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RESUMO

GOTTARDI, T. Uma proposta para a evolução da engenharia de software dirigida por

modelos. 2018. 297 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2018.

No contexto da Engenharia de Software Dirigida por Modelos (MDSE), a produção de software

pode ser realizada por meio de definições de modelos. Apesar dos benefícios desse método

de desenvolvimento, diferentes domínios exigem a especificação de linguagens de modelagem

e ferramentas específicas, que, por sua vez, precisam ser desenvolvidos em conjunto com o

software final. Desta forma, desenvolvedores encontram problemas ao utilizar este método.

Este trabalho possui duplo objetivo: 1) identificar os problemas mais críticos deste método;

2) discutir e fornecer possíveis soluções aos problemas. A identificação de problemas foi

realizada por meio de um mapeamento sistemático, estudos empíricos, colaborações e entrevistas

com especialistas. Foi identificado que MDSE, de acordo com a literatura básica, possui um

nível de abstração excessivamente alto, acarretando em carência de processos adequados e de

treinamento de desenvolvedores que vão além de problemas de necessidade de ferramentas

de modelagem. Portanto, nesta tese, discute-se a necessidade de evoluir processos de MDSE

que permita aos desenvolvedores uma nova forma de tratar modelos e código-fonte. Para

tanto, neste trabalho também é descrito um novo método de desenvolvimento, descrito como

uma possível evolução concreta do MDSE, o qual define um paradigma para desenvolver

software. Este método é exemplificado em várias aplicações dentro deste trabalho. Após conduzir

estudos analíticos e experimentais, concluiu-se que estas aplicações também possibilitam uma

contribuição significativa no domínio de software orientado a serviços que podem ser empregadas

em software do mundo real.

Palavras-chave: Engenharia de Software, Processo de Software, Engenharia de Software

Dirigida por Modelos, Engenharia de Software Experimental, Paradigma de Programação.





ABSTRACT

GOTTARDI, T. A proposal for the evolution of model-driven software engineering. 2018.
297 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2018.

In the Model-Driven Software Engineering (MDSE) context, software production can be per-

formed by defining models. Despite the advantages of this methodology, different domains

require specific support tools and modeling languages, which, in turn, must be developed along

with the final software. Because of this, developers face problems when applying the method.

The objective of this work is twofold: 1) to identify the most critical problems when developing

with this method; 2) discuss and provide possible solutions to those problems. The critical prob-

lems were identified by performing a systematic mapping, empirical studies, collaborations and

interviews with specialists. It has been identified that MDSE, according to basic literature, has

an excessively high abstraction level which leads to a lack of adequate processes and developer

training, besides the need for modeling tools. A new method is necessary to allow developers to

treat models and source-code differently. Therefore, in this thesis, the need for evolving MDSE

processes is discussed. In this manner, this work introduces a new development method described

as a possible concrete evolution of MDSE that defines a paradigm for software development.

This method is defined along with domain specific languages, a tool-chain and sample software

systems. After conducting analytic and experimental studies, it has been concluded that these

applications also represent a valuable contribution for implementing service-oriented systems

which can be employed in real world applications.

Keywords: Software Engineering, Software Process, Model-Driven Software Engineering, Ex-

perimental Software Engineering, Programming Paradigm.
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CHAPTER

1

INTRODUCTION

1.1 Context

Software development methods are defined to improve software quality and/or decrease

development effort. Among these methods, Model-Driven Software Engineering (MDSE) is a

software development method in which models are not only employed for documentation or

software representation, instead they can be employed to drive software development (BRAM-

BILLA; CABOT; WIMMER, 2012). Models are also used as input by transformation tools which

are capable of generating code for the actual software. This allows to improve productivity and

to increase understanding by representing the software at higher abstraction levels than source

code, while also avoiding low level coding mistakes (FRANCE; RUMPE, 2007).

MDSE is a specific case of Model-Driven Engineering (MDE) applied to software

engineering. In these development methods, models are employed within the development

phases in order to produce the final product, which is a software in case of MDSE, but might be

something else for MDE. As these models are not just used to describe designs and concepts,

they are considered as the artifacts that effectively drive the product production (or software

development) (BRAMBILLA; CABOT; WIMMER, 2012).

This use is justified within the literature (SCHMIDT, 2006; PASTOR; MOLINA, 2007),

as modeling allows to represent problem concepts more effectively, while the transformations are

capable of providing the solution for these problems. This requires to use modeling languages that

allow the creation of machine readable models, which, in turn, can be executed or transformed

into the final software. In this manner, it is possible to replace the source-code by models that

may represent the software at higher abstraction levels, tightening the semantic gap between

problem and its software solution (FRANCE; RUMPE, 2007).

Besides adequate modeling languages, development teams also require specific tools to

edit, validate and transform models, which may be specific to the project or domain. Then, it
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is possible to categorize development teams that use MDSE into two groups. The first group

is composed by developers working on specific domains that have suitable tools to use MDSE

since the inception of their development projects. However, the second group works on domains

with no previous tool definition, so they must either adopt general purpose tools or develop

their own MDSE tools by employing existing methodologies, for instance, MDA (Model-Driven

Architecture) (Object Management Group, 2010a). For this second group, it is necessary to

create specific transformers for tailoring the adequate solution.

With the advancement and availability of tools and frameworks to create model trans-

formation tools and modeling languages, it was expected that the effort required to produce

new tools and languages would be justified thanks to the increased productivity (PASTOR;

MOLINA, 2007). After several years following this expectation, it was not possible to confirm it.

Throughout this thesis, there are studies on how this evolution could occur in reality.

1.2 Problem

In 2007, some authors in this topic (PASTOR; MOLINA, 2007) have described that

MDSE’s major problem is caused by the lack of adequate tools. From their perspective, once

new adequate tools become available, the initial effort on adapting them for creating specific

transformation tools and model editors would provide a large productivity gain that justifies this

initial effort.

A few years later, Brambilla, Cabot and Wimmer (2012) have described the availability

of a set of tools that can be employed during different activities involved in developing software

with MDSE. These tools could indicate that the problems described by Pastor and Molina (2007)

had been solved.

Afterwards, Whittle et al. (2013) have discussed that while the tools are part of the

problem, there are other factors that cause projects to fail, which contradict the initial statement

by Pastor and Molina (2007). Beyond lack of proper tools, these factors also include adequate

training for developers, who are supposed to create their own tools when required by some

MDSE projects.

The work documented in this thesis involves further studies on the challenges of this

method that go beyond the tool problem and discussing other challenges of the method, which

motivate the proposal of new treatments within this research.

1.3 Motivation

Pastor and Molina (2007) discussed that during forty years, software processes were

created with the focus on how to produce quality source-code. Whenever models are present,

they are treated as less important artifacts.
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They also claim, however, that after advances on Model-Driven Development techniques

and tools, process support and model edition have lagged behind. In this manner, available

processes and their support might not be adequate to take advantage of the benefits empowered

by MDSE.

In this thesis, the research is focused on the hypothesis that tool support is not the main

problem that hinders developers from benefiting from the advantages of MDSE. Therefore,

studies were conducted to further identify the problem, as well as proposing development

methods that push beyond the established MDSE methods.

1.4 Justification

MDSE is a development method focused on raising representativity of documentation

and increasing the development productivity (SCHMIDT, 2006; FRANCE; RUMPE, 2007). As

previously written in this introduction, software development methods are defined to improve

software quality and/or decrease development effort. This project also involves pointing how

to extend the method to improve software quality instead of only increasing development

productivity.

The objective of increasing the software quality is justified since it is perceived by the

end-users, while the increase of development productivity might not be enough to encourage the

use of the method. It is also discussed how techniques initially created for supporting MDSE

could be made useful for the end-users.

In this project, MDSE and derivative techniques are studied with the intent of discussing

how the method could be evolved into a software paradigm in which the resulting products have

visible quality improvement.

1.5 Methods

Different methods have been employed during the research efforts which led to the

writing of this thesis. It is important to point out that these efforts are not linear, including

different attempts throughout the project.

In Figure 1 there is a graphic representing the overall development of the research project

reported in this thesis. This figure contains a time-line the horizontal axis include the years

when the research has been conducted. Each research task is represented by rounded rectangles.

Parallelograms represent the updates while the cards at bottom represent publications. The

vertical axis has no importance in this figure, however, the rounded rectangles at top represent

the starting studies: the Systematic Mapping and MDSE empirical studies are the starting studies

that were used to advance the rest of research. All rounded rectangles are linked with arrows to

indicate the research tasks that followed. This graphic does not include the future works.
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Figure 1 – Research Methods Time-Line
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This research project was composed by comprehensive literature reviews, including

a systematic mapping and a systematic review. The systematic mapping was performed to

identify success domains of MDSE and existing challenges by reviewing 4859 studies collected

from search engines, in which 3727 are unique. According to this mapping, MDSE has been

successfully applied to several application domains, including Business Information Systems,

Web Applications, and Computer Networks. For domains that are not covered by successful

MDSE tools, there are some challenges that are left unsolved, as for example: need for adequate

software development processes, tool dependency and need for support, and maintenance issues

when developers need to modify the generated code or source models. The challenges are further

discussed as part of Chapter 3.

After the initial search sessions of the systematic mapping, studies on these challenges

were conducted with the intent of further learning how these challenges could be solved. Initially,

students who attended a class on MDSE were interviewed (informally). Preliminary conclusions
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encouraged work on empirical research, which included two studies to assess the difficulties that

developers would face when using MDSE. Another systematic review was conducted, this time

in the context of process discovery techniques. A process discovery algorithm was formalized

and extended as part of this research project. The process discovery technique was used to

analyze small software projects using MDSE in which students worked on.

The analysis of these projects encouraged exploratory research efforts with the goal

of establishing a definition of a software category which is easier to build by using MDSE

since project inception. This software category along with development techniques and tools are

provided as the main contribution of this thesis.

This software category was validated in case studies, comparative studies and experimen-

tal studies, which are presented within this thesis, indicating their feasibility and applicability for

software development.

We also attempted to study challenges related to tools for MDSE. One hypothesis was

related to the lack of proper usability by modelling tools employed in MDSE processes. In this

manner, usability studies were also conducted, but these were cancelled during the research

project since their hypotheses were treated by related works selected during the SM execution.

Further details on the completed and cancelled studies that were carried out during this

project are presented in Chapter 4.

1.6 Objective of this Thesis

The objective of this document is to present the outcome of a research effort which in-

volves secondary studies related to primary studies conducted in the context of MDSE. Problems

were identified and possible solutions are also presented and validated.

Among these solutions, an evolution of the MDSE method is discussed in conjunction

with more recent developments. Despite arguments that the lack of tool support is not the major

problem in this context, further tool support was also devised for this new proposal, with the

intent of assisting developers to apply this paradigm.

Therefore, there are primary and secondary objectives to be listed for the thesis, described

herein: The primary objective is to describe a possible, feasible and validated software category

with its development method that is evolved from the legacy of MDSE techniques, tools and

methods.

This software category was created in a manner to avoid tool dependency and make

models useful for the end-users. Therefore, MDSE tools are optional and yet useful for the

developers and end-users. This category is also more specific allowing to specify a simple but

concrete development method.

Among secondary objectives, there are:
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1. Document employed research methods;

2. Document MDSE development studies;

3. Document software project method analysis;

4. Document and provide developed languages and tools to support the proposal;

5. Document a systematic mapping;

6. Document a systematic review;

7. Document experimental studies;

8. Document case studies;

9. Document process discovery and comparison algorithm.

In order to attain the primary objective, several research efforts were conducted, which

are described in this thesis for future documentation. Therefore, the following chapters include

descriptions on the conducted studies.

1.7 Thesis Outline

This thesis is divided into eight chapters. Besides the introduction, the organization of this

document is structured as follows: The theoretical foundation required for proper understanding

of the basics required for the establishment of this thesis are presented in Chapter 2. In Chapter 3,

a comprehensive systematic mapping on model-driven software engineering successful domains

and challenges is presented. Chapter 4 includes the history of employing process analysis

and method synthesis which were used for the proposal presented within this thesis, which is

described within Chapter 5 as a software system category. This proposal was validated in a set of

studies. Chapter 6 contains comparative studies, which compare the proposed software systems

with traditional systems. Chapter 7 contains experimental studies, which evaluate development

efforts to build the proposed software systems. Finally, Chapter 8 contains the main thesis

conclusions, outlooks for future works as well as list of related publications. This thesis also

includes a set of appendix chapters for further reference.
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CHAPTER

2

THEORETICAL FOUNDATION

2.1 Initial Remarks

This chapter is composed by theoretical foundation necessary for understanding this

thesis. Section 2.2 contains the principles related to MDSE, including modeling and meta-

modeling languages, tool examples and processes. Section 2.3 introduces method engineering,

which allows to create new methods based on existing method fragments. Section 2.4 consists

of an introduction on process discovery techniques, presenting approaches and algorithms to

analyze and generate documentation for previously executed processes. Section 2.5 includes

basic definitions on Markov models, a statistical method that has been used in process discovery

techniques. Section 2.6 contains principles of Models at Run-time. An existing programming

paradigm evolved from MDSE is described in Section 2.7. Section 2.8 contains definitions for

web services. Finally, in Section 2.9, this chapter is concluded.

2.2 Model-Driven Software Engineering

Models are artifacts that can be used to represent problems, real world concepts and/or

solutions at high abstraction levels, while a software system source-code is written to express

the implementation of a solution. Models can be also employed within software engineer-

ing during development efforts, in a method named as Model-Driven Software Engineering

(MDSE) (BRAMBILLA; CABOT; WIMMER, 2012). MDSE is made possible by employing

generators or interpreters, which take models as input artifacts to generate or execute the final

software (PASTOR; MOLINA, 2007).

MDSE is related to other methods that employ models. According to the diagram

shown in Figure 2, there are four main methods that employ models: MBSE (Model-Based

Software Engineering), MDSE, MDD (Model-Driven Development) and MDA (Model-Driven

Architecture). MBSE is the broader case of any software process that employs models as artifacts
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during development, regardless of the importance of these models. Therefore, MBSE involves

both MDSE and MDD.

MDD is the specific case of MDSE in which models are employed to generate the final

software, therefore, in the figure, MDSE involves MDD completely (BRAMBILLA; CABOT;

WIMMER, 2012). MDA, in turn, is a specific case of MDD in which models have specific

abstraction levels. It was defined as a standard by the Object Management Group (Object

Management Group, 2010a), with the objective of establishing a structured approach for MDD.

Figure 2 – Sets of Methods that Employ Models

MDA

MDD
MDSE
MBSE

Source: Brambilla, Cabot and Wimmer (2012)

MDD is the combination of generative programming, domain specific languages and

software transformation. Its objective is to reduce the gap between problem and implementa-

tion/solution by using abstraction levels higher than source-code, protecting developers from the

complexity of the implementation platform (FRANCE; RUMPE, 2007).

This objective is attained when the models are employed to express concepts from the

problem domain more effectively than source-code. These models can be instances of Domain

Specific Languages (DSL), which are modeling languages created specifically to express concepts

for the given domain. Specific tools are also used to create the software solution for the problems

declared in the models (SCHMIDT, 2006; PASTOR; MOLINA, 2007).

A successful MDSE process requires specific tools to transform the related models into

the solution. These transformations are categorized according to the type of input and output

artifacts.

When a text artifact is generated from a model, this transformation is referred as “Model-

to-Text”. In the same fashion, models can also be generated from other models, in a transforma-

tion named as “Model-to-Model”. It is also possible to have other combinations of transforma-

tions, including “Text-to-Model” and “Text-to-Text”.

The generated artifact does not need to be the final software. These can also be interme-

diate artifacts which are sequentially transformed until reaching the intended abstraction level.

This technique is used within MDA. According to the MDA specification, models are categorized
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into three levels of abstraction: Computation-Independent Model (CIM), Platform-Independent

Model (PIM) and Platform-Specific Model (PSM).

CIM is the most abstract model, which has no assumption related to computation. In this

manner, it must only represent the problem without defining its solution. PIM is an intermediate

model that is platform independent. While it may represent how to implement the solution, it

must not be tied to a specific implementation platform. The lowest level is named as PSM and is

specific to a single implementation platform.

MDA is based upon the principle that transformations may also generate intermediate

artifacts. These transformations are then employed sequentially in order to gradually lower the

abstraction level, until the lowest level (final software source-code) is attained.

As illustrated in Figure 3 (a), a development process employing MDA could involve

several levels of modeling artifacts. The first (most abstract) level is referred as level N and is

sequentially transformed into lower level models until level zero is attained. The blank boxes in

Figure 3 (a) were added to suggest that the transformations may also merge more models during

their execution.

Figure 3 – Illustration of Different Modeling Levels

Transformation

...

0

Transformation

N-1

N

Transformation

PSM PDM

Final

Software

Transformation

(a) (b)
Source: Object Management Group (2010a)

There is also another type of model in MDA named as Platform-Definition Model (PDM),

which is intended to map PSM models to the final source-code (Object Management Group,

2010a). This transformation is illustrated in Figure 3 (b).

As represented in Figure 3 (a), model transformation in MDA involves multiple divisions.

These divisions improve the reuse opportunities of each model level. For instance, in order to

generate different systems that share the same domain or to migrate the target platform, it is only

necessary to replace a few models at intermediary levels.
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2.2.1 Metamodels, Meta-metamodels and Metamodeling

Metamodels are models that define a modeling language either formally or semi-formally.

A metamodel is composed by “metaelements” or “metaobjects”. The modeling language of a

metamodel is defined as a model as well, which is referred as “meta-metamodel”.

In order to explain the relationships among models, meta models and “meta-metamodels”,

let A, B and C be all models for developing with MDSE. A represents the most abstract modeling

language and defines its own language; A is also used to define the language of B. In the same

manner, B is used to define the language of C (BRAMBILLA; CABOT; WIMMER, 2012).

Therefore, A is a “meta-metamodel”, B is a “metamodel” and C is simply a model. Being

in a meta level does not exclude the fact that they are all models. This is because metamodels are

also models. Meta-metamodels are also metamodels, which in turn are also models.

ECore (Eclipse Foundation, 2011) and Meta Object Facility (MOF) (Object Management

Group, 2010b) are examples of meta-metamodels. MOF, for instance is used to define the Unified

Modeling Language (UML), a general purpose modeling language for object-oriented software

including analysis, design and documentation (BOOCH; RUMBAUGH; JACOBSON, 2005).

Similarly to UML itself, MOF also includes classes, relationships and properties, though at the

meta-level.

For example, a portion of the metamodel of UML 2 is represented in Figure 4 as a

MOF metaclass diagram. This diagram includes “Class”, “Property” and “Operation” meta-

classes. These metaclasses define the UML element types Class, Property and Operation (Object

Management Group, 2010b).

It is important to point out that MOF also includes metaclasses associations and properties.

For instance, it is visible in the figure that “Class” is associated with “Property”. This relationship

indicates that classes may contain several attributes, while each attribute must be owned by at

most one class (as defined by the multiplicity numbers “0..1”).

Another important detail to point out is that MOF also includes generalizations. In Fig-

ure 4 it is possible to visualize that “Class” has a generalization relationship towards “Classifier”,

which indicates that “Class” inherits every meta-level property.

ECore is another meta-metamodeling language (Eclipse Foundation, 2011). As well as

MOF, ECore is used to specify modeling languages by using metaelements. These metaelements

include “EClass” for metaclasses, “EAnnotation” for metamodel annotations, “EAttribute” for

metaclass properties, “EEnum” for enumerations and “EPackage” for packages.

The advantage of employing ECore instead of MOF is that ECore is simpler. While

having less meta-metaelements indicates that ECore has less features than MOF, a complex

meta-metamodeling has more features that may cause ambiguity in the modeling languages

(BRAMBILLA; CABOT; WIMMER, 2012).
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Figure 4 – MOF Metaclass Diagram with a portion of UML Specification

Source: Object Management Group (2010b)

2.2.2 MDSE Technical Requirements

Pastor and Molina (2007) have discussed how software development projects using

MDSE depend on adequate tools. More recently, Brambilla, Cabot and Wimmer (2012) have de-

scribed that several tools were made available. For example, The Eclipse Modeling Project (Eclipse

Foundation, 2011) encompasses a set of tools to support developers working with models. It

also involves languages and frameworks to empower the development of modeling tools and

transformers.

