an algorithm based on elimination rules is presented. It

combines constraints in order to eliminate all the unknown variables and therefore

getting constraint containing only known data.

A variant of the method presented in Travé-Massuyès et al. (2006), which was

devised for diagnosability assessment, is used to obtain the MSO sets which have

at least one causal interpretation. Starting from a structural model augmented

by causal information, the algorithm successively eliminates unknown variables

on the structural model equations.

Pulido & Alonso-González (2004) proposes the Possible Conflict Computation

(PCC) algorithm. The algorithm first determines MSO sets, and then searches

for all the causally consistent interpretations for each of them. For determin-

ing MSOs, it performs successive unknown variable eliminations in a depth-first

search manner. Causal interpretations are propagated in the same way for each

MSO set.
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Düştegör et al. (2004) can also deal with causality. To find a matching, a

method based on a class of algorithms that solve the Stable Marriage Problem is

presented and adapted for the fault detection purpose. In mathematics, the Stable

Marriage Problem is a well-known combinatorics problem dealing with finding a

stable matching, i.e. a matching in which no element of the first matched set

prefers an element of the second matched set that has not the inverse preference.

Verde et al. (2007) discusses the diverse complete matchings that can be used

to generate the residual structure based on input-to-output causal graphs. It is

shown that the number of matchings is reduced by incorporating the knowledge

of cause and effect variables, i.e. the known exogenous and endogenous variables.

For non-linear polynomial models, algorithms based on elimination techniques,

e.g. Gröbner Basis, can be used to obtain analytical redundancy relations of the

system Ceballos et al. (2004); Frisk (2000); Staroswiecki & Comtet-Varga (2001).

As basis of this method, model equations are manipulated to eliminate unknown

variables such as disturbances, faults and internal states.

3.2 Structural Analysis

In the structural analysis Staroswiecki (2002), the structure of a model M (or the

structural model) of the system (M,X ∪ Z) is represented by a bipartite graph

G(M, X ∪Z) (or equivalently its biadjacency or incidence matrix) with variables

and constraints as node sets. X is the set of unknown variables and Z is the

set of known variables. There is an edge (ci, vj) ∈ E (set of edges) connecting a

constraint ci ∈ M and a variable vj ∈ X ∪ Z if vj is included in ci Blanke et al.

(2006).

The incidence matrix for a bipartite graph G is the n×m matrix S, where n is

the number of constraints and m is the number of variables, such that S(i, j) = 1

if the variable vj appears in constraint ci.

Example 3.2.1. Let a system be given by the structure graph shown in Fig.
3.1. It is described by seven constraints {c1, c2, c3, c4, c5, c6, c7}, and eleven vari-
ables: {u1, u2} are the control variables, {y1, y2, y3, y4} are the sensor outputs, and
{x1, x2, x3, x4, x5} are the unknown variables. The associated incidence matrix is
shown in Table 3.1, and the bi-partite graph is depicted in Fig. 3.2.
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Figure 3.1: Structure graph of Example 3.2.1.

Table 3.1: Incidence matrix of Example 3.2.1.

u1 u2 y1 y2 y3 y4 x1 x2 x3 x4 x5

c1 1 0 0 0 0 0 0 1 0 0 0
c2 0 1 0 0 0 0 0 0 1 1 0
c3 0 0 1 0 0 0 1 0 0 0 0
c4 0 0 0 0 0 0 1 1 1 0 1
c5 0 0 0 1 0 0 0 0 0 0 1
c6 0 0 0 0 1 0 0 0 0 1 1
c7 0 0 0 0 0 1 0 0 0 1 0

When considering differential algebraic systems, different alternatives for han-

dling derivatives exist Düştegör et al. (2006); Krysander et al. (2008).

• There is no distinction between one variable and its derivative.

• Unknowns and their time derivatives are, in contrast to previous repre-

sentation, considered to be separate independent algebraic variables. New

equations can be obtained by differentiation.

• Unknowns and their time derivatives are, as in the second representation,

considered to be separate independent algebraic variables. Thus, the equa-

tions are purely algebraic, and differential relations that link one variable

and its derivative are added.
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Figure 3.2: Bi-partite graph of Example 3.2.1.

In this work, in spite of all the representations can be applied to the proposed

algorithms, the third alternative is preferred. As explained later, the differential

relations that link one variable and its derivative can be used, for example, to

establish a derivative causality or an integral causality.

Considering the following definitions:

Definition 3.2.1. Matching. A matching M is a subset of edges E such that with
e1 = (ci1, vj1), e2 = (ci2, vj2), ∀e1, e2 ∈ M : e1 6= e2 ⇒ ci1 6= ci2 ∧ vj1 6= vj2.

Definition 3.2.2. Complete matching on X. A matching is complete on X if
|M| = |X|.

A matching is a causal assignment which associates unknown system variables

with the system constraints from which they can be calculated Blanke et al.

(2006). If it is possible to match all unknown variables, the matching will identify

over-determined subgraphs (those which contain more equations than unknown

variables) that can be used to obtain analytical redundancy relations in the sys-

tem. In particular, the minimal over-determined subgraphs are useful for the

fault detection and isolation task.

Definition 3.2.3. A set M of equations is structurally overdetermined (SO) if
M has more equations than unknowns Krysander et al. (2008).

Definition 3.2.4. An SO set is a minimal structurally overdetermined (MSO)
set if no proper subset is an SO set Krysander et al. (2008).

Using the MSO sets and causal information about calculability of the con-

straints of the model, parity relations (or Analytical Redundancy Relations,

ARRs) can be obtained. Analytical redundancy relations are static or dynamic
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3.3 Matching Algorithms

constraints which link only known variables when the system operates according

to its normal operation model Staroswiecki (2002).

In this thesis, a residual generation toolbox called SRGlib (Structural based

Residual Generation), which is based on structural analysis and developed in

Matlabr, is proposed. This approach is organized in seven steps .

• Find a complete matching.

• Obtain a first set of MSO sets (basic MSO sets).

• “Combine” basic MSO sets to obtain the complete set.

• Find (all) causal models for each MSO set.

• Represent results as symbolic expressions and as oriented graphs.

• Perform the analysis of detectability and isolability of faults.

• Perform the analysis of active structural isolability of faults.

All of them are explained in the following sections.

3.3 Matching Algorithms

Several algorithms exist to find complete matchings on unknown variables in a

structure graph, see for example Bondy & Murty (1976); Diestel (2000).

The ranking algorithm (Algorithm 1) can be used to achieve a complete match-

ing on the unknown variables Blanke et al. (2006). The input of this algorithm

is the incidence matrix S of G(M, X ∪ Z).

In the first step of Algorithm 1, all known variables are marked and all un-

known variables remain unmarked. Then every constraint that contains at most

one unmarked variable is assigned rank 1. The constraint is matched for the

unmarked variables, and the variable is marked. This step is repeated with an

increasing rank number, until no new variables can be matched. Every matched

variable has associated a number, or rank, which can be interpreted as the number

of steps needed to calculate an unknown variable from the known ones.
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Algorithm 1 Ranking Algorithm

Input: Incidence matrix
1: Mark all known variables, i=1;
2: Find all constraints with exactly one unmarked variable.

Associate rank i with these constraints.
Mark these constraints and the associated variable;

3: If there are unmarked constraints whose variables are all marked, mark them
and connect them with the pseudovariable zero;

4: set i = i+1;
5: if there are unmarked variables or constraints, continue with step 2;
6: return Ranking of the constraints

The ranking algorithm does only generate oriented graphs without loops, so

it may not find any complete matching, even if it exists Blanke et al. (2006).

Algorithm 2 is proposed in this thesis to find one or all complete matchings on

unknown variables, in a structure graph with or without loops. In contrast to the

ranking algorithm, the proposed algorithm finds, in the second step, all variables

with exactly one unmarked constraint. In the seventh step, two algorithms can

be called to match unmarked variables appearing in at least two constraints. On

the one hand, Algorithm 3 finds only one matching of unmarked variables. It

is a recursive algorithm with a stop criterion when all unmarked variables are

matched. It can use a heuristic to rapidly come to a complete matching, if it

exists. For example in step 4, the criterion of choosing a constraint can be the

ranking of the constraints calculated by the ranking algorithm. On the other

hand, Algorithm 4 finds all possible matchings of unmarked variables, and in

this way, it is used to find all complete matchings on unknown variables of the

incidence matrix. It exhaustively searches the entire graph in a non-recursive

way.
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Algorithm 2 Proposed Matching Algorithm

Input: Incidence matrix
1: Mark all known variables, i=1;
2: Find all variables appearing exactly in one unmarked constraint.

Associate rank i with these variables and constraints.
Mark these variables and the corresponding constraints;
Add them to the matching;

3: If there are unmarked variables whose constraints are all marked, stop: a
complete matching can not be found;

4: set i = i+1;
5: if there are unmarked variables, then
6: if no variables were found in step 2, then
7: run Algorithm 3 or 4 for the unmarked variables and constraints;

associate rank i with these variables.
8: else
9: continue with step 2;

10: end if
11: end if
12: return Matching and Ranking of the constraints

Algorithm 3 one matching function
(matching, end algorithm) = find one matching(unmarked var, unmarked con)

1: matching := ∅; end algorithm := 0
2: choose a variable v, v ∈ unmarked var;
3: unmarked var = unmarked var\{v};
4: for all constraint c ∈ unmarked con such that c contains v do
5: if unmarked var = ∅ then
6: matching := (v, c);
7: end algorithm := 1;
8: break;
9: else

10: (matching, end algorithm) := find one matching(unmarked var,
unmarked con\{c});

11: if end algorithm = 1 then
12: matching := matching ∪ (v, c);
13: break;
14: else
15: matching := ∅;
16: end if
17: end if
18: end for
19: return matching, end algorithm
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Algorithm 4 all matchings function
matchings = find all matchings(unmarked var, unmarked con)

1: matchings := ∅;
2: i := 0;
3: for all variable v in unmarked var do
4: i := i + 1;
5: mark v;
6: if i = 1 then
7: for all constraint c ∈ unmarked con such that c contains v do
8: matchings := matchings ∪ {(v, c)};
9: end for

10: else
11: matchings temp := ∅;
12: for all matching m in matchings do
13: for all constraint c ∈ unmarked con such that c contains v do
14: if c is not matched in m then
15: m := m ∪ (v, c);
16: matchings temp := matchings temp ∪ m;
17: end if
18: end for
19: end for
20: if matchings temp 6= ∅ then
21: matchings := matchings temp;
22: else
23: break; return no matching;
24: end if
25: end if
26: end for
27: return matchings

In this work, Algorithms 2 and 3 are used together to find one complete

matching, and in this way, basic MSO sets. Algorithms 2 and 4 are used together

to find all causal models for each MSO set (see Section 3.5).
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Example 3.3.1. Consider again the Example 3.2.1, in this system, one complete
matching on unknown variables is obtained using Algorithms 2 and 3. The edges
of the complete matching are identified by a “ 1©” in the incidence matrix of Table
7.5, and by thick lines in the bi-partite graph illustrated in Fig. 3.3.

Table 3.2: Incidence matrix with unknown variables showing one complete match-
ing.

x1 x2 x3 x4 x5 Ranking
c1 0 1© 0 0 0 1
c2 0 0 1© 1 0 2
c3 1© 0 0 0 0 1
c4 1 1 1 0 1 2
c5 0 0 0 0 1© 1
c6 0 0 0 1 1 2
c7 0 0 0 1© 0 1
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Figure 3.3: A complete matching represented on a bi-partite graph.

Figure 3.4 shows the order in which the matched edges are expanded. Starting
at variable x1, it can be matched with c3 or c4. After choosing c3, now x2 can be
matched with c1 or c4. Iterative deepening the tree allows to obtain the matching
showed with red thick lines. Sixteen complete matchings can be found by applying
algorithms 2 and 4 to this example.
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Figure 3.4: Order in which the matched edges are expanded.

3.4 A Residual Generation Algorithm

In this section, a new algorithm is presented for finding all MSO sets. Finding

the complete set of MSO sets is useful for the diagnosis task to increase the

fault isolability due to the fact that it can provide different signatures to each

fault. The proposed algorithm is based on the fact that the basic MSO sets

can be combined in order to get more MSO sets, using the information from

one complete matching. Other algorithms like the ones in e.g. Düştegör (2005);

Laursen et al. (2008), are based on finding all complete matchings, which is a

difficult task because the computational complexity of these kind of algorithms

is factorial in the number of constraints.

Unmatched constraints of one complete matching are used to obtain a first

family of MSO sets, which will be called Basic MSO sets. Each MSO set is ob-

tained from an unmatched constraint ci by (i) backtracking unknown variables of

ci through constraints to which they were matched, or (ii), by the over-constrained

subsystem of the canonical decomposition of the system which is composed of the

set of the equations of the matching and ci.

The canonical decomposition of bipartite graphs, discovered by Dulmage and

Mendelsohn, states that any finite-dimensional graph can be decomposed into

three subgraphs with specific properties, respectively associated with an over-

constrained, a just-constrained, and an under-constrained subsystem. For more
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3.4 A Residual Generation Algorithm

information about the canonical decomposition see, for example, Dulmage &

Mendelsohn (1958, 1963).

Algorithm 5 is based on combining the basic MSO sets (the collection of basic

MSO sets is called CMSO1
in the algorithm). A structurally overdetermined (SO)

set can be obtained from the elimination of at least one shared equation from

the set of equations of two MSO sets, and this operation is called a combination.

Each SO set obtained by the combination of two MSO sets can be minimal, i.e.

a MSO set, or not. This algorithm finds only the minimal ones.

Function ‘Combine’, which is presented as Algorithm 6, leads to obtain the

new MSO sets after combining two collections of MSO sets. Step five in the

algorithm is very important. It can be tackled in a brute-force way, which can

result in a combinatorial explosion. This method avoids this by removing one

shared constraint at a time, and the corresponding matched constraints used

only to calculate the unknown variables of the shared constraint.

Algorithm 5 Algorithm to find all MSO sets

Input: Complete matching
1: CMSO1

← Basic MSO sets;
2: i = 1;
3: while i < number of MSO sets in CMSO1

, or, CMSOi
is not empty do

4: CMSOi+1
:= Combine(CMSOi

, CMSO1
);

5: set i=i+1;
6: end while
7: CMSO := (CMSO1

. . .CMSOi
);

8: return Complete set of MSO sets: CMSO
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3.4 A Residual Generation Algorithm

Algorithm 6 Combine function

1: CMSOab
= Combine(CMSOa ,CMSOb

)
2: for all set MSOa in CMSOa do
3: for all set MSOb in CMSOb

do
4: if shared constraints set of MSOa and MSOb is not void, and, MSOa

and MSOb do not share the same unmatched constraint then
5: Remove alternately one or more shared constraints from

MSOa ∪MSOb;
Check if each obtained SO set is minimal;
If it is minimal, add to CMSOab

;
6: end if
7: end for
8: end for
9: return CMSOab

Example 3.4.1. Consider the following incidence matrix:

x1 x2 x3 x4 x5 x6 x7 Ranking
c1 1© 1
c2 1 1© 2
c3 1 1© 3
c4 1© 1 2
c5 1© 1
c6 1© 1 2
c7 1© 1
c8 1 1 3
c9 1 1 3

Matched constraints are c1 to c7. Therefore two basic MSO sets can be found
using c8 and c9. The first one is {c1, c2, c3, c4, c5, c8}, and the second one is
{c1, c2, c3, c6, c7, c9}. The shared constraints in both are {c1, c2, c3}, and then,
seven different possibilities of removing them are possible. Instead of this, us-
ing the information of the matched variables, we can see that c3 (rank 3) was
matched using c2 (rank 2), and c2 using c1 (rank 1). Removing c3, in this ex-
ample also implies that c1 and c2 can be removed because they are not used for
another calculation. So the third MSO set is {c4, c5, c6, c7, c8, c9}.
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3.4 A Residual Generation Algorithm

3.4.1 Computational Complexity

The computational complexity can be studied in two parts:

(i) for the matching algorithm used to find the basic MSO sets. For example,

the ranking algorithm has complexity O(nm) where n is the number of constraints

and m is the number of unknown variables Blanke & Lorentzen (2006).

(ii) for the algorithm used to combine the basic MSO sets. Being ϕ the

structural redundancy of a model, the ϕ basic MSO sets are combined, using

Algorithm 5, in groups of 2 to ϕ (in the worst case). For each combination, there

are at most r shared constraints to be removed. r is less than or equal to m.

For a worst case, the function of operations can be expressed by the following

function

ϕ
∑

k=2

(

ϕ
k

)

rk−1 ≤
ϕ

∑

k=2

(

ϕ
k

)

mk−1 <

ϕ
∑

k=2

(

ϕ
k

)

mϕ−1 = mϕ−1(2ϕ − ϕ − 1) (3.1)

Hence, for a fixed order of structural redundancy, the computational complex-

ity of the algorithm is polynomial in the number of unknowns. This condition

makes this algorithm suitable for real-world systems with a large number of un-

known variables and constraints, but low structural redundancy (which depends

on the number of available sensors) Krysander et al. (2008).

Proof:

ϕ = n − m is the structural redundancy of a model. Then there are ϕ basic

MSO sets.

The basic MSOs are combined in groups of 2 (k = 2), there are

(

ϕ
2

)

= ϕ(ϕ−1)
2

groups. For each combinations there are at most r shared constraints to be

removed. r is less than or equal to m.

(

ϕ
2

)

r ≤
(

ϕ
2

)

m (3.2)

For k = 3, in the worst case, the previous sets are combined with the remaining
ϕ−2

3
basic MSO sets (without repetitions), and the shared constraints are at most
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m − 1.

[(

ϕ
2

)

m

]

ϕ − 2

3
(m − 1) =

(

ϕ
3

)

m(m − 1) <

(

ϕ
3

)

m2 (3.3)

And the same procedure for k = 4 and so on.

[(

ϕ
3

)

m(m − 1)

]

ϕ − 3

4
(m − 2) =

(

ϕ
4

)

m(m − 1)(m − 2) <

(

ϕ
4

)

m3 (3.4)

The general formula is

ϕ
∑

k=2

(

ϕ
k

)

(m)k−1 <

ϕ
∑

k=2

(

ϕ
k

)

mk−1 <

<

ϕ
∑

k=2

(

ϕ
k

)

mϕ−1 = mϕ−1(2ϕ − ϕ − 1) (3.5)

where (m)k−1 is the permutations without repetitions of m in groups of k−1,

and it is equal to m!
(m−(k−1))!

.

In the previous expression, the second term can be expressed as the expansion

of the binomial (x + y)z =
∑z

k=0

(

z
k

)

xz−kyk.

ϕ
∑

k=2

(

ϕ
k

)

mk−1 =
(1 + m)ϕ − 1

m
− ϕ (3.6)

Similarly, for a fixed number of unknowns, the computational complexity of

the algorithm is exponential.

3.5 Causal Interpretations

Each constraint of a MSO set can be interpreted in a causal way, leading to

different causal interpretations. Each interpretation of a constraint is a feasible

causal assignment, and is related to the computation of an involved variable,

assuming that all the other involved variables are known.

A special notation is used in the incidence matrix to represent the situation

when a variable can not be calculated from a constraint. Typically in the liter-

ature, an “x” or a “−1” element is used in this situation. When computing a
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3.5 Causal Interpretations

matching in the incidence matrix, an “x” in the position (i, j) means that variable

xj can not be matched with constraint ci.

A routine programmed in Matlabr finds, if exists, all the different ways in

which the set of constraints of each MSO set can be solved. It is based on

Algorithms 2 and 4, and finds all the complete matchings for each MSO using

the incidence matrix with the calculability information, i.e. information about

if a variable can, or can not, be calculated from a constraint. In this way, this

routine refines the collection of MSO sets discarding those that do not have a

causal interpretation.

The oriented graph for each causal model is obtained by backtracking un-

known variables of the unmatched constraint through constraints to which they

were matched.

For a MSO set, the different computation sequences leading to residuals are

equivalent with respect to the structural detectability/isolability properties (they

have the same support). However, they may not be equivalent when considering

implementation issues because of, for example, invertibility problems or cycles.

In many cases a constraint can not be solved explicitly for a variable because

the inverse of the given function is hard to compute, or even worse, when the

constraint is not invertible with respect to a variable, for example, because of a

saturation or the use of a lookup table.

Differential constraints can be interpreted either in a derivative way or in

an integral way. For the derivative causality, there might be problems, from

a numerical point of view, due to the presence of noise when computing the

derivative. On the other hand, the initial condition needs to be known to estimate

the integral. If there is a preferred causality, this information can be added to

the structural model.

Some matchings may lead to cycles or loops in the oriented graph. A cycle is

a set of variables mutually dependent, in other words, a set of constraints that

have to be solved simultaneously Düştegör et al. (2006).

There are two kinds of cycles, with different properties: algebraic cycles and

differential cycles. An algebraic cycle is made of algebraic constraints only. It

is possible to solve the system of equations using algebraic loop solvers that, in

general, will attempt to determine the solution iteratively. A differential cycle
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represents a system of algebraic and differential equations and the uniqueness of

the solution will depend on the context of the problem. As shown in Blanke et al.

(2006), the states of an explicit ordinary differential equation can be solved if the

initial conditions of the states are known.

Following a classical graph theory approach, a cycle can be condensed into

one single node (which thus represents a subsystem of constraints which need to

be solved simultaneously) Blanke et al. (2006).

A different approach which utilizes equation system solvers, using the char-

acteristics of the algebraic equation solving tools and the differentiating tools, is

analyzed in Svärd & Nyberg (2008).

Example 3.5.1. Considering the Example 3.2.1 introduced before, four MSO sets
are obtained, and the constraints used in them are shown in Table 3.3.

Table 3.3: Dependency table for the example.

c1 c2 c3 c4 c5 c6 c7

MSO1 1 1 1 1 1 1 0
MSO2 1 1 1 1 0 1 1
MSO3 0 0 0 0 1 1 1
MSO4 1 1 1 1 1 0 1

Using the causality information of constraint c4, in which only the variable x5

can be calculated using x1, x2 and x3, two causal models are obtained for MSO1

and MSO4, and three causal models for MSO2 and MSO3. As an example,
one oriented graph for each MSO is shown on Fig. 3.5, and the corresponding
symbolic expressions of the residual generators are shown in Eq. 3.7 to 3.10.

The symbolic expressions were obtained using a function of the software SaTool
Blanke & Lorentzen (2006).

r1 ← c4(c1(u1), c3(y1), c5(y2), c2(u2, c6(y3, c5(y2)))) (3.7)

r2 ← c4(c1(u1), c3(y1), c2(u2, c7(y4)), c6(y3, c7(y4))) (3.8)

r3 ← c6(c5(y2), y3, c7(y4)) (3.9)

r4 ← c5(y2, c4(c1(u1), c3(y1), c2(u2, c7(y4)))) (3.10)
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(a) (b)

(c) (d)

Figure 3.5: Oriented graphs showing the order in which the unknown variables
can be determined in (a) MSO1, (a) MSO2, (c) MSO3 and (d) MSO4.
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3.6 Structural Detectability and Isolability Anal-

ysis

Using the information of the faults which influence each constraint, the (theo-

retical) Fault Signature Matrix (FSM) can be derived. The fault signature of

each possible residual, represents the set of faults which affect at least one of

the constraints used to generate this residual. Two other important concepts are

defined, such as the support of an ARR, and the scope of a fault.

Definition 3.6.1. The fault signature matrix is a binary table in which each line
corresponds to an ARR and each column to a fault. A 0 in the position (i, j)
indicates that the occurrence of the fault fj does not affect the ARR i, and a 1
otherwise Cordier et al. (2004).

Definition 3.6.2. The support of an ARR, ARRi, is the set of faults (columns
of the signature matrix which can also correspond to components or constraints)
with a nonzero element in the row corresponding to this ARRi Cordier et al.
(2004).

Definition 3.6.3. The scope of a fault fj is the set of ARRs (rows of the signature
matrix) with a nonzero element in the column corresponding to fj Cordier et al.
(2004).

The columns of the signature matrix can also be associated with components

or constraints, when, for example, a component-centered modeling approach is

adopted, and a diagnosis is defined as a set of (faulty) component. Diagnosis

abstracted at the component level is typical in approaches coming from the DX

community. On the other hand, in the FDI community, columns of the signature

matrix are typically associated with variables and parameters of the model which

deviate in the presence of a fault Cordier et al. (2004).

The proposed package performs the detectability and isolability analysis of

the faults based on the fault signature matrix.

Definition 3.6.4. Structural detectability. A violation of a constraint c is struc-
turally detectable if and only if it has a nonzero signature in some residual r,
Blanke et al. (2006).

Definition 3.6.5. Structural isolability. A violation of a constraint ci is struc-
turally isolable if and only if it has a unique signature in the residual vector, i.e.
respective column mi of the FSM is independent of all other columns of the FSM,
Blanke et al. (2006).
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Example 3.6.1. In the Example 3.2.1, all faults are detectable because a violation
of any constraint is mapped onto the residuals of the four MSO sets. Considering
isolability, as can be deduced from Table 3.3, faults in constraints c5, c6 and c7

are structurally isolable. Faults in c1, c2, c3 and c4 are group-wise isolable, i.e.
within this group individual faults are detectable but not isolable. Table 3.4 shows
the structural detectability and isolability of faults in this example.