Among instances of languages to support model-to-model transformation, there is the

Atlas Transformation Language (ATL), and the Query View Transformation (QVT). Among

languages to support model-to-text transformation, there is MOF Model to Text Language (MTL),

Java Emitter Template (JET) and XPand, all of which have tool implementations available

(Eclipse Foundation, 2011).
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Another technical requirement is related to configuration management involving mod-

eling artifacts. For this concern, repository managers were developed, e.g. Connected Data

Objects (CDO) (Eclipse Foundation, 2013a) and Morsa (ESPINAZO-PAGáN; CUADRADO;

GARCíA-MOLINA, 2011). Model-specific comparison tools have also been developed, e.g.

EMFCompare (Eclipse Foundation, 2011) and SiDiff (KEHRER et al., 2012).

Depending on the relationship among artifacts during the development process, differ-

ent models may be affected by changes in parallel. These parallel changes might need to be

synchronized, a concern that requires adequate tools. Among examples of tools to synchronize

these parallel changes, Eadapt (Eclipse Foundation, 2013b) allows the developers to define rules

to automatize the migration of models after modifying their referred ECore metamodels. This

project is part of the Eclipse Project (Eclipse Foundation, 2011).

2.2.3 Model Management

An MDSE process employs models as the main artifact throughout the development (PAS-

TOR; MOLINA, 2007). Models may also refer to related models and, thus, they can present

dependencies. This indicates the need for documenting these relationships, describing how each

model affects other artifacts. The management of these dependencies would support project

managers and developers to acknowledge how a model modification could impact other artifacts.

Among proposals to support model management, “megamodels” were created. “Meg-

amodel” is a category of domain specific language intended to document how the models

participate during the life-cycle of model-driven software development (BRAMBILLA; CABOT;

WIMMER, 2012). This documentation may also be flexible enough to support other model based

software processes that are not model-driven.

For example, the following megamodels were made available: AM3, a metamodel for

graphical megamodels; MoScript, a toolset which includes a domain specific language for

megamodels. These metamodels support the creation of model instances that can be employed to

record the relationship of other modeling artifacts within a MDSE transformation chain. Both

instances are part of the MoDisco (Eclipse Foundation, 2013c). It is important to advise that

despite the fact that megamodels were defined for creating documentation for the software

process and the participation of the artifacts, they are not development methods and do not

include guidelines for developers.

2.2.4 MDSE Specific Software Processes

Development methods include guidelines and instructions for developers on how to act

during the development of a solution (or product). Among these methods, there are software

processes. “Software Processes” or “Software Development Processes” contain a sequence of

activities and their related expected results for producing a software product (SOMMERVILLE,
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2015).

It is important to remind that since MDSE software processes involve models as active

artifacts besides the source-code, there are different possible sequences on which artifact should

be defined first; for simplicity, these processes are referred to in this thesis as either model-

first or code-first. According to MDSE and code generation literature, software processes are

traditionally focused on writing code (PASTOR; MOLINA, 2007). There are code generation

techniques that were devised focusing on reverse-engineering previously existing code into mod-

els (HERRINGTON, 2003; DURELLI et al., 2014; HESS, 2005), i.e., code-first methods. These

are development methods in which code is written before model transformation is performed.

However these methods do not constitute a process that involves the complete life cycle of a

software project.

On the other hand, model-first processes start with the definition of models before

code, since these processes cannot be based upon traditional code writing techniques. The

remainder of this section is focused on model-first approaches. Therefore, in this section, we

identify processes defined specifically for MDSE, which are: Almeida et al. (2003), Belaunde

et al. (2004), Chitforoush, Yazdandoost and Ramsin (2007) and Asadi, Ravakhah and Ramsin

(2008). All these processes are initiated from model definition, before any source-code artifact is

produced. They employ higher to lower abstraction level evolution as recommended by MDA.

Although MDA includes guidelines on how to involve models within a software development

project (Object Management Group, 2010a), it constitutes a method but does not encompass a

process, since it lacks a software development activity sequence.

The oldest MDSE-specific method specification that has been identified during a sys-

tematic literature mapping performed during this project (further described in Chapter 3) is

the process created by Almeida et al. (2003). These authors have not defined this method as a

complete process for software development, it is simply a set of guidelines to support developers

while defining models at the PIM and PSM abstraction levels.

In Figure 5 there is a simplified diagram for illustrating the method created by Almeida

et al. (2003). In their proposal, there are relationships to indicate which features of PIM models

must comply with the related PSM models. Their method also supports activities on how to

define models. However, there are no specific instructions on how to create metamodels.

In a posterior project in which Almeida was also involved, a complete software process

for MDSE has been specified. This process was named as “MODA-TEL”, after the consortium

with the same name1. This consortium was managed by the EURESCOM2.

The process is illustrated as a diagram in Figure 6. This diagram includes the process

phases, represented by rectangles. Arrows represent the sequence flows and dependencies

1 http://www.modatel.org/
2 http://www.eurescom.eu/
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Figure 5 – The Method by Almeida et al. (2003)
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Source: Almeida et al. (2003)

between a pair of phases. Sequence flows may be blocking, indicating that the following phase

must be interrupted to allow the previous one to be completed. This implies that if any following

activities were being executed, they must be interrupted in order to return to the preceding

activity. Sequence flows may also be auxiliary, indicating that the related phase may cooperate

on the same product without interrupting.

Figure 6 – MODA-TEL Process Diagram
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During the “Project Management” phase, the activities are related to project planning

from a managerial perspective. The MDSE activities are inserted into two specific phases, referred
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as “Preparation Activities”. “Preliminary Preparation” is the name of the first preparation phase,

which includes activities related to the requirement analysis of modeling and transformations.

Following this specification, during the second phase, named as “Detailed Preparation”, the

actual model formats and transformations are defined in detail.

The resulting specifications created during both “Preparation Activities” are used during

the following phase, referred as “Infrastructure Setup”. Its activities include decisions regarding

the adoption of modeling and transformation tools, as well as the definition of how to manage

the models throughout the process.

During the “Project Execution” phase, the goal is to develop the final software arti-

facts, which includes creating all input models and source-code, testing, validation, transformer

execution, integration, transition and maintenance.

Despite the availability of these phases, it is important to remind that the MODA-TEL

process was created for a specific software domain (telecommunications) and does not include

specific guidelines for the model/metamodel specification activities. It does not employ CIM

models and has no guidelines for creating model documentation.

In another proposal, Chitforoush, Yazdandoost and Ramsin (2007) have considered the

limitations of MODA-TEL and defined a framework for MDSE development. This framework

was further expanded into an actual software development process by Asadi, Ravakhah and

Ramsin (2008), which is the most complete MDSE process identified during literature reviews

performed within this project. Their process is based upon MDA, including activities for defining

CIM models and documentation.

By following the MDA, their process is composed by activities related to the definition

of CIM, PIM and PSM models. Figure 7 contains a diagram to illustrate the process created by

Asadi, Ravakhah and Ramsin (2008), which is divided into five phases. The first phase is related

to project initiation (or inception). During this phase, the activities include definition or adoption

of a CIM model, definition of the requirements model, establishing the development team and

selecting the support tools, e.g., editors and transformers.

The second phase involves PIM model specification. During this phase, CIM models and

requirements documents are used as base to create a conceptual PIM model, an architectural

model and, subsequently, a detailed PIM model. The detailed PIM model must be verified before

it is used as input for model transformers.

The third phase involves PSM model development along with source-code. The first

model transformation is executed during this phase by transforming the detailed PIM model into

PSM. There are no specific instructions on how to create the transformers. The authors simply

mention that this is dependent on the tools chosen during the first phase. Following this activity,

PSM is transformed into source-code. After the source-code is available, the software undergoes

testing activities.
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The fourth phase involves deployment, while the fifth phase is the maintenance. Both

phases are related to the software transition from the developer to the client. Further documenta-

tion writing is also included during the maintenance phase.

Figure 7 – Process Diagram by Asadi, Ravakhah and Ramsin (2008)
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It is important to inform that every process identified during the literature review per-

formed within this research project starts from the highest abstraction level towards the lowest.

In the same manner, Asadi, Ravakhah and Ramsin (2008) process starts from the CIM model

and evolves sequentially towards PIM, PSM and source-code (model-first process). Loops allow

developers to revisit past activities in iterations.

As a disadvantage, this process includes strict assumptions on the process model and

application domain, which discourages it from being adapted into process models in the state of

practice. Another disadvantage is that the process lacks specific guidelines for how to define the

models, metamodels and support tools whenever they are not previously available.

This lack of detail has encouraged the author of this thesis to conduct further research on

how to study existing processes to encourage discovery of successful process executions that

were conducted without a documented process. The main goal of studying existing processes

was to pinpoint why each activity was required in a MDSE process. These activities eventually

led to the creation of a software category described as a possible evolution of MDSE.

2.3 Method Engineering

Method engineering was defined by Brinkkemper (1996), based on the previously pub-

lished works by (KUMAR; WELKE, 1992). In this thesis, method engineering is employed to

construct a new method for MDSE software projects which are developed by using model-driven

techniques since its inception.
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“Method engineering is the engineering discipline to design, construct and adapt

methods, techniques and tools for the development of information systems”

(BRINKKEMPER, 1996, p. 2).

In this thesis, with the objective of increasing abstraction levels, meta-modeling is

applied both in the context of method design and in the software model meta-level specification.

A method definition is composed by method fragments, which are selected to form the final

method. These fragments represent activities to be performed within the defined method. In order

to properly define fragments and their sequences, this chapter also includes meta-level formats

and formalization for specifying the fragments of the method proposed within this thesis.

Figure 8 – Method Fragment Management
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The method engineering guidelines shown in Figure 8 are composed by six activities.

The first activity (“Project Environment”) involves establishing which project is the target for
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the method to be defined. The second activity (“Characterization of Project”) involves the

characterization of the chosen project in order to gather further details.

The third activity is represented in Figure 8 as the “Selection of Method Fragments”

(BRINKKEMPER, 1996; OLLE; VERRIJN-STUART, 1994). The fragments are stored into a

repository of fragments (“Method Base”). The fragments are selected to compose a new method

adequate for a certain project.

The forth activity (“Assembly of Method Fragments”) involves assembling the selected

method fragments into a proper method. This activity is important to define the order in which

these fragments should be performed within the actual project. After the project is performed, its

outcome should be measured to provide feedback to the used fragments. This measurement is

part of the “Project Performance”. Methods and the results of their executions are inserted into

the method base to foster reuse on other method engineering activities.

This flexibility of method definition is also considered a meta-level approach. Brinkkem-

per (1996) has discussed the need to provide meta-modeling techniques in order to specify

methods adapted for software development projects. Therefore, they have identified the need for

adequate meta-modeling in the context of method design.

2.4 Software Process Discovery

Development processes may become successful without a previously specified software

process. This does not mean that there is no software process, however, this indicates that the

executed process was not documented. Process mining techniques were created to support (and

automate) the discovery of existing processes, fostering the analysis and improvement of the

executed process (AALST, 2012).

With the intent of discovering the executed process, Jensen and Scacchi (2004) have

executed semi-automated analyses on artifact repository logs from software projects. These logs

allow to identify information on the impact of each change, including date and authors. After

identifying the artifact records and their log records, it is possible to identify the roles of each

author and the sequences of their work, which are mapped towards a software process.

Porter and Selby (1991) have devised an approach for empirical software process dis-

covery based on the data analysis of the process execution by using software metrics. This was

implemented on a tool developed to capture data employing software and software process

metrics, which allow to capture quantitative data on the process execution, allowing to measure

the work performed by developers during the phases, iterations and tasks. According to how the

metrics fluctuate throughout the process execution, it is possible to identify positive and negative

steps of the process during its execution, reporting to the project manager when to take action

whenever risks to the development tasks arise.
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Collecting data on processes can also support documentation on the execution, allowing

to reproduce the success cases in similar projects. These metrics are further documented in

another work (SELBY et al., 1991a).

In more recent works, another set of metrics was defined with similar goals (TAKA-

HASHI; MURAOKA; NAKAMURA, 1997; COOK; WOLF, 1994). Punitha and Chitra (2013)

have presented a survey on metric types with the intent of comparing their precision for detecting

software defects. In this thesis, the need of a software process comparison metric has been

identified during the research to identify adequate software processes. This metric is further

described in Chapter 4.

2.5 Markov Models

In this thesis, a software process comparison metric was proposed based on the software

process model discovery algorithm described by Cook and Wolf (1998). Similarly to their

algorithm, the proposed metric employs Markov models in its definition, more specifically,

discrete space Markov process models, also called as Markov chains.

Markov process models are a specific kind of stochastic process models that follow the

Markovian Property. Stochastic process models are used to represent probabilistic or random

behavior while the Markov Property is described as a memory-less property (KOSKI; NOBLE,

2011).

Formally, stochastic processes are defined as a set of states and transitions. The transitions

are taken depending on a parameter from the sequence of random variables (KOSKI; NOBLE,

2011; FINK, 2014). These random variables assume values that can be calculated as a probability.

Figure 9 – Finite Automaton Example
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For example, considering the finite automaton represented in Figure 9, in order to

calculate the first order probability of transition between states SN and its posterior SN+1, it is

only required to know the previous state SN−1. However, the states that were active before SN−1
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may be unknown, hence the memory-less property. The states that must be known are referred

here as “within the scope” of calculation.

The Markov property is important when calculating the probabilities matrices, which are

defined by counting the actual execution of an event stream from a previous state to a current

state, while the execution of states that were active before this scope are not necessary. This

scope is also important to provide flexibility: the usage of a extremely broad scope would cause

the discovered process model to be a single sequence of activities that copies the execution

stream, hampering the definition of loops or branches.

2.6 Models at Run-Time

In this thesis, a development method is proposed and evaluated. The resulting software

systems based on this method also include the handling of models at run-time. The key differences

of the proposed method when compared to Models at Run-Time is due to how the models are

used to represent the problem. Still, it is important to provide a brief introduction about Models

at Run-time (MRT) approaches, as they represent relevant work related to our proposal.

Similarly to the introduction to Model-Driven Software Engineering (MDSE), the context

of this section is related to issues caused by developing software at low abstraction levels. Source-

code at low abstraction levels does not include information from the problem space for which

the software was designed, regardless if the source-code was manually programmed or generated

from automation (FRANCE; RUMPE, 2007).

In MDSE processes, model transformation is employed to generate source-code. In the

same manner, the generated code is created to cope with the solution for a problem. As the

models may contain concepts from the problem, information may be lost after the generation. If

the execution of the resulting system depends on information regarding the problem, this issue

leads to undecidability, i.e., the algorithm in execution could be indefinitely executing in an

attempt to find an information that will not be available (ASSMANN et al., 2014).

Models at Run-Time (also written as Models@Run.Time and abbreviated as M@RT) were

defined as a plausible solution to cope with limitations related to undecidability and uncertainty

(GIESE et al., 2014).

The key property of a model at run-time system is its capability of reflection empowered

by the usage of the software models during run-time, instead of only the resulting source-code

(ASSMANN et al., 2014). Therefore, these systems must have special mechanisms to connect

the problem concepts to their solutions, causing the system to be aware of the problem space

while executing the solution. This allows the system to capture information from the models

(e.g., problem space) whenever necessary (BENNACEUR et al., 2014). Models at Run-time

systems are being tested as a solution for self-adaptive and self-aware systems that are capable
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of self-healing and automatic integration (TRAPP; SCHNEIDER, 2014; AUTILI; INVERARDI;

TIVOLI, 2015; AUTILI et al., 2017)

2.7 Model-Oriented Programming

Model-Oriented Programming is a programming paradigm created with the intent of

further tightening the gap between code and modeling (BADREDDIN; LETHBRIDGE, 2013).

Concepts of this paradigm were used to establish the software category proposal that is described

in this thesis.

The need for a programming paradigm was motivated by several problems identified

by the authors when developers try to evolve the code from diagrams in a MBSE approach.

While MDSE adds the ability to automate this effort, the need to synchronize the models is

still required. The round-trip engineering approaches are attempts to cope with this issue, but

they still require the hurdle of adding annotations to code to maintain the required semantics

(FORWARD; BADREDDIN; LETHBRIDGE, 2010).

In order to realize Model-Oriented Programming, a programming language named Umple

was devised (FORWARD; BADREDDIN; LETHBRIDGE, 2010). This language was based on

both the Java Programming Language and UML, with the intent of allowing programmers to

write code without losing semantics from the design models as well as rapid prototyping thanks

to code generation.

Umple allows developers to compile programs and diagrams using a single language

representation to avoid information loss that may be caused when transitioning from design

to coding activities. Umple also includes a run-time system to execute code while keeping

objects in an easy to export format, which allows developers to save the data of the prototype

for easy debugging and testing, which is also explored in test-driven development techniques

(BADREDDIN; FORWARD; LETHBRIDGE, 2014).

2.8 Web Services

In this thesis, Web Services are used as a technological domain for the proposed tech-

niques. Web Services (WS) are software systems designed for machine-to-machine interaction

over a network, according to the definition by the W3C Working Group (W3C Working Group,

2004). All the WS examples provided within this thesis employ Hyper Text Transfer Protocol

(HTTP) over the Internet in order to allow this interaction.

In the same manner, the examples provided also employ Extensible Mark-up Language

(XML) for data interchange, according to W3C recommendations (W3C Working Group, 2008).

XML is a structured language definition to represent data in text format suited for machine

interpretation.
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More specific languages can be represented and structured as XML. In order to define

the specific language rules, a meta language format named XML Schema Definition (XSD)

is employed. XSD is referred in this thesis as a meta-meta-language, because XSD is itself

represented as XML, while being also defined by a XSD (W3C XML Working Group, 2012).

There are different standards or recommendations for WS systems. For flexibility, the

examples provided within this thesis are based on two types of web services: Representational

State Transfer (REST) and Simple Object Access Protocol (SOAP). REST is an architectural

style for data interchange which employs HTTP features, namely universal resource identifier

and action verbs (method operations). This style allows a uniform specification for manipulating

web resources (FIELDING; TAYLOR, 2000).

SOAP is a WS protocol recommendation devised by a working group published by the

W3C (W3C Working Group, 2007). SOAP can be used over HTTP for machine interaction. The

XML format is recommended for structuring both requests and responses of SOAP messages.

Following the recommendation, data objects of the software systems we have devised are

serialized into XML streams, which are then encapsulated by another XML structure named as

SOAP Envelope. This envelope is used to transmit the object data with headers and the actual

object data, although it is not limited as a protocol to be used over HTTP and the Internet.

Web Services Description Language version 1.1 or Web Services Definition Language

version 1.0 (WSDL) are language specifications for interfaces and data types that are provided by

a web services server. The data types of the WDSL are based upon XSD definitions and provide

specific constructions to define the operations served by the server along with the input and/or

output parameters. Therefore, artifacts in WSDL format serve as interface models. A XSD for

WSDL is also available, which specifies how WSDL artifacts can be represented in XML format

(CHRISTENSEN et al., 2001).

The OMG has published a recommendation for structuring models and meta-models as

XML files according to the XML Meta-data Interchange (XMI) specification. XMI also has its

own definition in XSD format (Object Management Group, 2014).

2.9 Final Remarks

This chapter contains theoretical topics related to the work developed which is described

within this thesis. Among these topics, MDSE principles, processes and process discovery

techniques and models were covered. A brief introduction on Web Services was also provided.

The goal is to provide an initial reference based on the literature review, as well as introducing

terms used throughout the development of the research presented within this thesis. Following

the study of problems developers face when applying MDSE in their projects, in Chapter 3 a

systematic mapping is presented to further contextualize this problem.
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CHAPTER

3

SYSTEMATIC MAPPING ON

MODEL-DRIVEN DEVELOPMENT SUCCESS

CASES FOR DOMAIN-SPECIFIC AND

GENERAL PURPOSE APPROACHES

3.1 Initial Remarks

This thesis was written with the intent of proposing advances on the software development

by using modeling facilities and, to achieve that, it is important to identify the application

domains in which MDSE is successful or not. With this knowledge, it would be possible to

better understand MDSE potentials and pitfalls within different contexts, allowing to propose a

generalization towards other similar domains.

However, since no secondary studies have been found addressing this topic, it was

necessary to plan and conduct a systematic literature mapping with three objectives: identify

the software domains where model-driven techniques applications are successful; identify the

software domains where model-driven techniques applications are unsuccessful; and identify

challenges when applying these techniques to general purpose software development.

This chapter is organized as follows: In Section 3.2, systematic mapping (SM) concepts

are presented, as well as the activities done during the conduction of the SM. The quantitative

results gathered from the SM process are listed in Section 3.3. These results are discussed in

Section 3.4, which is done by also including qualitative data. Limitations and threats to validity

of this study are described in Section 3.5. Works related specifically to this chapter are cited in

Section 3.6. Finally, the conclusions for the study are in Section 3.7.
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3.2 Systematic Mapping Execution

A Systematic Mapping (SM) is a specific method of literature review. It allows identifying

and quantifying primary studies relevant to research questions in a specific knowledge area

(PETERSEN et al., 2008).