Table 3.4: Detectability and isolability in a single fault case.

c1 c2 c3 c4 c5 c6 c7

d d d d i i i

The last definition of structural isolability is based on the ARR-based exon-

eration assumption Cordier et al. (2004), which is common in the FDI approach

and follows a column view of the FSM. This assumption establishes that any com-

ponent in the support of a nonsatisfied ARR is a fault candidate, but also any

component in the support of a satisfied ARR is implicitly exonerated (satisfied

rows are thus also used in the reasoning). On the other hand, if this exoneration

assumption is not taken into account, then the fault candidates can be obtained

by the minimal hitting set for the collection of supports of the ARRs which are

violated. This approach, typical in the DX approach, follows a row view of the

FSM (for further details see Cordier et al. (2004)).

Definition 3.6.6. Hitting set. Let F = {F1, . . . , Fn} be a set of sets, the set
F ⊆Fi∈F Fi is a hitting set of F iff

∀Fi ∈ F , F ∩ Fi 6= ∅

A hitting set F for the set F is a minimal hitting set if there is no proper subset
F ′ ⊂ F , where F ′ is a hitting set for the set F.

In this context, a definition of potential structural isolability is then given as

follows.

Definition 3.6.7. Potential structural isolability. A violation of a constraint ci

may be structurally isolable to a violation of a constraint cj if the scope of ci is
not a subset of the scope of cj, i.e. there exists a residual that is sensitive to a
violation of ci but not cj.
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As defined in Düştegör et al. (2006), in order to easily visualize the isolability

property of faults, the isolability matrix is computed.

Definition 3.6.8. The isolability matrix is a square matrix where each row and
each column correspond to a fault. A 1 in the position (i, j) indicates that fault i
is not isolable from fault j.

3.7 Active Structural Isolation

Besides passive fault diagnosis methods, i.e. the diagnosis is only based on avail-

able signals in the system, active fault diagnosis methods can be applied, see

e.g. Campbell et al. (2000); Niemann (2006); Poulsen & Niemann (2007); Zhang

(1989). They are based on the inclusion of an auxiliary input signal/vector into

the system. It can give a much faster detection compared with a passive fault

detection and isolation approach because the auxiliary inputs can be designed

to excite specified possible faults with a minimal effect on the complete system

Niemann (2006). On the other side, in the passive FDI approach some faults can

only be detected when they are excited by disturbance or reference inputs.

In some cases faults are group-wise isolable, i.e within the group individual

faults are detectable but not isolable. This does not necessarily imply that isola-

tion can not be achieved in other ways. Indeed, although the same set of residuals

will be “fired” when either one or the other of non-structurally isolable constraints

is faulty, the time response of the residuals may be different under the different

fault cases. Exciting the system with an input signal perturbation may there-

fore make it possible to discriminate different responses of the same residual set

when different constraints within the group are faulty. The active enhancement

of isolability was suggested as structural results in Blanke & Staroswiecki (2006),

where no algorithms were offered. In this thesis, some algorithms are proposed

in the following section to analyze the active structural isolability properties of a

system.

The following results originate from Blanke & Staroswiecki (2006):

Proposition 3.7.1. Active input to residual isolation is possible if and only if
both a structural condition and a quantitative condition are true.
Structural condition: the known variables in the set of residuals associated with
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a group of nonstructurally isolable constraints include at least one control input.
Quantitative condition: the transfer from control inputs to residuals is affected
differently by faults on different constraints.

Observing that input to output structural isolability and input to residual

structural isolability are similar with respect to graph properties, we have

Proposition 3.7.2. Active input to output structural isolation is possible if and
only if both a structural condition and a quantitative condition are true.
Structural condition: the known variables in the set of residuals associated with
a group of nonstructurally isolable constraints include at least one control input.
Quantitative condition: the transfer from control inputs to outputs is affected
differently by faults on different constraints.

Two lemmas for structural reachability and active structural isolability from

Blanke & Staroswiecki (2006) are employed to arrive at constructive algorithms

for input to output structural isolability.

Lemma 3.7.1. Input to output structural reachability. Let p(i,j) = {cf , cg, . . . , ch}
be a path through the structure graph from input ui to output yj, and Π(i,j) the

union of valid paths from ui to output yj. Let C
(i,j)
reach = {c|c ∈ Π(i,j)}. A constraint

ch is input reachable from input ui if a path exists from input ui to output yk and
the path includes the constraint, ch ∈ C

(i,k)
reach.

Lemma 3.7.2. Active structural isolability. Two constraints cg and ch are active
structurally isolable if

∃i, j, k, l : cg ∈ C
(i,j)
reach, ch ∈ C

(k,l)
reach, and {cg, ch} /∈ C

(i,j)
reach ∩ C

(k,l)
reach (3.11)

3.7.1 Algorithms

The following algorithms consider input to output structural isolability. The

first algorithm determines all paths through the structure graph from each input

to each output, considering also loops in the system. The input of Algorithm

7, which searches recursively each path by using Algorithm 8, is the adjacency

matrix of the directed graph using the signal flow information. Algorithm 8

follows a depth-first search strategy (Cormen et al. (2003)) to traverse the graph

until a goal node is found. The search remembers previously-visited nodes and

will not repeat them to find forward or simple paths. This algorithm is also used

to find a loop, i.e. a path which ends at the node where it began.
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3.7 Active Structural Isolation

Algorithm 7 Algorithm to find the reachability matrix

Input: adjacency matrix A, source vertexes Vs, destination vertexes Vd

1: for all vertex v in A do
2: find loops using find all paths(v, v);
3: end for
4: for all vertex vs in Vs and vertex vd in Vd do
5: all paths := find all paths(vs, vd);
6: Π(vs,vd), the reachability from vs to vd, is equal to constraints in (all paths

+ loops in all paths);
7: end for
8: return reachability matrices

Algorithm 8 find all paths function

Input: current vertex v, destination vertex vd

1: mark v as visited;
2: for all vertex i adjacent to v such that i not visited do
3: if i is equal to vd then
4: add to the set of paths;
5: else
6: find all paths(i, vd);
7: end if
8: end for
9: return set of paths

Example 3.7.1. Consider Example 3.2.1 introduced before, but now with the
signal flow causality shown in Fig. 3.6.

The set of paths through constraints from u1 to the outputs can be found by
applying Algorithm 7, and this information is summarized in Table 3.5 of reach-
ability. For example, the following path between u1 and y3 is found by using
Algorithm 8:

u1 − c1 − x2 − c4 − x5 − c6 − y3

The reachability from u2 is shown in Table 3.6.
Following Lemma 3.7.2, it can be deduced that {c1, c2, c4, c5, c6, c7} are

structurally isolable when active isolation is employed, while c3 is not detectable,
as it is shown in Table 3.7.
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3.7 Active Structural Isolation

Figure 3.6: Structure graph of Example 3.7.1.

Table 3.5: Output reachability from u1.

u1 ↓ c1 c2 c3 c4 c5 c6 c7

y1 0 0 0 0 0 0 0
y2 1 0 0 1 1 0 0
y3 1 0 0 1 0 1 0
y4 0 0 0 0 0 0 0

Table 3.6: Output reachability from u2.

u2 ↓ c1 c2 c3 c4 c5 c6 c7

y1 0 0 0 0 0 0 0
y2 0 1 0 1 1 0 0
y3 0 1 0 1 0 1 0
y4 0 1 0 0 0 0 1

Table 3.7: Active structural detectability and isolability of some single faults.

c1 c2 c3 c4 c5 c6 c7

i i - i i i i
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3.8 A Case of Multiple Modes of Operation

Talking about the operation of a plant, two concepts could be distinguished, the

state, and the operation mode or protocol.

The state of a plant is defined as a set of operation parameters that determine

the factory operation, together with a set of medium- to long-term restrictions

on these parameters, on some plant variables and even on plant configuration

Acosta et al. (2002). Each state of the plant could be associated with one or

more operation modes or protocols.

The operation mode includes, for example, automatic switches and/or pro-

cesses that have a different behavior depending on the operating range. The

equational model of such systems is formed of a set of equations among which

some have associated conditions defining their operation range Travé-Massuyès &

Pons (1997). These hybrid systems exhibit both continuous and discrete dynamic

behavior.

The equations of the model may have an associated condition, C, which take

truth values according to the satisfaction of the condition. Hence, an equation

can have no condition or can be submitted to a condition C or to ¬C.

The conditions defining the different modes of some physical component (rep-

resented by one or several equations) must define a partition of the parameter

subspace spanned by the parameters appearing in these conditions. i.e. they

must be mutually exclusive and cover the whole subspace Travé-Massuyès &

Pons (1997).

The number of different operation modes for the system can be obtained by

multiplying the number of different modes for every physical component Travé-

Massuyès & Pons (1997). However, some of the combinations of operation modes

of the components may be not valid because they may not be physically possible

or they may not be considered in the normal operation of the system. It is

important to take into account only the valid ones when computing the MSO

sets to reduce the computational load.

In the first stage of this thesis work and under the supervision of Prof. Be-

larmino Pulido, the MSO sets and their causal models are obtained in an incre-

mental way when conditions are considered in the constraints. A modification
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3.8 A Case of Multiple Modes of Operation

of the Possible Conflict Computation (PCC) algorithm from Pulido & Alonso-

González (2004) is used. The PCC algorithm uses a Depth First Search and,

because of this, the conditions of the equations are analyzed while a MSO set or

a causal model is built. A description of this work and the pseudocode of the

modified algorithm can be found in Pulido & Gelso (2005).

The structural isolability of a fault can be improved using information from

different operation modes. Different residual generators may be obtained in differ-

ent operation modes, and hence, different detectability and isolability properties

of the faults. Combining this information and under the ARR-based exoneration

assumption (see Section 3.6), a fault which is only detectable in any operation

mode may have now a unique signature, and in this manner the fault can be

isolable. In Laursen et al. (2008), the improvement of the structural isolability

is demonstrated on a water for injection distribution process working in different

use-modes.

Example 3.8.1. The illustrative system of Fig. 3.7 includes a voltage source V s,
a resistor R1, two lights Light1 and Light2, two switches S1 and S2, and three
meters, voltmeters V 1 and V 2, and ammeter A. The switches and the meters
are considered as ideal ones, i.e. a switch has no voltage drop across it during its
ON state and it has infinity resistance during its OFF state, and the measuring
instruments do not disturb the circuit.
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Figure 3.7: An electric circuit with multiple operation modes.

C1 is the condition that the switch S1 is “closed”, and C2 is the condition that
the switch S2 is “closed”. Assume that two operation modes are considered in
the normal operation of this example. In the first, the switch S1 is closed and the
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3.8 A Case of Multiple Modes of Operation

switch S2 is open. In the second, both switches are closed. The relations between
the conditions and the operation modes are represented in Table 3.8.

Table 3.8: Relations between the conditions and the operation modes.

¬C1 ¬C2 Not valid S1 : open S2 : open
¬C1 C2 Not valid S1 : open S2 : closed
C1 ¬C2 Operation mode 1 S1 : closed S2 : open
C1 C2 Operation mode 2 S1 : closed S2 : closed

The equations are the following:

e1 Ṽ1 = V1

e2 Ṽ2 = V2

e3 Ĩ = I
e4 I = I1 + I2

e5 I1 = 0 ¬C1

e6 I2 = 0 ¬C2

e7 V1 = VR1
+ V2 C1

e8 VR1
= I1 R1 C1

e9 V2 = I1 RLight1 C1

e10 V1 = I2 RLight2 C2

Four and five MSO sets are obtained for the operation modes 1 and 2, respec-
tively (see Table 3.9).

Table 3.9: MSO sets of operation modes 1 and 2.

Operation mode 1 Operation mode 2
no MSO sets no MSO sets
1 {e2, e3, e4, e6, e9} 1 {e1, e2, e3, e4, e9, e10}
2 {e1, e2, e7, e8, e9} 2 {e1, e2, e7, e8, e9}
3 {e1, e2, e3, e4, e6, e7, e8} 3 {e1, e2, e3, e4, e7, e8, e10}
4 {e1, e3, e4, e6, e7, e8, e9} 4 {e2, e3, e4, e7, e8, e9, e10}

5 {e1, e3, e4, e7, e8, e9, e10}

Table 3.10 shows the structural detectability and isolability of faults in the
sensors, lights and the resistance. As can be seen in the table, the structural
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isolability is improved using both operation modes. In each operation mode some
faults are only detectable, whereas all faults are isolable when the information
from both operation modes are combined. For example, a fault in Light2 is only
detectable in the second operation mode, but combining the information of both
modes it has a unique signature, and hence, is isolable.

Table 3.10: Detectability and isolability using both operation modes.

V1 V2 A Light1 Light2 R1

Mode 1 d i i i - d
Mode 2 i i d i d i
Both i i i i i i

3.9 Conclusions and Contributions

One of the main contributions of this chapter is the proposed algorithm to obtain

the whole set of MSO sets of the system. When talking about over constrained

systems, the task of obtaining the complete set of minimal mathematical relations

(to retrieve an optimal diagnostic) becomes a complex task.

As it is shown in this chapter, the proposed algorithm become one of the

alternatives to perform the task of designing fault detection and isolation tests, by

finding all the subsystems that could be diagnosed in the system. This algorithm

completes previous approaches, as e.g. explained in Blanke & Lorentzen (2006),

which do not deliver all the MSO sets, and finds them in an efficient way without

investigating all different matchings, as e.g. in Laursen et al. (2008). Moreover,

calculability in the constraints can be taken into account to remove MSO sets

that can lead to unachievable detection tests.

Features of this algorithm were presented and its efficiency is demonstrated

by several application examples of Chapter 7. The computational complexity

of the proposed algorithm is polynomial in the number of unknowns making

this condition suitable for real-world systems with a large number of unknown

variables and constraints.

Structural detectability and isolability of faults could be taken into account

from (i) a passive fault diagnosis approach, by using the set of all feasible MSO
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sets and the corresponding fault signature matrix, and (ii) an active fault di-

agnosis approach, by using an auxiliary input in the system and the transfer

function from the auxiliary input to the residual output. Both approaches were

addressed from a structural point of view. After applying them to examples,

different structural detectability and isolability properties were obtained, making

possible to use the passive and the active techniques to enhance fault isolation.

Finally, the algorithm proposed in this thesis to find all the MSO sets is

compared with other three algorithms which are representative for the domain.

This comparison included the computational complexity, and the correctness of

the solution provided when applying to several case studies. Armengol et al.

(2009a) summarizes part of the results.
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Chapter 4

Robust Fault Detection based on
Interval Models

Summary

In the previous chapter, the way in which the structural analysis can be used to

deduce the analytical redundancy relations was presented. An important diffi-

culty in applying these fault tests to real systems is dealing with the uncertainties

associated with the system itself and with the measurements.

In order to deal with these uncertainties, during the development of this thesis,

mainly two interval approaches were used. The former is the SQualTrack, which

is a software package to detect faults based on Modal Interval Analysis. The lat-

ter, Interval-based Consistency Techniques - ICTs, is based on “classic” interval

analysis and constraint propagation techniques. Related to the SqualTrack, two

improvements are proposed to increase the fault detection performance. Con-

cerning the ICTs, the work developed during this thesis includes: (i) state the

fault detection problem as a constraint satisfaction problem, and (ii) design and

develop a fault detection system using the solver called RealPaver.

Finally, the ICTs fault detection performance is empirically compared with

the performance of SqualTrack and a statistical-decision technique: Extended

Kalman filter and Z-test. This empirical comparison was developed during a

research stay at Vanderbilt University (Nashville-USA) under the supervision of

Prof. Gautam Biswas.
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4.1 Related Work

Over the last years, many works using interval techniques for fault detection have

appeared. One of the main drawbacks is the high computational load that they

require at each sampling time, which in general is incompatible for working with

on-line data. Some approaches overcame this problem, as for example in

• Fagarasan et al. (2004); Ploix & Gentil (2000), working with simple multiple-

input single-output models to generate the exact estimate of the output

using interval calculation laws.

• Rinner & Weiss (2004), where the bounds of the estimates are computed

using traditional numerical integration techniques from the uncertain pa-

rameter interval vertices, assuming that the monotonicity property (of the

state values with regard to the parameters) holds.

The methods that use interval arithmetic Moore (1966), in the general case for

example using the natural extension, do not provide the exact result (complete

and sound). This comes essentially from the multi-incidences and the wrapping

effect Armengol et al. (2001a). Interval arithmetic provides overbounded results

for the range of functions when there are multi-incident variables or there are

dependencies or relations between variables. On the other hand, the wrapping

problem appears when interval arithmetic is used for simulation in the state space.

The state, at any time point, of an interval model is enclosed by a n-dimensional

hypercube, hence usually includes spurious states.

An alternative to classical Interval Analysis (IA) is the Modal Interval Analy-

sis (MIA) Gardenyes et al. (2001); SIGLA/X group (1999). It is a completion of

the Interval Analysis, not only in a lattice and arithmetic sense, as the Extended

Intervals of Kaucher Kaucher (1979), but a logical completion as well. A modal

interval X is defined as a couple X = (X ′,∀) or X = (X ′,∃) where X ′ is its

classic interval domain, X ′ ∈ I(R), and the quantifiers ∀ and ∃ are a selection

modality. MIA allows in some cases to reduce the overestimation that classical IA

produces when evaluating an interval function because of the problem of multi-

incident variables. The software called SQualTrack Armengol et al. (2003, 2009b)

combines MIA and branch-and-bound techniques to compute simultaneously an
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underbounded estimate and an overbounded one. This software is described in

this chapter.

Most of the works that use an interval model of a dynamic system are in

discrete-time. However, Lin & Stadtherr (2007, 2008) proposed a method for

fault detection using continuous-time models described by ordinary differential

equations (ODE) with interval-valued parameters and/or initial states. The im-

plementation, based on a simulation of Taylor models, produces a complete but

not sound estimate. A constraint propagation procedure and the output mea-

surements are used to accelerate the fault detection process by reducing, at each

time step, the uncertainties in the model parameters and initial states.

Set-membership identification methods have also been used for robust fault

detection. They explicitly calculate outer bounds of the set of parameters that

are consistent with the measurements. They can be classified according to how

the approximation of the feasible set of parameters is represented or parame-

terized: by ellipsoids in Watkins & Yurkovich (1996), by parallelotopes in In-

gimundarson et al. (2005), by polytopes in Janati-Idrissi et al. (2002), and by

zonotopes in Combastel et al. (2008); Guerra et al. (2006, 2007); Ingimundarson

et al. (2009); Manders (2008). In general, the methods deal with models that are

linear in the parameters. The zonotope-based fault detection algorithm presented

in Ingimundarson et al. (2009) is able to handle invariant parameters, parameter

variation bounded between samples, and unbounded parameter variation.

Constraint propagation techniques tighten the domains of variables involved in

constraint systems. In order to separate the solutions, they are generally embed-

ded in a bisection algorithm that iteratively prunes by propagation the domains

split into sub-domains if the required precision is not yet reached Granvilliers

et al. (1999). Gelso et al. (2007c); Stancu et al. (2003) have applied these tech-

niques using bisection and the solvers RealPaver and Project2D, respectively, and

Ocampo-Mart́ınez et al. (2006) have used constraint propagation techniques with-

out bisections by using the IntervalPeeler Solver. These techniques are presented

in detail in this chapter.

In Puig et al. (2008), three schemes (simulation, prediction, and observation)

are compared depending on the value of the gain of an interval observer of a linear

dynamic system in discrete-time. As a summary of main differences, it can be said
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that prediction and simulation approaches have antagonist properties: prediction

does not suffer from the wrapping effect, has low computational complexity, has

low sensitivity to unmodeled dynamics but suffers the “fault following effect”

(the predicted output tends to follow the faulty system output), and has high

sensitivity to sensor noise. On the other side, the simulation approach has the

opposite properties. Observer approach is in the middle, with the advantage that

since it has one more degree of freedom (the observer gain), it can be designed

trying to minimize the bad effects and maximize the good effects. An interval

observer is presented in Section 4.3.1.1 and applied to one application example

in Chapter 7.

4.2 A Tool based on Modal Intervals: SQual-

Track

The model based fault detection using modal intervals, is based on the calculation

of effective thresholds (adaptive thresholds or envelopes) to bound the uncertainty

of parameters and measurements. To compute the envelope limits, it is necessary

to compute the range of a function in a given parameter space at each prediction

step, which is very costly. SQualTrack Armengol et al. (2003, 2009b) calculates

iteratively external estimates

Ŷex(k) ⊇ Ŷ (k), (4.1)

of the predicted behavior from the model Ŷ (k), so the cost is heavily reduced.

These estimates are closer at each iteration and, after an infinite number of

iterations, the exact range Ŷ (k) would be calculated. But the algorithm stops

when the external estimate is close enough to detect the fault, thus saving much

computational effort for the detection of faults. However, if no fault is detected,

the algorithm will never stop. This drawback can be overcome by using an internal

estimate,

Ŷin(k) ⊆ Ŷ (k), (4.2)

which is included in the exact envelope. If the measurement is within this enve-

lope, then the fault, if it exists, will not be detected, and so the algorithm will
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stop iterating. The internal and external estimates of the exact envelope, which

are depicted in Fig. 4.1, define three zones.

inner zone

intermediate zone

intermediate zone

outer zone

outer zone

Time

O
ut

pu
t

Figure 4.1: The three zones defined by the internal and external estimates of the
exact envelope.

Therefore a fault is detected when the measured value is either larger or

smaller than the predicted value by the external estimate or, in other words,

when the output of the model is not consistent with the measured output. This

assertion is expressed through the logical statement,

¬((∃ỹ(k) ∈ Ỹ (k)) (∃ŷ(k) ∈ Ŷ (k)) ỹ(k) − ŷ(k) = 0) ⇔
(∀ỹ(k) ∈ Ỹ (k)) (∀ŷ(k) ∈ Ŷ (k)) r(k) 6= 0. (4.3)

where ỹ(k) is the measured output of the system at instant k, ŷ(k) is the predicted

output of the model at instant k, and r(k) is the so-called residual of the analytical

redundancy relation (ARR) of the system.

Actually, the consistency between the interval model and the real process is

performed using interval measurements, which are obtained from the measure-

ments taking into account the uncertainties (noise, bias. . . ) of the sensors.

The use of the Modal Interval Analysis (MIA) SIGLA/X group (1999) in the

fault detection system guarantees that a fault exists when the measurement is

out of the external envelope (in the outer zone), so this method does not generate

false alarms. If there are false alarms, they indicate either that the interval model

does not represent the system adequately, or that the interval measurements do
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not represent the true values of the variables adequately. On the other side, if

the measurement is in the intermediate zone or in the inner zone there can be

missed alarms.

The f ∗ algorithm is used to compute the internal and external approxima-

tions in an iterative way Herrero (2006). It combines Modal Interval Analysis

and branch-and-bound techniques. The basic concept consists of bisecting in a

intelligent manner the variable space by studying the monotonic nature of the

function with respect to each of its variables. Then, by applying some theorems

from Modal Interval Analysis, which are also based on the monotony study, it is

possible to obtain better results in the evaluation.

Any measurement belonging to a past time point can be used as initial state

to compute the envelopes at the current time point. The time interval from this

initial time point to the current one is called time window. If the window used

at each prediction step has always the same length, then a sliding time window

is being considered Armengol et al. (2001b).

Then, for a window of length w, in accordance with Equation 4.3, a system is

faulty if

(∀ỹ(k) ∈ Ỹ (k))(∀ŷ(k) ∈ Ŷ (k|k − w)) ỹ(k) − ŷ(k|k − w) 6= 0, (4.4)

where, for example, for a discrete first-order model

ŷ(k|k − w) = f(ỹ(k − w), ũ(k − 1), . . . , ũ(k − w), p) (4.5)

p is the vector of uncertain model parameters that belongs to the vector of

intervals PPP . Two situations must be distinguished in this case. A first case

is when the system is considered to be time variant, in which the values of p at

different time steps can be considered different. A second case is when the system

is considered time invariant, i.e., there is uncertainty in the values of p but it is

known that these values are the same at different time steps. This second case,

time invariant systems, is more difficult to handle than the first one because of

the multi-incidences of p in the expression of ŷ(k|k−w). The time invariant case

is generally considered when the SQualTrack is used.

The number of missed alarms is in general reduced by using several window

lengths simultaneously, as a fault is detected when there is an inconsistency in
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a time window. Moreover, the best window length not only depends on the

dynamics of the system but also on the type of fault to be detected.

Example 4.2.1. Given the ARR corresponding to a discrete first-order model
Herrero (2006),

ŷ(k) = aỹ(k − 1) + bu(k − 1), (4.6)

where a and b are model parameters, in this case, time invariant within the time
window. The corresponding ARRs for the set of window lengths w = {1, 5} are,

Length w = 1 : ŷ(k) = aỹ(k − 1) + bu(k − 1), (4.7)

Length w = 5 : ŷ(k) = a(a(a(a(aỹ(k − 5) + bu(k − 5)) +

bu(k − 4)) + bu(k − 3)) + bu(k − 2)) + bu(k − 1). (4.8)

Therefore, proving that either Equations 4.9 or 4.10 are true is equivalent to say
that a fault is detected.

Length w = 1 : (∀ỹ(k) ∈ Ỹ (k))(∀ỹ(k − 1) ∈ Ỹ (k − 1)) (4.9)

(∀u(k − 1) ∈ U(k − 1))(∀a ∈ A)(∀b ∈ B)

ỹ(k) − (aỹ(k − 1) + bu(k − 1)) 6= 0

∨
Length w = 5 : (∀ỹ(k) ∈ Ỹ (k))(∀ỹ(k − 1) ∈ Ỹ (k − 1)) (4.10)

(∀u(k − 1) ∈ U(k − 1))(∀u(k − 2) ∈ U(k − 2)))

(∀u(k − 3) ∈ U(k − 3))(∀u(k − 4) ∈ U(k − 4)

(∀u(k − 5) ∈ U(k − 5))(∀a ∈ A)(∀b ∈ B)

ỹ(k) − (a(a(a(a(aỹ(k − 5) + bu(k − 5)) + bu(k − 4)) +

bu(k − 3)) + bu(k − 2)) + bu(k − 1)) 6= 0.

In the following, two improvements of SQualTrack proposed in this thesis

are presented. The former refers to the dynamic refinement of the parameters

space, and the latter, to the pruning of the measurements space. The impact that

these improvements might take in the SQualTrack performance is illustrated by

a chemical plant. Although both improvements can be applied in a simultaneous

way, for a sake of clarity, they are applied separately to the same example.
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4.2.1 Dynamic Refinement of the Parameters Space

The dynamic refinement of the parameters space is based on the partitioning

of the space into several subspace models. At each time step, the consistent

subspaces are partitioned into smaller subspaces and the inconsistent ones are

refuted and excluded. In this way, a fault is detected when all subspaces are

refuted. In this analysis it is assumed that the parameters do not vary over time.

A partition is defined as

Q = [(q1, q1), (q2, q2), . . . , (qn, qn)] (4.11)

with Q ⊆ P , being P the interval vector of parameters to be divided. Thus,

a partition divides the uncertainty space into smaller regions. The union of all

subspace models covers the complete (initial) uncertainty space of the imprecise

model Rinner & Weiss (2004):
⋃

m Q(m) = P where m = 1, . . . , M .

A methodology for parameter estimation explained in Castillo (2007); Castillo

et al. (2007) has been used as starting point for the implementation of this im-

provement. This technique divides consecutively the interval for each parameter,

and checks the satisfiability of the constraints of each resulting subspace using the

Quantified Real Constraint Satisfaction (QRCS) solver Herrero (2006). Fig. 4.2

shows the procedure used to partition the interval of one parameter, and thus, to

find the new bounds of it. In the same figure, T (true) and F (false) indicates the

result of applying the QRCS solver to the constraints of a particular subspace.

There is a trade-off between the number of partitions (and hence, callings to the

QRCS solver) and the computational load.

In Rinner & Weiss (2004), a system for dynamically refining imprecise mod-

els is presented. It is also based in the dynamic partitioning of the parameters

space, but instead of using interval arithmetic, numerical integration techniques

are used to calculate the solution of the differential equations of the model. A

monotonicity condition is needed because, if it is not given, underbounded en-

velopes are computed. In that case, the parameter refinement is not performed.

The monotonicity assumption is not required in the method proposed in this

thesis.
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Figure 4.2: Procedure used to find the new bounds of one parameter.

Example 4.2.2. As a simple illustration of the method, consider a chemical tank
equipped with a heat exchanger. Figure 4.3 shows the schematic of this system: a
tank, a heat exchanger, and two pumps.
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Figure 4.3: Scheme of the chemical tank equipped with a heat exchanger

The analytical model of the above system can be obtained using basic rules in
thermodynamics. Employing those rules for both tank and heat exchanger and
after some manipulation on equations, a discrete analytical model of the system
can be written like this
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T4[k + 1] = T4[k]

[

1 − Ts

V
(A + B)

]

+
Ts

V
(A ∗ T3[k] + B ∗ Ta) (4.12)

where T3 and T4 are temperatures in points 3, and 4 respectively; V is the volume
of water in tank; Ta is the environmental temperature considered unknown but
bounded in simulations; and Ts is the sample time. A and B parameters are
denoting for:

A =
1

1
Q3

+ 1
Q4

(4.13)

B =
K

Ro ∗ C
(4.14)

where Ro, C and K are density, specific heat capacity, and heat transfer rate of the
exchanger respectively. The considered intervals for parameters in the analytical
model and their dimensions have been listed in Table 4.1. In simulations, sample
time is chosen 5 s without any concern about losing any part of output profile
containing some meaningful deviation. Initial temperature of water in tank is 60
oC.

Table 4.1: Parameter intervals of the chemical plant example.

V = [1, 1.1] m3 Ta = [19.8, 20.2] oC

A = [0.001, 0.011] m3

s
B = [0.001, 0.011] m3

s

The fault scenario that is considered is a fault in pump B1, a decrement of
the pump performance, which occurs at sample 130.

Figure 4.4 displays the results of fault detection using SQualTrack, without the
refinement of the parameters space, and a time window of length 8. The upper
graph shows the approximations (inner and outer) for the output variable together
with the measured output, which is plotted with a black solid line. The lower
graph shows a bar when a fault is detected, i.e., when the intersection between the
interval measurement and the external approximation is void. As it can be seen
in the figure, the fault is not detected.

Figure 4.5 displays the results for the same scenario, but now including the
refinement of the parameters space. In this case, the fault is detected from sample
299.
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Figure 4.4: A fault in pump B1 using SQualTrack, without the refinement of the
parameters space.

4.2.2 Dynamically Refining the Measurements Space

One way to prevent the propagation of uncertainty is to prune the measurements

space. This pruning corresponds to an update of the measurement of the output

of the system since only it is stored the measurement space consistent with the

output estimated by the interval model.

The updated measurement Ỹ ∗(k) is calculated by means of Equation 4.15.

Ỹ ∗(k) = Ỹ (k) ∩ Ŷ (k/k − wi) (4.15)

Where wi represents the length of the sliding time window i. In this way, the

propagation of the uncertainty not consistent with the model of the system may

decrease when Ỹ ∗(k) is used as the initial value of a sliding time window.
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Figure 4.5: A fault in pump B1 using SQualTrack, with the refinement of the
parameters space.

Example 4.2.3. As an example of the improvement of the fault detection perfor-
mance, the chemical tank and the heat exchanger introduced before are considered.
The intervals for parameters A and B in the analytical model are as the following,
A = [0.0095, 0.015] and B = [0.0015, 0.0018].

The faulty scenario consists of a fault in pump B1, a decrement of the pump
performance, which begins at sample 130.

Figure 4.6 displays the results of fault detection using SQualTrack, without the
refinement of the measurements space. As it can be seen in the figure, the fault
is not detected.

The results for this scenario, under the same conditions but pruning the mea-
surement space, are shown in Figure 4.7. In this case the fault is detected from
sample 205.
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Figure 4.6: A fault in pump B1 using SQualTrack, without the refinement of the
measurements space.

4.3 Fault Detection as a Constraint Satisfaction

Problem

Many engineering problems (e.g., parameter and state estimation, robust control

design problems) can be formulated in a logical form by means of some kind of

first order predicate formulas: formulas with the logical quantifiers (universal and

existential), a set of real continuous functions (equalities and inequalities), and

variables ranging over real interval domains.

As defined in Shary (2002), a numerical constraint satisfaction problem is a

triple CSP = (V,D, C(x)) defined by

1. a set of numeric variables V = {x1, . . . , xn},

2. a set of domains D = {D1, . . . , Dn} where Di, a set of numeric values, is

the domain associated with the variable xi,

3. a set of constraints C(x) = {C1(x), . . . , Cm(x)} where a constraint Ci(x)
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Figure 4.7: A fault in pump B1 using SQualTrack, with the refinement of the
measurements space.

is determined by a numeric relation (equation, inequality, inclusion, etc.)

linking a set of variables under consideration.

The fault detection problem can be represented by a continuous CSP similar

to the one presented in Jaulin (2002), which deals with the problem of nonlinear

state estimation. In other words, the task is to solve for the values of the state

variables, xxx(k), 1 ≤ k ≤ n, given xxx(0), input uuu(k), 1 ≤ k ≤ n, and output yyy(k),

1 ≤ k ≤ n,

Considering that the system dynamics can be modeled in the discrete-time

nonlinear form:

{

xxx(k + 1) = ggg(xxx(k),uuu(k), θθθ) + www(k)
yyy(k) = hhh(xxx(k),uuu(k), θθθ) + vvv(k)

, (4.16)

where:

⋄ uuu(k) ∈ ℜnu , yyy(k) ∈ ℜny , and xxx(k) ∈ ℜnx are the input, output, and state

vector, respectively.
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⋄ www(k) ∈ ℜnw and vvv(k) ∈ ℜny are the perturbation and measurement noise vec-

tors, which are unknown but bounded. The perturbation vector takes into

account, for instance, unmodeled dynamics of the actual plant, unknown

inputs, or an error due to the discretization procedure.

⋄ θθθ ∈ ℜnp is a vector of interval bounded parameters, where the parameters

values can be considered as time variant or invariant, but always within

fixed bounds.

⋄ The non-linear function ggg relates the state at the time step k+1 to the current

time step k, and the non-linear function hhh relates the state xxx(k) to the

measurement yyy(k).

the CSP corresponding to the dynamic system can be represented as:

V = {θθθ, ỹ̃ỹy(1), . . . , ỹ̃ỹy(k), x̂̂x̂x(1), . . . , x̂̂x̂x(k+1), ũ̃ũu(1), . . . , ũ̃ũu(k)

www(1), . . . ,www(k), vvv(1), . . . , vvv(k)}
D = {ΘΘΘ, Ỹ̃ỸY (1), . . . , Ỹ̃ỸY (k), X̂̂X̂X(1), . . . , X̂̂X̂X(k+1), Ũ̃ŨU(1), . . . , Ũ̃ŨU(k)

WWW (1), . . . ,WWW (k),VVV (1), . . . ,VVV (k)}
C = {x̂̂x̂x(2) = ggg(x̂̂x̂x(1), ũ̃ũu(1), θθθ,www(1))

ỹ̃ỹy(1) = hhh(x̂̂x̂x(1), ũ̃ũu(1), θθθ) + vvv(1)
...

x̂̂x̂x(k + 1) = ggg(x̂̂x̂x(k), ũ̃ũu(k), θθθ,www(k))

ỹ̃ỹy(k) = hhh(x̂̂x̂x(k), ũ̃ũu(k), θθθ) + vvv(k)}.

Note that the CSP problem (contracting the domains for the variables in-

volved) becomes larger with time. Every time step requires an additional vector

xxx to be solved, and a number of additional constraints to satisfy. Therefore, the

computational complexity of the solution increases with time. As explained for

the SQualTrack, an alternative for overcoming this problem is the use of a sliding

time window.

Many techniques can be used to solve the continuous CSP. For fault detection,

it is specially important to be focused on complete techniques, i.e. the ones that
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find all solutions. As explained in Chapter 2, a sound but not complete estimate

may result in false alarms, which are a serious concern to be reduced. A survey

that covers the state of the art of techniques for solving continuous CSP can be

found in Neumaier (2004). These techniques generally include branch and bound

codes to split a problem recursively into subproblems. Box reduction techniques

can also be used to shrink the initial range of the variables without losing any

feasible point. In the following, the techniques used in this thesis are briefly

described.

4.3.1 Interval-based Consistency Techniques

Consistency techniques can be used to contract the domains of the involved vari-

ables by removing inconsistent values Benhamou et al. (1999); Collavizza et al.

(1999); Cruz & Barahona (2002). In particular for the fault detection application,

they are used to guarantee that there is a fault when there is no solution that

can be found for the CSP problem, i.e. the observed behavior and the model

are inconsistent. The algorithms that are based on consistency techniques are

actually ”branch and prune” algorithms, i.e., algorithms that can be defined as

an iteration of two steps Collavizza et al. (1999):

1. Pruning the search space by reducing the intervals associated with the vari-

ables until a given consistency property is satisfied.

2. Generating subproblems by splitting the domains of a variable

These techniques can be applied to nonlinear dynamic systems, and their

results are not sensitive to strong nonlinearities or nondifferentiabilities in the

dynamic system Jaulin (2002).

Most interval constraint solvers are based on either Hull-consistency (also

called 2B-consistency) or Box-consistency, or a variation of them Benhamou et al.

(1999). Hull-consistency and Box-consistency approximate to arc-consistency,

widely used in finite domains. Arc-consistency eliminates a value from a variable

domain if no compatible value exists in the domain of another variable sharing

the same constraint Cruz & Barahona (2002). In continuous domains such enu-

meration is no longer possible and both hull and box-consistency assume that
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the domains of the variables are represented by intervals, so they simply aim

at tightening their outer bounds. Hull-consistency guarantees arc-consistency

only at the bounds of the variable domains. Roughly speaking, a constraint c

is hull-consistent if, for any variable x, there exist values in the domains of all

other variables which satisfy c when x is fixed to its bounds, x and x Collavizza

et al. (1999). Existing algorithms decompose the original constraints into a set

of primitive constraints, and the property can be enforced by interval arithmetic

operations.

Definition 4.3.1. Hull-consistency Collavizza et al. (1999). Let (V, C) be a CSP
and c ∈ C a k-ary constraint over (v1, . . . , vk). c is hull-consistent iff:

∀i, Vi = Hull{vi|∃v1 ∈ V1, . . . , ∃vi−1 ∈ Vi−1,∃vi+1 ∈ Vi+1, . . . , ∃vk ∈ Vk

such that c(v1, . . . , vi−1, vi, vi+1, . . . , vk) holds }

Box-consistency guarantees the consistency of each bound of the domain of

each variable with the intervals of the others Cruz & Barahona (2002). The main

advantage of this approach is that it tackles the problem of hull-consistency for

variables with many occurrences in a constraint.

Definition 4.3.2. Box-consistency Collavizza et al. (1999). Let (V, C) be a CSP
and c ∈ C a k-ary constraint over the variables (v1, . . . , vk). c is Box-consistent
if, for all vi the following relation hold:

c(V1, . . . , Vi−1, [Vi, Vi
+
), Vi+1, . . . , Vk)

c(V1, . . . , Vi−1, (Vi
−, Vi], Vi+1, . . . , Vk)

Specific notation: if a is a constant in F (a finite subset of R, e.g. the set of
floating-point numbers), a+ (resp. a−) corresponds to the smallest (resp. largest)
number of F strictly greater (resp. lower) than a.

The aforementioned techniques are said to be local: each reduction is applied

over one domain with respect to one constraint. Better pruning of the variable

domains may be achieved if, complementary to a local property, some global

properties are also enforced on the overall constraint set.

Besides the choice of the reduction technique, according to the knowledge of

the model, the splitting strategy can be chosen to increment the efficiency of the

solver.
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Example 4.3.1. As it is presented in Granvilliers & Benhamou (2006), consider
the system {x2 = x2

1, x
2
1 + x2

2 = 2}, and the initial domains {[−10, 10], [−10, 10]}
whose solutions are (1, 1) and (−1, 1). The first constraint leads to reduce the
domain of x2 to [0, 10], because x2 must be positive. The second constraint allows
one to contract the domain of x1 to [−

√
2,
√

2], and so on. The result is the box
[−1.19, 1.19]×[0.76, 1.42] as illustrated in Fig. 4.8. Unfortunately, this process
does not compute the enclosure [−1, 1]×[1, 1] of the solution set. This is due
to the locality problem. The locality problem is due to the strategy for reducing
domains, since every constraint projection is processed independently.

−3 −2 −1 0 1 2 3
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0

1

2

3

x 2

x
1

Figure 4.8: Box solution of Example 4.3.1.

In this thesis, the solution of the fault detection CSP is performed by using

the solver RealPaver Granvilliers & Benhamou (2006).

4.3.1.1 Interval Observer

Instead of using directly the model of a dynamic system given by Eq. 4.16, an

observer can be used to correct the estimation of the states by considering a

feedback from measured signals.

Taking into account the uncertainty by means of intervals, as defined in Puig

et al. (2006), a non-linear interval observer equation with a Luenberger-like struc-

ture for a system in the state-space representation can be written as:

x̂̂x̂x(k + 1) = ggg(x̂̂x̂x(k),uuu(k), θθθ) + KKK(yyy(k) − ŷ̂ŷy(k)),

ŷ̂ŷy(k) = hhh(x̂̂x̂x(k),uuu(k), θθθ), (4.17)

76



4.3 Fault Detection as a Constraint Satisfaction Problem

where x̂̂x̂x ∈ R
nx and ŷ̂ŷy ∈ R

ny are estimated state and output vectors of di-

mension nx and ny, respectively, uuu ∈ R
nu and yyy ∈ R

ny are measured input and

output vectors of dimension nu and ny, θθθ is the vector of uncertain parameters

of dimension np with their values bounded θθθ ∈ [θθθ,θθθ], and KKK is the gain of the

observer. The choice of KKK can be done, for example, by pole placement. The ob-

server behaves like a low-pass filter and thus the pole placement is a compromise

between fast fault response and sensitivity to disturbances and noise Nyberg &

Nielsen (1998).

The estimated outputs are used to check the consistency of the observations

with respect to the system model. Therefore a fault is detected when the mea-

sured value is either larger or smaller than the predicted value or in other words,

when the output of the model is not consistent with the measured output. This

assertion is expressed through the logical statement,

(∀ỹyy(k) ∈ ỸYY (k)) (∀ŷyy(k) ∈ ŶYY (k)) rrr(k) 6= 000, (4.18)

where rrr(k) = ỹyy(k) − ŷyy(k) is a vector of residuals.

The dynamic system (4.17) can be represented as a CSP:

V = {θθθ, ỹyy(1), . . . , ỹyy(k), ŷyy(1), . . . , ŷyy(k), x̂xx(1), . . . , x̂xx(k+1),uuu(1), . . . ,uuu(k)}
D = {ΘΘΘ, ỸYY (1), . . . , ỸYY (k), ŶYY (1), . . . , ŶYY (k), X̂XX(1), . . . , X̂XX(k+1),UUU(1), . . . ,UUU(k)}
C = {x̂xx(2) = ggg(x̂xx(1),uuu(1), θθθ) + KKK(ỹyy(1) − ŷyy(1))

ŷyy(1) = hhh(x̂xx(1),uuu(1), θθθ)
...

x̂xx(k + 1) = ggg(x̂xx(k),uuu(k), θθθ) + KKK(ỹyy(k) − ŷyy(k))

ŷyy(k) = hhh(x̂xx(k),uuu(k), θθθ)}.

A problem finding the CSP solution is the continuous increment with time in

the computational effort. As it was explained in this chapter, an alternative to

overcome this problem is the use of a sliding time window.

An application example using real data is presented in Chapter 7. This ap-

plication deals with the air-intake system of an automotive engine.
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4.4 Comparing Interval-based Consistency Tech-

niques and Other Methods for Fault Detec-

tion

This section presents an empirical comparison of the performance of the two

interval-based fault detection techniques used in this thesis, namely SQualTrack

and ICTs. Moreover, there is also an empirical comparison of the performance

of the ICTs and the performance of one technique based on a statistical decision

(in particular an observer implemented as an Extended Kalman Filter and a

hypothesis testing scheme based on a Z-test). The last comparison tries to answer

a question often asked by experts in this field: which are the main differences

between the interval-based techniques and the statistical-based ones?.

4.4.1 ICTs vs. SQualTrack

As explained in the previous sections, SQualTrack and ICTs check the consistency

between the model and the real process by means of the measurements (Fig.

4.9). One major difference is that, for a time window of length ω, SQualTrack

makes a prediction ω-step ahead of the output of a model, whereas ICTs check

the consistency between the model and all the measurements within the time

window. In this way, using SQualTrack, a fault is detected when the intersection

between the external estimate, Ŷ (k|k − ω), and the corresponding measurement

Ỹ (k) is void. On the other hand, using ICTs, a fault is detected when no solution

is found in the CSP.

Moreover, the computational load of SQualTrack could be very high when the

window length exceeds a certain value. As seen in Example 4.2.1, the ARRs are

generated automatically in a recursive way. Therefore, computing the range of

these functions could be a difficult task because of the high number of variables

and multi-incidences of variables. In the following example, SQualTrack is used

without the two improvements proposed in Section 4.2 due to computational

limitations.
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Figure 4.9: Consistency test of the two interval approaches used in this thesis.

4.4.1.1 Application Example

A water-tank system is used in this section to illustrate some differences between

the performance of the SQualTrack and the ICTs. Figure 4.10 shows a schematic

drawing of the system.

The system is composed of two tanks, T1 and T2, a valve, V 1, and a con-

troller, PI1, which receives the current level of T2 as the input, and controls a

valve, V 1, which regulates the flow of water to T1.

Model Equations

The system is described by the elementary analytical relations (EAR) shown in

Table 4.2.

The terms qv, qs1 and qs2 denote the volumetric flows, x1 and x2 are the heights

of the water in tanks T1 and T2, respectively, and u is the output signal of the

controller. The variables u, qv, qs1, qs2, x1, and x2 are unknown, ũ, x̃1, and x̃2

are known variables obtained from sensors, and k, kt1, kt2, S1, S2, l1 and l2 are

the constant parameters of the system.

Four MSO sets were obtained through the structural analysis, which are min-

imal with respect to the set of constraints used in the model (Table 4.3). The

columns of the table correspond to the elementary analytical relations described
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Figure 4.10: Diagram of the coupled water tanks system.

in Table 4.2. The number “1” indicates that the EAR is involved in the corre-

sponding MSO.

For the sake of simplicity, two analytical redundancy relations, obtained from

MSO1 and MSO2, are used to compare the approaches. These ARRs are de-

rived from mass balance considerations of tanks T1 and T2. The corresponding

difference equations obtained using the explicit Euler discretisation are:

r1(k) = x̃1(k) − x̃1(k−1) +
Ts

S1

(

− k ũ(k−1)3 + kt1

√

x̃1(k−1)+l1

)

+ w1(k)

(4.19)

r2(k) = x̃2(k) − x̃2(k−1) +

+
Ts

S2

(

− kt1

√

x̃1(k−1)+l1 + kt2

√

x̃2(k−1)+l2

)

+ w2(k) (4.20)

where Ts is the sample time, equal to 20 s.

Variables w1 and w2 were added to take into account, for example, errors due

to the discretization procedure.

All the variables and parameters are considered as intervals for the consistency

test using SQualTrack and ICTs. The intervals of the measurements include, for

example, the accuracy error and the noise level.
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Table 4.2: Elementary analytical relations of the two coupled tanks system

Elementary Relations Component
(a) qv = k u3 Valve
(b) S1

dx1

dt
= qv − qs1 Upper tank

(c) qs1 = kt1

√
x1 + l1 Output pipe T1

(d) S2
dx2

dt
= qs1 − qs2 Lower tank

(e) qs2 = kt2

√
x2 + l2 Output pipe T2

(f) ũ = u D/A converter
(g) x̃1 = x1 x1 sensor
(h) x̃2 = x2 x2 sensor

Table 4.3: MSO sets of the two-tank system.

a b c d e f g h
MSO1 1 1 1 0 0 1 1 0
MSO2 0 0 1 1 1 0 1 1
MSO3 1 1 0 1 1 1 1 1
MSO4 1 1 1 1 1 1 0 1

Concerning the intervals of the parameters of both ARRs, they were estimated

by using strong consistency techniques that guarantee that data from fault free

scenarios are covered by the interval model. The identified parameters values are

the following ones: k ∈ [0.501, 0.610]10−4 cm3.s−1, kt1 ∈ [0.839, 0.986] cm5/2.s−1,

and kt2 ∈ [1.892, 2.348] cm5/2.s−1. The values of the other interval parameters

are: l1 ∈ [71.0, 71.5] cm, and l2 ∈ [0.0, 0.5] cm.

Simulation Results

The faulty scenario that is considered consists of a clogging fault in the output

pipe of T1. The fault occurs at sample 400.

Fault detection results of SQualTrack presented below were obtained using a

time window of length 5 samples. Larger window lengths could not be used in

this example because of the high computation load and memory consumption.

On the other hand, in the case of ICT (using the Weak-3B consistency technique
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Granvilliers (2004)), a window length of 50 samples was used.

Figures 4.11 and 4.12 show the results obtained by using the ARR1. The fault

detection alarm is turned on only by the ICT at sample 408. Figure 4.11 shows

that there is not a consistent region of parameters when the fault is detected.

Figure 4.12 shows that the interval measurement (solid black line) is within the

external estimate (dashed red line) when the fault is present, so the fault could

not be detected. The internal estimation is the green dotted line.
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Figure 4.11: Weak-3B Consistency Fault Detection using ARR1. The fault is
detected from sample 408.

Figures 4.13 and 4.14 show the results obtained by using ARR2. The clogging

is detected at sample 410 using the ICT.