This SM was executed according to the guidelines by Kitchenham and Charters (2007),

which were defined in order to establish a systematic and repeatable literature review process.

They recommend three phases for the executed process: planning; conducting and reporting,

as illustrated in Figure 10. Rounded rectangles represent activities and sub-activities, while the

directed lines present their sequence.

Figure 10 – Systematic Method Process Model Diagram
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3.2.1 Planning

The Planning Phase is the first phase visible in Figure 10. It contains activities in which

the researchers develop a document named as “Protocol”, which is shown in Subsection 3.2.4.

During the Planning Phase, “Data Extraction Plan” and “Quality Criteria Definition” are also

developed. By defining the execution procedure in a review protocol, this process instance

becomes controlled and repeatable, which is one of the primary objectives of following a

systematic approach.
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3.2.2 Conduction

The Conduction Phase is composed by the “Selection” and “Extraction” activities. These

activities must be performed by following the established protocol.

The extraction activity deserves a further explanation. Its objective is to extract data

and fill the extraction form (“Data Extraction”), which is composed by categories planned

as described in the protocol. The extracted data is employed to distribute the studies into the

established quality criteria (“Quality Distribution”).

3.2.3 Reporting

The Reporting Phase has activities related to the data summarizing. The first activity

involves performing statistical analysis on the quantitative data (“Statistical Analysis”). Then,

these results are summarized into text and plots. It also involves discussing the results in the

effort of identifying new insights related to the study objects. This is the last phase visible in

Figure 10 and then, the process is finished.

3.2.4 Protocol

The complete protocol definition is visible on Table 1. This table contains two columns.

These columns are arranged into field name and value pairs that include the objective, questions,

intervention, control, population, results, application, keywords, source selection criteria, study

language, search engines and study selection criteria. Among these fields, the questions and study

selection criteria are frequently referenced during the results of the conduction phase presented

in Section 3.3.

The most important item of the protocol is its objective. By intending to identify MDSE

success/failure cases and challenges, two questions were devised. The first question aims to

identify the success cases and the failures in specific domains. The results of this question are

important because the search for challenges in MDSE outside these domains are also part of the

objectives. If the success cases became too ubiquitous, then, one could argue that the secondary

question is irrelevant. This is because the secondary question is related to challenges encountered

when applying MDSE into domains that do not have visible success cases. Without visible

success cases, there would be a lack of tools or methodology, thus making the challenges more

apparent.

Another important item of the protocol is the set of inclusion and exclusion criteria. The

inclusion criteria are marked with a leading “I” whereas the exclusion criteria are marked with

an “E”. The “I1” and “I2” were created when intending to answer the primary question, while

the “I3” is related to the secondary question. The exclusion criteria are employed to remove the

unrelated studies and other results that are not primary studies.
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Table 1 – Protocol Definition

Protocol Item Item Description

Objective The objective of this literature review is to identify success cases
and challenges in domain specific and general purpose MDSE
approaches.

Primary Question What are the specific domains in which developers have achieved
success by employing MDSE?

Secondary Question What are the the general purpose MDSE approaches and what
are the challenges to create such approaches?

Intervention Studies related to MDSE approaches and their challenges must
be identified and categorized.

Control The search results must involve a list of studies related to the
questions that are known by the researchers. This list includes
articles and books by Pastor, Whittle and Czarnecki.

Population MDSE application cases.

Results Quantitative data on approach frequency distribution within do-
main categories. Qualitative data on reported challenges.

Application This secondary study is provided as support to research regarding
MDSE.

Keywords: Software Development; Approach; Support; MDSE and MDD.

Source selection criteria: Source must index studies on Computer Science, Mathematics
or Engineering. Source must allow Boolean operators. Source
must be accessible by the researchers.

Study Language: at least title and abstract must be in English.

Search Engines: ACM; IEEE; Scopus; Engineering Village/Compendex

Selection Criteria: Inclusion:

∙ I1 - Primary studies that present a success case of MDD,
MDSE, DSL or MDA in a specific domain;

∙ I2 - Primary studies that present a non success case of
MDD, MDSE, DSL or MDA in a specific domain;

∙ I3 - Primary studies that present challenges of applying
MDD, MDSE, DSL or MDA in general purpose projects;

Exclusion:

∙ E1 - Unrelated to MDD, MDSE, DSL or MDA.

∙ E2 - Not a primary study.

3.2.5 Search Strategy

The searches were divided into different search sessions, which were conducted to collect

three different categories of studies.

The first category is focused on the software development approaches using modelling,
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i.e. not limited to MDSE.

The second category is related to any study that involves model orientation, whereas the

third category is related to any study involving models at run-time.

Therefore, three search strings were created, one for each category. It is worth mentioning

that these search strings have been constructed by joining the basic keywords defined on Table 2,

complemented with synonyms and related terms.

The keywords shown on Table 2 were used as basis to create the first category search

string. The final search string is obtained after a conjunction operation (represented by “∧”)

applied to the table rows and a disjunction operation applied among the synonyms of each

keyword. Therefore, the final search string is ( A ) ∧ ( B ) ∧ ( C ) ∧ ( D ).

For the second category (Model Orientation), the keywords shown on Table 3 were used.

Since there is only one row, the disjunction operation is applied among the synonyms of the

keyword, with the intent of capturing any study related to this keyword.

The third category (Models at Run-time) was also defined to capture any study related to

the specified keyword. Therefore the keyword shown on Table 4 was used. Since there is only

one row, the disjunction operation is applied among the synonyms of the keyword.

The searches were planned to be carried out through the following search engines: ACM

Digital Library1, IEEE Xplore2, Engineering Village Compendex3, Wiley Digital Library4, Web

of Science5, Science Direct6, Elsevier Scopus7, Springer Link8 and Google Scholar9,

However, some search engines were canceled after search sessions, since it was not

possible to calibrate the results by using the same search string construction rules.

The search was then concluded through the following search engines: ACM Digital

Library (DL), Engineering Village Compendex (EV), IEEE Xplore (IEEE) and Elsevier Scopus

(Scopus).

Their update dates may vary, as specified in Table 5. The initial search sessions were

executed on May 30th, 2014 by collecting studies from all reported search engines (1651 studies).

This review was then updated during the project by repeating the searches on the specified search

engines, effectively reaching 4859 studies. It is important to mention that due to the broad nature

of this search, this is a continuous work of literature review that requires periodic updates.

1 <http://dl.acm.org>
2 <http://ieeexplore.ieee.org/>
3 <http://engineeringvillage.com>
4 <http://onlinelibrary.wiley.com>
5 <http://wokinfo.com/>
6 <http://sciencedirect.com>
7 <http://scopus.com>
8 <http://link.springer.com>
9 <http://scholar.google.com>

http://dl.acm.org
http://ieeexplore.ieee.org/
http://engineeringvillage.com
http://onlinelibrary.wiley.com
http://wokinfo.com/
http://sciencedirect.com
http://scopus.com
http://link.springer.com
http://scholar.google.com
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Table 2 – MDSE Software Development Approach Search String Definition

Identifier Keyword Synonyms and Related terms

A Software Development

∙ software development;

∙ software engineering;

B Approach

∙ approach;

∙ process;

C Support

∙ tool;

∙ support;

D MDSE and MDD

∙ mdd;

∙ development;

∙ mde;

∙ engineering;

∙ software;

∙ mda;

∙ model-driven architecture;

∙ model driven architecture;

∙ Model-Driven;

∙ model;

∙ driven;

∙ model-driven.

∙ model-oriented

∙ model oriented.

Despite not updating all engines completely, these searches returned more studies from

past years that were not collected during 2014 searches, effectively exceeding the number

of studies found during initial searches. Nevertheless, all studies returned by engines were

thoroughly evaluated according to the processes established previously in this section.
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Table 3 – Model Orientation Search String Definition

Identifier Keyword Synonyms and Related

E Model Orientation

∙ model-orientation;

∙ model orientation;

∙ model-oriented

∙ model oriented.

3.2.6 Study Selection

After ensuring that there were no duplicated studies, the review was conducted by

analyzing studies returned by each search engine. The search engine priority was set by reviewing

first the engine that returned the higher number of previously known studies.

The data extraction form contains fields that must be filled during the extraction phase.

These fields where planned since the inception of this secondary study. The planned form

contains three fields:

1. Identified Success Case Domain;

2. Identified Failure Case Domain;

3. Identified MDSE problem or challenge.

The valid values for each of the enumerated fields are presented on Table 6. These

valid values are defined as nominal sets, i.e., groupings of enumerated and named items that

represent categories of studies that include information that is relevant for this secondary study.

All nominals, except the domain nominals, were completely planned prior to the execution.

The first nominal set is named as Domain Set, which contains 45 nominals, including do-

mains related to Web, Embedded Systems, Business Information Systems, Telecommunications

and Networking, Industrial Control Systems, Military, Parallelism, Simulation, Computer Aided

Design, Education and Computer Games. A complete list of these nominals is shown on Table 7.

It is important to establish that these nominals have been evolved throughout extraction

as new domains were categorized. They were also defined to allow hierarchical analysis. For

example, every nominal which starts with “Embedded System” is considered as child of the first

“Embedded System” nominal, then, upon counting the numbers of studies that are related to this

domain, the studies marked with any child nominal are also counted along with their parents.

The domains were distributed into application and technological domains during results analysis.
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Table 4 – Models at Run-time Search String Definition

Identifier Keyword Synonyms and Related

F Models At Run-time

∙ models at runtime;

∙ models at run-time;

∙ models at run.time;

∙ models at run time;

∙ model at runtime;

∙ model at run-time;

∙ model at run.time;

∙ model at run time;

∙ models @ runtime;

∙ models @ run-time;

∙ models @ run.time;

∙ models @ run time;

∙ model @ runtime;

∙ model @ run-time;

∙ model @ run.time;

∙ model @ run time;

∙ models@runtime;

∙ models@run-time;

∙ models@run.time;

∙ models@run time;

∙ model@runtime;

∙ model@run-time;

∙ model@run.time;

∙ model@run time;

The second nominal set is the Problem Set, which contains the nominals “Methodology

Problem”, “Maintenance Problem”, “Testing or Validation Problem” and “Tools Problem”. It is

important to mention that throughout the study the focus on “Tools Problem” was diminished

since it is unclear to define whether the study exposes MDSE problems or the authors were

simply encouraged to create new tools. Moreover, this issue was already covered in the literature

(WHITTLE et al., 2013).

The third nominal set is the Validation Set, which contains the nominals “Case Study”,
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Table 5 – Search Sessions and Updates

Search Category Search Engine Last Update Returned Study Count

MDSE

ACM DL May 30th, 2014 26
IEEExplore September 6th, 2017 405

EV May 30th, 2014 655
Scopus September 8th, 2017 2805

MO
IEEExplore January 1st, 2018 18

EV January 1st, 2018 37
Scopus January 1st, 2018 42

MRT
IEEExplore December 9th, 2017 65

EV December 9th, 2017 389
Scopus December 9th, 2017 417

All

ACM DL 26
IEEExplore 488

EV 1081
Scopus 3264
Total 4859

Table 6 – Valid Values for Data Extraction Fields

Field Number Field Name Field Type Cardinality Nominal Set

1 Identified Success
Case Domain

Subset of Nominals zero to many Domain Set

2 Identified Failure
Case Domain

Subset of Nominals zero to many Domain Set

3 Identified MDSE
Problem or Challenge

Subset of Nominals zero to many Problem Set

4 Identified Validation
Type

Subset of Nominals zero to many Validation Set

5 Presents Solution for
an MDSE challenge

One Nominal item one Boolean Set

“Experimental or Empirical Study”, “Experience Report”, “Feasibility Study”, and “Proof or

Demonstration”. The Boolean set contains two nominals, true and false. This set is used to

indicate whether the study presents a solution to the challenges or problems identified in MDSE.

3.2.7 Study Quality Criteria

The quality criteria were divided into two groups. The first group is used to select the

studies related to domain successes and failures. In this case, we have defined that these studies

must not present the domain simply as a case study, that is, to avoid papers that use a domain as

a validation without providing a practical success or failure report.

Considering the second group, it is related to the studies that present challenges or

problems related to MDSE. We have planned strategies for defining if these studies are relevant
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Table 7 – Complete Domain Set Nominals

Academic Math/Scientific
Access control Middleware
Answer Set Military/Defense/Aerospace
Autonomous Mobile Robotics Mobile
BioInformatics Multimedia/Audio/Video
Business Network
CAD Tool Parallelism
Cloud Computing/DataWarehouse Questionarie
Communication/Chat Real Time System
Control System Robotics
E-commerce Simulation
Education SOA/WEB Service
Embedded System Software architecture
Farming SoS
Fault Tolerance / Adaptative Space - Satellite
Game System Virtualization
Government Telecom
Hardware Tourism
Health TV
Human Interaction Ubiqua Pervasive
Industrial User-Interface
Information System WEB
Large Scale

for our secondary study. Therefore, we have defined that only the studies that either have a

solution for the challenges or contain a validation should be carried into the discussion activity.

3.2.8 Employed Tools

A custom set of tools was developed by the author to be employed during the conduction

phase. Their requirements involved supporting the hierarchical nominals and allowing the

researchers to cooperate on the same review and to provide real-time reports about the review

evolution and preliminary summarizing via a web page that features graphics and descriptive

statistics. More details of these tools are also available as part of the packing documents.

3.3 Secondary Study Results

This section contains the summarizing of results, which was carried out after conducting

the extraction phase. Qualitative and quantitative data that were used to answer the research

questions are provided.
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3.3.1 Search Results

The aim of this subsection is to provide information regarding the results returned by the

search engines. The searches returned 4859 studies, in which, 3727 were not duplicated.

Figure 11 contains a plot that was created to allow a general visualization of the distribu-

tion of collected studies. The graph was designed as a stacked bar plot, which allows the viewer

to compare the portion of duplicated and unique results returned from each search engine.

Since the search sessions were distributed into three categories, they are also specified

as separate plots. MDSE approaches are represented in Figure 12. Model-Oriented studies are

shown in Figure 13. Similarly, Models at Run-time studies are represented in Figure 14.

Figure 11 – Source Distribution

Source: Created by the author

The columns of Figures 11 to 14 are named as “ACM”, “IEEE”, “Scopus” and “EV”

since they represent, respectively, the search engines ACM Digital Library, IEEE Xplore, Elsevier

Scopus and Elsevier/Engineering Village Compendex.

In this review, studies were not filtered by their publication year. The oldest study that

passed the selection phase was published in 1985 and written by Hoffnagle and Beregi (1985).

Their study is related to automated software generation, however, since there is no explicit model

as input, it was not categorized as MDSE.

In order to improve the visualization of the plots here shown, it was established that

they would start from one year before the year that got the oldest results. In every bar plot, the
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Figure 12 – MDSE Approaches Search Session Results

Source: Created by the author

Figure 13 – Model Orientation Search Session Results

Source: Created by the author
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Figure 14 – Models at Run-time Search Session Results

Source: Created by the author

vertical axis contains the number of studies, whereas the horizontal axis may represent categories,

process phases or years. In Figure 15, there is a plot that allows the reader to visualize the

evolution of MDSE-related studies, which also represents the selected references.

Alkadi and Carver (1998) wrote the oldest study that was considered as related to MDSE

by this review process. It was published in 1998. They created an approach which employs

models for test case generation.

During the review process, we have also categorized the studies which have abstracts

that present or discuss MDA-based approaches. Then, these numbers were stacked into the plot

of Figure 15. This figure allows further discussion of the secondary question, which is related to

MDSE challenges. One could argue that the MDA use seems to be diminishing while the MDSE

have been published in a more constant pace.

After suggesting that MDA use may be diminishing, we have also categorized the use

of MDA model levels, as shown in Figure 16. The most common model level that was actively

declared in articles was PIM, followed by PSM. This analysis allows to identify that the highest

abstraction level (CIM) is hardly declared as used in most MDA approaches. This data leads to

discussions about how the highest abstraction level of MDA models, the CIM, is important in

development.
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Figure 15 – Evolution of Studies Related to MDSE and MDA
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3.3.2 Domain Categorization: Results

This section is related to the primary question of the study, which involves finding

successful MDSE application and technological domains. Among the selected studies, there was

no study reporting unsuccessful MDSE development cases. Therefore, this section is focused

only on the success cases.

The aim of categorizing the studies was to identify application and technological domains

in which MDSE has been successful. In Figure 17 there is a plot that allows easy visualization

of a large set of data gathered during this categorization process. It is possible to identify the

evolution of the most common domains. As seen on the legend, there are four domains, namely

“Embedded”, “Web”, “Network” and “Business”, which represent the domains of Embedded

Systems, Web Systems, Network Systems and Business Information Systems, respectively.

Although not planned prior to execution, it has been identified that the use of MDSE in

Embedded Systems Domain is very scattered among different subdomains. To avoid concerns

related to how broad is the categorization of this domain, we have identified Embedded Systems
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Figure 16 – MDA Model Levels Evolution
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subdomains which employ MDSE. These subdomains are presented in Figure 18, which contains

a plot showing the evolution of number of studies. With the intend to ease visualization, all

subdomains are categorized in order for each year. The subdomains “Avionics and Aviation”,

“Robotics”, “Agriculture”, “Cruise Control”, “Home Automation”, “Sensors and Actuators” and

“Road Vehicle” are distributed per year. It is important to mention that the “Total” bar is also the

total count of all studies related to Embedded Systems with or without a specific subdomain.

3.3.3 MDSE Challenges: Results

The goal of this subsection is to provide quantitative results regarding the number of

studies that present challenges on applying MDSE into general purpose projects.

After the process, eight studies that contain references to maintenance challenges were

identified. In the same manner, nine studies that discuss methodology challenges were identified.

Considering these studies, there is the total number of seventeen unique studies, since there is a

single study which is common in both listed categories. Further discussion regarding this data is
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Figure 17 – Evolution of Most Common Domains
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presented in Section 3.4.

3.4 Results Discussion

This section presents a discussion about the SM results, along with further qualitative

data. It includes discussion on the identified software domains, MDSE remaining challenges and

limitations of the study.

3.4.1 Domain Distribution

The results helped to confirm our previous expectations about MDSE tools intended for

Business Information Systems, Web and Embedded Systems. By reading the related studies, we

believe that a constant concern among these approaches is to accelerate the implementation of

data entities and their manipulation.

However, we did not expect that the network domain would achieve high frequency in
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Figure 18 – Evolution of Embedded Systems Subdomains
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the identified distribution. Most of the MDSE studies in the network domain are related to the

development of parallel distribution of software execution.

3.4.2 MDSE Remaining Challenges

The General Purpose Challenge is related to the secondary question of this SM. This

question was planned because our research team is investigating the application of MDSE in

non-conventional domains and in general purpose projects.

Another result of this SM is that the number of primary and secondary studies related

to challenges in unconventional domains and in general purpose methodologies of MDSE

application is far below the expected, i.e., 1 in the total number of reviewed studies. The search

results were carried out exhaustively, which means that all studies were checked for challenge

discussion.

During the conduction we have identified nine works that discuss methodology problems
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in MDSE besides the proposal of MDA (CERNICKINS et al., 2010; ASADI; RAVAKHAH;

RAMSIN, 2008; CHITFOROUSH; YAZDANDOOST; RAMSIN, 2007; NIKULSINS; NIKI-

FOROVA, 2008; NIKIFOROVA; NIKULSINS; SUKOVSKIS, 2009; SANCHEZ; BARREDA;

OCON, 2008; NOYER et al., 2015; NAZARI; RUMPE, 2015; TEPPOLA; PARVIAINEN;

TAKALO, 2009). We have also found eight studies that contain information on maintenance

problems that occur in projects that employ MDSE (SEIFERT; BENEKEN; BAEHR, 2004;

TEPPOLA; PARVIAINEN; TAKALO, 2009; ER; TEKINERDOGAN, 2012; BENDRAOU et

al., 2008; WESTFECHTEL, 2014; YU et al., 2014; MANTZ et al., 2015; HOVSEPYAN et al.,

2010). It is important to note that there is a single study which is common to both categories.

Consequently, there are seventeen studies presented in this subsection.

The summarizing of these studies is presented on Table 8. This table is ordered chrono-

logically. It also contains seven columns. In these columns, it is possible to visualize the reference

number of each study, authors, title, problem type and study type. The problem types are split

into two columns: methodology and maintenance, which represent, respectively, methodology

problems and maintenance problems. Therefore, the study lines that deal with specific problem

types have their respective cells shaded in order to indicate that they relate to the problem type.