Notice that for both approaches, when the observed behavior and the model

are not proven to be inconsistent, this means that there is not a fault or it could

not be detected. In this way, the approaches prioritize to avoid false alarms to

missed alarms.

Comparing both approaches, it can be said that ICTs are particularly efficient

to check continuous CSPs with large number of variables and constraints. Unlike

the SQualTrack, the use of constraint propagation for fault detection, i.e. an

iterative reduction of the variable domains, gives an important initial domain

reduction because it uses all the measured variables within the time window.
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Figure 4.12: SQualTrack Fault Detection using ARR1. The fault is not detected.
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Figure 4.13: Weak-3B Consistency Fault Detection using ARR2. The fault is
detected from sample 410.

Moreover, by using the ICTs, the fault detection problem is not restricted to

ARRs consisting of a single equation as in SQualTrack, since it can be described

in a state space representation with multiple state variables.
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Figure 4.14: SQualTrack Fault Detection using ARR2. The fault is not detected.

Finally, SQualTrack provides additional information for fault isolation, as is

explained in Chapter 5. The qualitative information that results from compar-

ing the computed output and the measured output, helps to reduce the set of

diagnoses.
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4.4.2 ICTs vs. a Statistical Decision: Extended Kalman
Filter and Z-test

In the following, a method for robust model based fault detection is briefly de-

scribed. This method, applied e.g. in the TRANSCEND system Biswas et al.

(2003); Mosterman & Biswas (1999); Roychoudhury et al. (2006), includes two

modules:

• a robust observer to track the nominal system dynamics,

• a fault detector which monitors the difference between the observed and

expected behavior (residual) using a statistical testing method.

Plant

Observer

u(t)

y(t)

y(t)

r(t)+

-

Fault Detector Fault Isolation

~

^

Figure 4.15: Block diagram of the observer-based fault diagnosis approach.

The observer, implemented as an Extended Kalman filter (EKF) Gelb (1996),

takes as input the input signals and sensor measurements, and estimates the state

xxx as well as outputs, of a discrete-time system that is governed by a non-linear

stochastic difference equation such as Eq. 4.16.

The random variables www(k) and vvv(k) represent the process modeling errors

and measurement noise, respectively. They are assumed to be independent, white

and with normal probability distribution p(w) ∼ N(0, Q) and p(v) ∼ N(0, R),

where the process noise covariance Q and measurement covariance R matrices

are assumed to be constant. The process covariance matrix captures the effect of

modeling errors and unknown input disturbances to the system. The measure-

ment covariance matrix models sensor discrepancies and measurement noise.

Because the EKF linearizes estimation around the current time point of the

tracking and estimation process, the results obtained are solutions of the linear

approximation and are expected to be an approximation of the solution of the
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nonlinear problem. This approximation may not work well in the presence of

strong nonlinearities.

The fault detector monitors the measurement residual, r(k) = ỹ(k) − ŷ(k),

at every time step, where ỹ is the measured value, and ŷ is the expected system

output, determined by the observer. Ideally, any non-zero residual value implies

a fault, which should trigger the fault isolation scheme. In most real systems,

the measured values are corrupted by noise, and the system model (thus the

prediction system) is not perfect. Therefore, statistical techniques are required

for reliable fault detection.

The fault detector uses a sliding window scheme to compute the residual signal

value at time step k, i.e.,

µ̂N2
(k) =

1

N2

k
∑

i=k−N2+1

r(i), (4.21)

where N2 is the predefined window size.

A hypothesis testing scheme based on the Z-test is employed to establish

the significance of the deviation. To perform the Z-test, the variance of the

measurement residual must be known. The variance of the signal is estimated

using Eq. 4.22, but from a larger data sample of size N1, i.e., N1 >> N2 (Fig.

4.16). The considered VarDelay guarantees that the variance is computed using

data from the system under normal working conditions.

σ̂2
N1

(k) =
1

N1 − 1

k
∑

i=k−N1+1

(r(i) − µN1
(k))2 (4.22)

It is assumed that the variance of the signal remains unchanged after fault

occurrence.

time

Variance

estimation

Mean

estimation
VarDelay

N2N1

r(t)

time

Variance

estimation

Mean

estimation
VarDelay

N2N1

r(t)

Figure 4.16: Scheme of the fault detection using the Z-test.
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The Z-value has distribution N(0,1):

Z =
µ̂

σ/
√

N2

(4.23)

The confidence level, defined by α (see Fig. 4.17), defines the bound [z−, z+]:

P (z− < z < z+) = 1 − α (4.24)

Figure 4.17: Confidence level defined by α.

For example, for a given confidence level of 95% we get:

0.95 = 1 − α = P (z− < z < z+) = P (−1.96 < z < 1.96)

This bound can be transformed to another bound [µ−, µ+] using Eq. 4.23,

and the approximation σ ∼= σ̂N1
:

µ− = z−σ̂N1
/
√

N2

µ+ = z+σ̂N1
/
√

N2 (4.25)

The Z-test is employed in the following manner:

µ− < µ̂N2
< µ+ ⇒ No Fault

otherwise ⇒ Fault

To accommodate measurement noise, inaccuracies in the model and sensitiv-

ity of the detection scheme, one has to trade-off false alarm generation versus

detection delays. Statistical hypothesis testing schemes help to reduce the false

alarm rate, but introduce a delay between the time of occurrence and detection

of faults Roychoudhury et al. (2006).
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4.4.2.1 Summary of Main Differences

The primary differences between the two approaches are presented in Table 4.4.

Table 4.4: Main differences between both techniques.

EKF and Z-test
Interval-based Consistency 

Techniques

Uncertainty
(hypothesis)

Process and measurement 
noise are assumed to be 

Gaussian with zero mean

Unknown but bounded. 
Intervals take into account, 

sensor inaccuracies, 
measurement noise, 

unmodeled dynamics, errors 
in the model, uncertainty in in the model, uncertainty in 

the parameters. 

Model
The filter may not always 
converge, because of the 

linearization approximation

Not sensitive to strong 
nonlinearities or 

nondifferentiabilities
in the dynamic system.

Fault 
Detection

Mean value of the residuals 
within a window is out of a 

threshold (defined by a 
confidence level) 

When no solution is found in 
the CSP

Regarding the computational complexity, it can be said that the EKF and

Z-test are simpler computationally than the interval-based approach. Moreover,

the first approach provides a sign corresponding to the direction of change of the

observation that may be useful for the fault isolation task Mosterman & Biswas

(1999).

4.4.2.2 Application Example

An example of a dynamic system based on two interconnected water tanks is

used to compare both techniques. Figure 4.18 shows a schematic drawing of the

system, which is composed of two tanks, T1 and T2, each having an outflow pipe

for draining the tanks P1 and P2, respectively. The first tank also has a source

of flow, fin, for filling the tank.
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T1 T2

fin

f12
f1 f2

P1 P2

Figure 4.18: The two tank system schematic.

Model Equations

The discrete time model obtained from the mass balance considerations is com-

posed of the following discrete time equations:

x̂1(k+1)=x̂1(k)+ Ts

s1

(

fin(k)−k1

√

x̂1(k)−
−k12sgn(x̂1(k) − x̂2(k))

√

|x̂1(k) − x̂2(k)|
)

+ w1(k)

x̂2(k+1)=x̂2(k)+ Ts

s2

(

−k2

√

x̂2(k)+

+k12sgn(x̂1(k) − x̂2(k))
√

|x̂1(k) − x̂2(k)|
)

+ w2(k)

f̃1(k) =k1

√

x̂1(k) + v1(k)

f̃2(k) =k2

√

x̂2(k) + v2(k)

(4.26)

The terms fin, f1, f2, and f12 denote the volumetric flows, and x1 and x2 are

the heights of the water in tanks T1 and T2, respectively. The variables f12, x1,

and x2 are unknown, and f̃1, and f̃2 are known variables obtained from sensors.

k1, k2, k12, s1, and s2 are the constant parameters of the system. wi(k) is the

perturbation vector at time k, and it takes into account, for example, an error

due to the discretization procedure. vi(k) is the measurement noise of the interval

measurement f̃i. The sample time, Ts, is equal to 1 second.

For the EKF scheme, a matrix of partial derivatives (the Jacobian) is com-

puted. At each time step the Jacobian is evaluated with current predicted states.

This process essentially linearizes the non-linear model around the current esti-

mate. When the height of the tank T1 is greater than the height of the tank T2,
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x1(k) > x2(k), the state transition and observation matrices are defined to be the

following Jacobians:

Fk =
∂f

∂x

∣

∣

∣

∣

x̂k−1|k−1

(4.27)

=

[

1+ Ts

s1
(− k1

2
√

x1
− k12

2
√

x1−x2
) Ts

s1

k12

2
√

x1−x2

Ts

s2

k12

2
√

x1−x2
1+ Ts

s2
(− k2

2
√

x2
− k12

2
√

x1−x2
)

]

Hk =
∂h

∂x

∣

∣

∣

∣

x̂k|k−1

=

[

k1

2
√

x1
0

0 k2

2
√

x2

]

(4.28)

Note that for simplicity in the notation the time step subscript k, in variables

x1 and x2, is not used in the previous matrices, but x1 and x2 are different at

each time step.

The fault detection problem of the two tank system can be represented by a

CSP. The set of variables is

V = {k1, k2, k12, s1, s2, f̃1(k−w), . . . , f̃1(k), f̃2(k−ω)

. . . , f̃2(k), x̂1(k−ω), . . . , x̂1(k−1), x̂2(k−ω)

. . . , x̂2(k−1),www(k−ω), . . . ,www(k−1), vvv(k−ω), . . .

vvv(k−1)}

the set of domains is

D = {K1, K2, K12, S1, S2, F̃1(k−ω), . . . , F̃1(k), F̃2(k−ω)

. . . , F̃2(k), X̂1(k−ω), . . . , X̂1(k−1), X̂2(k−ω)

. . . , X̂2(k−1),WWW (k−ω), . . . ,WWW (k−1),VVV (k−ω), . . .

VVV (k−1)}

where

X̂1(.) = [0.00, 0.60]

X̂2(.) = [0.00, 0.60]

W1(.) = [−0.001, 0.001]

W2(.) = [−0.001, 0.001]
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The domains V1(.) and V2(.) considered for different tuning configurations are

presented in Table 4.5.
The set of constraints is

C = {f̃1(k−ω)=k1

√

x̂1(k−ω) + v1(k−ω)

f̃2(k−ω)=k2

√

x̂2(k−ω) + v2(k−ω)

x̂1(k−ω+1)= x̂1(k−ω)+
Ts

s1

(

fin(k−ω)−k1

√

x̂1(k−ω)−

−k12sgn(x̂1(k−ω) − x̂2(k−ω))
√

|x̂1(k−ω) − x̂2(k−ω)|
)

+

+w1(k−ω)

x̂2(k− ω +1)= x̂2(k−ω)+
Ts

s2

(

−k2

√

x̂2(k−ω)+

+k12sgn(x̂1(k−ω) − x̂2(k−ω))
√

|x̂1(k−ω) − x̂2(k−ω)|
)

+

+w2(k−ω)

...

x̂1(k)= x̂1(k−1)+
Ts

s1

(

fin(k−1)−k1

√

x̂1(k−1)−

−k12sgn(x̂1(k−1) − x̂2(k−1))
√

|x̂1(k−1) − x̂2(k−1)|
)

+

+w1(k−1)

x̂2(k)= x̂2(k−1)+
Ts

s2

(

−k2

√

x̂2(k−1)+

+k12sgn(x̂1(k−1) − x̂2(k−1))
√

|x̂1(k−1) − x̂2(k−1)|
)

+

+w2(k−1)

f̃1(k)=k1

√

x̂1(k) + v1(k)

f̃2(k)=k2

√

x̂2(k) + v2(k) }.

Simulation Results

The scenario considered in this comparison deals with a clogging in the output

pipe of the tank T2. The fault occurs at time 200 s. Two different fault profiles are

considered: incipient and abrupt. For the abrupt case, two magnitude deviations

are used, a small (5%) change, and a larger change (10%) from the nominal value.

White Gaussian noise (zero mean and standard deviation equal to 1.5% or 3%

of the measured signal) was added to the measurements. One hundred runs were
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conducted for each noise level, fault size, and tuning parameter combination of

both (the statistical decision and the interval-based) approaches.

Table 4.5 lists the parameter values that were used to test the fault detection

performance. These parameter values were chosen to show the trade-off between

fault detection and false alarm rate. In the EKF, the process noise covariance

matrix Q was varied, and consequently, the gain of the observer, permitting that

the actual measurements are “trusted” more and the predicted measurements

are trusted less, or the opposite. In the Z-test, the window length N2 was varied

between 5 to 9 samples and the confidence level from 2.6σ to 3σ. Similarly, in

the interval-based technique (using the BC4 consistency technique Granvilliers

(2004)), the measurement intervals and the window length were varied.

Table 4.5: Fault Detection system design parameters.

EKF and Z-test
Interval-based Consistency 

Technique

Window length N2 = {5,7,9} Window length w = {5,10,15,20,25}

Confidence level z+ = {2.6,2.8,3.0} Measurement Intervals Vi = 
{�2.6σ, �2.8σ, �3.0σ}

Window Length N1 = 50 Parameter intervals and perturbation Window Length N1 = 50 Parameter intervals and perturbation 
vector Wi between � 0.1% … � 1%

VarDelay = 100 BC4 consistency technique (local) 
used

Measurement Covariance R=constant

Process Noise Covariance Q = 
{0.003,0.0003,0.00003}*I2

Figures 4.19 and 4.20 show the fault detection results for both techniques, for

an incipient clogging fault in the output pipe P2.

In the statistical decision approach, the tuning parameters for this figure are

N2 = 9, z+ = 3.0, and Q = [0.00003]I2. The vertical lines, in both residuals,

indicate the time instant when the fault was detected. In the interval-based

approach, the window length is equal to 25, and the interval for the measurement

intervals is ±3.0σ.

The mean values of the fault detection times (including the standard deviation

in parentheses), the false alarm rates, and the missed alarm rates are reported

in Tables 4.6 and 4.7. By analyzing the previous information, the following

conclusions can be drawn.
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Figure 4.19: EKF and Z-test fault detection. N2 = 9, z+ = 3.0, and Q =
[0.00003]I2.
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Figure 4.20: Interval-based consistency technique fault detection. ω = 25, and
Vi = ±3.0σ.

Firstly, regarding the interval-based consistency technique:

• When the confidence interval of the noise increases, then False Alarm (FA)

rate decreases, and Fault Detection (FD) time or Missed Alarm (MA) rate

increases. These relationships can be seen in Fig. 4.21 and 4.22 (incipient

fault), and Fig. 4.23 (abrupt fault), where there is a trade-off between FD

time/MA rate and the FA rate varying the noise interval.
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Table 4.6: Results with different fault magnitudes and noise level equal to 1.5%
(all times are expressed as time steps from the start of the experiment).

w FA % MA % MA % MA %

5 28 0 337 (43) 20 201 (55) 0 201 (0,1)

10 30 0 274 (27) 10 203 (17) 0 201 (0,1)

15 30 0 252 (19) 4 204 (17) 0 201 (0,1)

20 30 0 242 (15) 3 204 (16) 0 201 (0,1)

25 30 0 238 (14) 3 204 (16) 0 201 (0,2)

5 6 0 368 (35) 38 208 (30) 0 201 (0,0)

10 7 0 291 (23) 23 207 (27) 0 201 (0,0)

15 7 0 263 (18) 18 207 (26) 0 201 (0,0)

20 7 0 252 (14) 17 207 (26) 0 201 (0,0)

25 7 0 246 (13) 17 207 (26) 0 201 (0,1)

5 2 0 391 (34) 64 202 (01) 0 201 (0,0)

10 2 0 307 (18) 46 202 (01) 0 201 (0,0)

15 2 0 275 (16) 39 203 (03) 0 201 (0,0)

20 2 0 260 (14) 39 203 (03) 0 201 (0,0)

25 2 0 252 (12) 39 203 (03) 0 201 (0,0)

[-2.6σ,+2.6σ]

(99.07%)

[-2.8σ,+2.8σ]

(99.49%)

[-3.0σ,+3.0σ]

(99.73%)

Abrupt Fault 5% Abrupt Fault 10%

FD(s) FD(s) FD(s)

Confidence

Interval

Interval-based Consistency Technique

Incipient Fault

N2 Q FA % MA % MA % MA %

5 1 1 0 404 (33) 6 203 (0,9) 0 202 (0,5)

7 1 0 0 391 (31) 17 204 (1,7) 0 203 (0,5)

9 1 0 0 387 (25) 31 205 (2,5) 0 203 (0,4)

5 2 4 0 378 (40) 5 202 (1,0) 0 202 (0,5)

7 2 0 0 371 (35) 10 204 (1,7) 0 202 (0,5)

9 2 0 0 366 (30) 13 205 (2,5) 0 203 (0,4)

5 3 26 0 245 (24) 0 203 (1,1) 0 202 (0,5)

7 3 10 0 242 (19) 0 203 (1,8) 0 202 (0,5)

9 3 1 0 241 (17) 0 204 (2,5) 0 202 (0,2)

5 1 0 0 423 (34) 10 203 (0,8) 0 202 (0,4)

7 1 0 0 411 (30) 31 204 (1,5) 0 203 (0,5)

9 1 0 0 399 (26) 51 205 (2,3) 0 203 (0,5)

5 2 1 0 403 (35) 5 203 (0,9) 0 202 (0,5)

7 2 0 0 389 (32) 13 204 (1,6) 0 203 (0,5)

9 2 0 0 383 (26) 27 205 (2,5) 0 203 (0,4)

5 3 12 0 260 (30) 0 203 (0,9) 0 202 (0,5)

7 3 4 0 256 (23) 0 203 (1,7) 0 202 (0,5)

9 3 0 0 251 (19) 0 204 (2,2) 0 203 (0,3)

5 1 0 2 437 (36) 18 204 (0,8) 0 203 (0,3)

7 1 0 0 427 (29) 44 204 (0,8) 0 203 (0,4)

9 1 0 0 414 (27) 66 206 (1,0) 0 203 (0,5)

5 2 0 0 420 (34) 9 204 (0,8) 0 202 (0,4)

7 2 0 0 408 (29) 29 204 (1,0) 0 203 (0,5)

9 2 0 0 396 (26) 44 205 (1,3) 0 203 (0,5)

5 3 5 0 273 (31) 1 203 (0,8) 0 202 (0,4)

7 3 1 0 269 (28) 0 204 (1,1) 0 202 (0,5)

9 3 0 0 263 (23) 0 204 (1,4) 0 203 (0,5)

Abrupt Fault 10%

EKF and Z-test

FD (s) FD (s) FD (s)

Incipient Fault Abrupt Fault 5%

Confidence

Interval

[-2.6σ,+2.6σ]

(99.07%)

[-2.8σ,+2.8σ]

(99.49%)

[-3.0σ,+3.0σ]

(99.73%)
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Table 4.7: Results with different fault magnitudes and noise level equal to 3%
(all times are expressed as time steps from the start of the experiment).

N2 Q FA % MA % MA % MA %

5 1 3 71 452 (62) 74 204 (1,2) 5 203 (0,9)

7 1 0 66 473 (23) 91 206 (1,9) 13 204 (1,7)

9 1 0 45 474 (26) 96 209 (1,9) 26 205 (2,4)

5 2 6 11 392 (44) 41 204 (1,1) 1 203 (0,8)

7 2 1 6 434 (19) 62 205 (1,7) 3 203 (1,0)

9 2 0 4 431 (33) 79 206 (2,1) 3 204 (1,5)

5 3 86 0 226 (35) 0 205 (8,1) 0 203 (0,7)

7 3 67 0 226 (20) 0 207 (1,7) 0 203 (0,8)

9 3 48 0 226 (20) 0 206 (2,2) 0 203 (0,8)

5 1 0 86 460 (55) 83 204 (1,2) 8 203 (0,9)

7 1 0 77 476 (50) 94 206 (2,3) 29 204 (1,6)

9 1 0 70 476 (39) 99 210 (0,0) 47 205 (0,0)

5 2 4 34 399 (56) 53 203 (1,2) 1 203 (0,9)

7 2 0 28 445 (41) 79 205 (1,3) 4 204 (1,3)

9 2 0 10 454 (34) 88 207 (2,6) 5 204 (1,9)

5 3 68 0 233 (60) 0 207 (4,1) 0 203 (0,7)

7 3 43 0 229 (32) 2 205 (1,7) 0 203 (0,8)

9 3 26 0 229 (30) 1 206 (2,3) 0 203 (0,8)

5 1 0 94 458 (14) 90 204 (1,3) 16 204 (1,0)

7 1 0 88 479 (10) 95 207 (1,7) 41 204 (1,7)

9 1 0 82 481 (09) 99 210 (0,0) 65 205 (0,0)

5 2 1 56 426 (14) 68 205 (1,2) 3 203 (0,9)

7 2 0 51 464 (12) 86 205 (1,6) 6 204 (1,4)

9 2 0 33 458 (10) 90 208 (2,3) 7 205 (2,0)

5 3 43 0 237 (16) 1 206 (4,0) 0 203 (0,7)

7 3 24 0 236 (13) 2 207 (1,9) 0 203 (0,8)

9 3 15 0 234 (12) 3 206 (2,3) 0 204 (0,8)

EKF and Z-test

FD (s) FD (s) FD (s)

Incipient Fault Abrupt Fault 5% Abrupt Fault 10%

Confidence

Interval

[-2.6σ,+2.6σ]

(99.07%)

[-2.8σ,+2.8σ]

(99.49%)

[-3.0σ,+3.0σ]

(99.73%)

w FA % MA % MA % MA %

5 40 1 399 (62) 66 323 (97) 15 213 (18)

10 43 0 317 (43) 58 307 (95) 0 203 (1,5)

15 46 0 285 (33) 52 296 (94) 0 202 (1,1)

20 47 0 270 (28) 50 293 (94) 0 201 (1,1)

25 47 0 259 (23) 50 293 (94) 0 201 (1,1)

5 12 17 438 (55) 89 291 (87) 28 211 (18)

10 13 0 348 (37) 83 278 (82) 9 204 (1,6)

15 14 0 310 (29) 79 274 (81) 1 204 (1,7)

20 14 0 288 (25) 74 262 (77) 0 204 (1,8)

25 14 0 277 (23) 74 261 (78) 0 204 (1,7)

5 4 39 456 (46) 96 258 (66) 49 205 (0,9)

10 4 0 371 (32) 95 248 (62) 24 204 (1,5)

15 4 0 328 (28) 94 242 (57) 11 202 (2,0)

20 4 0 304 (22) 93 243 (52) 9 203 (2,5)

25 4 0 291 (19) 93 243 (52) 9 203 (2,5)

FD(s)

[-2.6σ,+2.6σ]

(99.07%)

[-2.8σ,+2.8σ]

(99.49%)

[-3.0σ,+3.0σ]

(99.73%)

Confidence

Interval

Interval-based Consistency Technique

Incipient Fault Abrupt Fault 5% Abrupt Fault 10%

FD(s) FD(s)
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4.4 Comparing Interval-based Consistency Techniques and Other
Methods for Fault Detection

5
10

15
20

25 2.6

2.8

3
0

5

10

15

20

25

30

Noise Confidence Interval
Window length

Fa
ls

e 
Al

ar
m

 ra
te

 (%
)

Figure 4.21: False alarm rate using the interval-based technique. Incipient clog-
ging fault in the output pipe P2.
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Figure 4.22: Fault detection times using the interval-based technique. Incipient
clogging fault in the output pipe P2.

• For incipient faults, increasing the window length ω, decreases the time

to FD. In Fig. 4.24, the results indicate that as the noise level in the

measurements increases, the FD time also increases.

Secondly, regarding the Extended Kalman Filter and Z-test:

• Similarly to the previous technique, there is a trade-off between FD time/MA

rate and the FA rate, when varying the noise confidence interval of the Z-

test, as can be seen in Figs. 4.25 and 4.26.

• If the window length N2 used to compute the mean residual increases, the

variations in the computed mean are more smooth, then the FA rate de-

creases.
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Figure 4.23: Missed detection rate (dark surface) and False alarm rate (light
surface) using the interval-based technique. Abrupt clogging fault in the output
pipe P2.
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Figure 4.24: Fault detection times with different noise levels using the interval-
based technique: 1.5% solid line and 3% dashed line. Incipient clogging fault in
the output pipe P2.

Finally, comparing both approaches, the detection times are similar, and re-

garding the incipient and the abrupt case:

• Incipient fault. By looking at the results of both methods with similar

FA rates, similar FD times can be achieved but with window length ω

much greater than the window length N2. This is because the EKF stores

information from the past, whereas for the interval-based technique, the

consistency is checked within a window.

• Abrupt fault. EKF and Z-test is more sensitive to smaller magnitudes than

the interval based technique, in which the fault is masked by the uncertainty

of the model and measurements.
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Figure 4.25: Fault detection times using a statistical decision approach. Incipient
clogging fault in the output pipe P2.
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Figure 4.26: False alarm rate using a statistical decision approach. Incipient
clogging fault in the output pipe P2.
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4.5 Conclusions and Contributions

At the beginning of this chapter, two improvements to the software SQualTrack

were proposed to increase the fault detection performance. The dynamic refine-

ment of the parameters space and the measurements space were tested on a simple

chemical plant.