Chitforoush, Yazdandoost and Ramsin (2007) are among the researchers who identified

that MDSE lacks methodology, processes and guidelines to instruct when developers should use

each model in a MDA-based project. In their attempt to provide a solution to this problem, they

have defined a general methodology framework based on MDA. These authors claim that their

framework is flexible enough to be adapted to various processes and needs. They also compared

their framework to similar approaches. However, they do not provide validation on the efficiency

of their approach. They have suggested this validation as future work but we could not find it

published.

Asadi, Ravakhah and Ramsin (2008) are from the same research department and created

another solution to the problem identified by Chitforoush, Yazdandoost and Ramsin (2007). They

have defined a MDSE development life-cycle , which has as main advantage to propose more

specific process definitions to guide developers using MDA. However, the stricter definition

could also affect flexibility. The authors compared their approach to related approaches and we

could not find a validation study.

Both of these studies have identified problems in the methodology of previous works,

but there is no validation whether the problem was completely solved. It is also worth citing the

analytical survey by the same authors (ASADI; RAMSIN, 2008), which provides the theoretical

foundation used to create their new approach.

Nikulsins and Nikiforova (2008) have described the need for customized processes.

They have studied how to adapt Rational Unified Process and Microsoft solutions framework

to support MDA. This need for customized process is further described in a more recent work

(NIKIFOROVA; NIKULSINS; SUKOVSKIS, 2009), in which the authors report that MDA
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Table 8 – MDSE Challenges Summarizing

Reference Title
Methodology Maintenance

Study Type
Problem Problem

Seifert, Beneken
and Baehr (2004)

Engineering long-lived applications using MDA Experience
Report

Chitforoush,
Yazdandoost and
Ramsin (2007)

Methodology support for the model driven
architecture

Method
Proposal

Asadi, Ravakhah
and Ramsin (2008)

An MDA-based system development lifecycle Method
Proposal

Bendraou et al.

(2008)
MDA Tool Components: A proposal for
packaging know-how in model driven
development

Model
Manage-

ment
Model

Nikulsins and
Nikiforova (2008)

Adapting Software Development Process
towards the Model Driven Architecture

Method for
Process

Sanchez, Barreda
and Ocon (2008)

Integration of domain-specific models into a
MDA framework for time-critical embedded
systems

Method for
Process

Nikiforova,
Nikulsins and

Sukovskis (2009)

Integration of MDA framework into the model of
traditional software development

Method for
Process

Teppola,
Parviainen and
Takalo (2009)

Challenges in Deployment of Model Driven
Development

Experience
Report

Cernickins et al.

(2010)
An outline of conceptual framework for
certification of MDA tools

Method
Proposal

Hovsepyan et al.

(2010)
From aspect-oriented models to aspect-oriented
code? The maintenance perspective

Experimen-
tal

Assess-
ment

Er and
Tekinerdogan

(2012)

MoDSEL: Model-driven software evolution
language

Language
Proposal

Westfechtel (2014) Merging of EMF models: Formal foundations Algorithm
for Mainte-

nance

Yu et al. (2014) From model-driven software development
processes to problem diagnoses at runtime

Generator
Dev.

Method

Nazari and Rumpe
(2015)

Using software categories for the development of
generative software

Generator
Dev.

Method

Mantz et al. (2015) Co-evolving meta-models and their instance
models: A formal approach based on graph
transformation

Algorithm
for Mainte-

nance

Noyer et al. (2015) A model-based workflow from specification until
validation of timing requirements in embedded
software systems

Method
Proposal

Gottardi and Braga
(2016)

Model-Oriented Web Services Part of this
project
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provides no guidelines for activities, roles, phases and responsibilities.

While facing a similar issue, Sanchez, Barreda and Ocon (2008) and Noyer et al. (2015)

have noticed the lack of a model-based process for embedded systems development.

Cernickins et al. (2010) also have described a methodological problem, however, their

focus is on tool certification. Thus, their certification framework contains guidelines that can be

employed to identify if a tool set or a project is lacking an important activity or feature which

they claim to be necessary.

Besides these studies, Nazari and Rumpe (2015) have devised instructions specifically

for developing software generators, which is a specific concerning activity related to MDSE

projects.

Seifert, Beneken and Baehr (2004) have written an experience report where they explain

that the use of MDSE increases dependency of the tool chain. They argue that this problem

is not only limited to custom made tool chains, because tools may be updated and become

incompatible to the older model instances. This is caused by changes on the language definition.

For instance, new UML definition versions are made available and tool developers may follow

the new definitions and break backward compatibility (SEIFERT; BENEKEN; BAEHR, 2004).

Bendraou et al. (2008) have discussed the need for packaging metadata about the artifacts

used within projects that employ MDA principles. This packaging would then support the

maintenance activities.

Hovsepyan et al. (2010) have studied the impact of code-generation on software mainte-

nance. The most important contribution of this study, when compared to others presented herein,

is the in depth statistical analysis of the maintenance impact using metrics to compare the results

in a quantitative manner. However, it focuses on specific models for a programming paradigm

(HOVSEPYAN et al., 2010).

Er and Tekinerdogan (2012) describe a language named “MoDSEL” (Model-Driven

Software Evolution Language). They claim that this language can be used to compare models,

track their changes and identify maintenance impacts. Therefore, this is a solution that deals

with the maintenance problems that may be found in software projects employing MDSE (ER;

TEKINERDOGAN, 2012).

Westfechtel (2014) and Mantz et al. (2015) have discussed the need for formal founda-

tions to merge models. These foundations are employed to implement tools to handle maintenance

issues faced by developers when dealing with version conflicts that may arise during development

and maintenance.

Yu et al. (2014) have discussed the problem that arises when it is required to provide

maintenance to code generators. In their study, they have devised a tool to help debugging

software produced by model-driven development.
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The studies shown on Table 8 span eleven years of publications. Roughly in the middle

of these years would be 2009. Prior to 2009, 5 out of 7 studies were focused on the methodology

problem. After 2009, 6 out of 8 studies were focused on the maintenance problem, which could

indicate a trend on the research efforts.

Incidentally, the first study that covers both categories was published in 2009. It was

written by Teppola, Parviainen and Takalo (2009) and contains an experience report created

by applying surveys on software development companies. These authors have described that

software developers using MDSE perceive both maintenance and lack of methodology issues.

They claim that despite the advantages that have been experienced by the developers while using

MDSE, there are still several issues to be treated. The authors conclude that the developers are

optimistic hoping that these issues are solved because they approve the use of MDSE regardless

of its current limitations (TEPPOLA; PARVIAINEN; TAKALO, 2009).

After learning about most of these works, a proposal for evolving MDSE into a new

development method, including a development method with maintenance flexibility was defined

within this project (GOTTARDI; BRAGA, 2016) and returned by the search engines after the

SM update. Further details of the proposal are described within Chapter 5.

It is not part of this study to discuss other secondary studies, although it is important to list

related studies. The previous version of this systematic mapping has been published (GOTTARDI;

BRAGA, 2015) and collected during its update . This previous version was conducted in 2014,

which included all studies up to the one authored by (ER; TEKINERDOGAN, 2012).

An analytic survey, which is part of the work described by Asadi and Ramsin (2008),

should be cited as an initial discussion of limitations of MDA and MDSE. It is worth mentioning

that there are other two works that were collected as control for this secondary study, and were

not added to Table 8: Whittle et al. (2013) and Whittle (2013). These studies also indicate that

the evolution of MDSE tools should focus more on the human aspects of developers, who still

face difficulties when trying to use them. Further details on related works are presented within

Section 3.6.

3.5 Study Limitations and Threats to Validity

The aim of this subsection is to provide details on the identified limitations and what

we have done to mitigate them. The limitations were categorized by their origin, which include

“Search Strategy”, “Study Selection”, “Data Extraction”, and “Researcher Bias”.

Search Limitations

There are a few limitations related to our search strategy. The first of them is regarding

to the search string. After calibrating the string in order to achieve most relevant results, it is
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possible that the string lost part of the original intended semantics and may fail to return some of

the intended studies.

To mitigate this problem, we have identified which search engines indexed the preliminary

known primary study defined as “control” in the protocol. Then we confirmed that the search

string was enough to cause the search engine to return the indexed known studies.

The number of search engines is less than the initially planned. It was originally intended

to include the databases by ISI Web of Knowledge, Science Direct, Wiley InterScience and

Google Scholar. The decision to cancel conduction of results carried by Springer Link was late

in our process. This was decided because this search engine provided a small relative number of

relevant studies and the high number of results was affecting the review time.

Study Selection

The guidelines by Kitchenham and Charters (2007) have been defined considering that

the selection activity should only be used to define which studies should proceed to the extraction

activity. However, as a slight variation of the method, the authors preferred to categorize every

study since the selection phase with the intent of providing a broader view on software domains

and modeling approaches.

The impact of this approach is unknown. In our strategy, the selection phase became

longer, however, we believe that it was positive to avoid another limitation of this phase: it was

not possible to reject studies during the selection phase without providing general categories to

the study, which is an evidence that no studies could have been rejected without proper reading

of their abstract.

Data Extraction

The main item analyzed during data extraction was identifying the set of categories in

which each study should be linked to. This also includes the application domains.

A constant concern during the execution was to provide an exhaustive categorization of

every returned study. Several categories were planned before the conduction. After discovering

more specific studies, the authors then decided to create an hierarchical category definition

interactively in order to provide an in depth report.

Since it was not possible to define if the interactively defined categories should be applied

to studies reviewed prior to their definition, only a few categories were selected, and the review

was restarted considering the new category set.

Considering that only the studies that provided information related to problems to apply

MDSE were selected for discussion, the number of discussed studies has became much inferior

than expected. However, as the primary question dealt in this study was to provide a systematic

mapping related to the most common domains, this issue should not affect its credibility.
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Researcher Bias

Since this work was carried out by two researchers, the risk of researcher bias affecting

the results is considerably high.

In order to mitigate this threat, we have defined keywords for each category and estab-

lished systematic approaches to carry the review as impartially as possible.

All the studies that present information regarding MDSE challenges were reviewed

extensively. However, the studies unrelated to the challenges topic were not fully read during the

process.

3.6 Works Related to This Systematic Mapping

Model-Driven Development is not a new topic in software engineering. We have found

19 secondary studies among the search results. It is worth mentioning that the work by Asadi

and Ramsin (2008) is a secondary study closely related to this one. However, their work is not

a systematic mapping but a literature survey. Also, their work is specific to MDA while we

intended to identify every MDSE related approach, including non MDA-based.

In summary, there were no systematic mappings among the secondary studies. The

identified systematic reviews were not related to the application of MDSE in general purpose

use cases.

Whittle (2013) have put forward a survey applied on professional software developers in

order to identify their problems when using MDSE in practice. For example, some authors have

suggested that MDSE tools would evolve significantly and solve most of challenges (PASTOR;

MOLINA, 2007). However, in another work, Whittle et al. (2013) have gathered evidences that

indicate that this assumption is not accurate, as the evolution of these tools should be more

focused on the developers. In their study, they have identified that despite improvement of

tools, there are still difficulties faced by developers, related to lack of methods, lack of training

and misconceptions about the usage of models. The main similarity of this work is that it also

investigates challenges related to MDSE application and we also argument that these difficulties

could be all related to the lack of adequate methodology.

3.7 Conclusions and Final Remarks

A secondary study has been presented in this chapter. After reviewing a total of 4859

studies, in which 3727 are unique, the most common domains have been identified as well as

discussions related to challenges developers face while attempting to apply MDSE to projects

dealing with uncommon or too specific domains.

As part of results summarizing, we have identified that the MDSE success domains are
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clustered into application and technological domains. This data was presented quantitatively

considering the success cases that were not only used as case studies. The success cases indicate

that MDSE has reached production levels for specific domains. In this manner, it is suggested that

MDSE is recommended for specific domains, involving both academia and software industry.

During our searches, we could not find a report on a failure case. It is possible that there

is a publication bias that discourages authors to write reports on failure cases. Still, we identified

challenges and presented these qualitatively and a discussion section.

There are 17 identified studies which are related to MDSE challenges. The discussion on

these challenges involved issues related to software maintenance and methodology. These studies

have also been categorized and summarized as part of the discussion. The studies with challenge

discussion encourage new approaches to cope with the existing issues related to MDSE. In the

context of methods and maintenance, it is possible that new processes, techniques, tools and

developer training could mitigate both of these issues. As the recent development of new tools

has taken place, in this thesis, we discuss how other approaches could be employed besides

creating new tools.

This secondary study presented the review of studies from 1985 to 2018, however, studies

related to MDSE challenges are scarce. Therefore, it is difficult to identify if a challenge has

been dealt with in the recent years.

Moreover, we could find no evidences that the proposed solutions were in fact used.

Considering the maintenance problems, we argue that these issues could rise in any project and

they should be mitigated since its beginning.

After discussing the successes and challenges, we have also identified how paradigms

derived from MDSE suggest that the legacy from MDSE research efforts could lead to new

methods and techniques to improve software quality and adaptability in ways beyond the original

proposal of code generation, as presented in Chapters 4 and 5. Further packing material and

related works by the same author on this context are also reported in other documents besides

this thesis10.

10 <http://tiny.cc/gottardi-doc>

http://tiny.cc/gottardi-doc
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CHAPTER

4

METHOD AND RESEARCH HISTORY

4.1 Initial Remarks

This thesis contains a set of different studies which were conducted during different

moments of the research project. The purpose of this chapter is to document the research history

of these studies. The motivation behind this text is to justify the presented studies. This chapter

includes the general overview for both the completed and the canceled studies, therefore, it is

intended that this apportioned chapter would encourage other researchers to access both the

reasoning behind both successful and unsuccessful studies related to the context of this thesis.

In this manner, in Section 4.2 the research history of this project is presented. Empirical

studies that were carried out prior to the main proposal and posterior studies are presented in

Section 4.3. The process discovery algorithm, which was adapted from an existing algorithm,

is formally defined in Section 4.4. Afterwards, a metric for process comparison which was

entirely created within this project is presented in Section 4.5. This metric is analytically proven

in Section 4.6 and experimentally evaluated in Section 4.7. Process analyses inspired a set of

method engineering executions, as presented in Section 4.8. Finally, the conclusions for this

chapter are pointed out in Section 4.9.

4.2 Study History

The first study conducted within this project was the Systematic Mapping (SM) presented

in Chapter 3. This study is the basis behind all the other studies that are presented in the following

chapters. Its success also encouraged several new searches to maintain it updated. The positive

outcome of conducting this mapping was to confirm if the novelty value of this research topic

was sufficient as expected for a thesis. Indeed, this SM affected the planning to search for new

proposals for the studied problem. The preliminary conclusion of this SM suggested that there

are existing challenges related to method research.
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After the literature review on methods for MDSE it has been suggested that the greatest

majority of existing methods and processes are inspired by MDA (ASADI; RAVAKHAH;

RAMSIN, 2008; CHITFOROUSH; YAZDANDOOST; RAMSIN, 2007; ASADI; RAMSIN,

2008; NIKULSINS; NIKIFOROVA, 2008). According to the results of the SM, most MDSE tools

are focused on PIM and PSM levels. High abstraction models are still recommended for software

processes, including agile life-cycles which avoid the usage of models (BECK, 2000; AMBLER,

2002; WHITTLE, 2013). The lack of MDA projects that employ CIM during development could

suggest two hypotheses: 1) developers do not have enough training or encouragement to fully

employ MDA with CIM; 2) MDA lacks proper method for CIM.

The suggestion that the developers do not have enough training was evaluated as part of

the first empirical study. In this study, it has been evaluated how difficult is to recognize each

level of MDA model abstraction, i.e., CIM, PIM and PSM.

Further details on this study are presented within this chapter (Section 4.3.1). Still, it is

important to report that according to its results, the participants had more trouble dealing with

CIM level models. The importance of this study for the research project resulted on discussing

the applicability of the CIM level.

The second empirical study was the first study planned to assess processes or methods

for MDSE. In this short study, it was intended to ask developers to prioritize activities for a

development process which uses MDSE since inception. This study was cancelled as related

work has been identified (WHITTLE et al., 2013).

There were further studies to assess hypothetical and empirical MDSE processes. The

hypothetical processes were inspired by the second empirical study and processes presented as

part of the theoretical foundation as presented in Chapter 2.

These empirical MDSE processes are discovered from data captured from logs collected

during software development. The techniques required for process discovery were searched as

part of a systematic review, which is presented in Appendix A.

One of the techniques for process discovery has been selected and adapted for executing

process comparison analysis. The intent behind comparing processes was to identify an actual

process that is the closest to an ideal hypothetical process. It was possible to carry on this analysis,

as well as to provide formal proof for the process discovery algorithm and the comparison metric,

which is a novel contribution to the state of art by itself. This algorithm, metric and proof are

discussed as part of this chapter (Sections 4.4 to 4.6).

Despite the successful validation for the algorithm and metric, it was not possible to

apply it to large scale development projects. In fact, even considering small projects, which were

used as examples for employing the metric, it was required the author interference, because

the participants could not finish all tasks by themselves. Although the algorithm and metric

have been thoroughly validated, it still poses a major threat of validity for the evaluated MDSE
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projects for the main objective of this thesis.

Following the lack of data issue, it has been suggested to evaluate MDSE tools. The

objective of this study was to identify whether tools were affecting the productivity of developers,

which led them to quit using them, thus affecting the applicability of MDSE. This study was

cancelled before any publication or conclusion.

Efforts on creating ideal hypothetical software processes were not cancelled besides the

lack of real project data. The activities required to complete the ideal processes were further

studied as part of a method engineering effort.

This method engineering effort shows that there are two fundamental types of MDSE

processes: top-down and bottom-up. In top-down processes, models and code generators are

defined before the coding activity starts. In the case of bottom-up, the coding activity is started

prior to the code generators and possibly even before modeling. According to basic literature

on code generation (HERRINGTON, 2003), the recommended technique is bottom-up since

it allows the code-generator developers to learn how to generate new code based on existing

code. By using method engineering principles it was planned to create an hypothetical software

category which would be easier to be carried by employing the top-down principle, which is then

proposed as a possible evolution for the MDSE.

4.3 Empirical Studies

This section contains two empirical studies that were conducted with the intent of

identifying the difficulties that developers face when trying to employ MDSE. The first study is

quantitative and involved 30 undergrad students verifying and categorizing models according

to MDA levels. The second study is qualitative and involved 14 graduate students who had to

develop a software using MDSE.

4.3.1 Empirical Study on MDA training difficulty

The first study was carried with 30 Information Systems undergraduate students. The

training session was based on MDA concepts including CIM, PIM and PSM levels with examples.

The objective was to evaluate how the participants would identify these models.

After the training, the participants received a set of models on paper and were asked to

categorize these models according to the MDA levels they were trained on. These model instances

were completely unknown to the participants and were in different languages than the ones

shown as examples during the training session. This was planned to encourage the participants

to identify their categories based only on their abstraction level or platform dependency.

There were three different models, one for each MDA level, therefore the maximum

correct answers for each level would be 30 (one per participant).
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All 30 participants handed in their answers, i.e. all participants completed and there were

no null answers. This allowed the author to collect which answers were correct. As results, the

correct answer count was 14, 20, 30 for CIM, PIM and PSM, respectively.

Despite the limitations of being a small study, it was helpful to suggest that the highest

abstraction levels require more training for the participants (and developers). Besides training,

there could be a lack of better methods to employ CIM models in MDA or other MDSE processes.

Therefore, it has been considered how to create a set of guidelines or methods for top-down

MDSE processes.

4.3.2 Empirical Study on MDSE Development Difficulty

The second empirical study is a qualitative study that was conducted with 14 graduate

students. The objective of this study was to identify difficulties that arise when developers learn

and attempt to build MDSE tools.

In this study, it was observed how the participants performed when developing a Web

application by using two PIM metamodels as taught in the book by Brambilla, Cabot and

Wimmer (2012).

The first PIM model is used to represent a web application with the content pages to

be generated dinamically. The second model represents the MVC (Model-View-Controller)

architectural pattern for implementing the system without platform dependency (BRAMBILLA;

CABOT; WIMMER, 2012).

The participants had to adapt both metamodels to their tool environment, while also

extending them with one metaclass each. It also required them to create two model transformation

tools from scratch. There was a model to model transformation, which involved both model

types, and a model to text transformation to create the web application code from the second

model.