Because of some limitations when implementing ARRs in SQualTrack, an-

other approach based on interval-based consistency techniques was proposed.

The SQualTrack and an ICT were applied to an application example on the same

computer. A maximum window length of 5 samples could be used in SQualTrack

because of the high computation load and memory consumption. This limitation

did not allow it to detect the fault. On the other hand, in the case of an ICT

(using the Weak-3B consistency technique), a window length of 50 samples was

used and the fault was detected.

Moreover, by using the ICTs, the fault detection problem is not restricted to

ARRs consisting of a single equation as in SQualTrack, since it can be described

in a state space representation with multiple state variables.

Finally, a technique based on a robust observer and a statistical fault detector

was compared to an ICT. In the first approach, the EKF and Z-test are designed

for tracking and fault detection in systems where it is reasonable to capture mea-

surement noise and modeling errors as Gaussian processes. In some situations,

when the distributions are not Gaussian Orlov (1991) or when the only avail-

able information can be expressed as uncertainty bounds (in, e.g., measurements,

parameters, and perturbation), interval-based techniques can be used.

Computational complexity of EKF and Z-test technique is lower than in the

case of the interval-based technique, in which bisections have to be performed to

obtain less overestimation of the solution.

In general, comparing the performance parameters of the fault detection, both

techniques yielded similar fault detection results for a proper combination of tun-

ing parameters. In both techniques, a compromise between false alarms, missed

detections and detection delays can be made varying the noise confidence interval.

Note that the Gaussian noise added in the example, favors the EKF and Z-test

technique. In the future, this analysis can be extended to a scenario with bounded
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measurement noise to compare again the performance of both techniques in this

situation which favors the interval-based techniques.
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Chapter 5

Qualitative Fault Diagnosis:
Isolation

Summary

The work presented in this chapter is an attempt to improve the fault isolation

in the consistency-based and analytical redundancy approaches. The objective

is to reduce adequately the set of diagnoses and to minimize the time required

for fault isolation. When enough information becomes available, additional infor-

mation obtained from the fault models and their effect on the system could be

incorporated into the fault isolation task.

In Section 5.3, a diagnosis reasoning in which the signs of the partial deriva-

tives are derived from analytical redundancy relations is proposed. The signs are

integrated into the fault signature matrix, to be compared with the deviations of

the residuals calculated using the SQualTrack.

Also, this chapter presents a method implemented in the Transcend method-

ology that generates qualitative fault signatures when a bond graph model of the

system is available. This method is based on Temporal Causal Graphs that use

the causality of a bond graph and capture causal and temporal relations between

parameters and measurements. Afterwards, this technique is briefly compared

with the previous one explained in this chapter, and it is extended to the anal-

ysis of symbol generation for faults with a discontinuous change in a measure-

ment. Furthermore, a way to distinguish signatures with a discontinuous and

non-discontinuous effect is proposed.

101



5.1 Related Work

The work presented in this chapter was partially developed during my research

stay at Vanderbilt University (Nashville-USA), under the supervision of Prof.

Gautam Biswas.

5.1 Related Work

Some work has been carried out in the topic of taking into account deviations in

symptoms (as they are called in the DX community) or in residuals (as they are

called in the FDI community).

In Chang et al. (1994) one approach based on parity equations uses the sen-

sitivity of each parity equation with respect to a fault. The fault isolation stage

consists of two steps: to find the degree or level of the fault and to check the

consistency of the assumed fault from each parity equation. This approach is

restricted to a nominal steady state in a system, so doing a static diagnosis.

In Olive et al. (2003), two approaches were presented: an interval-based

method and a sign-based method. The interval-based method uses an antici-

pated dictionary of faults and gives bounds in measurements to every fault. In

the sign-based method, faults are expressed in terms of deviations w.r.t. the nom-

inal values. By studying the sign of the partial derivatives, the faulty parameters

provide a signed influence of the parameters on each test.

The approach proposed in Console et al. (2003) consists of deriving semi-

automatically, qualitative deviation models from quantitative models developed

in MatlabTM . The general objective is to analyze the behavior in terms of: (i)

how a variable deviates from its nominal value when a fault occurs, and (ii) how

the deviation of the input variables influence the deviation of the output variables.

In Puig et al. (2005), a method that combines five fault signature matrices is

used for the fault isolation process. The matrices store knowledge about faulty

system behavior: boolean fault signal occurrence, signs of residual violation, sen-

sitivities, time of fault signal activation and fault signal occurrence order. This

paper is mainly focused in the functions that link each fault signature matrix to

events in the residual history.

Another proposal, described in Calderón et al. (2005), consists of creating a

fault library containing qualitative information. Data are obtained from devia-
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tions resulting from interval fault detection. Qualitative information about the

deviations is used to create rules for faulty behaviors.

Kościelny et al. (2006) presents a fault distinguishability study for the DAMADICS

benchmark. To improve the fault isolation task, the fault signature matrix is com-

pleted with three values, {−1, 0, +1}, using experts’ heuristic knowledge about

influence of faults on residuals.

The TRANSCEND methodology Manders et al. (2000); Mosterman & Biswas

(1999) employs a qualitative model-based approach for fault isolation. System

models are constructed using bond graphs. It utilizes a Temporal Causal Graph

(TCG) representation, which is derived directly from the bond graph model of the

system. The qualitative effect of a fault is propagated to all measurements using

the TCG to determine fault signatures for each measurement. This approach is

described in more detail in Section 5.4.

5.2 Additional Information Sources for Fault Iso-

lation

In general, the fault isolation task uses a binary vector that contains the result of

the fault detection tests, and a fault signature matrix linking faults and ARRs.

The diagnosis could be improved if additional information is taken into account,

as for example the following sources cited in Puig et al. (2004):

• the sign of the symptom,

• the sensitivity of the symptom with respect to each fault,

• the order of the symptom appearance of a given ARR with respect to the

others,

• the persistency of the symptom indicator for each ARR after a fault,

• the time elapsed between fault occurrence and symptom appearance.

Moreover, these information sources can be extracted from (i) analytical par-

tial models of system with faults, (ii) real data acquisition for all faulty states, and
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(iii) expert’s heuristic knowledge about influence of faults in residuals Kościelny

et al. (2006).

Discriminatory ability can also be improved by adding more sensors, however,

in many applications, adding extra sensors may not be cost-effective or physically

possible Daigle (2008). Sensors may also be faulty, which adds to the complexity

of diagnosis.

In particular, the sign of the symptom using the sensitivity of the fault detec-

tion tests with respect to each fault is considered in this dissertation. This work

proposes to perform this analysis using the internal form of the residuals. This

information completes the boolean fault signature matrix that is compared with

the results of, for example, the SQualTrack.

5.3 Signs of the Symptoms using the Sensitivity

Matrix

The elementary analytical relations of a model can include information on how

possible faults can influence the process. These faults may be represented as

unknown extra inputs acting on the system (additive faults), or as changes in

some plant parameters (multiplicative faults) Gertler (1998). Each ARR can

be rewritten by including knowledge about the component fault modes into the

model. For example, additive faults can represent plant leaks or biases in sen-

sors, and multiplicative faults can represent clogging or deterioration of plant

equipment.

This new ARR associated model has a computational form (rcomp) and an

internal form (rint). The computational form is based on known variables, and

the internal form is based on, for example, faults, known variables, disturbances

and modeling errors. The internal form is not computable because the value of

the fault is not known, but it does allow to abstract information about the way

in which a fault can act.

As in Chang et al. (1994), the sensitivity S is an m · n matrix (where m is

the number of ARRs, and n is the number of faults) with the entry sji in the

jth row and ith column. The term sji can be viewed as being the sensitivity of
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5.3 Signs of the Symptoms using the Sensitivity Matrix

the model associated with the jth ARR, (rj), with respect to the ith fault, (fi).

Mathematically, this is expressed as

sji =
∂rint

j

∂fi

(5.1)

The function sji depends on the process measurements and system parameters.

Then, the sign of the sensitivities, sgn(sji), can be inferred for the domain of the

parameters and the measured signals (the function sgn(sji) takes the value of +1

when sji > 0, −1 when sji < 0, and 0 when sji = 0). However, in some cases,

sgn(sji) can change according to the values of the measurements. Therefore, the

corresponding cell of the table of sgn(S) cannot be completed beforehand without

calculating the sensitivity at each moment.

The possible sign of a fault, f , can be:

• ±1, when f > 0 or f < 0, e.g. the fault is a bias in a sensor which can be

positive or negative; or

• +1 (when f > 0) or −1 (when f < 0), e.g. the fault is a leak in a tank

which always has the same sign.

A new fault signature matrix can be constructed by multiplying the sign of

the sensitivity by the sign of the corresponding fault. Then the elements can be:

{0, +1,−1,±1,∓1}.

• 0, if the fault does not affect the ARR

• +1, when a fault f > 0 affects the symptom with a positive sign

• −1, when a fault f > 0 affects the symptom with a negative sign

• ±1, when the sign of a fault is ±1. If f > 0, the fault affects the symptom

with a positive sign, and if f < 0, the fault affects the symptom with a

negative sign

• ∓1, when the sign of a fault is ±1. If f > 0, the fault affects the symptom

with a negative sign, and if f < 0, the fault affects the symptom with a

positive sign
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5.3 Signs of the Symptoms using the Sensitivity Matrix

The diagnostic procedure will incrementally generate a set of candidates when

a new fault is detected, without providing a transient erratic diagnosis. According

to Cordier et al. (2004), the DX approach follows a row view of the fault signature

matrix, considering each line separately corresponding to a confirmed ARR, and

isolating the ARR before searching for a common explanation. A fault signature

matrix with the sign of the symptom helps to discard some diagnostics.

5.3.1 Qualitative Fault Isolation Results using SQualTrack

SQualTrack guarantees that a fault exists when the intersection between the

interval measurement and the external envelope is void. Therefore, there are

two possibilities for analyzing the internal and computational forms of the model

associated with a residual generator: either the external envelope is greater than

the interval measurement, and the sign of the symptom would be −1, or the

external envelope is smaller than the interval measurement, and the sign would

be +1. This can be seen in Fig. 5.1, where the interval measurement is shown

by the solid lines, and the inner and outer envelope are shown by the dotted and

dashed lines, respectively.
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Figure 5.1: SQualTrack Fault Detection: (a) when the sign of the symptom is
+1, and (b) when the sign of the symptom is −1.

106



5.3 Signs of the Symptoms using the Sensitivity Matrix

5.3.2 An Application to Coupled Water Tanks

A linearized version of the two-tank system introduced in Section 4.4.1 is used to

explain the obtainment of additional information from the model for diagnostic

reasoning. Linearization is used to simplify the explanation of the proposed

strategy for fault diagnosis, but notice that SQualTrack and the proposed method

can also be used for nonlinear models.

5.3.2.1 Faults

Assume that nine possible fault scenarios are considered.

• Sensor x1:

– f1: an additive fault (bias), with f1 > 0 or f1 < 0.

– f2: a multiplicative fault, with f2 > 0.

• Sensor x2:

– f3: an additive fault (bias), with f3 > 0 or f3 < 0.

– f4: a multiplicative fault, with f4 > 0.

• D/A converter:

– f5: an additive fault (bias), with f5 > 0 or f5 < 0.

• Tank T1 and its output pipe:

– f6: a constant leak, with f6 > 0.

– f7: a clogging fault in the output pipe, with f7 > 0.

• Tank T2 and its output pipe:

– f8: a constant leak in tank T2, with f8 > 0.

– f9: a clogging fault in the output pipe, with f9 > 0.

Extending the model to include faults provides the relationships shown in

Table 5.1.
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Table 5.1: Extended model including faults for the two coupled tanks system

Elementary Relationships

(a) qv = k u
(b) S ẋ1 = qv − qs1 − f6

(c) qs1 = ks1 x1 (1 − f7)
(d) S ẋ2 = qs1 − qs2 − f8

(e) qs2 = ks2 x2 (1 − f9)
(f) ũ = u + f5

(g) x̃1 = x1 (1 − f2) + f1

(h) x̃2 = x2 (1 − f4) + f3

5.3.2.2 FSM taking into account Residual Signs

The computational forms of the two residual generators analyzed in Section 4.4.1

are

rcomp
1 = S ˙̃x1 − k ũ + ks1 x̃1 (5.2)

rcomp
2 = S ˙̃x2 − ks1 x̃1 + ks2 x̃2 (5.3)

and the corresponding internal forms are:

rint
1 = +f1 ks1 − f2 k ũ − f5 k − f6 + f7 ks1 x̃1 +

+ f2 f6 + f2 f5 k − f1 f7 ks1 (5.4)

rint
2 = −f1 ks1 + f2

(

S ˙̃x2 + ks2 x̃2

)

+ f3 ks2 −
− f4 ks1 x̃1 − f7 ks1 x̃1 − f8 + f9 ks2 x̃2 +

+ f2 f8 + f4 f8 − f2 f4 f8 + f1 f4 ks1 +

+ f1 f7 ks1 − f1 f4 f7 ks1 − f2 f3 ks2 −
− f3 f9 ks2 + f2 f3 f9 ks2 + f4 f7 ks1 x̃1 −
− f2 f9 ks2 x̃2 (5.5)

In this work, only single faults are considered, fi fj = 0, ∀i 6= j, and so some
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terms in the internal forms can be simplified.

rint
1 = +f1 ks1 − f2 k ũ − f5 k − f6 + f7 ks1 x̃1

(5.6)

rint
2 = −f1 ks1 + f2

(

S ˙̃x2 + ks2 x̃2

)

+ f3 ks2 −
− f4 ks1 x̃1 − f7 ks1 x̃1 − f8 + f9 ks2 x̃2

(5.7)

By inspecting the internal forms, the structure of the influence of the faults

in the ARRs can be concluded to be as shown in Table 5.2. A number “1” in row

j and column i of the table denotes that fault i influences the ARR j ideally.

Table 5.2: Influence of the faults in ARRs.

f1 f2 f3 f4 f5 f6 f7 f8 f9

r1 1 1 0 0 1 1 1 0 0
r2 1 1 1 1 0 0 1 1 1

The signs of sji are shown in Table 5.3. For example, the sensitivity of the

ARR r1 with respect to the fault f7 is:

s1,7 =
∂rint

1

∂f7

= +ks1 x̃1 (5.8)

Since ks1 > 0 and x̃1 > 0, the sign of s1,7 is +1.

Table 5.3: Sign of the sensitivity of a symptom with respect to each fault.

f1 f2 f3 f4 f5 f6 f7 f8 f9

r1 +1 −1 0 0 −1 −1 +1 0 0
r2 −1 +1 +1 −1 0 0 −1 −1 +1

The sign of the model associated with a residual generator by considering

the possible variation in the sign of each fault is analyzed for each case in Table

5.4. For example, for r1 and f1, if f1 is positive, then the symptom of r1 will be

positive. Consequently, if f1 is negative, then the symptom of r1 will be negative.

This behavior is reflected in the table using ±1.
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Table 5.4: ARRs and their related fault modes using the sign of the symptom.

f1 f2 f3 f4 f5 f6 f7 f8 f9

r1 ±1 −1 0 0 ∓1 −1 +1 0 0
r2 ∓1 +1 ±1 −1 0 0 −1 −1 +1

5.3.3 Diagnosis Results

Table 5.5 shows the sets of possible diagnostics obtained using the DX approach

when the sign of the residuals is used, and when it is not used. The signs help

with discarding some diagnostics, and so the sets are reduced.

Table 5.5: Diagnosis using and not using signs.

Symptoms Diagnosis Diagnosis
sgn(r1) sgn(r2) using signs
−1 −1

f1,f2,f7

–
−1 +1 f1,f2

+1 −1 f1,f7

+1 +1 –
−1 0

f1,f2,f5,f6,f7
f1,f2,f5,f6

+1 0 f1,f5,f7

0 −1
f1,f2,f3,f4,f7,f8,f9

f1,f3,f4,f7,f8

0 +1 f1,f2,f3,f9

5.3.4 Simulation Results

A faulty scenario involving a clogging fault in the output pipe of T1, f7, is consid-

ered. The values of the variables are represented by intervals to take into account

any associated uncertainty in the measurements. The parameters of the model

are also taken as intervals for the same reason.

The discrete forms of the ARRs are used in SQualTrack. Then, the compu-
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5.3 Signs of the Symptoms using the Sensitivity Matrix

tational forms of rcomp
1 and rcomp

2 are introduced as follows.

x̃1(k) = x̃1(k−1) − Ts

S

(

− k ũ(k−1) + ks1 x̃1(k−1)
)

(5.9)

x̃2(k) = x̃2(k−1) − Ts

S

(

− ks1 x̃1(k−1) + ks2 x̃2(k−1)
)

(5.10)

Figures 5.2 and 5.3 show a window from SQualTrack for the models of r1 and

r2, respectively.
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Figure 5.2: SQualTrack Fault Detection using r1 corresponding to fault f7 begin-
ning at sample 200. The fault is detected from sample 221.

The upper graphs show the envelopes of the output variable (the inner en-

velope in dotted lines, and the outer envelope in dashed lines), and the interval

measurements in solid lines.

The lower graphs indicate a “1” when a fault is detected.

In all the graphs, the time is expressed in samples, and the sample time Ts is

10 s. The time windows, of lengths 15 and 25 samples are used. The fault begins

at sample 200. For the r2 case, the fault is detected from sample 214, and for the

r1 case, the fault is detected from sample 221.

Table 5.6 illustrates the diagnostics obtained either by considering or not the

signs corresponding at the times in which each symptom appear.
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Figure 5.3: SQualTrack Fault Detection using r2 corresponding to fault f7 begin-
ning at sample 200. The fault is detected from sample 214.

Table 5.6: Diagnostics for the fault scenario

Sample 214 221

Symptoms
sgn(r1) = 0 sgn(r1) = +1
sgn(r2) = −1 sgn(r2) = −1

Diagnosis f1 ∨ f2 ∨ f3 ∨ f4 ∨ f7∨ f1 ∨ f2 ∨ f7

∨f8 ∨ f9

Diagnosis
f1 ∨ f3 ∨ f4 ∨ f7 ∨ f8 f1 ∨ f7using signs
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5.4 Signs of the Symptoms using Bond Graph Models

5.4 Signs of the Symptoms using Bond Graph

Models

Bond Graph (BG) modeling is a method of modeling dynamic systems which was

established by Prof. H. Paynter in 1959. BGs are domain-independent, topolog-

ical, lumped-parameter models that capture the energy exchange mechanisms in

physical processes Karnopp et al. (2000).

The method is based on a central physical concept, energy, and the same

methodology is used for different types of systems (such as, e.g. mechanical,

electrical, thermic, hydraulic) Ljung & Glad (1994). Another advantage is that

the bond graph description of a dynamic system can automatically be translated

into state-space equations Karnopp et al. (2000).

Bond graph is a directed graph whose nodes represent primitive elements, and

whose connecting edges, called bonds, represent the transfer of energy between

the subsystems.

Each bond is associated with two variables:

• effort, which can correspond to an electrical voltage, a mechanical force, or

a hydraulic pressure,

• flow, which can correspond to an electrical current, a mechanical velocity,

or a hydraulic volume flow rate.

The product of effort and flow is power, i.e., the rate of energy transfer.

The nodes include Gawthrop & Bevan (2007):

• energy storage: C and I. C component can correspond to an electrical ca-

pacitor or a mechanical spring. I component can correspond to an electrical

inductor or a mechanical mass.

• energy dissipation: R. R component can correspond to an electrical resistor

or a mechanical damper.

• energy transformation: TF and GY . The TF component generalizes an

electrical transformer, which has the property that the ratio of voltages

(efforts) at the two terminals is the inverse of the ratio of current. The
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5.4 Signs of the Symptoms using Bond Graph Models

GY component generalizes a gyrator. The name gyrator arises from the

property of a gyroscope that angular velocity (flow) is converted into torque

(effort).

• source elements: Se and Sf . Source of effort Se can correspond to an ideal

voltage source or an applied force. Source of flow Sf can correspond to an

ideal current source or an applied velocity.

0− and 1−junctions model the equivalent of an electrical parallel (common-

effort) and series (common-flow) connection, respectively Gawthrop & Bevan

(2007). For a 0−junction, as the Kirchhoffs voltage law, the efforts of all in-

cident bonds are equal, and the sum of flows is zero. Likewise, for a 1−junction,

similar to the Kirchhoffs current law, the flows of all incident bonds are equal,

and the sum of efforts is zero.

Causality establishes the cause and effect relationships between the factors

of power, which are effort and flow. In each bond, the input and output are

characterized by the causal stroke which is placed at the end on only one side of

a bond.

The assignment of causality to a bond graph can usually be accomplished

automatically by computer if the causality is specified at key points on the graph,

usually the external ports, and if some general preference for integral or derivative

causality is expressed by the modeler Gawthrop & Bevan (2007). After specifying

the causality at the external interfaces, it is generally advisable for the modeler

to specify the preferred causality of the system C and I components. These

components may have either integral or derivative causality. For simulation or

state-space representations, integral causality is usually preferable since it leads to

ordinary differential equations (ODEs), which can be computed without recourse

to computationally intensive differential algebraic equation (DAE) solvers.

The causal and temporal relations between system variables can be derived

directly from the bond graph model of the system, and represented as a Temporal

Causal Graph (TCG) Mosterman & Biswas (1999). It specifies the signal flow

graph of the system in a form where edges are labeled with single component

parameter values or direct or inverse proportionality relations.
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Definition 5.4.1. Temporal Causal Graph Roychoudhury et al. (2006). A TCG
is a directed graph < V, L,D >. V = E ∪ F , where V is a set of vertices, E is
a set of effort variables and F is a set of flow variables in the bond graph system
model. L is the label set {=, 1,−1, p, p−1, pdt, p−1dt} (p is a parameter name of
the physical system model). The dt specifier indicates a temporal edge relation,
which implies that a vertex affects the derivative of its successor vertex across the
temporal edge. D ⊆ V × L × V is a set of edges.

The TCG is derived in two steps Mosterman & Biswas (1999):

1. A graph that incorporates cause-effect relations among the power variables

in the bond graph is generated.

2. Component parameters and temporal information are added to individual

causal edges.

Considering parametric faults, i.e. changes in parameter values of components

in the model of a system, the TCG can be used to predict qualitative effects of

faults on measurements. In this manner, as the previous method explained in this

chapter, this information completes the boolean fault signature matrix to obtain

a better fault isolation performance.

The signature is expressed in qualitative terms, {+, 0,−} symbols, of magni-

tude (zeroth order time-derivative), slope (first order time-derivative) and higher

order effects of the residual signal. However, because only the magnitude and

slope can be reliably measured, symbol generation only provides us with the

immediate magnitude change and the observed slope Daigle (2008).

A forward-propagation algorithm generates the fault signatures Mosterman

& Biswas (1999). The qualitative effect of a fault, + or -, is propagated to

all measurement vertices in the TCG. All deviation propagations start off as

zeroth order effects. When an integrating edge is traversed, the magnitude change

becomes a first order change. Similarly a first order change propagating across

an integrating edge produces a second order change, and so on.
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Example 5.4.1. Consider an open tank with capacity Ct1, and an outflow resis-
tance R1 for a connected outlet pipe (Fig. 5.4(b)). In Fig. 5.4(a) and 5.4(c), the
corresponding BG model and TCG of the system, respectively, are shown.

S f 0 R : R 1C : C t 11 2 3 1
(a) BG model

f 1C t 1 f 3p R 1
(b) One-tank system

f 31 - 1 ( 1 / C ) d 1 / R 1f 1 f 2 e 2+ 1 ( 1 / C t 1 ) d t e 3=
(c) TCG

Figure 5.4: One-tank system and its bond graph model and temporal causal
graph.

A complete second order signature for effort variable e2 corresponding to fault
R+

1 is (0, +,−). The first symbol of the signature represents the immediate direc-
tion of change (a discontinuity) at fault occurrence, the second symbol represents
the slope of the change after fault occurrence, and the third symbol represents the
second order derivative change. Fig. 5.5 shows the forward propagation. + and
− indicates magnitude changes, ↑ and ↓ first order change, and ↑↑ and ↓↓ second
order change.

R
1
+ f

3
– f

2
+ e

2
� e

3
� f

3
� f

2
� e

2
�

Figure 5.5: Forward propagation for R+
1 fault.

Fault R+
1 can be interpreted as a clogging in the output pipe of the tank. It

is analogous to fault f7 of the two-tank system analyzed in Section 5.3.2. As
expected, both approaches reached similar results. The qualitative effect of fault
f7 in ARR1 is +1, therefore sgn(r1) = +1 ⇒ p̃ > p̂. Using this approach
an additional information is obtained because the (0, +) signature implies that at
the point of failure, no discontinuous jump in the measurement residual will be
observed.
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5.4.1 Faults with a Discontinuous Change in a Measure-
ment

The set of possible first order fault signatures is given by the combination of

symbols {+, 0,−}. Hence, this set is {+−,−+, ++,−−, +0,−0, 0+, 0−, 00}. In

this thesis, two particular fault signatures, {++,−−} are analyzed. As stated

in Daigle (2008); Roychoudhury et al. (2009), when these fault signatures are

related to system parameters, they imply positive feedback, and hence, an un-

stable system, so are typically disregarded. A special case that may have these

signatures corresponds to faults that cause an abrupt change (a discontinuity) in

a measurement, as shown below by means of two examples.

Example 5.4.2. Considering again the one-tank system introduced before, firstly,
a fault that decreases abruptly the capacity of the tank is analyzed. For example,
when something falls into the tank, the capacity C decreases to C∗. Since the
amount of liquid in the tank is conserved (assuming no overflow), the abrupt
change in the capacitance value must reflect as an abrupt change in pressure p
(or equivalently to the height h of the tank) to p∗, p∗ C∗ = p C. The capacity C∗

can be expressed as, for example, C∗ = C(1 − f), where f is the represents the
magnitude of the fault and 0 < f < 1.

Forward propagation of this fault, C−
t1, along the TCG implies

e+
2 → f+

3 → f−
2 → e2?

The first order change of the affected variable e2 is indeterminate, on the
one hand path f2 → e2 propagates a − effect, while on the other hand, 1/Ct1

propagates a + effect. Qualitatively, it is not possible to predict the first derivative.
However, if the tank is emptying or in steady state before the fault (i.e. f2 is
negative or zero), after the fault the first derivative change will be negative. So,
in these cases, the signature is (+−).

Analytically, the slope of the residual associated with e2, r = e2− ê2, when the
fault occurs is equal to:

slope = e2
′ − ê2

′ =
1

C∗
t1

(f1 −
e∗2
R1

) − 1

Ct1

(f1 −
e2

R1

) =

=
1

Ct1(1 − f)
(f1 −

e2

R1(1 − f)
) − 1

Ct1

(f1 −
e2

R1

) (5.11)

and for a fix value of f1, it could be +, 0, or −, depending on the magnitude
of the fault f , and the value of e2 when the fault occurs. Figure 5.6 shows the
graph of the slope for a one-tank system, function of f and h2 (the height of the
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tank). Observe that for certain values of f and h2, the slope can be positive (Fig.
5.6(a)), or negative (Fig. 5.6(b)).

(a) (+) (b) (-)

Figure 5.6: Slope of the residual for a one-tank system, function of f and h2.

Figure 5.7 shows the plots of h2 for the nominal (black solid line) and faulty
(red dashed line) behavior when the tank is filling. C−

t1 (20% decrease) is injected
at 20 s. A (++) signature is obtained from the residual. Similar plots are shown
in Fig. 5.8 and 5.9. In Fig. 5.8, the fault is injected at 50 s and the signature is
(+−). In Fig. 5.9, the fault is injected at 20 s when the tank is emptying, and
the signature is (+−).
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Figure 5.7: Nominal (black solid line) and faulty (red dashed line) behavior for h2

when the tank is filling. C−
t1 (20% decrease) is injected at 20 s. (++) signature.
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Figure 5.8: Nominal and faulty behavior for h2 when the tank is filling. C−
t1 (20%

decrease) is injected at 50 s. (+−) signature.
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Figure 5.9: Nominal and faulty behavior for h2 when the tank is emptying. C−
t1

(20% decrease) is injected at 20 s. (+−) signature.

Finally, an abrupt clogging fault in the output pipe of the tank is analyzed.
This fault is modeled as an abrupt increase in the pipe resistance and represented
as R+

1 . The effect of this fault in the output flow f3 makes also a discontinuous
jump.

Forward propagation of this fault, R+
1 , along the TCG implies

f−
3 → f+

2 → e2 ↑→ f3?

The first order change of the affected variable f3 is indeterminate, on the
one hand path e2 → f3 propagates a + effect, while on the other hand, 1/R1

propagates a − effect. Qualitatively, it is not possible to predict the first derivative.
Figures 5.10 and 5.11 show the plots of f3 when the tank is filling and R+

1

119



5.4 Signs of the Symptoms using Bond Graph Models

(20% increase) is injected at 20 s and 100 s, respectively. The first figure shows
a (−−) signature, and the second a (−+) signature.
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Figure 5.10: Nominal and faulty behavior for f3 when the tank is filling. R+
1

(20% increase) is injected at 20 s. (−−) signature.
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Figure 5.11: Nominal and faulty behavior for f3 when the tank is filling. R+
1

(20% increase) is injected at 100 s. (−+) signature.
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Example 5.4.3. A basic mechanical system that consists of a rigid body that can
translate is shown in Fig. 5.12(a) Bishop (2002). The system is modeled using
a mass, a spring, and a damper. A force, F (t), is applied directly to the mass.
Figure 5.12(b) illustrates the bond graph model for this system. Two sources are
required, one to represent the applied force (effort, Se), and a second to represent
the fixed based velocity (a flow source, Sf). An I element represents mass, a C
represents the spring, and an R represents the losses in the damper. In Fig. 5.13,
the temporal causal graph of this system is shown.
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(a) Schematic

S e 1
R : RI : m1 2 3 01

C : 1 / k
7 0S f4 865

(b) BG model

Figure 5.12: Mass-spring-damper system.
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Figure 5.13: Temporal causal graph of the mass-spring-damper system.

The signatures for some faults are shown in Table 5.7. In the system, velocity
f2 is measured. An abrupt fault in the mass causes an abrupt change (a discon-
tinuity) in the measurement of f2. As in the previous example, the slope of the
residual signal is indeterminate.

Figure 5.14 shows the plots of f2 when m+ is injected at 2.2 s, 2.7 s, 3.3 s,
and 4.0 s. For this fault, when f2 is positive, the zeroth order effect is −, and the
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Table 5.7: Fault signatures when f2 is measured.

Fault velocity f2

b− 0+
b+ 0−
k− 0+
k+ 0−
m− +?
m+ −?

opposite. Note that in deriving the signatures using the TCG, it is assumed that
variable values are nominally positive.

5.4.2 Symbol Generation using Z-test and Wavelets

When a fault is detected, the zeroth and first order effect of a system measurement

can be estimated using, for example, the methodology explained in Biswas et al.

(2003); Daigle (2008). The initial change in a measurement is provided at the time

of fault detection for the measurement. If the residual was positive, a + is taken,

and if negative, a −. After a deviation is detected in a measurement, then the

slope of the residual is calculated using the Z-test. An initial value is computed

over a small window starting from the point of fault detection, from which the

slope of the residual is determined over another small, but larger window after

the end of the smaller window.

The methodology proposed in Biswas et al. (2003); Daigle (2008) assumes

that discontinuities of the form (++) or (−−) will not occur (because they imply

an unstable system). Then, based on the initial direction of change and the

computed slope, it is possible to determine whether a discontinuity has occurred.

So, for example, a + in the magnitude and a + in the slope will be reported as

(0+), whereas a + in the magnitude and a − (or 0) in the slope will be reported

as (+−) (or (+0)).

However, as shown before, signatures (++) or (−−) can be reported for some

parametric faults in stable systems. Then it is necessary a more advanced sym-

bol generation technique to correctly distinguish (++) from (0+), and (−−) from
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(a) 2.2 s. (−−) signature
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(b) 2.7 s. (−+) signature
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(d) 4.0 s. (+−) signature

Figure 5.14: Nominal and faulty behavior for f2 when m+ is injected at different
times.

(0−). One possibility is to use the Wavelet Transform (WT) to detect discontin-

uous changes in the residual.

WT is a mathematical tool that can decompose a temporal signal into a

summation of time-domain basis functions of various frequency resolutions Chui

(1997).

In wavelet analysis, two components can be distinguished: the approximations

(the low-frequency components of the signal), and the details (the low-frequency

components of the signal). They are are recursively computed using digital filters,

respectively a lowpass filter and a highpass one. Using the “details” of the discrete

wavelet transform (DWT), it is possible to detect the high-frequency components

of a discontinuity. Figures 5.15 and 5.16 show the residuals in a (0+) and (++)
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case, respectively, with Gaussian noise, when a fault starts at time 3.3 s. DWT

(discrete wavelet transform) is applied to these functions, and in particular the

Daubechies wavelet Chui (1997) of order 3. The break in Fig. 5.16 is very

precisely localized at first-level detail, because the abrupt change contains the

high-frequency part and the frequencies in the rest of the signal are not as high.

Note that the DWT can also be used to estimate the fault onset, as was done

in Manders (2003).
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Figure 5.15: DWT applied to a measurement with a non-discontinuous change
when a fault occurs.
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Figure 5.16: DWT applied to a measurement with a discontinuous change when
a fault occurs.
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5.5 Conclusions and Contributions

In this chapter, knowledge about signs obtained from partial derivatives in a

quantitative model, is suggested to improve the task of diagnosis. The advantages

of an interval tool, the SQualTrack, can be exploited to evaluate the consistency

between a model and a system for fault diagnosis.

The residual signs have been analyzed in two ways. First, it is proposed a

method that uses the internal form of the consistency relations. This information

has been integrated in the fault signature matrix. By comparing the fault signa-

ture matrix with the qualitative deviation resulting from the interval detection

tool, the set of diagnoses has been reduced.

Second, a method based on bond graph models that derives the qualitative in-

formation is analyzed and extended. This extension includes the analysis of faults

that cause a discontinuous change in a measurement. In many cases the slope

change of these faults is indeterminate because it depends on, for example, the

magnitude of the fault. A solution based on wavelets is proposed to distinguish

these faults from faults with a non-discontinuous effect.

When comparing the two methods presented in this chapter to derive the

qualitative signatures, the advantage of the method based on the TCG is that it

can provide more discriminatory evidences that the one based on partial deriva-

tives. It is because fault effects are derived as qualitative magnitude, slope and

higher-order effects on individual measurements. On the other side, the advan-

tage of the approach based on partial derivatives is that it provides the sign of

the residuals, and it does not require to know if the time dependency of the fault,

for example if it is abrupt or incipient, just the sign of the fault.
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Chapter 6

Quantitative Fault Diagnosis:
Isolation and Identification

Summary

The main contribution of this chapter is the isolation method based on consis-

tency techniques and uncertainty space refinement of interval parameters. The

major advantage of this method is that the isolation is fast even taking into ac-

count uncertainty in parameters, measurements and model errors. Also, interval

calculations bring independency from assumptions of monotony of other authors’

previous works, which use observers to solve the isolation problem. Moreover, the

method uses the subsystems of the model (ARRs) that are not consistent with

the measurements, and the diagnostics obtained by the techniques explained in

Chapter 5. In that way the computational load of the parameter estimation

routine is lower than using the entire model of the system.

6.1 Related Work

Quantitative fault isolation and identification is the final step in the proposed

fault diagnosis procedure. The objective of this task is: (i) to refine the fault

hypothesis set, because the qualitative fault isolation can not return an unique

fault candidate, and (ii), to estimate the magnitude of the fault.

As shown in the previous chapter, qualitative methods for fault isolation are

very useful but can not discriminate faults that show no qualitative differences,
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or even more, sometimes the qualitative effect is indeterminate. Because of this,

parameter estimation techniques can be used to estimate a parameter associated

with a fault hypothesis. There is a wide variety of techniques that can be used

for this task, e.g. Milanese et al. (1996); Simani et al. (2003); Walter & Pronzato

(1997).

In Manders et al. (2000), the fault isolation is based on a qualitative method

that uses the temporal causal graph. The isolation is improved by means of

a standard least squares parameter estimation method applied to the model in

state space form. This model is derived from a bond graph model. A separate

parameter estimator is initiated for each fault hypothesis, using the nominal

(known) values for all other component parameter values. Fault parameters for

which the error term (i.e., the difference between the predicted and observed

measurements) do not converge to zero are eliminated from the candidate set.

The decision test for convergence to zero is implemented as a statistical hypothesis

testing scheme.

A method based in the previous approach is presented in Samantaray et al.

(2005). After an isolation stage, fault parameters that can not be uniquely iso-

lated using a binary fault signature matrix, are estimated in parallel. This method

uses ARRs, derived in differential form, from a bond graph model. In this work,

the number of ARRs derived equal to the number of sensors installed in the plant.

A fault parameter is estimated algebraically by solving an ARR, considering that

the rest of the parameters are nominal, and using the mean value of the residual.

One limitation of this method is that it uses derivative causality to avoid the es-

timation of initial conditions when using integral causality. Thus, the estimation

of derivatives in noisy environments could be a hard task. Moreover, it needs

to solve the parameter associated with a fault hypothesis in a non-linear ARR,

which is not always possible.

In Li & Dahhou (2007), a method of fault isolation for non-linear dynamic

systems is presented, which assumes that the fault is detected once it occurs

and the isolation procedure based on adaptive observers is triggered at this time.

That method is based on the monotonous characteristic of an observer prediction

error and parameter partitioning.
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The approach proposed in this thesis uses the model to predict the outputs,

without a correction of the states, when the fault is detected. As a difference

to the approach presented in Manders et al. (2000), in this thesis a bounded-

error estimation approach is proposed, that is only applied to the subsystems

of the model that originate discrepancies. Moreover, the approach proposed in

this chapter is independent of the assumption required in Li & Dahhou (2007),

about the type of nonlinear systems, that the system dynamics is a monotonous

function with respect to the considered parameters.

6.2 Hypothesis Tests

In this thesis, the quantitative fault isolation and identification methodology uses

the framework of structured hypothesis tests proposed in Nyberg (2002). The

hypothesis tests used are binary, i.e., the task is to test one null hypothesis against

one alternative hypothesis. The null hypothesis and the alternative hypothesis

can be written as

H0
k : Fp ∈ Mk

”some behavioral mode in Mk can explain measured data”
H1

k : Fp ∈ MC
k

”no behavioral mode in Mk can explain measured data”

Where Fp denote the present behavioral mode, and Mk is the set of behavioral

modes for the kth hypothesis test. When H0
k is rejected, H1

k is assumed to be true,

hence, the present behavioral mode can not belong to Mk. Further, when H0
k is

not rejected, in most cases nothing is assumed. Each hypothesis test contributes

with a piece of information regarding which behavioral modes can be matched to

the data or not.

Intervals of the fault parameters that are consistent with the measurements

of the system are estimated using interval-based consistency techniques applied

to the ARRs in which the fault was detected. The initial domains for all the

parameters are substituted by the nominal intervals, except for the parameter

or parameters associated with the fault hypothesis. If no solution is found in

the CSP of the kth fault hypothesis, then H0
k is rejected and we may drop that

corresponding hypothesis.
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6.2 Hypothesis Tests

6.2.1 Algorithm for Fault Isolation and Identification

In this thesis the fault isolation/identification problem is also stated as a CSP,

similar to the one for fault detection. Considering the CSPfd (Section 4.3), a

general approach for fault isolation can be stated replacing the initial domain of

θ, ΘΘΘ0 by ΘΘΘp. Where ΘΘΘp is the feasible range of parameter variation, given by, e.g.

practical considerations. Then, the isolation problem is solved by estimating the

consistency parameter range under fault conditions.

A particular case is when at a time, a single independent parameter of the

system may be faulty. As a novelty, under this single-fault hypothesis, and con-

sidering that:

- kfd is the fault detection time

- ωmax is the maximum sliding time window for fault isolation, and

- F is the set of fault candidates (possible faulty parameters),

the generic algorithm of the proposed approach is presented in Algorithm 9.

In this algorithm, the fault isolation/identification task starts once the fault

has been detected. For each parameter, its initial domain is set to its possi-

ble range in practice and the initial domains of the other parameters are equal

to the nominal intervals. For example, if we have three candidate parameters

θθθ = (θ1, θ2, θ3), and the corresponding nominal intervals, Θ0Θ0Θ0 = (Θ0
1, Θ

0
2, Θ

0
3), and

feasible range of variation in practice, ΘpΘpΘp = (Θp
1, Θ

p
2, Θ

p
3), then three constraint

satisfaction problems are solved. For the first, the set of initial domains of the

parameters is: (Θp
1, Θ

0
2, Θ

0
3), for the second, (Θ0

1, Θ
p
2, Θ

0
3), and finally, for the third,

(Θ0
1, Θ

0
2, Θ

p
3).

The sliding time window goes up from its smallest value until it gets its

maximum possible value. Considering as initial domain the feasible range of

variation Θp
i , when no CSP solution is found, we can decide that the fault is not

caused by a value change of the parameter θi, because no value of θi ∈ Θp
i can

explain measurement data.
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Algorithm 9 Algorithm for Fault Isolation/Identification

1: begin
2: ω = min(k − kfd , ωmax)
3: for i = 1 to np do

4: ΘΘΘ =

{

Θi = Θp
i

Θj = Θ0
j ∀j 6= i ∈ {1, . . . , np}

5:

V = { θθθ, ỹ̃ỹy(k−ω), . . . , ỹ̃ỹy(k), x̂̂x̂x(k−ω), . . . , x̂̂x̂x(k+1),
ũ̃ũu(k−ω), . . . , ũ̃ũu(k),www(k−ω), . . . ,www(k),
vvv(k−ω), . . . , vvv(k)}

6:

D = { ΘΘΘ, Ỹ̃ỸY (k−ω), . . . , Ỹ̃ỸY (k), X̂̂X̂X(k−ω), . . . , X̂̂X̂X(k+1),

Ũ̃ŨU(k−ω), . . . , Ũ̃ŨU(k),WWW (k−ω), . . . ,WWW (k),
VVV (k−ω), . . . ,VVV (k)}

7:

C = { x̂̂x̂x(k−ω+1) = ggg(x̂̂x̂x(k−ω), ũ̃ũu(k−ω), θθθ,www(k−ω))
ỹ̃ỹy(k−ω) = hhh(x̂̂x̂x(k−ω), ũ̃ũu(k−ω), θθθ) + vvv(k−ω)
...
x̂̂x̂x(k + 1) = ggg(x̂̂x̂x(k), ũ̃ũu(k), θθθ,www(k))
ỹ̃ỹy(k) = hhh(x̂̂x̂x(k), ũ̃ũu(k), θθθ) + vvv(k)}

8: CSPfi = (V, D, C)
9: Σ = solution(CSPfi)

10: if Σ = ∅ then
11: Erase θi from F

12: end if
13: end for
14: end

6.3 An Application To Coupled Water Tanks

The non-linear dynamical example of a system based on two coupled water tanks,

introduced in Section 4.4.1, is used to explain the quantitative analysis for fault

isolation and identification.

The elementary analytical relations of the system are shown again in this

chapter, in Table 6.1.

The faults considered, are sensor faults, actuator faults and process faults

(leakages and clogging in the output pipes of T1 and T2). In this example we

assume that only single, abrupt faults occur. In the case of incipient faults, for

the fault identification, the methodology explained in this chapter can also be

applied. The model of an incipient fault can be represented as in Roychoudhury
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6.3 An Application To Coupled Water Tanks

Table 6.1: Elementary analytical relations of the two coupled tanks system

Elementary Relations Component
(a) qv = k u3 Valve
(b) S1

dx1

dt
= qv − qs1 Upper tank

(c) qs1 = kt1

√
x1 + l1 Output pipe T1

(d) S2
dx2

dt
= qs1 − qs2 Lower tank

(e) qs2 = kt2

√
x2 + l2 Output pipe T2

(f) ũ = u D/A converter
(g) x̃1 = x1 x1 sensor
(h) x̃2 = x2 x2 sensor

et al. (2006), adding a drift term to the nominal parameter value.

The following behavioral modes are considered:

• Gain-fault in the height sensor of T1. The model corresponding to this

behavioral mode is obtained by using Table 6.1, but replacing equation (g)

with x̃1 = x1(1 − f1), where f1 represents a gain fault and is 0 < f1 < 1

when this fault is present.

• Gain-fault in the height sensor of T2. This behavioral mode is obtained by

using Table 6.1, but replacing equation (h) with x̃2 = x2(1 − f2), where f2

represents a gain fault and is 0 < f2 < 1 when this fault is present.

• Bias in the D/A converter. This behavioral mode is obtained from the

fault free model, but replacing equation (f) with ũ = u + f3, where f3 is a

constant bias and f3 6= 0 when this fault is present.

• Leakage in T1. As explained before, but replacing equation (b) with S1
dx1

dt
=

qv − qs1 − f4
√

x1. When this fault is present f4 > 0.

• Clogging fault in the output pipe of T1. This behavioral mode is obtained

from the fault free model, but replacing equation (c) with qs1 = kt1(1 −
f5)

√
x1 + l1. When this fault is present 0 < f5 < 1.
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6.3 An Application To Coupled Water Tanks

• Leakage in T2. This behavioral mode is obtained from the fault free model,

but replacing equation (d) with S2
dx2

dt
= qs1 − qs2 − f6

√
x2. When this fault

is present f6 > 0.

• Clogging fault in the output pipe of T2. This behavioral mode is obtained

from the fault free model, but replacing equation (e) with qs2 = kt2(1 −
f7)

√
x2 + l2. When this fault is present 0 < f7 < 1.

Considering the two ARRs that correspond to the mass balance of each tank

(Eqs. 4.19 and 4.20), the fault signature matrix can be deduced as shown in

Table 6.2.

Table 6.2: Fault signature matrix.

f1 f2 f3 f4 f5 f6 f7

r1 1 0 1 1 1 0 0
r2 1 1 0 0 1 1 1

6.3.1 Simulation Results

To illustrate the performance of the diagnosis system, a faulty scenario involving

a clogging fault in the output pipe of T1, f5, is considered. The values of the

measured variables are collected once per 20 seconds, and the sensors of x1 and x2

have an uncertainty of ±0.5cm. The parameters of the model are also represented

by intervals to take into account any associated uncertainty in the model. Fig.

6.1 shows the measured signals for this scenario. The fault has a magnitude of

10% of kt1, and begins at sample 225.

A sliding time window of length 20 samples is used for the fault detection. The

fault is detected at sample 232 using ARR1, and the fault isolation, based on the

fault signature (Table 6.2), shows the initial list of four candidates, {f1, f3, f4, f5}.
For the ARR2 case, the fault is detected at sample 242, and then, two of the initial

candidates are dropped, {f3, f4}.
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Figure 6.1: Measured signals when a clogging fault in the output pipe of T1 is
present.

To show in this scenario the efficiency of the quantitative fault isolation and

identification, we did not take into account the signs in the fault signature matrix,

which would lead to a faster diagnosis.

The quantitative fault isolation and identification starts for each ARR whose

fault detection alarm was activated, for ARR1 it starts at sample 232 and for

ARR2 it starts at sample 242. The estimation of parameters f1 and f5 using

ARR1 and ARR2 is represented in Figs. 6.2 and 6.3. The final estimated interval

of parameter f1 is given by the intersection of the two intervals obtained by using

ARR1 (Fig. 6.2a) and ARR2 (Fig. 6.2b), and is depicted in Fig. 6.2c. Similarly,

the final estimated interval of parameter f5 is given by the intersection of the

two intervals obtained by using ARR1 (Fig. 6.3a) and ARR2 (Fig. 6.3b), and is

depicted in Fig. 6.3c.

Where the intersection of two intervals X = [x, x] and Y = [y, y] is defined by

X ∩ Y , {z ∈ ℜ | z ∈ X and z ∈ Y },

and satisfies

X ∩ Y = [max{x, y}, min{x, y}] if max{x, y} ≤ min{x, y},
= ∅ otherwise.
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6.3 An Application To Coupled Water Tanks

In the example, at sample 270, the fault hypothesis of a gain-fault in the

height sensor of T1 (f1) is rejected after no solution was found in the CSP of the

ARR2. At sample 332, the final estimated interval of parameter f5 is equal to

[0.0525, 0.1598], and as it was expected, it includes the real value of the fault, 0.1.
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Figure 6.2: Fault identification of parameter f1.

Therefore the clogging fault in the output pipe of T1 is the only behavioral

mode that can explain the behavior of the system.
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Figure 6.3: Fault identification of parameter f5.

6.4 Conclusions and Contributions

As many engineering problems, fault diagnosis problems can be stated as a CSP

in continuous domains. The work presented in this chapter is an example of that.

The fault isolation/identification approach presented in this chapter is the third

block of the fault diagnosis system that runs on-line: (i) a fault detector which

monitors the difference in the observed and expected behavior (residual), (ii)

a fault isolation scheme which consists of hypothesis generation and refinement

using the fault detection results of the analytical redundancy relations (ARR) of

the system, and (iii) the quantitative fault isolation and identification scheme to

refine the fault hypothesis test and to estimate the fault magnitude.

The use of overconstrained subsystems of the model, ARRs, leads the ap-

proach to tackle the fault identification problem in smaller subproblems which

can reduce the complexity of the problem. CSPs are used also to represent the

fault identification problem, and hence, to calculate the fault magnitude.
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Chapter 7

Applications

Summary

The methods and the theory developed in the previous chapters are applied to

several examples. These methods and the corresponding examples are summa-

rized in Table 7.1.

Table 7.1: Application examples.