Since this study is qualitative, it is focused on the feedback provided by the participants on

their efforts required to complete the task. All participants have cited that it was very demanding

to understand model-to-model transformation written in a transformation language named as

ATL (Eclipse Foundation, 2009). This language is based on functional transformation rules,

which could be the cause of difficulty. Eight participants have mentioned that the first metamodel

was the most difficult to understand, when compared to the second. Four participants suggested

that it would be much easier to start from the final application source code and then raise the

abstraction levels in a bottom-up strategy. Therefore, most participants did not agree to this

suggestion, stating that starting from the highest abstraction level has advantages on design,

which is beneficial for the development cycle.

This study was used to motivate the possibility of creating a more concrete technique for

MDSE development based on the top-down strategy. These results encouraged further surveys
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on development difficulty. It is important to announce that upon identifying the work by Whittle

(2013) as related, further surveys specifically on this topic were canceled. Indeed, Whittle (2013)

has mentioned that it was deemed possible to apply both MDSE strategies to agile methods,

however, it was not verified for other processes. After this study, more efforts on process analysis

were carried out, as described within this chapter.

4.4 Process Analysis and Discovery Algorithm

Software development projects may be successful without proper process documentation,

because even if developers are not aware of the process being followed, the present development

context (team, project complexity, design choices, etc) can lead to success. Therefore, in case

of project success, one would not be certain whether it was a random success or thanks to a

good process. Worse than that, if developers wish to repeat the process in other projects, the

effort necessary to recover the past experience could prevent them from trying. To solve that, it is

possible to collect quantitative data from the project execution to discover the employed process,

as well as calculating metrics that are useful for its analysis (AALST, 2012; SELBY, 2009).

The lack of process awareness is particularly challenging in model-driven software

engineering (MDSE). After conducting a systematic mapping in the context of MDSE processes,

we have identified a few software processes defined specifically for this software development

method (Chapter 3). While there are a few processes, we have not identified practical application

outside the works of the authors who provided the processes. We have discussed that the

developers are more focused on producing artifacts. Therefore, an approach to collect the process

based on the log of produced artifacts was suggested as part of the conclusions of our previous

study.

This motivated the establishment of a method for identifying and comparing processes

according to their execution. Therefore, in this section, we present an algorithm based on the

algorithm by Cook and Wolf (COOK; WOLF, 1998; COOK; WOLF, 1995; AALST, 2012;

LAKSHMANAN; KHALAF, 2013). Their algorithm was selected after we conducted a system-

atic review on process discovery that indicated its adequacy for our purposes, except for two

minor issues. The first is that in their method there is a threshold that would not allow precise

process comparison. Also, their papers lacked enough formalism of their algorithm. Therefore, it

was required to create a more precise algorithm evolved from the proposal by Cook and Wolf

(1998) including the formalism enough to allow precise implementations, as well to create the

comparison metric.

The algorithm presented in this thesis is used to discover process models and includes a

process similarity metric that allows to identify which known process is the most similar to the

one used during a certain process execution. After evaluating our algorithm, it was evidenced

that it could also be applied onto several other process development comparisons.
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Figure 19 – Process Discovery and Metric Graphic
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Figure 19 contains a graphic that illustrates the overall execution of the process discovery

algorithm: Logs from artifact repositories are collected; Changes to artifacts must be manually

assigned to expected activities of the executed process; These activities are processed into

probability matrices; These matrices are used to discover the actual process (described in

Subsection 4.5.3). In the case of the availability of more than one log, it is possible to capture

different sets of matrices. A comparison metric was created (described in Subsection 4.5.4) that

results into a similarity ratio when pairs of sets (of matrices) are used as input.

4.5 Algorithm Definition

In this section, we describe the algorithm we have devised to discover processes, which

also includes a process comparison metric. The algorithm is based on logs of activities performed

during the software process, and it stands on probabilities of occurrence of activities in a certain

sequence. This log can be collected manually or automatically by development tools, however

the phase of collection is out of the scope of this thesis, and the algorithm is independent of how

this is done. Therefore, despite not being the main goal of this section, this algorithm can be

implemented to allow automated process discovery.

The algorithm is composed by two steps, which are described within this section: (1)

Gather First Order Probabilities; (2) Gather Second Order Probabilities. For both steps, the input

is a sequence log of activities, and the outputs are two matrices that can be used to generate a

process model automata and other metrics.

The log sequence may be captured from software repositories. The possible activity types

must be predicted (manually) prior to the discovery execution. In the case of validation studies

presented in this chapter, we have captured the creation and edition of different artifact types,

i.e., source code edition for coding, execution logs for testing and approval, etc.

For a simple hypothetical example, we consider the following log sequence: L =
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CTRCCMTRMTMTRCMTA . The set of the activity types is referred within this section

as D. There are N = 5 different activity types and each letter represents one activity execution

(highlighted in bold letter): Code; Test; Reject; Modify; Approve.

4.5.1 First Order Probabilities

The first step of the algorithm is to gather first order probabilities. The input of this step

is the activity stream and the output is a two-dimensional matrix named F . This matrix is used to

represent the probability of the previous state of a given current state, i.e. each cell indexed by

[i, j] contains the probability of event i to be followed by event j. Then, we count the instance of

digrams (event pairs) and divide them by the total count of digrams that end on the current state.

This way we can define how likely was a transition to come from specific previous states. The

scope for this calculation involves C = 2 consecutive states. For the first order, C is always 2.

In order to count the number of digrams, we define a sum of ones and zeros. Therefore,

it is necessary to define the instance count function IF(z,x) (Equation 4.1), where z and x are

activities within D, i.e. z ∈ D ∧ x ∈ D; the length of the log stream is M; and the result of the

function is a natural number.

IF(z,x) =
M−1

∑
i=1

(

1 if (Li = z)∧ (Li+1 = x),

0 otherwise.

)

. (4.1)

The total number may be computed to be zero. Since it is the denominator of any matrix

cell, it is necessary to avoid it from being zero by using the coalesce function R (Equation 4.2)

that replaces the zero by any other non zero number. For simplicity, we replace the zeros by

ones, therefore whenever there is no instance count for a given current state, the complete total

probability for each column would be always either zero or one.

R(z,x) =

(

z if (z ̸= 0),

x if (z = 0).

)

. (4.2)

It is then possible to calculate the first order probability matrix F (Equation 4.4) that has

C dimensions of N elements, i.e. NxN. Each cell at coordinates "i, j" is calculated by the function

FF(i, j) (Equation 4.3 ) The N different activities may be represented by using a one-dimensional

array D that has N elements.

FF(i, j) =
IF(Di,D j)

R(∑N
i=1 IF(Di,D j),1)

(4.3)
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F =













D1 D2 · · · DN

D1 FF(1,1) FF(1,2) · · · FF(1,N)

D2 FF(2,1) FF(2,2) · · · FF(2,N)
...

...
...

. . .
...

DN FF(N,1) FF(N,2) · · · FF(N,N)













(4.4)

Considering the provided log example (referred as L), vector D would be [ C T R M A ].

The sum within function F takes M−1 values. So, if we consider the first three letters of the

provided example, CTR , we would have 2 instances: from C to T and then from T to R. The

resulting matrix for this length-three excerpt would allow to represent 1/1 probability to reach

T from C, and 1/1 probability to reach R from T. In this section we also present the resulting

F matrix for L = CTRCCMTRMTMTRCMTA as a whole. The F Matrix is composed by the

first order probabilities of the process transitions (Equation 4.5).

F =

















C T R M A

C 1/3 1/5 0/3 2/4 0/1

T 0/3 0/5 3/3 1/4 1/1

R 2/3 0/5 0/3 1/4 0/1

M 0/3 4/5 0/3 0/4 0/1

A 0/3 0/5 0/3 0/4 0/1

















(4.5)

According to the data represented in this matrix, for example, it is possible to identify

the previous letters that have transitions to C. Then, to reach C, there is a 1/3 probability that the

previous letter was another C, and a 2/3 probability that the previous letter was R.

4.5.2 Second Order Probabilities

The second step of the algorithm is to gather second order probabilities. The scope for

this calculation involves three consecutive states. This step takes as input the same activity stream

of the previous step and outputs a three-dimensional matrix named S. Similarly to the previous

step, this matrix is also used to represent the probability of previous states that reach the current

one, however, it takes three states, the current and two previous ones. Therefore, we count the

instance of trigrams and divide them by the total count of trigrams that come from a precursor

state, then transition to a previous state, and then end on the current state. Following this rule,

the scope for this calculation involves C = 3 consecutive states and for the second order, C is

always 3. The instance count function for the second order probabilities is also defined as a sum

of zeros and ones. As represented by IS(z,x,y) (Equation 4.6), there are three activity letters.
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This function results to a natural number.

IS(z,x,y) =
M−2

∑
i=1

(
1 if (Li = z)∧ (Li+1 = x)∧ (Li+2 = y),

0 otherwise.
). (4.6)

Since the total instances per column can be also computed to zero, the function R is

also used to replace zero denominator values to one. This is the same R function described in

Subsection 4.5.1.

For calculating the second order probability matrix S that has C dimensions of N elements,

i.e. NxNxN, each cell at coordinates "i, j,k" is calculated by function FS(i, j,k) (Equation 4.7).

The same vector of the N different activities is represented by using a one-dimensional array D

that has N elements. Since Matrix S is three-dimensional, it could be also represented as an array

of N NxN matrices. Then, there would be matrices for S1 to SN (Equation 4.8).

FS(i, j,k) =
IS(Di,D j,Dk)

R(∑N
i=1 IS(Di,D j,Dk),1)

. (4.7)

SN =













D1 D2 · · · DN

D1 FS(N,1,1) FS(N,1,2) · · · FS(N,1,N)

D2 FS(N,2,1) FS(N,2,2) · · · FS(N,2,N)
...

...
...

. . .
...

DN FS(N,N,1) FS(N,N,2) · · · FS(N,N,N)













. (4.8)

For the first four letters of the provided example, CTRC , we would have 2 instances,

since the sum within function S takes M−2 values. These instances would be from C through T

to R and from T through R to C. The resulting matrix for this length- four excerpt would allow

to represent 1/1 probability to reach R from C through T and 1/1 probability to reach C from T

through R.

We also provide the resulting second order Matrix S. However, since it is not simple to

represent this matrix on paper due to its three dimensions, it has been transformed into Table 9.

The first column contains the pair of initial state transitions. Each sequence of five rows represents

one dimension of the original Matrix S, hence the separator lines.

4.5.3 Automata Generation

The resulting process model is represented by an automata, which is illustrated in

Figure 20. Firstly, a non-deterministic finite automata is generated. In order to generate this

automata, the values from the second order probabilities matrix are taken according to the

following rules:

∙ For each non zero value from matrix S:
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Table 9 – Calculated Second Order Example

C T R M A

CC 0/3 0/4 0/3 1/4 0/1
CT 0/3 0/4 1/3 0/4 0/1
CR 0/3 0/4 0/3 0/4 0/1
CM 0/3 2/4 0/3 0/4 0/1
CA 0/3 0/4 0/3 0/4 0/1

TC 0/3 0/4 0/3 0/4 0/1
TT 0/3 0/4 0/3 0/4 0/1
TR 2/3 0/4 0/3 1/4 0/1
TM 0/3 1/4 0/3 0/4 0/1
TA 0/3 0/4 0/3 0/4 0/1

RC 1/3 0/4 0/3 1/4 0/1
RT 0/3 0/4 0/3 0/4 0/1
RR 0/3 0/4 0/3 0/4 0/1
RM 0/3 1/4 0/3 0/4 0/1
RA 0/3 0/4 0/3 0/4 0/1

MC 0/3 0/4 0/3 0/4 0/1
MT 0/3 0/4 2/3 1/4 1/1
MR 0/3 0/4 0/3 0/4 0/1
MM 0/3 0/4 0/3 0/4 0/1
MA 0/3 0/4 0/3 0/4 0/1

AC 0/3 0/4 0/3 0/4 0/1
AT 0/3 0/4 0/3 0/4 0/1
AR 0/3 0/4 0/3 0/4 0/1
AM 0/3 0/4 0/3 0/4 0/1
AA 0/3 0/4 0/3 0/4 0/1

– There are four states: Sx, Sy, S0 and Sz.

– There are four transitions: Li−1, Li, Li+1, Li+2;

– T1 links Sx towards Sy;

– T2 links Sy towards S0;

– T3 links S0 towards Sz;

– T4 links Sz towards Sx.

The start state is any Sx that is linked to a transition taking the first letter of vector L.

The final state is any Sz that was generated by the last trigram of L. The union of this automata

represents the complete automata, which may be transformed into a simpler deterministic

automata. This simplification algorithm is not within the scope of this thesis.

Still, this section also includes the resulting simplified automaton constructed according

to the algorithm for the process based on the provided log in Figure 21.
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Figure 20 – Non-deterministic Automaton Instance
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Figure 21 – Generated Automaton for the Example
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4.5.4 Comparison Metric

In addition to the automata generation, the main goal of this section is to present a metric

defined for process execution similarity detection. The idea is to count how many matrix cell

values that are greater than zero occur in both matrices at the same coordinates, plus how many

zero values occur in both matrices at the same coordinates. By dividing this count by the total

number of cells, the quotient would be the ratio of matrix similarity. Therefore, we employ the

first and second order matrices, namely F (Equation 4.4) and S (Equation 4.8).

Since it is necessary to compare two first order matrices and two second order matrices,

the matrices are also defined as parameters for these functions, thus, avoiding ambiguity. The

complete pair of functions are defined as Equations 9 and 10. These ratio can be used separately

or as a final product, which takes of both first order and second order matrix similarities, i.e.

C2(F,N) ·C3(S,N). These functions were defined by using the exclusive-or operator (⊕), which

results in true when the pair of Boolean values are different. If the values are different, zero is

added to the sum, otherwise one is added to increase the similarity count. Since the sums take

zeros and ones as parameters, the maximum case would be summing up N2 or N3 ones. Therefore,

their maximum value for the sums would be exactly count of cells taken as comparison. Since

these sums are multiplied by 1
N2 and 1

N3 , respectively, this result would be a rational between
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zero and one (inclusive). This metric follows the generalized metric property of always resulting

in zero for the most similar pair (ARKHANGEL’SKIǏ; FEDORCHUK, 1990). Therefore, in this

case, one would represent the most different pair.

C2(F,G,N) =
1

N2 ·

∑
M
i=1( ∑

M
j=1(

1 if (Si, j > 0)⊕ (Gi, j > 0),

0 otherwise.
)).

(4.9)

C3(S,R,N) =
1

N3 ·

∑
M
i=1( ∑

M
j=1( ∑

M
k=1(

1 if (Si, j,k > 0)⊕ (Gi, j,k > 0),

0 otherwise.
))).

(4.10)

4.5.5 Related Algorithms

This section includes the definition of an algorithm for process discovery and process

comparison metric. As mentioned before, the work of Cook & Wolf provided guidelines for the

definition of the discovery algorithm provided herein (COOK; WOLF, 1998; COOK; WOLF,

1995). Therefore, our algorithm is closely related to theirs, however, their algorithm includes a

threshold steps but lacks a formal proof and definition. In the case of their algorithm, a threshold

step was added to ignore low probability transitions to further increase flexibility. Since we

planned to create a formal algorithm that also includes metric for comparison, being excessively

flexible would decrease the precision of the metric.

Our work is also focused on empirical software engineering in the context of process

models, which is similar to the works by Selby et al. (SELBY et al., 1991b; SELBY, 2009), who

have worked on a set of metrics for empirical analysis of software development. It involves a

tree categorization metric (SELBY et al., 1991a) and a scripting configurable capture system

that calculates metrics on demand (SELBY et al., 1991b). They have also worked on a dynamic

metric capture system that allows a software development manager to watch several metrics

collected from software development projects (SELBY, 2009).

Even though this work has followed the results of a Systematic review on software

process discovery, presented within Appendix A, it is still worth mentioning related surveys and

other secondary studies on this subject.



4.6. Analytic Metric Proof 87

The work by Akman and Demirörs describes the application of four process discovery

algorithms (AKMAN; DEMIRöRS, 2009), namely Markov Method, Heuristic Mining, Fuzzy

Mining and Genetic Process Mining.

Other works related to process discovery algorithms have been presented in the literature.

For instance, Lakshmanan and Khalaf, and Der Aalst et al., have written secondary studies

where they present a set of different algorithms and their advantages (AALST et al., 2012;

LAKSHMANAN; KHALAF, 2013). We recommend them as a solid literature for readers willing

to understand the basics of process discovery.

4.6 Analytic Metric Proof

In this section, we present an analytic proof that the proposed metric is a generalized met-

ric, i.e., it complies to the properties expected for a generalized metric according to mathematical

theory. This proof is also presented as validation that the proposed metric can be used to identify

the process differences and similarities. As discussed in Section 4.5, there are constraints for

input variables. This does not restrict to compare different processes, it is simply required to

compute the union of activities prior to the metric calculation. These restrictions are presented as

part of propositions.

The propositions are based on the definition presented on Section 4.5 and they are always

valid for the proposed metric: 1) The metric takes matrices as input, which are generated by the

algorithm defined within Section 4.5; 2) N is a natural number which is equal to the size of set D

(activity type count); 3) The matrices must be NxN or NxNxN according to their order; 4) The

compared matrices must have the same dimensions.

As another proposition, it is also important to establish the truth table for exclusive-or

operation as presented on Table 10. This operation is used in the metric function to sum zeros

and ones for equal or different attributes, respectively.

Table 10 – Truth Table for Exclusive-Or

p q ⊕ expression summed value

false false false (p∨q) 0
false true true (¬p∧q) 1
true false true (p∧¬q) 1
true true false (¬p∨¬q) 0

The logic (Boolean) expression for Exclusive-Or can be expressed in both ways, either

by considering the false or the true results (MENDELSON, 1987), therefore, we have decided to

take the expression from the true results, as expressed in (Equation 4.11), which is employed for
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the proof presented within the following sections.

p⊕q = (¬p∧q)∨ (p∧¬q) (4.11)

4.6.1 Properties and Generalized Metric Categories

This subsection includes the properties expected for the function to be categorized as a

metric or generalized metric. The properties are enumerated starting on 1 up to 4. A metric must

comply to all presented rules. Generalized metrics are categorized according to the subset of

properties of their compliance (ARKHANGEL’SKIǏ; FEDORCHUK, 1990).

1. Non-negativity:

m(x,y)≥ 0, for any x and y;

2. Identity of Indiscernible:

a) m(x,y) = 0, if and only if x = y;

b) x = y, if m(x,y) = 0;

c) m(x,y) = 0, if x = y;

3. Symmetry:

m(x,y) = m(y,x);

4. Triangle Inequality:

m(x,z)≤ m(x,y)+m(y,z).

According to the non-negativity property (Property 1), the results of the function must be

always positive for any valid pair of input parameters. This property is justified for all categories

of generalized metrics because metrics must represent a distance between the parameters, which

cannot be negative (ARKHANGEL’SKIǏ; FEDORCHUK, 1990).

The Identity of Indiscernible (Property 2) refers to the ability to identify equal input

parameters by using the metric. There are three levels of this property. The first level (Property

2.a) is the most complete and restrictive, and also implies both other levels (i.e., 2.a implies 2.b

∧ 2.c). According to the first level, whenever the metric results in zero, then, the parameters are

equal.

In addition, having identical parameters is the only possible way for the metric to result

in zero. The other levels relax one of these statements. Therefore, according to the second level

(2.b), by having identical parameters, the metric must result in zero, however, there might be

other zero results for different parameters. Finally, according to the third and last level (2.c), if

the metric results in zero, then the parameters are identical. However, it might be possible that

some identical parameters result in non-zero values.
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The Symmetry (Property 3) establishes that the result of the metric is not affected by the

order of the input parameters. This means that comparing x against y yields the same result as

comparing y against x.

The Triangle Inequality (Property 4) statement is a property which establishes the

difference when comparing parameters by taking a third element as an intermediate. Given the

input parameters x,y,z, the comparison of x against z would never be greater than comparing x

against y plus comparing y against z.

As mentioned, a metric must comply to every property as a rule, however, the generalized

metric categories have relaxed rules. For all categories, the first property (Property 1) is always

a rule. Therefore, they only vary on the applicability of the other properties. As presented on

Table 11, we discuss the applicability of the following generalized metric types: A quasimetric

must comply to Properties 1, 2.a, 2.b, 2.c and 4. A pseudometric must comply to Properties 1,

2.c, 3 and 4. A prametric must comply to Properties 1, 2.c and 3. A semimetric must comply to

Properties 1, 2.a, 2.b, 2.c and 3. A metametric must comply to Properties 1, 2.b, 3 and 4.

Table 11 – Metric and Generalized Metrics Categorization

Category Property
Name 1 2.a 2.b 2.c 3 4

metric true true true true true true
quasimetric true true true true false true
pseudometric true false false true true true
prametric true false false true true false
semimetric true true true true true false
metametric true false true false true true

4.6.2 Proof for Properties

This subsection contains proofs for the proposed functions to establish which generalized

metric categories are applicable. It is important to advise that some of these proofs are only

applicable to the matrix inputs of the functions defined in Equations 9 and 10.

4.6.2.1 Non-negativity

Non-negativity (Property 1) is required for all the presented metric categories. In order

to prove that the proposed metric function complies to this rule, we must analyze the formula. It

includes multiplication of positive real numbers and a sum of Exclusive-Or expressions.

For all input parameters of the metric functions (Expressions 8 and 9), the resulting

exclusive-or operations would result in a sequence of zeros and ones to be summed and multiplied

by a positive rational number 1
N2 or 1

N3 . Therefore, the function is never negative. Zero values are

possible when all exclusive-or operations result in zero, any other value is positive.
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4.6.2.2 Identity of Indiscernible

The Identity of Indiscernible (Property 2) is divided into three levels, where the first

level (2.a) is the most complete and restrictive, and also implies both other levels (i.e. 2.b ∧ 2.c).

Therefore, proof must be written for Levels 2.b and/or 2.c.

Property 2.b establishes that if the result is zero, then both parameters must be equal,

while property 2.c establishes that whenever there are identical input parameters, the result must

be zero.

This can be proven if we consider each Expression (9 and 10) independently and also

assume that the input parameters are simply the matrices, i.e. we are not establishing that the

process executions are equal, but their generated matrices.

Proof for this property can be established as follows: Let Ap be the first process that

generates matrix A. Let Bp be the second process that generates matrix B. It is possible to prove

that the functions identify when A equals B if and only if the result is zero.

The important step of this analysis is to identify the only possible case when the sum

equals to zero. Therefore, according to the definition of the functions (Expressions 9 and 10),

there is a positive rational number 1
N2 or 1

N3 which multiply the sum of exclusive-or expressions.

The exclusive-or expressions always result in either zero or one, as defined by the “sum column”

of Table 10. The only possible way to attain a zero result is to calculate the sum of zeros. The

presence a single one, which indicates a different cell in the matrices, would lead to a non zero

result.

4.6.2.3 Symmetry

The Symmetry is Property 3 and indicates that the input parameters always result in the

same value regardless of the order in which they are provided to the function. This is similar to

the closure property present in “addition” (arithmetic operation) (MENDELSON, 1987).

In order to prove that the proposed functions comply to the symmetry property, it is

required to analyze the usage of the input variables within the functions (Expressions 9 and 10).

The only operation that processes the input parameters is the Exclusive-Or inside the

sums. Therefore, the symmetry would be observed if this operation complies the closure property.

However, Exclusive-Or closure property is not provided as an axiom.

In order to prove closure property for Exclusive-or, it is simply required to assume that

the input variables can be swapped. Then, check if the equality is preserved. Following axiom

that operations disjunction (∨) and conjunction (∧) comply to closure property (MENDELSON,

1987) and according to Equation 4.11, which is the expression for the Exclusive-Or, it is possible
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to prove the closure with the deduction presented in Equation 12.

(p⊕q) = (q⊕ p);

(¬p∧q)∨ (p∧¬q) = (¬q∧ p)∨ (q∧¬p);

dis junction closure :

(¬p∧q)∨ (p∧¬q) = (q∧¬p)∨ (¬q∧ p);

con junction closure :

(¬p∧q)∨ (p∧¬q) = (¬p∧q)∨ (p∧¬q);

(4.12)

Therefore, by swapping the order of operators inside the functions presented in Equa-

tions 9 and 10, they would still be bound to the closure of Exclusive-Or operation, thus proving

that the function is symmetric.

4.6.2.4 Triangle Inequality

The Triangle Inequality is Property 4, which states that a direct comparison between

two parameters cannot be greater than the sum of comparing each one of these two parameters

against a third parameter.

Starting from the basic corollary that the ≤ (less-equal) comparison is the same as

proving they can be true for = (equal) ∨ < (less than), it is possible to prove intermediary

statements as lemmas.

Lemma 1: It is important to analyze whether the sum of two results from the functions are

always greater or equal to each of the operands. i.e. (x≤ (x+y))∧(y≤ (x+y))|(x∈R)∧(y∈R)

Taking the proof for Property (1), it is already established that the functions results are

never negative. The functions are composed by a sum of zeros and ones from an Exclusive-Or

expression, property kept after multiplying by positive rational numbers.

Following this property: this lemma is valid since the sum of non-negative real numbers

(or more precisely, rationals) is always equal or greater than each of the original numbers, i.e.

non-negativity also stands for the sum of results. This can be shown according to arithmetic

axioms (MENDELSON, 1987).

Lemma 2: The goal is to analyze when the sum results to an equal number. Following

the first lemma, the sum of results can be further discussed if we consider the proof of Property

2. The only possible way to result in zeros require a pair of equal matrices. Sum of zeros is a

neutral element which does not impact on the result. Therefore, if the sum of a pair of function
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results is equal to another result, there must be a zero result among the function results. This

covers the case where the function is equal, therefore, it is still required to prove the existence of

non-equal function results.

Final Proof: Following the previous lemmas, the goal is to prove that the result is either

equal or greater than the sum of other results on a triangular comparison. Let the triangular in-

equality comparison be expressed as t(p,q,r) = (m(p,r)≤ m(p,q)+m(q,r)). This is a Boolean

expression that must result in true at all times if the Triangular Inequality (Property 4) is valid

for the function.

Table 12 – Truth Table for Sums of Three Exclusive-Or Operators

p q r p⊕ r p⊕q q⊕ r p⊕ r ≤ p⊕q+q⊕ r

0 0 0 0 0 0 true (equal)
0 0 1 0 0 1 true (less)
0 1 0 0 1 1 true (less)
0 1 1 1 1 0 true (equal)
1 0 0 1 1 0 true (equal)
1 0 1 0 1 1 true (less)
1 1 0 1 0 1 true (equal)
1 1 1 0 0 0 true (equal)

In order to prove that t(p,q,r) = (m(p,r)≤ m(p,q)+m(q,r)) is always true, we must

analyze the outcomes for the Exclusive-or operator when comparing the constant matrix B to

both A and C. A truth table for these operations is presented on Table 4, which contains all

possible values for the p,q and r variables to be summed and compared according to the Boolean

function t(p,q,r), i.e. if the statement is true for the functions, then, every possible value for the

comparison of p⊕ r ≤ p⊕q+q⊕ r must be true. This can be seen on Table 4, hence proving

the statement for the proposed functions.

4.6.2.5 Proof Discussion

Considering the input matrices to be compared by the proposed function and by proving

the four expected properties, one could claim that the proposed function complies to all properties

required for metrics. Also, it does not need to be considered as one of the generalized metrics,

which are relaxed versions.

However, we can only claim that the function is a metric from the scope of the input

parameters as matrices, i.e., after the initial algorithm of matrix creation is executed.

If we consider the input parameters as the original process executions which generate the

matrices, it would not be enough to prove the Property 2 (Identity of Indiscernible) completely.

Still, it could be possible that the property is still valid for the scope of processes as inputs, which

should be treated as future works.
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Considering this issue, the function would still fit into generalized metric categories that

do not require Properties 2.a and 2.b, namely, prametric and pseudometric (ARKHANGEL’SKIǏ;

FEDORCHUK, 1990).

In the scope of our work, however, this is not a problem, since this matrix creation allows

more flexibility when comparing processes. Therefore, whenever the number of the interactions

inside the matrix changes but the valid transitions are the same, we consider these process

executions as variations of the same type of process.

4.7 Metric Assessment and Practical Experiment

The proposed method was used in a quasi-experiment to verify that it is applicable to

actual project logs. This quasi-experiment, herein referred as a study, was planned according

to the recommendations by Wohlin et al. (2012). This study is referred as quasi-experimental

since it was not possible to gather a large set of randomly assigned participants, i.e., they were

manually assigned with the help of the researcher. This study does not affect the formal validity

of the metric itself since it has been already validated analytically.

4.7.1 Study Planning and Definition

The objective of this study was to demonstrate the accuracy of the proposed metric

system in actual logs to evidence similarities between process executions.

Since our research group is focused on identifying processes for Model-Driven Software

Engineering (MDSE) (FRANCE; RUMPE, 2007), the study object was a software project that

employs that methodology.

Research Question: The study was planned considering the following research question:

“Is the proposed metric appropriate to identify the most similar executed process to an expected

process?”.

Context selection: We asked three graduate students to create software systems employ-

ing MDSE, while data was collected from the produced software.

Formulation of hypotheses: The hypotheses considered for the planned study are shown

on Table 13 There are two types of Hypotheses: the null hypothesis represents the inconclusive

outcome of the study, while the last two hypotheses are the alternate, which represent the

conclusive outcome of the study.

Variable selection: The independent variable is a high level expected process definition.

The participants were recommended to follow the provided process sequence which was not

strictly enforced. The dependent variable to be considered in this study is the coincidence count

between second order probabilities matrices, which is, in turn, calculated from the executed
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Table 13 – Hypotheses for the study

Symbol Name Description

h0 Null There is no evidence that the metric is accurate to identify
the similar processes (metric has no effect);

hn Negative There is an evidence that the metric results into a greater
than average value for similar processes (metric is incorrect).

hp Positive There is an evidence that the metric results into a less than
average value for similar processes (metric is correct).

processes. The idea is to identify whether this metric can be employed to determine the projects

that execute similar processes.

Participant selection criteria: We have invited graduate students that have completed

a course in software reuse, which included model-driven engineering topics. Despite the fact

that it is not possible to assure that the group of students represent the population of developers

it is important to remind that the object of study is not dependent on their performance. It was

only conducted following this design to provide a more realistic view than using data from

simulations. Therefore, the author collaborated with the students to create software systems to be

used in the analysis. In this manner, the study subjects in this quasi-experiment are the produced

software products.

Design of the study: This study has been designed to be composed by five different

software systems written by three students according to expected processes: The first process

is top-down, starting from the highest level artifacts to the lowest level i.e, design models. The

second process is bottom-up, thus, developers initiate the cycle by writing the application source

code before creating design models. The third process is a traditional code-only process without

modeling artifacts.

It was meant to verify the metric system by comparing the produced software systems.

Then, if the metric is accurate, the projects that employ the same process should result into a

smaller metric result.

Instrumentation for the study: The participants were provided a requirements docu-

ment for a small contact list, with the following requirements: (R1) ability to store a contact

list; (R2) generated entity type, e.g. Person; (R3) entities have generated attribute types, e.g.

telephone numbers and addresses; (R4) Every entity and attribute has a name; (R5) Three use

cases: search entities by name, insert entities to contact list, and list all the stored entities. It is

important to notice that requirements R3 and R4 contain variation points, i.e. despite the fact that

they are exemplified, it is also expected that a generative programming approach allows them to

be easily modified.

The processes were also provided in a high level description, i.e., they were not strictly

enforced, to allow more freedom to the participants since we intended to avoid exact replications
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of process executions.

The provided processes, namely, code-only, bottom-up, top-down were also described.

Code-only is a traditional process solely focused on writing source-code and then testing. The

bottom-up process must start from coding based on the provided examples of the requirements

document (in this case, the examples include the “Person” and “telephone number” suggestions).

Once the application was functional, a meta-model should be defined for the variation points

(in this case, the lists for entities and attribute types). By following the planned MDSE project

requirements, the participant should define a model based on the provided examples and write a

code generator, which should be capable of generating the same application from this model,

and variant applications from a modified model.

The top-down process must start from meta-model definition and then the creation

of a model instance based on the suggested examples. The participant should then code the

application based on the model instance alongside with the code generator, which should generate

the intended application as well as variant applications, exactly as the outcome of the bottom-up

process.

4.7.2 Study Operation

During the study, the participants had to develop the software application according to

the provided requirements and process. The requirements were fixed throughout the study, while

the process is an independent variable that was under treatment.

Execution: The first execution was performed by using the top-down process and the

next executions were carried out by using the bottom-up process.

Data Validation: Every resulting software application had to be tested and verified

against the fixed requirements. This way, we can assure that the resulting applications are tested

and performed as intended. Since the data is collected from a version control system containing

all changes since the inception of the applications until their final test and verification, we could

consider this data as valid.

Data Collection: The recorded logs were converted into strings of letters (symbols).

Each letter represents one activity of the executed process. These processes have different activity

orders, however, they still share the same activity types, listed on Table 14.

The expected logs for each process and the collected data are listed on Table 15. The

expected logs (process templates used as means of comparison) are Lt , Lb and Lc (for the

top-down, bottom-up, and code-only methods, respectively). These logs were defined according

to the processes presented as instrumentation. The participants collaborated with the author

during the executions to create the software instances to be analyzed in the study. The logs Lt1,

Lb1 and Lb4 were collected from software instances developed by the students collaborating

with the author, while the other logs were collected from software instances provided by the
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Table 14 – Collected Activity Types

Symbol Name Description

M Metamodel Definition Metamodel definition and modification;
V Metamodel Validation Metamodel validation and verification;
K Metamodel Approval Metamodel approval for model creation;
I Model Instance Model definition and modification;
C Coding Application source-code definition and

modification;
T Test Application functional testing;
A Application Approval Application approval after verification of

requirements;
G Generator Code generator definition and modification;
E Generator Execution Code generation and generator script testing;
F Finish End of life cycle after confirming that the

generated code with variant models comply to the
requirements.

Table 15 – Expected and Collected Activity Logs

Symbol Name Description

Lt Expected Top-Down MVKIGECTAF
Lb Expected Bottom-Up CTAMVKIGEF
Lc Expected Code-Only CTAF

Lt1 First Top-Down MVMVKIGECTCTCTAGEGF
Lt2 Second Top-Down MVMVKIGECTGEGEF
Lt3 Third Top-Down MVKGIGIGECTCTGEF
Lt4 Fourth Top-Down MVMVMVKIGIGECTGEF
Lt5 Fifth Top-Down MVKIGEGECTAF

Lb1 First Bottom-Up CTCTCTAMVKIGIGEGF
Lb2 Second Bottom-Up CTCTAMVMKIGEGEF
Lb3 Third Bottom-Up CTCTAMVKIGIGEGEF
Lb4 Fourth Bottom-Up CTCTCTAMVKIGEF
Lb5 Fifth Bottom-Up CTAMVMVKGIGEF

Lc1 First Code-Only CTCTCTAF
Lc2 Second Code-Only CTCTCTCTCTAF
Lc3 Third Code-Only CTCTCTAF
Lc4 Fourth Code-Only CTCTCTCTAF
Lc5 Fifth Code-Only CTCTAF

author.

These logs are then used to calculate the metric of similarity ratios, which are presented

on Table 16. This table contains columns for the similarity ratios calculated from the first order

probabilities (First), the second order probabilities (Second) and the result of multiplying these

(Product).
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Table 16 – Calculated Similarity Ratios

Sequences First Second Product

Lt

Lt5 1/100.0 2/1000.0 2/100000
Lb5 5/100.0 8/1000.0 40/100000
Lt1 6/100.0 9/1000.0 54/100000
Lt2 6/100.0 9/1000.0 54/100000
Lt4 6/100.0 9/1000.0 54/100000

Lb

Lb5 1/100.0 2/1000.0 2/100000
Lb4 3/100.0 6/1000.0 18/100000
Lb3 4/100.0 7/1000.0 28/100000
Lb1 5/100.0 7/1000.0 35/100000
Lt5 5/100.0 8/1000.0 40/100000

Lc

Lc1 1/100.0 2/1000.0 2/100000
Lc2 1/100.0 2/1000.0 2/100000
Lc3 1/100.0 2/1000.0 2/100000
Lc4 1/100.0 2/1000.0 2/100000
Lc5 1/100.0 2/1000.0 2/100000

4.7.3 Data Analysis and Interpretation

The results presented on Table 16 are grouped for each expected process. Each group is

also ordered (ascendant), to show the top five (smallest) most similar executions according to the

metric.

It is possible to identify that the most similar executions were based on the expected

software process. Considering each each group from Table 8, every first result has been confirmed

to follow the expected process. The only exceptions (also referred as outliers) to the results

are Lb5 and Lt5, which appear to be similar to Lt and Lb respectively, which is contrary to the

original expectation. Therefore, it is required to execute a statistical test to establish if these

outliers do not invalidate the intended confidence ratio for the metric.

4.7.4 Results Discussion

In this subsection, the goal is evaluate the applicability of the metric to measure the

captured project logs. This applicability was measured with a confidence level by using a

statistical method. The result is also discussed. The returned results were compared against the

expected values by using a t-test method, as represented on Table 17.

The values to compare in this test are the resulting products for the executions which are

expected to follow Lt and Lb. Therefore, we intend to compare the difference for the metric result

when comparing the execution to the intended expected process minus the incorrect process.

This result would be positive if the metric indicates the correct value, negative for wrong values

and zero if the metric has no effect on comparison.
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This table is composed by six columns: a pair of mean columns represent the calculated

mean for each side of the paired sample (namely, correct and wrong values), d. f . stands for

degrees of freedom, t is the variable used to identify the alternate hypothesis while p and

con f idence are the variables used to verify the null hypothesis. This way, it was possible to reject

the null and the alternate negative hypotheses, thus accepting the alternate positive hypothesis as

the most likely to be true.

Table 17 – T-Test results

mean x̄c mean x̄w d. f t p con f idence

0.00052 0.000598 9 0.5517 0.2972 99%

Concluding this section, the idea is to present a practical example of data captured from

process executions, as shown on Table 15. We have collected data from Model-Driven Software

Engineering projects, as mentioned before, because our research group is studying model-driven

projects and adequate processes. It is important to mention that the planned process sequences

are similar to each other, in that manner, the metric product would result into “16/100000”, hence

the small difference on the results. We claim that the result would be clearer for more different

processes, as indicated in the analytic proof described in Section 4.6.

4.7.5 Threats to Validity

The validity of the results achieved in an experiment might depend on factors involving

the experiment settings (WOHLIN et al., 2012). Different types of validity can be prioritized

depending on the experiment goal, and we can take actions during the experiment planning

in order to minimize those threats. In our case, threats to four types of validity are analyzed:

internal, construction, external and conclusion.

4.7.5.1 Internal validity

Experience Level of Participants:. The different levels of knowledge of the participants

could have compromised the data. To mitigate this threat, the researchers have trained the

participants.

Facilities used during the study: Different computers and configurations could have

affected the recorded logs. However, participants worked by using the same computer at the

same university, however, in different moments.

4.7.5.2 Validity by construction

Hypothesis expectations: the participants’ expectations could have affected the results.

To mitigate this threat, we have collected as much data as possible and encouraged the participants
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to perform as natural as possible. Also, we have concealed the objective of the experiment and

their impact on it to avoid them to actively affect their data towards a specific result.

Researcher Interactions: the researchers have helped the participants to complete the

planned software. While this affects the collected logs, the goal of the experiment was not to

measure the ability of the participants to create software, but to create actual logs of software

production.

4.7.5.3 External validity

Interaction between configuration and treatment:. It is possible that the exercises

were not accurate for real world applications. The experimental application had simple require-

ments. To mitigate this threat, we designed the exercises based on reality.

4.7.5.4 Conclusion validity

Measure reliability. It refers to quantitative data used to calculate the process similarities.

To mitigate this threat, all data was captured automatically as soon as the participants concluded

each activity in order to allow better precision;

Low statistic power. Since we have a small population, we applied T-Tests to analyze

the experiment data statistically to avoid the issues with low statistic power. Moreover, we are

working on larger scale experiments and applications for the proposed methods.

4.8 Method Engineering

Following the validation of the process discovery algorithm and comparison metric,

it was investigated how the activities are ordered for possible MDSE processes that include

generator development during the software life-cycle.

These activities are considered herein as method fragments in order to employ method

engineering (OLLE; VERRIJN-STUART, 1994). In the study presented in Section 4.4, there

were activities for: coding; testing; metamodel specification; (code) generator development; and

modeling (generator input). Besides these activities, there are three activities that were carried out

prior to the study: requirement analysis, application design, domain analysis. All these activities

are considered as method fragments in this method engineering task.

Further description for these fragments are also provided in this section. Each one of these

fragments are marked in bold to reference the graph in Figure 22, which shows the overview

of the fragments and their dependencies, as explained in this section. The nodes represent

activities that are required in a MDSE software development life-cycle that includes generator

and metamodel construction. The edges represent dependencies between nodes, i.e., each node

may point to another node that must be previously defined.
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Figure 22 – Basic Method Dependency Graph
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Source: Created by the author

Requirement analysis is the fragment which is executed to identify the requirements of

the application to be developed. According to this study, requirement analysis is an activity that

does not depend on any previous software development activity.