SA FD QFI QFII

Positioning control system of an offshore vessel X
Electrical distribution systems X
Automotive engine X X
DAMADICS Benchmark X X X
Alcoholic Fermentation Process X X

SA: Structural analysis

FD: Fault detection

QFI: Qualitative fault isolation

QFII: Quantitative fault isolation and identification

The analysis of the first and the second applications were developed during my

research stay in Denmark, under the supervision of Prof. Mogens Blanke. More-

over, the work done on the automotive engine was developed during a research

stay in Sweden, under the supervision of Prof. Erik Frisk.
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7.1 Positioning Control System of an Offshore

Vessel

This application deals with a positioning control system of an offshore vessel. In

offshore operations, marine vessels are often required to be kept in a position

and heading exclusively by only thrusters known as dynamic positioning (DP)

or by mooring system with thruster assistance known as position mooring (PM).

A detailed system and model description can be found in Nguyen & Blanke

(Submitted); Nguyen et al. (2007). Dr. Trong Dong Nguyen is acknowledged for

providing the model of the position moored tanker.

In this section, the case of a vessel with a four-line mooring system and three

thrusters, with notation AUTS, is analyzed. AUTS is a class of the DP systems

according the number of thrusters (actuators) and sensors, and measurement

units DNV (2008).

The sensors and measurement units include gyros for heading measurements;

GPS (Global Positioning System) receivers and hydro-acoustic position reference

(HPR) units for position measurements; motion reference units (MRU) for heave,

roll, and pitch measurements; anemometers for wind velocity and direction mea-

surements; and a measurement unit for a tension measurement in each mooring

line.

There are 27 algebraic and differential constraints describing relationships

between a total of 33 variables (Table 7.2). These variables are classified into 3

groups:

• 21 unknown variables,

X = {TTi
, Tmoj

, T xy
moj

, ν̇, ν, ψ̈, ψ̇, ψ, ṗ,p, φ θ,vc,vw}.

• 3 known input variables,

Ki = {ui}.

• 9 known measured variables,

Km = {h,pm, Tmomj
,hrpm,wm, cm}.

The structure graph corresponding to this model is depicted in Fig. 7.1.
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7.1 Positioning Control System of an Offshore Vessel

Table 7.2: Structural model for a DP vessel of AUTS class.

Constraint Component
ai : {ui, TTi

} thruster, i = 1 . . . 3
c2j−1 : {Tmoj

,p, ψ} mooring line j = 1 . . . 4
c2j : {T xy

moj
, Tmoj

}
c9 : {TT1

, TT2
, TT3

,p, ψ, ν, ν̇,vw, . . . surge & sway dynamics
T xy

mo1
, . . . , T xy

mo4
}

c10 : {TT1
, TT2

, TT3
,p, ψ, ψ̈,vw, . . . yaw dynamics

T xy
mo1

, . . . , T xy
mo4

}
c11 : {ν, ṗ, ψ,vc}
d1 : {ν, ν̇}
d2 : {p, ṗ}
d3 : {ψ̇, ψ̈}
d4 : {ψ, ψ̇}
m1 : {ψ, h} gyro
m2 : {p, φ, θ, ψ,pm} GPS
m3 : {φ, θ,hrpm} MRU
m4 : {vw,wm} anemometer
m5 : {vc, cm} current velocity measurement
m5+j : {Tmoj

, Tmomj
} tension measurement j = 1 . . . 4

Six MSO sets can be obtained after finding one complete matching over the

unknown variables. This set is expanded to a total of 972 MSO sets after applying

the algorithm presented in Chapter 3.

Table 7.3 shows the structural detectability and isolability of constraints asso-

ciated to physical components for a single fault case. As can be seen, faults in ai

(a thruster), in c2j (a mooring line), in c10 (yaw dynamics), in m1 (the gyro), in

m4 (the anemometer), and in m5+j (a tension measurement unit) are structurally

isolable. On the other hand, faults in c9 (surge & sway dynamics), and in the

rest of the sensors and measurement units, i.e. m2 (GPS), m3 (MRU), and m5

(current velocity measurement unit), are only structurally detectable. Faults in

m2 and m3 are group-wise isolable, i.e. within this group individual faults are

detectable but not isolable. Also m5 and c9 are group-wise isolable.
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Figure 7.1: Structure graph for the application example.

Table 7.3: Detectability and isolability of single faults.

ai c2j c9 c10 m1 m2 m3 m4 m5 m5+j

i i d i i d d i d i
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7.1.1 Active Structural Isolation

The set of paths through constraints from ui, for i equal to 1 to 3, to the outputs

are represented in Table 7.4 of reachability. Following Lemma 3.7.2, it can be

deduced that {a1, a2, a3, m1, m2, m6, m7, m8, m9} are structurally isolable when

active isolation is employed, while c1, . . . , c11 remain detectable.

Table 7.4: Output reachability from ui.

ui ↓ m1 m2 m6 m7 m8 m9 * **
h 1 0 0 0 0 0 1 0
pm 0 1 0 0 0 0 1 0

Tmom1
0 0 1 0 0 0 1 0

Tmom2
0 0 0 1 0 0 1 0

Tmom3
0 0 0 0 1 0 1 0

Tmom4
0 0 0 0 0 1 1 0

wm 0 0 0 0 0 0 0 0
cm 0 0 0 0 0 0 0 0

hrpm 0 0 0 0 0 0 0 0

*: {ai, c1, . . . , c11, d1, . . . , d4}
**:{aj,m3,m4,m5}, j = {1, 2, 3} ∧ j 6= i

Through this example, algorithm proposed for input to output active struc-

tural isolation allows to isolate faults that could only be detectable using a pas-

sive approach that includes the set of all MSO sets and the corresponding fault

signature matrix. Both the passive and the active techniques can be used in

a complementary way to improve the fault detectability and isolability proper-

ties. For example, in this application a fault in m2 (GPS) is structurally isolable

when using the active approach but only detectable when using the information

provided by all the MSO sets. On the other hand, the opposite occurs when

analyzing faults in a mooring line: they are structurally detectable when using

the active approach and isolable in the other case.
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7.2 Applications in Electrical Distribution Sys-

tems

In Knüppel (2008), structural analysis for fault detection and isolation in elec-

trical distribution systems, is investigated. In particular, different system repre-

sentations such as phase components and symmetrical components are applied

to examples to analyze the complexity and the completeness of the structural

analysis results. A version of SaTool, which is capable of handling loops as well

as finding all complete matchings, was used to determine the overall isolability

properties for the system. However, because of time and memory limitations,

there is a maximum number of matchings that can be found using this version of

SaTool. Hence, the isolability properties for some examples were not complete.

In this section, algorithms developed in this thesis using the structural analysis

(Chapter 3) are applied to two examples from Knüppel (2008): (i) a nine bus

power system, and (ii) a three-phase △ − Y coupled transformer. Mr. Thyge

Knüppel is acknowledged for providing the models used in this section.

7.2.1 Nine Bus Case Network

The analysis is based on a nine bus power system. It consists of two network

components, (1) distribution lines and (2) transformers, which are interconnected

at the bus bars in the system. This system has four transformers, six distribution

lines and three loads. A single-line diagram of the network is shown in Fig. 7.2.

The feeding station is connected to the distribution grid and serving the local

area through two parallel transformers to ensure redundant power supply to the

area. Three main stations are serving subjacent feeders where the load is con-

nected, in this example modeled as a load connected directly at the main station.

Two local generators are connected to the grid at bus 2 and 3. Further details of

the application are presented in Knüppel (2008).

The model has 121 constraints and 140 variables. From these variables, 109 are

unknown and 31 known. In the model, the three-phase network was decoupled

into three uncoupled sequence networks. With the complete decoupling, the

positive-, negative- and zero-sequence system can be analyzed independently.
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Figure 7.2: Single-line diagram of the nine bus case network.

In this example, the positive- and the negative-sequence network are equiva-

lent and the structural properties for these systems are therefore equivalent. The

number of constraints is 38 and the number of unknown variables 35. Using Al-

gorithm 5, proposed in Chapter 3, 78 MSO sets were found in less than a tenth of

a second. With regard to the isolability properties, faults in 4 constraints are not

detectable (as obtained in Knüppel (2008)), faults in 9 constraints are isolable,

and faults in 25 constraints are group-wise isolable.

The model of the zero-sequence has 45 constraints and 39 unknown variables.

In this case, 2579 MSO sets were found in seconds. Regarding the isolability

properties, faults in 8 constraints are not detectable (as obtained in Knüppel

(2008)), faults in 13 constraints are isolable, and faults in 24 constraints are group-

wise isolable (within groups of maximum 3 constraints, faults are detectable but

not isolable).

Comparing the results presented in Knüppel (2008), the isolability properties
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were improved in this work since all MSO sets were found.

7.2.2 Three-phase △− Y Coupled Transformer

This system is composed of a three-phase △ − Y coupled transformer. The

transformer has its receiving end connected to a load modeled as three known

single-phase ohmic loads. The currents at the sending end are controlled and the

voltages at the sending end are measured.

Various representations are analyzed in Knüppel (2008). In this thesis, the

composite notation (i.e. a notation that combines scalar and vector notations)

is used to represent the model of the system. This system has 19 variables

with 2 known, and 18 constraints from which 4 cannot fail (the constraints that

represent the relation between a variable and its derivative). Moreover, causality

information is added to the structural model.

Table 7.5: Incidence matrix for the system represented with phase components
in composite notation.

y1 y2 y3 y4 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

c1 0 0 0 0 1 x 0 0 0 0 0 0 0 0 0 0 0 0 0
c2 0 0 0 0 0 0 1 x 1 0 0 0 0 0 0 0 0 0 0
c3 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0
c4 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0
c5 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 x 1 0
c6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1
c7 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 x
c8 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
c9 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c10 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
c11 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
c12 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
c13 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
c14 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
c15 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 x 0
c16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 x
c17 0 0 0 0 0 0 x 0 0 0 0 1 0 0 0 0 0 0 0
c18 0 0 0 0 0 0 0 x 0 0 0 0 0 0 1 0 0 0 0
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Using the algorithm proposed in Chapter 3, 17 MSO sets were found. Of these

17 MSO sets, 15 have at least one causal model. Results including all the causal

models are obtained in a few tenths of a second. With regard to the isolability

properties, faults in 6 constraints are isolable, and faults in 7 constraints are

group-wise isolable. Same results were obtained in Knüppel (2008) using SaTool,

but after finding all complete matchings (more than 3500).

Table 7.6: Detectability and isolability in a single fault case.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

i 0 d⋄ d✷ d⋄ d✷ d⋄ i i i i i d⋄ d✷

d✷ and d⋄ indicate faults that are detectable but group-wise isolable.
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7.3 An Automotive Engine

Automotive engines is an important application for model-based diagnosis not

only because of environmentally based legislative regulations, but also because of

repairability, availability, and vehicle protection Nyberg (2002). Different model-

based approaches have been studied in several works as in Gertler et al. (1995);

Kimmich et al. (2005); Nyberg (2002); Nyberg & Nielsen (1998); Nyberg et al.

(2001). Possible faults include sensor faults, actuator faults and leakages, e.g.

boost leakage, manifold leakage, pressure sensor bias, pressure sensor gain-fault.

These types of faults typically lead to degraded emission control, and also possible

damage to engine components.

7.3.1 Structural Analysis

The model used in this section is a part of the Mean Value Engine Model explained

in Andersson (2005). This model describes the average behavior of the engine

over one to several thousands of engine cycles, and is a component based model in

which each component is described in terms of equations, constants, parameters,

states, inputs and outputs. A schematic picture of the system system is shown

in Fig. 7.3.

Figure 7.3: A schematic figure of the turbo-charged engine.
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The main components are: air-filter, compressor, intercooler, throttle, en-

gine, turbine, and exhaust system. Table 7.7 shows a list of variables that are

measurable.

Table 7.7: Measurable variables.

Location Symbol Location Symbol

Ambient pressure p a Air-Filter entry T a

Before compressor p af After compressor T comp

After compressor p comp After intercooler T ic

After intercooler p ic In intake manifold T im

Intake manifold p im Exhaust manifold T em

Exhaust manifold p em After turbine T t

After Turbine p t

Location Symbol Location Symbol

Air-mass flow W af Air-fuel ratio λ

Throttle angle α Torque T q

Engine speed N Injection time t inj

Turbine speed N t

Pressure sensors Temperature sensors

Miscellaneous sensors

During my research stay in Sweden, a simulation model of the system was

implemented in EcosimPro EA Internacional (2008). EcosimPro is a simulation

environment for complex hybrid systems, represented by differential-algebraic

equations (DAE) or ordinary-differential equations (ODE) and discrete events.

Due to the complexity of the engine model, a routine was programmed in Mat-

lab to automatically transfer the EcosimPro model to a structural model. Figure

7.4 shows the incidence matrix for the system. This model has 104 constraints

and 100 unknown variables. From the set of measurable variables presented in Ta-

ble 7.7, it is assumed that a subset of 10 sensors are part of the diagnosis system.

These sensors measure: throttle angle α, ambient pressure pa, ambient temper-

ature Ta, pressure pim and temperature Tim in the intake manifold, pressure pem

and temperature Tem in the exhaust manifold, pressure pic and temperature Tic

after the intercooler, and engine speed N .
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Figure 7.4: Incidence matrix of the engine structural model.

Algorithm 5, described in Chapter 3, is used to demonstrate the efficiency of

it when applying to a real-world example. After finding one complete matching,

4 basic MSO sets are found. The combination of these sets leads to 2949 MSO

sets (see Table 7.8).

Table 7.8: Results of Algorithm 5 applied to the application example

Collection Number of MSO sets
CMSO1

4
CMSO2

76
CMSO3

702
CMSO4

2167
CMSO 2949
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7.3.2 Fault Detection in the Air Intake System

One important part of the diagnosis requirements for automotive engines is the

air path. In this section of the example, the problem of fault detection in the

air intake system is stated as a constraint satisfaction problem and solved using

interval-based consistency techniques (see Chapter 4).

In the air intake system, ambient air enters the system and an air-mass flow

sensor measures the air-mass flow rate Wa. Next, the air passes the compressor

side of the turbo-charger, the intercooler and then the throttle. The flow Wth is

dependent on the intercooler and manifold pressures, pic and pim, the temperature

Tic, and the throttle angle α. Finally the air enters the cylinder and this flow,

Wcyl is dependent on pim and pem, the temperature Tim, the engine speed N and

the air-fuel ratio λ.

The equations describing the fault free air intake model can be written as

dpim

dt
=

RaTim

Vim

(Wth − Wcyl) +
mimRa

Vim

dTim

dt
(7.1)

Wth =
pic√
RaTic

Ψ(Π)Aeff (α) (7.2)

Wcyl = pimC1
1

1 + 1
λ( A

F
)s

rc − (pem

pim
)

1

γa

rc − 1
Vd

N

RimTim

(7.3)

where

Π =
pim

pic

(7.4)

Ψ∗(Π) =

√

2γ

γ − 1
(Π

2

γ − Π
γ+1

γ ) (7.5)

Ψ(Π) =























√

γ
(

2
γ+1

)
γ+1

γ−1

0 < Π ≤
(

2
γ+1

)
γ

γ+1

Ψ∗(Π) Π <
(

2
γ+1

)
γ

γ+1 ≤ Πlin

Ψ∗(Πlin)
Πlin−1

(Π − 1) Πlin < Π ≤ 1

(7.6)
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The interval method presented in this paper uses discrete-time models, in this

case a discretization is obtained by using a first order approximation:

xxx(t + Ts) ≃ xxx(t) + Ts ggg(xxx(t),uuu(t), θθθ), (7.7)

where the sample time, Ts, is equal to 10ms.

Thus, from Eq. 7.1 and including a non-linear interval observer (see Section

4.3.1.1), it is obtained:

p̂im(k + 1) = p̂im(k) + Ts
RaTim(k)

Vim

(Ŵth(k) − Ŵcyl(k))

+K(pim(k) − p̂im(k)) (7.8)

where the set of sensors considered are: pressures pim, pic and pem, temperatures

Tim and Tic, engine speed N and throttle plate angle α.

The uncertain parameters selected are two engine specific parameters, and

those are the gain parameter C1, which describes the engine pumping capabilities,

and the ratio of specific heats γ. They have been bounded using the criterion

that in the fault free case, there should be no false alarm. The variable λ (the

air-fuel ratio) has been considered as an interval, instead of the measured value,

because of the accuracy of the sensor and for a sake of simplicity.

The set of variables of this model represented as a CSP is

V = {C1, γ, λ(k − w), . . . , λ(k − 1), p̂im(k − w), . . . , p̂im(k),

pim(k − w), . . . , pim(k − 1), pic(k − w), . . . , pic(k − 1),

pem(k − w), . . . , pem(k − 1), Tic(k − w), . . . , Tic(k − 1),

Tim(k − w), . . . , Tim(k − 1), N(k − w), . . . , N(k − 1),

α(k − w), . . . , α(k − 1)},

and the set of initial domains for the estimated variable p̂im has been taken

equal to [1 ∗ 104, 2 ∗ 105] with the exception of the initial domains of p̂im(k − w)

and p̂im(k), at the beginning and the end of the time window, which have been

assigned a value equal to the interval measurements pim(k − w) and pim(k).
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7.3.3 Experimental Results: Detection

All experiments were performed on a four-cylinder turbo-charged spark-ignited

SAAB engine located in the research laboratory at Vehicular Systems Group,

Linköping University. The engine is mounted in a test bench together with a

Schenck dynamometer.

In this section two faulty scenarios are considered, (i) a gain-fault in the sensor

of pressure pic, and (ii), a gain-fault in the sensor of pressure pim. The fault de-

tection results are obtained by using Weak-3B consistency technique Granvilliers

(2004) and a window length equal to 30 samples (0.3 s). The required computa-

tion time and the sample time have the same order of magnitude, thus, allowing

real-time implementations.

When no solution is found to the CSP, a fault is detected. Otherwise, when

the observed behavior and the model are not proven to be inconsistent, means

either that there is not a fault or that it could not be detected. In this way, the

proposed approach prioritizes to avoid false alarms to missed alarms.

7.3.3.1 First Scenario

In Fig. 7.5, obtained results in the case of no fault and a 10% gain-fault in the

pressure sensor of pic are shown. A “1” indicates there is a fault and a “0” means

there is not a fault or it could not be detected. As shown in this figure, there is

no false alarm in absence of fault. The fault in the sensor begins at sample 600

and is detected at sample 604.

Figure 7.6 shows the interval measurement (solid line) and the estimated

manifold pressure (dashed line) in the fault free situation. The external estimate

has been obtained with the domains for the estimated variable p̂im(k) equal to

[1∗104, 2∗105] in the CSP representation presented in Section 7.3.2. Although the

computation time is bigger than the sample time being not suitable to operate

in real-time, it can be used when a fault is detected to obtain more information,

and then, to improve the task of diagnosis (Section 7.3.4).
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Figure 7.5: First scenario fault detection. Top: no fault. Bottom: gain-fault in
the sensor of pressure pic beginning at sample 600. The fault is detected from
sample 604.
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Figure 7.6: First scenario without faults. The upper plot shows measured and
estimated manifold pressure.

7.3.3.2 Second Scenario

Figure 7.7 shows the results in the case of no fault and a 10% gain-fault in the

pressure sensor of pim. The fault in the sensor begins at sample 800 and is

detected at the same time as the fault appears.

152



7.3 An Automotive Engine

500 1000 1500 2000

0

1

Sample Number

Fa
ul

t d
et

ec
tio

n

500 800 1000 1500 2000

0

1

Sample Number

Fa
ul

t d
et

ec
tio

n

Figure 7.7: Second scenario fault detection. Top: no fault. Bottom: gain-fault
in the sensor of pressure pim. The fault is detected at the same time as the fault
appears.

Figure 7.8 shows the interval measurement and the estimated manifold pres-

sure in the fault free situation of this scenario.
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Figure 7.8: Second scenario without faults. The upper plot shows measured and
estimated manifold pressure.
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7.3.4 Diagnosis: Signs of the Symptoms

When it is possible to utilize detailed models for the faults, this information can

be used together with the signs in the residuals, to prune the candidate space

when performing the fault diagnosis task, as proposed in Chapter 5.

This approach could be applied to perform the diagnosis in both studied

scenarios. In order to do this, it is needed to:

• Include in the fault signature matrix, the influence of the faults in the

residuals, and

• Obtain the sign of the symptom. This could be obtained by observing the

behavior of the estimated output with respect to the measurement. For instance,

the sign would be +1 if the estimation is greater than the interval measurement,

or if the estimation is smaller than the interval measurement, the sign would be

-1.

For both scenarios, when a fault is detected, the algorithm estimates the man-

ifold pressure at the end of each sliding window and the consistent region of this

variable can be seen in Figs. 7.9 and 7.10. As it is expected, the interval measure-

ment (solid line) does not intersect with the estimate (dashed line), and for the

first case, the estimates are always smaller than the measurements, whereas for

the second case, the opposite relation is observed. This is the information that

should be compared with the theoretical signatures with the signs of symptoms,

as explained in Chapter 5.
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Figure 7.9: First scenario with a gain-fault in the sensor of pressure pic. Starts
at 600, detected at 604.
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Figure 7.10: Second scenario with a gain-fault in the sensor of pressure pim. Starts
at 800, detected at the same time as the fault.
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7.4 DAMADICS Benchmark

This application example deals with an industrial smart actuator, proposed as

an FDI benchmark in the European project DAMADICS. As described in Bartyś

et al. (2006), the valve consists of three main components:

• Control and by-pass valves. The control valve acts on the flow of the fluid

passing through the pipeline installation.

• Spring-and-diaphragm pneumatic servo-motor. This is a compressible fluid

powered device in which the fluid acts upon the flexible diaphragm, to

provide linear motion of the servomotor stem.

• Positioner. The positioner is a device applied to eliminate the control-

valve-stem miss-positions produced by external or internal sources such as:

friction, clearance in mechanical assemblies, supply pressure variations, hy-

drodynamic forces, etc.

A general scheme of the valve is shown in Fig. 7.11.
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Figure 7.11: General scheme of the DAMADICS valve.
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Measured variables, indicated by circles in the figure, are the valve plug posi-

tion X ′, the fluid flow F ′, fluid temperature T ′
1, upstream and downstream pres-

sure of the valve P ′
1, P ′

2, the transducer chamber pressure P ′
s and the positioner

supply pressure P ′
z.

The actuator model is based on physical description and engineering expertise,

and is implemented in the Matlab-Simulink environment Bartyś & de las Heras

(2003). It can be used to simulate up to 19 incipient or abrupt faults. The set

of faults acting on the valve and its components is described in Bartyś & Syfert

(2002). In this thesis, the set of faults was extended by 4 additional faults to

consider all measurement faults. The fault range for each fault fi is standardized

to the ranges < 0, 1 >, or < −1, 1 > when the fault may cause bi-directional

consequences, e.g. sensor faults.

7.4.1 Residual Generation

The number of equations, transferred from the Simulink Model, is 15, and the

number of unknown variables is 11. The incidence matrix with unknown variables

is presented in Table 7.9. The edges of a matching are identified by a “ 1©” in the

matrix.

Table 7.9: Incidence Matrix of the valve.
X Ps Fvc P1 P2 T1 Fv Pz CV I F Fv3

c1 1 1 1
c2 1 1© 1 1 1
c3 1 1 1 1 1©
c4 1 1 1 1
c5 1
c6 1 1 1
c7 1 1 1 1©
c8 1©
c9 1©

c10 1©
c11 1©
c12 1©
c13 1©
c14 1©
c15 1©
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The algorithm presented in Chapter 3 leads to 29 MSO sets, summarized in

Table 7.10, after combining 4 basic MSO sets (see Table 7.11).

Table 7.10: MSO sets of the application example.

no MSO sets
1 {c1, c2, c8, c10, c11, c12, c14}
2 {c4, c8, c13, c14, c15}
3 {c5, c15}
4 {c3, c6, c7, c8, c9, c10, c11, c12}
5 {c1, c2, c4, c10, c11, c12, c13, c14, c15}
6 {c1, c2, c4, c8, c10, c11, c12, c13, c15}
7 {c1, c2, c3, c6, c7, c9, c10, c11, c12, c14}
8 {c1, c2, c3, c6, c7, c8, c9, c11, c12, c14}
9 {c1, c2, c3, c6, c7, c8, c9, c10, c12, c14}
10 {c1, c2, c3, c6, c7, c8, c9, c10, c11, c14}
11 {c4, c5, c8, c13, c14}
12 {c1, c2, c4, c5, c10, c11, c12, c13, c14}
13 {c1, c2, c4, c5, c8, c10, c11, c12, c13}
14 {c3, c4, c5, c6, c7, c9, c10, c11, c12, c13, c14}
15 {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c13}
16 {c3, c4, c6, c7, c9, c10, c11, c12, c13, c14, c15}
17 {c1, c2, c3, c4, c6, c7, c8, c9, c11, c12, c13, c15}
18 {c1, c2, c3, c4, c6, c7, c8, c9, c10, c12, c13, c15}
19 {c1, c2, c3, c4, c6, c7, c8, c9, c10, c11, c13, c15}
20 {c1, c2, c3, c4, c6, c7, c9, c11, c12, c13, c14, c15}
21 {c1, c2, c3, c4, c6, c7, c9, c10, c12, c13, c14, c15}
22 {c1, c2, c3, c4, c6, c7, c9, c10, c11, c13, c14, c15}
23 {c1, c2, c3, c4, c6, c7, c9, c10, c11, c12, c13, c15}
24 {c1, c2, c3, c4, c5, c6, c7, c8, c9, c11, c12, c13}
25 {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c12, c13}
26 {c1, c2, c3, c4, c5, c6, c7, c9, c11, c12, c13, c14}
27 {c1, c2, c3, c4, c5, c6, c7, c9, c10, c12, c13, c14}
28 {c1, c2, c3, c4, c5, c6, c7, c9, c10, c11, c13, c14}
29 {c1, c2, c3, c4, c5, c6, c7, c9, c10, c11, c12, c13}
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Table 7.11: Results of Algorithm 2 applied to the application example

Collection Number of MSO sets
CMSO1

4
CMSO2

8
CMSO3

10
CMSO4

7
CMSO 29

The fault isolability analysis matrix for the 4 basic MSO sets is given as shown

in Table 7.12. From this table, it is seen that the first five blocks of 4, 5, 5, 3

and 2 faults, respectively, show faults that are group-wise isolable, i.e. they are

not isolable from the other faults in the group, but isolable from other faults in

different groups. f13, f15 and f23 are isolable from all other faults.