Application Design involves the activity to establish the architecture of the software

application. Design depends on the application requirements to be carried out correctly. For

this case, we are considering that design is always present and may be implied even though the

design artifacts are missing.

Coding represents the actual programming effort to write source code manually, i.e.,

excludes code generation. According to arguments collected during the studies, it has been

suggested that coding depends on requirements and/or design. Since we are considering the

design to be always present, then, it is simpler to consider coding to be dependent on design

(which, in turn, depends on the requirements).

Testing involves activities related to verification and validation of the application, by

checking if it produces correct outputs for expected test-cases. While software testing activities

can be executed during different moments during the software life-cycle, in this specific study,

the intent was just to identify the functional testing of the resulting application. In this manner,

it has been considered that testing depends on the code to be tested, therefore, it depends on

coding.

Domain analysis is the basic activity where the application domain is studied to identify

its concepts and glossary. It has been established that this analysis depends on the requirements,

which includes a document to specify the application domain.



4.8. Method Engineering 101

Metamodel creation refers to the actual activity of creating a metamodel by using a

meta-metamodel. This metamodel is based on the requirements or the domain analysis. It is

suggested in Figure 22 that it depends on the domain analysis to avoid multiple dependencies.

Model instance definition is the activity to define models that comply with the specified

metamodel. Therefore, these model instances depend on the metamodel.

Generator development involves the implementation of the code generator, which

depends directly on the metamodel that is used to create the instance models.

4.8.1 Ideal Sequence Synthesis

The dependency analysis of the method fragments can be employed to create new ideal

method sequences. These methods are hypothetical and would only exist if the developers had

no parallelism and never caused any deffects.

To create these methods, we can simply consider the graph in Figure 22 as a tree, and

select the desired leaves that are expected for the software.

For instance, the simplest method that could end into a software that passes the testing

is considered by taking the “Testing” leaf and then insert the dependencies before the current

fragment recursively, i.e., coding before testing, design before coding and so forth. This basic

sequence would contain “Requirements”, “Design”, “Coding” and “Testing”.

This basic sequence does not include code generators or MDSE. In the same sense, we

could select all the leaves of the graph. It is important to mention that since there are three leaves,

there are at least six different simplest paths to define possible methods.

The first possible order for these leaves would be: testing, (all testing dependencies

recursively); generator, (all generator dependencies recursively); model, (all model instance

dependencies recursively). There could be also generator before testing, and then model instance

and so forth.

These permutations are important for this thesis since they confirm the possibility of

top-down and bottom-up methods. For instance, when we consider that testing must come before

the code generator, that would imply that a bottom-up method is created. In the same reasoning,

top-down methods would require that the model comes before the testing (and coding).

As the previously conducted studies referred in Section 4.3 have encouraged the author

of this thesis to create a top-down method, it is possible to suggest a possible example of method:

“Requirements”, “Domain”, “Metamodel”, “Generator” with “Model”, “Design”, “Coding” and

“Testing”.

The “Generator” with “Model” was added because both fragments are at the same level,

therefore, it is not relevant at this point which one should be initiated first.
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The greatest advantage of an idealistic top-down method is that the first coding effort

would be built with the help of code generators, which would theoretically reduce the effort to

create software using MDSE.

The major issue is to find a software category that could be easier to be built with MDSE

than by creating sample code before the generator. The search for such a system is explained by

trying to simplify the provided graph. This is made by merging two artifacts altogether as further

described within this section.

4.8.1.1 Design is Model

One suggestion for simplifying the dependency graph is to merge the design to model, as

represented in Figure 23. This would allow to create models that represent the software design

and use this design to generate code. The suggested sequence for this method would become:

“Requirements”, “Domain”, “Metamodel”, “Generator” with “Design & Model”, “Coding” and

“Testing”.

Figure 23 – Dependency Graph for Generative Design Tools
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Source: Created by the author

This is the basic idea behind design tools that allow the developers to input the design

and then generate code.
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4.8.1.2 Design is Model and Code

Another suggestion for simplifying the dependency graph is to merge both the design to

model and code, as represented in Figure 24. This would allow to create models that represent the

software design and use these models to generate code. In the same sense, upon writing code, the

design would be automatically implied. The suggested sequence for this method would become:

“Requirements”, “Domain”, “Metamodel”, “Generator” with “Design & Model & Code” and

“Testing”.

Figure 24 – Dependency Graph for Model-Oriented Programming
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This is the basic premise of MOP (BADREDDIN; LETHBRIDGE, 2013). In this case,

the programming language is close enough to the design that it allows round-trip engineering at

any moment, allowing developers to return to design models at any time without losing the code

semantics.

4.8.1.3 Design is Metamodel

Another possible step that is considered in this thesis is to merge the metamodel to design

as represented in Figure 25. This would cause a shift on the abstraction levels, allowing code to

execute beside model instances as in Models at Run-time (ASSMANN et al., 2014). This allows

to create flexible systems that change their design at run-time. The suggested sequence for this

method would become: “Requirements”, “Domain”, “Metamodel”, “Generator” with “Design &

Metamodel”, “Model”, “Coding” and “Testing”.
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Figure 25 – Dependency Graph for Models at Run-time
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Optionally, this could also allow code generators to be either based on meta-metamodels,

which could increase their reuse, since they would not depend on specific metamodels, i.e.,

not required to build new generators. This strategy also allows to generate or interpret code at

run-time, which is related to the next suggestion.

4.8.1.4 Design is Metamodel and Code

A further step on simplifying the graph is to consider joining both merges presented

for MOP and Models at Run-time, as shown in Figure 26. This was created as an attempt to

go beyond the programming promised by Model-Oriented Programming and make the final

software Model-Oriented. Therefore, it would be a specific case of Models at Run-time with

benefits present in MOP. While this is an extreme decision, this strategy is the only one among

the presented sequences that guides developers to create metamodels before the code. Therefore,

evaluating its feasibility would present a software category that benefits from MDSE since

inception.

The suggested sequence for this method would become: “Requirements”, “Domain”,

“Metamodel”, “Generator” with “Design & Metamodel & Coding” and “Testing”.

This method fixes the generators on meta-metamodels, making them generic for different

metamodel types, which means that generators can be common to any software in the category for

the same platform. Features available to both MOP and Models at Run-time could be perceived,
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Figure 26 – Dependency Graph for Model-Oriented Software
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Source: Created by the author

however it is necessary to remind that it could result into a simpler and more restrictive software

category. Despite this restriction, it could be actually beneficial to create software systems that

can be easily built. Therefore, this suggestion is further discussed and evaluated in Chapters 5, 6

and 7.

4.9 Final Remarks

In this chapter, we have presented an algorithm for process discovery based on the work

by Cook and Wolf (COOK; WOLF, 1998), including a complete formalization. We have also

proposed a metric that is suitable for process comparison, including a simple and accurate

example. As for the validation, the metrics were proven analytically according to all the expected

property for metrics and generalized metrics. We have also conducted an experimental study in

order to compare process executions and discover a process model compatible to the recorded

activity stream. The experiment packing was made available1.

After validating the algorithm and metric, the same basis used by the algorithm for

capturing the activity of the executed process was considered by employing method engineering

techniques according to Brinkkemper (1996). This method engineering effort allowed the author

to suggest possible methods that could be considered by evolving MDSE. The synthesis of

possible methods was possible after establishing how to generalize artifacts. Among these

methods, existing instances were discussed. However, one of the methods has led to create a new

proposal for MDSE evolution, which is further presented in Chapter 5.

1 <http://tiny.cc/gottardi-doc>

http://tiny.cc/gottardi-doc
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CHAPTER

5

MODEL-ORIENTED SOFTWARE SYSTEMS

5.1 Initial Remarks

This chapter contains a proposal for a software category referred as Model-Oriented

Software System (MOSS). It was named as such since it applies concepts from Model-Oriented

Programming to a broader level. In this manner, it blends concepts from MDSE, MOP and Models

at Run-time. By blending, these concepts, this new software category could be developed by

using a new method that is evolved from MDSE. However, this new method does not completely

replace MDSE, MOP or MRT, i.e., there are applications suited for MDSE (e.g. time critical

embedded systems) that may not be adequate for MOSS.

MOSS could be defined as more than a development method, but a software paradigm

that could be perceived by its end-users, i.e., not only by the developers.

In this paradigm, the resulting software is planned to have a different quality when

compared to software created without MDSE. The goal is to create model-aware software that

would be different for exposing its underlying models. This exposure allows the software to be

operated by employing modeling tools and approaches initially designed for development.

This chapter is organized as follows: The rationale for MOSS and the implicating require-

ments and features are presented in Section 5.2. Section 5.3 cites related proposals that must be

considered prior to establishing MOSS. A concrete version of MOSS applied to Web Services

named as Model-Oriented Web Service (MOWS) is presented within Section 5.4. Advantages

and disadvantages of this software category are presented and discussed in Section 5.5. Technical

documentation on how to implement MOWS systems is present in Section 5.6. A top-down

development method suitable for MOWS is shown in Section 5.7. A design and definition

language to assist MOWS development is introduced within Section 5.8. Further tools created to

assist developers who wish to develop MOWS systems are shown in Section 5.9. Finally, the

conclusions for this chapter are written in Section 5.10.
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5.2 Model-Oriented Software Systems Definitions

A Model-Oriented Software System (MOSS) is a software system created according

to a hypothetical software category that blends principles from both MOP (Model-Oriented

Programming) and MRT (Models at Run-time) along with an MDSE method for building

software. Despite being hypothetical, the purpose of this chapter also includes presenting

concrete applications of this category.

The MOSS software category was defined as a proof of concept for a type of software

that would require less effort to develop by using MDSE (since inception) and editing models

before source code.

Table 18 – Origins of MOSS Characteristics

Characteristic Origin

Model Interpretation MRT

Run-time Flexibility MRT

Code is Model MOP

Design Models as Source Code MOP

Model-Based State MRT and MOP

Model-Based Data Persistence MOSS

Model-Based Data Transfer MOSS

Metamodel as Design MOSS

A list of characteristics that have been considered from MRT and MOP are presented

on Table 18. Therefore, all characteristics presented on the table are available in MOSS. Model

interpretation allows the software being executed to process its own model representation.

This interpretation also allows run-time flexibility, where the software is capable of altering

its own definitions to adapt to changing requirements, for instance, data types and structures.

MOP tightens the gap between source code and models to allow reversible/round-trip model

transformations. This includes representing the design model inside the source code without

semantic loss. Both MRT and MOP software executions may include a state representation as

a model, in the case of MOSS, it was intended to make this a rule, which allows the systems

to transfer and persist the data as models. This major abstraction to employ models in MOSS

development is possible by creating metamodels to represent the design of the model-oriented

software. This specific usage of metamodels is the basic construction of MOSS. This is also

completely specific to its case, as discussed in Chapter 4.

From the perspective of developers, a MOSS can be developed by using modelling

tools since inception. It includes optional support for round-trip software engineering, avoiding

semantic loss from transformations, thanks to its MOP properties. From the perspective of users,
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a MOSS is a system that is configured by using models and runs by using models thanks to its

Models at Run-time properties.

5.2.1 Rationale for Model-Oriented Software Systems

The purpose of this section is to present the intent behind proposing MOSS and how it

was planned to differ from MOP and MRT. MOSS was planned using the method engineering

execution presented as part of Chapter 4.

MOSS was planned as a platform independent definition for software. This was consid-

ered to avoid forcing developers to use a new language or platform. Therefore, it was intended

to provide a set of requirements that would fit existing languages, libraries, frameworks and

tools. This condition makes MOSS different from MOP, which depends on programming lan-

guage constructions. Indeed, MOP was created by employing a new programming language

(BADREDDIN; FORWARD; LETHBRIDGE, 2014).

Besides this difference, MOSS inherits features found in MOP, where the design of the

system is published as a model. MOP allows reflection support, which empowers the software

to query its own design model. This ability required the authors of MOP to create a specific

execution engine for the running software.

In the specific case of MOSS, the published design model is actually a metamodel. This

shift in meta level was intended to allow MOSS to handle the model instances that comply to the

design metamodel. These instances are handled as data without requiring a specific execution

engine. MOSS systems can be compiled to convert the metamodel into data structures (schema),

releasing the need of interpretation. This schema allows the software to handle the models as

data at run-time. Therefore, the metamodel is the most important artifact when designing MOSS.

MOSS also inherits concepts from MRT since it handles models at run-time. This

handling of models by MOSS allows the system to be configured by these models, since these

models can store data to serve as parametric configuration of the system. The state of the systems

can also be stored as model. Furthermore, this generalization empowers the developers to utilize

modeling tools to edit and visualize the configuration and the execution. It is arguable that this

support for visualization could also be beneficial to end-users who wish to understand the data

of the system.

As the data is stored as models, the transmission of data among modules of the system

could also be carried by models. This suggests that the system could be built by using a Domain

Specific Language (DSL) that has been optimized to properly represent the concepts of the

domain of the MOSS application. Models can be alternatively represented in a different concrete

syntax, bridging the gap between the data that is handled by the machines and humans who wish

to read this as graphical or textual information.

All these arguments provided herein as the rationale for MOSS have been considered to
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create proper requirements for these systems. The requirements to build MOSS systems were

compiled into Subsection 5.2.2.

5.2.2 MOSS Requirements

A MOSS differs from other proposals discussed in Chapter 4 because the models also

have to comply to a set of seven requirements. These requirements were based on the MOSS

rationale presented in Section 5.2.1. These requirements must be dealt with by the developers

when building these systems, as follows:

Requirement 1: Design is defined as models; System design must be defined as models

and should be documented as such for future reference.

Requirement 2: Metamodel defines data structure, glossary and schema; A meta-

model must be defined specifically for the system to represent the data structure for its specific

application domain.

Requirement 3: The configuration of the system is defined as a model; The run-time

configurations of the system are also represented as a model instance, which can be edited by

model or diagram editors.

Requirement 4: If the system must record its state, this state is recorded as a model;

Systems may need to store data to record their current situation. We refer to this requirement as

the necessity of storing the state. The state of the system is represented as a model instance.

Requirement 5: The use cases of operations directed towards the system define the

manipulation of the state, which is also a model manipulation; The operations called by the

users are to be designed considering how they manipulate the model.

Requirement 6: The communication between modules is carried by interchanging

models; Since the data type schema is represented by the metamodel, the native format for files

and intra-modular messages are also model instances.

Requirement 7: The metamodel must follow a suitable structure; There are design

requirements for the metamodel definition in order to allow it to be handled as data and configu-

ration, as well as to be persisted and transferred as a model by the MOSS system.

5.2.3 MOSS Features

While the requirements might seem restrictive, they are important to provide the expected

characteristics for a Model-Oriented Software System. The characteristics of a Model-Oriented

Software System also include features, which are end-user visible characteristics (KANG; LEE;

DONOHOE, 2002).

Feature 1: The first feature is the Published machine readable design. This is possible

thanks to Requirement 1. Since the design of the software is published as a model and available
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as a machine readable model for further reference. The system module interface can also be

published as a model, which makes this similar to a component or a service with interface

documentation requirement.

Feature 2: The second feature is the Metamodel-Based Data Structure. This is related

to Requirement 2. According to this requirement, the metamodel must be defined to specify the

data structure, glossary and schema. This means that the system uses a domain specific language

for its data handling. This can also include a language glossary for reference and schema for its

persistence.

Feature 3: The third feature is Model-based configuration. The configuration of MOSS

modules are represented as model instances, taking advantage of model and diagram editors for

easier edition.

Feature 4: The fourth feature is Model-based state. As the state of the module (in case

of needing to store state) is a model, according to Requirement 4, administrators and developers

can easily watch the state model as it is changed. This can be beneficial to understand, test, debug

and edit the state using model-driven editors and transformers.

Feature 5: The fifth feature is the Transformation tools for state update. According to

Requirement 5, the use cases of the system that modify the state also modify the model. This

feature is similar to the causal reflection present in MRT implementations. This is possible as

a direct effect of the previous requirement, where the system states are models. This allows to

define the behavior of the running system by using model transformation techniques. This is

provided as the fifth feature.

Feature 6: The sixth feature is the Model-based data transmission. Since the metamodel

that defines the domain concepts and the data glossary is the only schema valid for the software

system, every communication between modules is carried on a domain specific language. Every

payload of interchanged data is, therefore, a model instance that can be edited and visualized by

model and diagram editors, which can ease comprehension, data analysis and debugging.

Model-Oriented Software Systems are simply hypothetical. Model-Oriented Web Service

have been defined as a concrete epitome for Model-Oriented Software, as described in Section 5.4,

including concrete examples in Subsection 5.6. Other technological domains are discussed as

part of Appendix C.

5.3 Proposals Related to MOSS

In this section, it is discussed how Model-Oriented Software System was defined and

how it compares to related proposals, i.e. MOP, Models at Run-time and MOD.
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5.3.1 Object Orientation Comparison

Model Orientation (MO) can be defined as a paradigm in which the model is the most

important element which every other is oriented towards. When this envision is applied to

software (i.e., MOSS), Model Orientation represents the usage of models throughout the complete

software life-cycle. In this fashion, models are used to develop and to execute the software.

Table 19 – Basic Comparison Between Object Orientation and Model Orientation

Characteristic Object Orientation MOSS

Declaration Classes Meta-model
Data Instance Object Model

A comparison is shown on Table 19, which has three columns, including a name for the

characteristic and how they are treated by both Object Orientation (OO) and MOSS. In OO, the

code can be declared within classes, the data is structured and transmitted as object instances

(JACOBSON, 1992); in MOSS these concerns are performed by employing models: code can be

declared within meta-models, data is structured and transmitted as model instances.

In this section, MOSS is also compared to similar concepts. MOSS also has advantages

and disadvantages for developing Web Services, which are discussed in the following subsections.

5.3.2 MDSE Compared to MOSS

Model-Driven Software Engineering (MDSE) involves methods for software develop-

ment in which models can replace source-code completely or partially (PASTOR; MOLINA,

2007). In MDSE, the metamodel is typically used to define the modelling language and the

model instance is the artifact employed to replace the code completely or partially.

In MOSS, the metamodel is used to define both the language, the handled data types as

well as the and the data structure employed by the software. This metamodel supports the system

to handle model instances at run-time.

Therefore, in MOSS, the metamodel plays the concrete role of defining the language

and auxiliary code, including data structures and how to handle these structures. The models

can both store data and code to be interpreted at run-time. These characteristics represent a

different approach to how to deal with model meta-levels that is described within the MDSE

literature (BRAMBILLA; CABOT; WIMMER, 2012). This allows us to provide a table for

more detailed comparison on each modeling level that was described by Brambilla, Cabot and

Wimmer (2012) in order to introduce MDSE. According to Table 20, there are four columns. The

first column contains the modeling level. The second column presents the name of the artifact in

this abstraction level. The third column names the purpose of this level for MDSE development

and the fourth column names the purpose of this level for MOSS development.
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Table 20 – Basic Comparison Between MDSE and MOSS

Level Name MDSE MOSS

M3 Meta-metamodel Language for Metamodeling Language for Metamodeling
M2 Metamodel Language Specification Application Design
M1 Model Development Artifact Data File
M0 Code Real World Objects Program or Model Interpreter
M-1 Data Instance – Models in Memory

Table 20, also indicates that the modeling levels are shifted when comparing MDSE

to MOSS. The usage of metamodels as design is the most specific change of MOSS when

compared to any other related method. Despite this difference, it is still possible to combine

MDSE and MOSS and by using MDSE to generate MOSS code. MOSS does not replace the

generic generative capabilities of MDSE methods. MOSS is not dependant on MDSE either,

since MOSS software can be written with or without use of code generation, e.g. manual coding.

The usage of generative programming in MDSE accelerates development of a code that

is either repetitive or reusable within similar projects. However, the main goal is still to generate

high quality source-code, that, even though being automated, could be achieved by manually

coding as well (HERRINGTON, 2003).

However, while the final software developed with MDSE methods may be completely

unrelated to modelling techniques, the resulting MOSS is still based on models because it uses

models at run-time.

5.3.2.1 MOD Compared to MOSS

Model-Oriented Development (MOD) is a development method related to MDSE. Au-

thors of MOD tools claim it makes it possible to apply code generation at any time during

the development, i.e., less dependant on code generation when compared to a MDSE project

(CodePlex, 2016).

It shares the Model-Oriented feature of employing models to represent the final software,

however, only the development is defined as model-oriented to be considered Model-Oriented

Development.