Table 7.12: Fault isolability analysis matrix.

f 11 f 8 f 4 f 1 f 22 f 21 f 20 f 3 f 2 f 19 f 18 f7 f 6 f 5 f16 f 12 f 9 f 14 f 10 f 13 f 15 f 23

f 11 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f 8 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f 22 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

f 21 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

f 20 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

f 3 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

f 2 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

f 19 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

f 18 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

f 7 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

f 6 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

f 5 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

f 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

f 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

f 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

f 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

f 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

f 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

f 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

f 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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When considering the complete collection of MSO sets, a fault isolability

matrix as in Table 7.13 is obtained. As it can be seen, now it is possible to isolate

f10, f14, f20, f21 and f22 from each other. Moreover, f2 is not isolable from f3 and

f3 is not isolable from f2.

Table 7.13: Fault isolability analysis matrix using the 29 MSO sets.

f 11 f 8 f 4 f 1 f 22 f 21 f 20 f 3 f 2 f 19 f 18 f7 f 6 f 5 f16 f 12 f 9 f 14 f 10 f 13 f 15 f 23

f 11 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f 8 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f 22 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f 21 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f 20 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f 3 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

f 2 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

f 19 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

f 18 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

f 7 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

f 6 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

f 5 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

f 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

f 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

f 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

f 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

f 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

f 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

f 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

f 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

7.4.2 Fault Detection

In this section, two ARRs are used to illustrate the proposed approach: a static

ARR (derived from the fourth MSO set of Table 7.10), r1, and a dynamic ARR,

r2 (derived from the first MSO set). The first residual, Eq. 7.9, can be generated

from fluid flow equation, and the second residual, Eq. 7.13, from rod displacement

equation (note that X̂ is calculated using a dynamic force balance equation).

The computational form of the first residual is given by:

rcomp
1 = F ′ − F̂v − F̂v3 (7.9)
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where Fv is the flow through the control valve, ∆p is the difference between up-

and downstream valve pressures, and Fv3 is the flow through the bypass valve

V 3.

F̂v = ρ(T ′
1, P

′
1) ∗ Kv(X

′) ∗ 100 ∗
√

∆p

ρ(T ′
1, P

′
1)

(7.10)

∆p = min(P ′
1 − P ′

2, Km(X ′) ∗ (P ′
1 − rc(P

′
1) ∗ pv(T

′
1))) (7.11)

F̂v3 = ρ(T ′
1, P

′
1) ∗ Kv3(X

′
3) ∗

√

P ′
1 − P ′

2

ρ(T ′
1, P

′
1)

(7.12)

The computational form of the second residual is given by:

rcomp
2 = X ′ − X̂(P ′

s, F̂vc) (7.13)

where the opposing force Fvc (the vena-contracta force) is:

F̂vc = π ∗ r2 ∗ max

(

P ′
1 − P ′

2

Km(X ′)
, pv(T

′
1)

)

(7.14)

In this application, only single faults are taken into account, fi fj = 0, ∀i 6=
j. Considering residuals generated by Eqs. 7.9 and 7.13, the theoretical fault

signature matrix presented in Table 7.14 can be deduced. A ‘1’ appears when the

corresponding fault affects at least one elementary relation used to generate the

residual. It means that the considered fault ideally influences the ARR.

Table 7.14: Fault signature matrix

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19

r1 0 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1
r2 1 1 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0

For instance, the sensitivity of the first ARR, r1, with respect to the fault f5

is presented in Eq. 7.17, and it is obtained by using the model of the ARR that

includes the fault (Eq. 7.15), and in particular, the corresponding internal form

(Eq. 7.16). Since kf5 > 0 and F̂v > 0, the sign of s15 is −1.
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r1 = F ′ − F̂v ∗ (1 − kf5 ∗ f5) − F̂v3 (7.15)

rint
1

= −F̂v ∗ kf5 ∗ f5 (7.16)

s15 =
∂rint

1

∂f5

= −F̂v ∗ kf5 (7.17)

The sign of the ARR by considering the possible variation in the sign of each

fault is analyzed for each case in Table 7.15. For instance, for r1 and f19, if

f19 is positive, then the symptom of r1 will be negative. Consequently, if f19 is

negative, then the symptom of r1 will be positive. This behavior is reflected in the

table using ∓1. Symbol ‘1’ denotes that the sign could be positive or negative,

for instance f4 and f8 modify the hysteresis loop and then real value of X will

be greater than, or less than the estimated value depending on the movement

direction of X, and the sign of the sensitivity cannot be completed beforehand.

Table 7.15: ARRs and their related fault modes using the sign of the symptom

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19

r1 0 -1 +1 0 -1 +1 -1 1 0 0 0 0 ±1 0 0 0 0 +1 ∓1
r2 -1 -1 +1 1 0 0 0 1 0 -1 +1 0 ±1 ±1 0 0 0 0 0

7.4.3 Diagnosis Results

Table 7.16 shows the sets of possible diagnostics obtained using the DX approach

(row analysis of the fault signature matrix) when the sign of the residuals is used,

and when it is not used. The signs help with discarding some diagnostics, and so

the sets are reduced. In this example only two ARRs have considered, but the

reduction is larger if more ARRs are used.

7.4.4 Simulation Results

A faulty scenario involving an incipient fault, f13, in the rod displacement sensor

is considered. The values of the variables are represented by intervals to take into

account any associated uncertainty in the measurements. The parameters of the
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Table 7.16: Diagnosis using and not using signs

Symptoms Diagnosis Diagnosis
sgn(r1) sgn(r2) using signs
−1 −1

f2,f3,f8,f13

f2,f8,f13

−1 +1 f8

+1 −1 f8

+1 +1 f3,f8,f13

−1 0
f2,f3,f5,f6,f7,f8,f13,f18,f19

f2,f5,f7,f8,f13,f19

+1 0 f3,f6,f8,f13,f18,f19

0 −1
f1,f2,f3,f4,f8,f10,f11,f13,f14

f1,f2,f4,f8,f10,f13,f14

0 +1 f3,f4,f8,f11,f13,f14

model are also taken as intervals for the same reason. Some parameters like the

density ρ, which is a function of the measurements T ′
1 and P ′

1, are considered by

using intervals to reduce the complexity to compute the residual.

A window from SQualTrack for the models of r1 and r2 is shown in Fig. 7.12

and 7.13 when f13 occurs. The upper graphs show the envelopes of the output

variable (the inner envelope in dotted lines, and the outer envelope in dashed

lines), and the interval measurements in solid lines. The lower graphs indicate a

“1” when a fault is detected. In both graphs, the time is expressed in seconds,

and the sample time is 1 s.

The fault begins at sample 900. For the r2 case, the fault f13 is detected from

903 s, and for the r1 case, this fault is detected from 915 s. Table 7.17 illustrates

the diagnostics obtained either by considering, or not, the signs corresponding at

the times in which each symptom appear.

Table 7.17: Diagnostics for the f13 fault scenario

Time (s) 903 915

Symptoms
sgn(r1) = 0 sgn(r1) = +1
sgn(r2) = +1 sgn(r2) = +1

Diagnosis f1,f2,f3,f4,f8,f10,f11,f13,f14 f2,f3,f8,f13

Diagnosis
f3,f4,f8,f11,f13,f14 f3,f8,f13using signs
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Figure 7.12: SQualTrack Fault Detection using r1 corresponding to fault f13

beginning at 900 s. The fault is detected from 915 s.
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Figure 7.13: SQualTrack Fault Detection using r2 corresponding to fault f13

beginning at 900 s. The fault is detected from 903 s.
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7.5 Alcoholic Fermentation Process

A well-known dynamical example of an alcoholic fermentation process is used to

explain the proposed method for fault detection and quantitative fault isolation

and identification. This process is presented in Li (2006); Li & Dahhou (2006,

2007); Li et al. (2006); Rajaraman (2005) and Kabbaj et al. (2001), for instance.

Regarding the approach proposed in Li & Dahhou (2007), the main contribu-

tions of this work are:

1. the isolation problem is based on parameters uncertainty refining instead

of partitioning.

2. the isolation problem is stated as a Constraint Satisfaction Problem (CSP)

and solved by means of consistency techniques. A sliding time window is

used to reduce the computational effort.

3. interval calculations allow the proposed approach to be independent of the

assumption (about the type of nonlinear systems) that the system dynamics

is a monotonous function with respect to the considered parameters.

7.5.1 System Description

The fermentation consists in growing a population of microorganisms by feeding

them appropriate nutrients or substrates, provided the environmental conditions

are propitious Kabbaj et al. (2001).

The model obtained from the mass balance considerations is composed of the

following differential equations:



















dC(t)
dt

= µ(t)C(t) − D(t)C(t)

dS(t)
dt

= − 1
Yc/s

µ(t)C(t) + D(t)Sa − D(t)S(t)

dP (t)
dt

=
Yp/s

Yc/s
µ(t)C(t) + D(t)P (t)

(7.18)

where C(t), S(t) and P (t) represent respectively the biomass, substrate, and

product concentrations in the bioreactor. The dilution rate D(t) is used as the

control variable. Sa represents the substrate concentration in the feeding. Yc/s and
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Yp/s are the yield coefficients and it is assumed that they are known and constant.

The measurable state is the substrate concentration S(t). µ(t) represents the

growth rate of the biomass, and it is a nonlinear function of the variable S(t)

described by

µ(t) = µm
S(t)

Ks + S(t)
(7.19)

where µm is the maximum growth rate and Ks is the saturation constant.

Faults are modeled as a single parameter change in the process parameters

µm and Ks.

The interval method uses discrete-time models. In this case a discretization

is obtained by using a first order approximation:

xxx(t + Ts) ≃ xxx(t) + Ts ggg(xxx(t),uuu(t), θθθ), (7.20)

where the sample time, Ts, is equal to 3 minutes.

Thus, from Eq. 7.18, the following discrete-time model can be obtained:

Ĉ(k+1)=Ĉ(k)+Ts(µ(k)Ĉ(k)−D̃(k)Ĉ(k)) + w1(k)

Ŝ(k+1) =Ŝ(k)−Ts(
µ(k)
Yc/s

Ĉ(k)−D̃(k)(Sa−Ŝ(k))) + w2(k)

P̂ (k+1)=P̂ (k)+Ts(
Yp/s

Yc/s
µ(k)Ĉ(k)+D̃(k)P̂ (k)) + w3(k)

S̃(k) =Ŝ(k) + v(k)

(7.21)

where wi(k) is the perturbation vector at time k, and it takes into account, for

example, an error due to the discretization procedure. v(k) is the measurement

noise of the interval measurement S̃(k).

In the simulation, D(t) is selected as a rectangular wave varying between 0.1

and 0.27 h−1 with a period of 30 hours. The sample time, Ts, is equal to 3 minutes.

The feasible ranges of parameter variation, i.e. experimental considerations in

practice are given by µm ∈ [0.2, 0.53] h−1 and Ks ∈ [0.5, 5.1] g/l.

The nominal values of model parameters used as well as the yield coefficients

are obtained from real applications and are given by Li & Dahhou (2007) (see

Table 7.18).
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Table 7.18: Parameters and yield coefficients.

Nominal Values
µm = 0.38 h−1

Ks = 5 g/l
Yc/s = 0.07
Yp/s = 0.44
Sa = 100 g/l

7.5.2 Fault Detection Results

Considered faults are modeled as a single parameter change in the process pa-

rameters µm and Ks. Therefore two faulty scenarios are considered.

The fault detection results (see Table 7.19) are obtained by using BC4 con-

sistency technique Granvilliers (2004) and a sliding window length equal to 100

samples (5 h). All times displayed are relative to the start of the experiment.

Table 7.19: Fault detection results

Scenario Faulty
parameter

Nominal
range

Faulty value Fault
occurrence
time (h)

Detection
time (h)

(i) µm [0.36, 0.41] 0.3 70 70.05
(ii) Ks [4.90, 5.10] 3.1 70 70.35

In Figs. 7.14 and 7.15, obtained results for both fault scenarios are shown.

“1” indicates there is a fault and a “0” means there is not a fault or one could

not be detected. As shown in these figures, there are no false alarms.

7.5.3 Fault Isolation Results

Once the fault is detected, the fault isolation algorithm starts. Since the param-

eters of this case study are µm, and Ks, two CSP must be solved. For the first,

the set of initial domains of the parameters is: (µp
m, K0

s ), and for the last one

(µ0
m, Kp

s ). When no consistent region is found in the feasible range of parameter
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Figure 7.14: Fault detection. Scenario (i), fault is on parameter µm.
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Figure 7.15: Fault detection. Scenario (ii), fault is on parameter Ks.

variation, a fault associated with a value change of the refined parameter can be

discarded. Obtained results for fault isolation in both scenarios are summarized

in Table 7.20.

Table 7.20: Fault isolation results

Scenario Faulty
parameter

Feasible
range

Faulty value Estimated
range

Isolation
time (h)

(i) µm [0.20, 0.53] 0.3 [0.282,0.314] 70.70
(ii) Ks [0.50, 5.10] 3.1 [2.890,3.250] 75.20

Notice that in both scenarios the estimated range of the faulty parameter

includes the considered faulty value.

In Table 7.21 and Table 7.22, the results of the isolation test are presented in

a more detailed way.
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• Faulty parameter µm

Since there is no consistent region of Ks in its feasible range of variation, the

fault is not in the parameter Ks and it can be discarded at time 70.70 h (See

Table 7.21).

Table 7.21: Scenario(i). Fault isolation results

Test Isolation Results

Test 1: Using the nomi-
nal range of Ks and re-
fining the feasible range
of µm

70.05 75 80

0.2

0.36

0.41

0.53

Time (h)

µ m
 (h

−1
)

Consistent values for µm

Test 2: Using the nomi-
nal range of µm and re-
fining the feasible range
of Ks

70.05     70.70 75 80

0.5

4.9
5.1

Time (h)

K s (g
/l)

Consistent values for Ks

• Faulty parameter Ks

Since there is no consistent region of µm in its feasible range of variation, the

fault is not in the parameter µm and it can be discarded at time 75.20 h (See

Table 7.22).
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Table 7.22: Scenario(ii). Fault isolation results

Test Isolation Results

Test 1: Using the nomi-
nal range of Ks and re-
fining the feasible range
of µm

70.35 75.20 80

0.2

0.36

0.41

0.53

Time (h)

µ m
 (h

−1
)

Consistent values for µm

Test 2: Using the nomi-
nal range of µm and re-
fining the feasible range
of Ks

70.35 75 80

0.5

4.9
5.1

Time (h)

K s (g
/l)

Consistent values for Ks

7.5.4 Isolation Time

Even taking into account uncertainty in measurements, parameters, and model

errors, the isolation time in both scenarios obtained by means of the proposed

approach, is of the same order of magnitude than the ones found in Li & Dahhou

(2007), which uses an interval approach, non-based on interval calculations, for

similar faulty scenarios. It could be said that the two approaches isolation speeds

are comparable, with the advantage that the method proposed in this thesis does

not require the monotonous condition of the dynamic system with respect to the

considered parameters.
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Chapter 8

Conclusions and Future Work

This thesis looks into the detection, isolation, and identification of faults under

uncertain conditions. The research starting point was SQualTrack Armengol

et al. (2009b), a software package for fault detection based on interval models.

By analyzing the capabilities and limitations of this software, four main aspects

were considered to bound the research problem of this thesis:

• Use interval models to handle the uncertainty associated with the process

itself and with the measurements.

• Overcome the limitations of SQualTrack discussed in Chapter 4.

• Propose solutions based on interval models for fault isolation and identifi-

cation.

• Include approaches from FDI and DX compatible with interval models in

the solution of the problem.

Summarizing the previous aspects, the main objective of this thesis became:

to propose a methodology for fault detection, isolation and identification based

on interval models. This methodology includes both off-line and online stages

within the supervision process.

Following the scheme of the diagnosis system depicted in Fig. 8.1, the main

objective is achieved as follows.
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Figure 8.1: Architecture of the diagnosis system.

One of the main contributions of Chapter 3 is the proposed algorithm to

find all MSO sets in a structural model of the system. MSO sets are useful for

designing diagnostic tests, by finding in an efficient way all the subsystems that

could be diagnosed in the system. The algorithm is an improvement of the one

presented in Gelso et al. (2008c).

In Chapter 3, an algorithm that analyzes the input to output active struc-

tural isolation of a system is also developed. By means of this technique, fault

detectability and isolability properties can be better, in some cases, than the ones

obtained using a passive approach, for instance one that includes the set of all

MSO sets and the corresponding fault signature matrix. Based on this, Chapter

3 shows that both the passive and the active techniques can be used in a com-

plementary way to improve the detectability and isolability properties. Obtained

results regarding active structural isolation appear in Gelso & Blanke (2009).

For the tracking and fault detection stage, two improvements are proposed in

Chapter 4 to increase the fault detection performance. The former refers to the

dynamic refinement of the parameters space, and the latter, to the pruning of the

measurements space. These improvements are described in Gelso et al. (2007a).

Because of some limitations when implementing ARRs in SQualTrack, for ex-

ample ARRs are restricted to be expressed as a single equation, another approach

based on interval-based consistency techniques (ICTs) is proposed. By using the

ICTs, ARRs can be described in a state space representation with multiple state

variables. Gelso et al. (2007c, 2008e) include the work based on ICTs used for

fault detection and its comparison with SQualTrack.
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In Chapter 4, a technique based on a robust observer and a statistical fault

detector are empirically compared to an ICT. In general, comparing the perfor-

mance parameters of the fault detection, both techniques yielded similar fault

detection results for a proper combination of tuning parameters. In both tech-

niques, a compromise between false alarms, missed detections and detection de-

lays can be made varying the noise confidence interval. The empirical comparison

is presented in Gelso et al. (2008a).

In Chapter 5, a diagnosis reasoning in which the signs of the partial derivatives

are derived from analytical redundancy relations, is proposed to improve the task

of diagnosis. The advantages of an interval tool, the SQualTrack, can be exploited

to evaluate the consistency between a model and a system for fault diagnosis, and

to give the qualitative deviations of the residuals. This method is presented in

Calderón-Espinoza et al. (2007); Gelso et al. (2007b).

Chapter 5 also presents a method implemented in the Transcend method-

ology that generates qualitative fault signatures when a bond graph model of

the system is available. This technique is briefly compared with the technique

based on partial derivatives. The technique based on bond graphs is extended

to the analysis of symbol generation for faults with a discontinuous change in a

measurement. Furthermore, a way to distinguish signatures with a discontinuous

and non-discontinuous effect, based on discrete wavelet transforms, is proposed.

In Chapter 6, a quantitative fault isolation and identification scheme based

on ICTs to refine the fault hypothesis test and to estimate the fault magnitude,

is proposed. The use of overconstrained subsystems of the model leads the ap-

proach to tackle the fault identification problem in smaller subproblems which

can reduce the complexity of the problem. CSPs are used also to represent the

fault identification problem, and hence, to calculate the fault magnitude. Results

obtained using this proposed approach are presented in Gelso et al. (2008b,d).

In order to illustrate the effectiveness of the methods and the theory developed

in this thesis, several application examples are presented in Chapter 7. These

applications include:

1. Positioning control system of an offshore vessel.

2. Electrical distribution systems.
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3. Automotive engine.

4. DAMADICS Benchmark.

5. Alcoholic Fermentation Process.

Future Work

Regarding the future work, there are open fields on the subject of fault detection,

isolation and identification, that could be tackled. And, specifically talking about

the work done in this thesis, it could be extended in several directions. In the

following, these aspects are briefly outlined.

Active injection of test signals on system inputs can considerably enhance

fault isolability. In this sense, active isolation from a structural point of view,

which is a rather new topic, was approached in this thesis. A further study in

this line of work can be, for example, to analyze and to develop algorithms to

carry out the input to output active structural isolation.

In this thesis proposed algorithms to find all MSO sets in a structural model

of the system, were applied successfully to several application examples with

diferente complexity level. However, the efficiency of them can be significantly

improved by performing an optimization of the code.

The empirical comparisons between the fault detection techniques presented

in this tesis allowed to see some of their capabilities and limitations. A theoretical

analysis of the false alarm rate and missed alarm rate can be performed to link

the tuning parameters of the methods. In future an in depth formal comparison

between different fault detection techniques could originates new research works.

For instance, the comparison between interval- and statistical-based methods for

fault detection presented in this work, could be extended to other fault detection

methods like the ones described in Baseville & Nikiforov (1993); Manders &

Biswas (2003); Niemann et al. (1999).

The fault isolation stage could be improved by considering other sources of

information, like the order of the symptom appearance of a given ARR with

respect to the others. An alternative to perform this improvement is by using
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information derived from bond graphs models. In Daigle (2008), this method is

shown to be useful to tackle multiple faults.

Future work also, will consist of analyzing the capability of the Temporal

Causal Graph to analyze the sign of the symptoms when sensor faults occur. In

particular, an important issue is how to obtain the theoretical signature of these

faults when observer-based and prediction-based approaches are used to track the

nominal behavior of the system.

Regarding the quantitative fault isolation and identification stage, other

interval-based techniques could be explored to perform the faulty parameters es-

timation. Possible approaches to perfom this task are the set-membership iden-

tification methods based on polytopes or zonotopes.

A feasibility study in order to extend the methodology of fault detection,

isolation and identification, to continuous time models, could be performed. This

research could consider interval techniques such as the ones proposed by Lin &

Stadtherr (2007, 2008).
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Simulación de Sistemas Dinámicos , Zaragoza, Spain. 66
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15th International Workshop on Principles of Diagnosis DX , 21–26. 32

Chang, I., Yu, C. & C.T., L. (1994). Model-based approach for fault diagnosis:

Part I. principles of deep model algorithm. Ind. Eng. Chem. Res., 33, 1542–

1555. 102, 104

Chantler, M., Coghill, G., Shen, Q. & Leitch, R. (1998). Selecting tools and

techniques for model-based diagnosis. Artificial Intelligence in Engineering ,

12, 81–98. 16

Chen, J. & Patton, R. (1998). Robust model-based fault diagnosis for dynamic

systems . Kluwer. 20, 22, 23, 24

180



REFERENCES

Chow, E.Y. & Willsky, A.S. (1980). Issues in the development of a general design

algorithm for reliable failure detection. In 19th IEEE Conference on Decision

and Control , vol. 19, 1006–1012, Albuquerque, NM. 21

Chow, E.Y. & Willsky, A.S. (1984). Analytical redundancy and the design of

robust failure detection systems. IEEE Transactions on Automatic Control ,

29, 603–614. 21

Christophe, C., Cocquempot, V. & Jiang, B. (2002). Link between high gain

observer-based residual and parity space one. In American Control Conference,

2002 , vol. 3, 2100–2105. 23

Chui, C. (1997). Wavelets: A Mathematical Tool for Signal Analysis . SIAM. 123,

124

Coghill, G. (1996). Mycroft: a framework for constraint based fuzzy qualitative

reasoning . Ph.D. thesis, Heriot-Watt University, Edinburgh, Scotland. 26

Collavizza, H., Delobel, F. & Rueher, M. (1999). Comparing partial consistencies.

Reliable Computing , 5, 213–228. 74, 75

Combastel, C., Zhang, Q. & Lalami, A. (2008). Fault diagnosis based on the

enclosure of parameters estimated with an adaptive observer. In 17th IFAC

World Congress , 7314–7319, Seoul, Korea. 27, 61

Console, L., Correndo, G. & Picardi, C. (2003). Deriving qualitative deviations

from Matlab models. In 14th International Workshop on Principles of Diagno-

sis DX . 102
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Li, Z. (2006). Contribution à l’élaboration d’algorithmes d’isolation et

d’identification de défauts dans les systèmes non linéaires . Phd thesis, Institut
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