In this manner, MOD is not an alternative to Model Orientation in the context of the

resulting software. A model-oriented software can be developed by using MOD techniques,

while this is not required. What defines a software with Model-Orientation is how the models are

employed at run-time, as well as its data structures.
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5.3.2.2 Model-Oriented Programming Compared to MOSS

Model-Oriented Programming (MOP) is a paradigm where the software source code

has additives to its semantics in order to allow round-trip engineering from design to code

without loss of semantics. Therefore, MOP tightens the gap between design models and code

(BADREDDIN; LETHBRIDGE, 2013).

This tightening requires the creation of new programming constructions which may

become incompatible to existing software. In the case of MOSS, it was planned to avoid

dependencies on new languages and platforms in order to mitigate this issue.

Table 21 – Basic Comparison Between MOP and MOSS

Characteristic MOP MOSS

Goal Tighten design and code Metamodeling as design and code
generation

Language Support Requires specific programming
language

Not tied to programming languages

The differences between MOP and MOSS are summarized on Table 21. This table is

composed by three columns, the first column indicates a characteristic that is different between

MOP and MOSS; the second indicates the characteristic from the perspective of MOP while the

last column indicates the perspective from MOSS.

It is important to elucidate that these concepts have slightly different goals, i.e., MOP is

more focused on tightening the gap between design and code, while MOSS is more focused on a

method for metamodel-based design for native model interpretation. MOP also requires a specific

programming language for its development, while MOSS is based on existing metamodeling

languages.

5.3.2.3 Models at Run-time Compared to MOSS

Models at Run-time (MRT) is described as a paradigm in which models can be used

as code for interpretation and/or for data (ASSMANN et al., 2014; GIESE et al., 2014; BEN-

NACEUR et al., 2014). This paradigm is a broad definition in which software can employ models,

which also includes model-oriented software.

In this case, a MOSS is a specific case of MRT, in which the data and code structures are

based on the metamodel which specifies the model structure to be handled at run-time.

The differences between MRT and MOSS have been summarized as Table 22. This table

is composed by three columns, the first column indicates a characteristic that is different between

MRT and MOSS; the second indicates the characteristic from the perspective of MRT while the

last column indicates the perspective from MOSS.
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Table 22 – Basic Comparison Between MRT and MOSS

Characteristic MRT MOSS

Scope Broader case of model
interpretation

Specific usage of metamodeling and data
models

Focus Dynamic System Flexibility Data Handling with MDSE tools

According to the presented table, it is important to clarify that MOSS also employs

models at run-time, therefore, it is still a specific case of MRT. MOSS has a specific list of

features, as described in Section 5.2.

5.4 Model-Oriented Web Services Definition

While MOSS is a hypothetical definition for a software category, Model-Oriented Web

Service (MOWS) are concrete and feasible software systems that inherit all characteristics

of a MOSS. MOWS are web service systems that comply to MOSS definitions presented in

Section 5.2, i.e., they follow both the requirements and the features proposed for a MOSS.

MOWS systems are concrete and functional, allowing to implement actual software systems as

case-studies (further discussed in Appendix C).

MOWS systems are feasible and functional since they can be built by following both WS

standards and modeling tool standards at once. Indeed, both W3C Working Group (2004) and

Object Management Group (2014) recommend XML for data interchange. This allows these

systems to operate solely by using models in XMI and XML at the same time. This makes these

systems inextricably compatible to WS standards and modeling tools without requiring any

conversion, since they use models as their native format.

From the perspective of developers, a MOWS is a Web services system developed by

employing a MDSE process. They follow the same set of seven requirements of MOSS appended

by a few new requirements. Therefore, the current list is numbered from eight to thirteen,

which were specifically adapted for the case of MOWS systems:

Requirement 8: MOWS must comply to MOSS requirements. The first requirement

of a MOWS system is to comply to all the requirements of MOSS.

Requirement 9: MOWS must comply to WS protocol rules. A MOWS must be a WS

itself. Therefore, it has to comply to protocol rules defined for WS systems.

Requirement 10: The client can invoke operations provided by the WS server while

the server cannot invoke the client. In order to comply with protocol rules (or limitations) only

servers can be called by clients. Therefore, clients cannot be indiscriminately invoked by the

server. If the client requires to be notified by the server, it must first invoke a blocking call and

wait for the server to return a message.
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Requirement 11: WS interfaces and ports design are defined as models. WS inter-

faces must be defined as models, which is commonly performed in many other approaches by

employing WSDL. This is related to MOSS Requirement 1 which states that the system must be

designed by using models. In this case, the service interface is included as a specific requirement.

Requirement 12: The configuration of WS servers and clients is defined as a model;

The run-time configurations of WS servers and clients are also represented as a model instance,

which can be edited by model or diagram editors. This is a MOWS specific requirement that is

based Requirement 3 of MOSS.

Requirement 13: The communication between WS servers and clients is carried by

interchanging models; Since the data type schema is represented by the metamodel, every mes-

sage between clients and servers are also model instances. This is a MOWS specific requirement

that is based on MOSS Requirement 6.

5.4.1 MOWS Features

Like MOSS, MOWS also include the same set of six end-user visible features, described

next after adapting them accordingly.

Feature 7: Published WS Interface. Thanks to Requirement 11 and Requirement 13, the

WS interface can be published as a model. WSDL instances can be considered models since their

schema can also be mapped to a metamodel. This feature is similar to any WS with publishing

requirement.

Feature 8: Model-based state. Since MOWS follow MOSS requirements (Require-

ment 8), the state of the server and the client (in case of needing to store state) are models. This

allows administrators and developers to easily watch the state model as it is changed, which

can be beneficial to understand, test, debug and edit the state using model-driven editors and

transformers.

Feature 9: Model-based configuration. The configuration of both server and clients are

represented as model instances, taking advantage of model and diagram editors for easier edition.

This feature is related to Requirement 12.

Feature 10: Model-based data transmission. Since the metamodel that defines the

domain concepts and the data glossary is the only schema valid for a web service server, every

communication between servers and clients is carried on a domain specific language. Every

payload of interchanged data is, therefore, a model instance that can be edited and visualized by

model and diagram editors, which can ease comprehension, data analysis and debugging. This

feature is possible thanks to Requirement 13.
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5.4.2 Legacy WS Differences

A MOWS system is still technically a WS system that can completely adhere to standards.

From a technical point of view, a MOWS system behaves as a typical WS.

A typical WS that employs XML for data interchange, the developers have the option

to define the data format specification by employing XSD (W3C XML Working Group, 2012).

For a MOWS system, the format specification is also defined by the meta-model instead of a

separate specification.

On the other hand, MOWS systems depend on metamodels and the metamodel of these

meta-models. The data payload that is transferred between clients and servers may include this

dependency on their format headers. This dependency does not restrict modules, e.g. clients,

from being developed without MO characteristics. This means that non MOWS-based clients

could still invoke MOWS services by simply using their published interfaces along with an

existing WS technology that adheres to the same underlying WS standard.

Since MOWS systems also adhere to requirements from MOSS, models can both rep-

resent data and/or be interpreted to allow flexible configuration. This means that we are not

limiting the models within MDSE as "Models are Code", in this case, models are software, data

structures, the data itself along with the state representation of the running software. Therefore,

both code generation and code interpretation can be employed for the same final application.

This epitomization of MOSS as MOWS represent a software category where models are

used throughout the complete development life-cycle and during the execution, being visible

to the end-users, which we argument that is what could represent the evolution of MDSE into

a paradigm. In this manner, models are not only the code, models are also the data and can

represent the configuration, settings and state of the running application.

5.5 MOWS Advantages and Disadvantages

In this section there is a qualitative analysis about the advantages and disadvantages that

can be identified when comparing traditional WS systems to MOWS systems.

The advantages are distributed into three categories: Documentation; Readability and

Configuration Flexibility. The MOWS documentation advantages are related to the creation

of a single metamodel that provides documentation for the system definition without requiring

the definition of a completely separated artifact. This metamodel can also have a graphical

representation including notes on the application of each meta-level element.

The metamodel serves as a multi-role artifact that avoids the drift of not being updated

along with the data structure format it represents, since it is in fact the artifact used to define

this structure (PASTOR; MOLINA, 2007). This characteristic is leveraged by the fact that the

metamodel can be the input to several transformations, including the servers, clients, databases
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and auxiliary handling code, leaving only a small portion of server behavior to be added manually

by the developers.

The MOWS readability advantages are consequential to the ability of employing models

at run-time (GIESE et al., 2014). This includes the option of using model interpretation to

increase understanding of the software at run-time. Since the final software operates natively

by using models, it is possible to manage the software by using modeling tools. Thus, the data

transmitted and recorded by the MOWS system is a model that can be handled by model editor

tools without any necessary conversion.

In the same context, the run-time models could be structured to allow configuration

flexibility of the MOWS system. The models employed at run-time may contain WS-related

configuration variables, meta-data targeted at adapting the data instance models or interpretative

code.

On top of these differences, the MOWS system would still adhere to WS standards, i.e.

the W3C recommendation (W3C Working Group, 2004), increasing compatibility to WS that are

not model-oriented. Since MOWS systems are designed to communicate by employing model

instances, it is possible to come up with a common modeling language that can be used by both

humans and machines. This is leveraged by the fact that modeling languages can have more than

one concrete syntax. This means that model instances can be represented in different formats,

e.g. data trees, human readable text or graphical diagrams (BRAMBILLA; CABOT; WIMMER,

2012).

Despite the presented advantages, there are also disadvantages that could discourage the

adoption of MOWS into real world projects. Therefore, we are not claiming that MOWS could

replace every kind of WS system if these disadvantages become problematic. The disadvantages

are grouped into two categories: dependency and overhead.

The dependency problem is related to the use of models which refer to metamodels,

which, in turn, refer to meta-metamodels. This dependency makes the code dependent on the meta-

metamodeling specification. These specifications may be revised by an external organization,

breaking compatibility to new modeling tools or clients, which might force MOWS systems to

be updated.

While this update might be beneficial, it would require specific maintenance efforts.

However, this effort could be diminished by using code generation. Despite this, the code

generation tools would also be affected by this specification update and the final software would

be dependent on the code generators, as also reported in the literature (GOTTARDI; BRAGA,

2015).

Another dependency is imposed by the recommendation of XML standards (W3C XML

Working Group, 2012; Object Management Group, 2014). This hinders the option of employing

alternative data formats that could be preferred over XML for specific domains. Despite this
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Figure 27 – Basic CWEB Conceptual Model

Source: Created by the author

recommendation, case studies have been carried out (further discussed in Appendix C) by using

other formats. While it is technically possible to use non-XML formats for models transmission,

this would break compatibility with modeling tools.

The overhead problem affects both data transmission and parsing. Since model-orientation

would add dependency for metamodeling, the metamodel would also have a recursive depen-

dency towards the metametamodel. These dependencies increase overhead for parsing the models

when compared to typical XML parsing. Because of this overhead, a MOWS system can have a

worse performance than a typical WS system. Also, this issue could cause the MOWS approach

to be discouraged for time-critical systems.

Despite not completely solving this issue, it is important to point that since a large

amount of code production can be automatized, better optimizers for this kind of systems could

be implemented in the future. This is possible by using compilers or code generation techniques.

In order to assess the impact of this overhead, we present possible implementations of

MOWS (Section 5.6) and a mathematical analysis of the overhead (Section 6.2) in Chapter 6.

5.6 MOWS Development Use Case

In this section, an example is presented to illustrate the development of a MOWS system.

A sample system referred herein as CWEB was created to handle a contact list over the web

and is used within the section. The requirements for CWEB are: 1) store a single contact list; 2)

contacts have a name and an address; 3) create a new contact; 4) retrieve an existing contact; 5)

update an existing contact; 6) delete an existing contact. Besides these functional requirements,

CWEB must adhere to all MOWS and MOSS requirements. CWEB is completely data centered

and was added for simplicity. For a more complex system based on MOWS, please refer to the

example in Subsection 5.8.1 (inside Section 5.8).

As explained in Section 5.7, the central artifact of a MOWS system is the metamodel.

This implies that a new metamodel must be created or reused from an existing specification for

the new MOWS system. In this example, the metamodel is created based on an initial conceptual

model. In order to create the conceptual model, it is necessary to perform domain analysis. For

simplicity, CWEB only handles data entities for contacts with fixed data types.
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Figure 27 presents a conceptual model for the CWEB system built based on the concepts

gathered from the requirements: contact list; contact and address.

Figure 28 – Interface and Component Diagram

WSInterface

Source: Created by the author

Figure 28 presents the basic design of a web service system that is used as a basis for all

the subsequent examples. It is composed by a generic interface (“WSInterface”) that is shared by

a server and client. The server is composed by a skeleton (“ServerSkeleton”). The skeleton can

be automatically generated, but it is simply an abstract implementation of the server that has to

be made concrete by the developers by creating an implementation (“ServerImplementation”).

On the client side, there is a stub, which can be created by code generators. The developers

would then call the interface implemented by this stub, which would redirect the invocation to

the server.

Following the conceptual model, it is then possible to design the interfaces. At this

point, the interface should include the method signatures according to the requirements. These

signatures represent the methods that a server would implement. Any compatible client would

be able to call these services via the web service interface.

The first method signature is defined to add the contact provided by the client to the list

on the server; The second method signature allows the client to request a contact object based on

a name definition. For updating the address of a contact, the server would also provide a method

that allows the client to submit a new contact object. Finally, the last method allows the client to

request a contact deletion. Similarly to the retrieve method, the client submits a name definition

and expects a response on the success status of the request. Further illustrations for the interface

design with methods are provided as part of practical cases (Subsections 5.6.3 and 5.6.4).

After the interface design, the CWEB basic design is complete. Then, it is required to

develop the metamodel that is used to specify the language and structure of the MOWS system,



5.6. MOWS Development Use Case 121

as shown in Figure 29.

Figure 29 – Design for CWEB metamodel

Source: Created by the author

In the case of this fixed data type system, the metamodel would simply contain meta-

classes to represent the data types, which are the contact and the address. We also add an

aggregator that represents the contact list.

In order to comply with the MOWS Requirement 13, which states that every server

response must be a model, it is also important to add conceptual classes for the response of the

contact deletion method.

Figure 30 – Actual CWEB metamodel

ContactList

Contact

address : EString

Success

value : EBoolean

NameIndex

name : EString

contacts
0..*

Source: Created by the author

In Figure 30, it is presented the ECore version of the metamodel that includes these

concepts. The basic difference between the models is that the version presented in Figure 30

represents the actual metamodel to be used to create compliant models. These models would

then be employed in data transmission. Please notice that in this specific case, the metamodel

resembles a typical class diagram which contains meta-classes based on the conceptual model.

However, in order to create a compatible metamodel, it is important to remember that only a

single object may be transferred at a time. To cope with this issue, we must define composition

relation types, which allows objects to be transferred along with its composite objects. Therefore,
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the contact list metaclass must have a composition towards the contact, which as the address as

an attribute.

The basic requirements for creating a web service system adhering to W3C standards

(W3C Working Group, 2004; W3C XML Working Group, 2012) include specifying XSD and

WSDL files. These files are used to generate the client and server skeleton/stubs completely. This

means that even the model transmission behavior can be generated. Yet, the server would lack

code body for the methods, which needs to be implemented according to the chosen platform.

Therefore, the next activity is to create the XSD based on the metamodel. This can be

automatically generated without requiring further efforts by the developers. From the MDSE

perspective, the XSD represents the same role as the metamodel, so this is basically a model

transformation. After the XSD is complete, it is possible to establish the WSDL for the designed

interface. The generated XSD is used for the data types, which are based on the meta-classes. As

these data types are generated from the metamodel, they also allow the MOWS system to handle

models at run-time.

Since the following activities of this process are dependent on the platform, we provide

subsections for practical cases. The practical cases are provided as proof of concept for the

activities described within this chapter. They also pose as suggestions on platforms to be used,

which were successful to provide all the requirements described for a MOWS system.

It is important to mention that since the cases are designed to adhere to standards, clients

and servers are completely inter-operable among the supported platforms. This feature allows

heterogeneous platforms of clients and servers to communicate transparently. In this thesis,

we refrain from comparing the platforms. Our goal is not to restrain the freedom of choice

by favoring a platform, but to provide evidence that MOWS systems are not platform-specific.

Therefore, in case of adopting MOWS features, project leaders would be able to choose the

platforms that best suits their needs.

5.6.1 Practical Case: MOWS with REST

REST is a recommendation for WS that takes advantage of the request headers of the

HTTP protocol, with the objective of parameter passing. Based on the request style of HTTP,

which provides verbs for action (namely “methods”) to be carried on the addressed resource

identified by the request, REST provides a simple and common manner for dealing with resources

stored on web servers (FIELDING; TAYLOR, 2000).

For instance, the HTTP methods “POST”, “GET”, “PATCH” and “DELETE” may be

mapped to the CWEB methods “addContact”, “retrieveContact”, “updateContact” and “delete-

Contact”, while the resource address is fixed as “Contact”.

Since our MOWS recommendation includes the requirement of only using models for

transmission (Requirement 13), in the case of REST, using variable parameters as part of the
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resource address is discouraged. This resource address is transmitted as a basic string (text) that

may not be sufficient to store a model object according to XMI recommendations. Therefore, in

this specific case, it is not possible to guarantee that the transmitted model represents the data

being handled during the specific request.

One key advantage of using MOWS with REST is that it becomes easier to save the

model by using typical internet tools, since it has the ability to transmit the model with less

protocol overhead, as opposed by SOAP.

5.6.2 Practical Case: MOWS with SOAP

SOAP is the protocol recommended by W3C for web service systems (W3C Working

Group, 2007). The main advantage of employing SOAP for developing a MOWS system is that

it has extensive standardization for the interface format, named as WSDL, and the data structure

format based on XSD. Also, it provides tool support to generate code based on WSDL artifacts.

This standardization encouraged us to develop MOWS systems using the SOAP protocol,

allowing to define metamodels in XSD and interfaces in WSDL. After defining these artifacts

according to the MOWS system requirements, the development can be carried on using typi-

cal processes for SOAP WS system development, because these artifacts already involve the

differences related to the interfaces, data structures and transmission.

5.6.3 Practical Case: MOWS with SOAP using Genivia gSOAP 2

Genivia gSOAP 2 is a framework and a tool-kit for implementing web services. Its project

was commenced with the objective of creating a tool-kit that allows text based communication

over the network. After the W3C published the SOAP standard, the project was eventually

named as gSOAP (W3C Working Group, 2007), including support to create servers and clients

according to the standard, though it has added REST support afterwards (FIELDING; TAYLOR,

2000; ENGELEN; GALLIVAN et al., 2002). The target platforms of gSOAP are the C and C++

programming languages. Servers based on the gSOAP framework can function in standalone

mode, as modules for Apache HTTPD (APACHE, 2016) and as Common Gateway Interface

executables, which would also be invoked by HTTP servers.

The code generator supplied with gSOAP is capable of generating C++ classes for both

the client and server by reading the WSDL and XSD files generated during the previous activities.

The component diagram for this case is represented in Figure 31. In the case of creating

the CWEB MOWS system using gSOAP, the tool-kit generates the server and skeleton class as a

single abstract class named “CWEBService”. The concrete class must be implemented by the

developers, who would add the behavior code of each specific method, namely: “addContact”,

“retrieveContact”, “updateContact” and “deleteContact”.
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Figure 31 – Interface and Component Diagram for the gSOAP 2 Case

CWebService

Source: Created by the author

Since server is generated as an abstract class that inherits the service interface, the

concrete server class would also be the main class to be invoked by the server. The behavior

required by the WS must be inherited from the framework by using the generated “soap” class.

Therefore, the developers would only need to focus on the method bodies and the MOWS system

would still adhere to WS standards and provide MOWS features, since they were established

during the definition of the metamodel and the service interface.

On the client side, the tool-kit generates the stub which is named as “CWEBProxy”. This

is a concrete class with implementation for the methods to delegate the call to the server. The

client is then able to invoke the server via the proxy.

5.6.4 Practical Case: MOWS with SOAP using Apache CXF 3

Apache CXF 3 is a framework and a toolkit for implementing web services. Its project

was started after merging WS framework projects (Apache Foundation, 2017). It also includes

support for creating clients and servers based on the SOAP standard by W3C (W3C Working

Group, 2007). Besides SOAP support, CXF also allows to develop REST Web Services (FIELD-

ING; TAYLOR, 2000). The target platform for CXF is the Java Programming Language, and it

is designed to run with Java Standard Edition or Java Enterprise Edition libraries. Web Service
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servers powered by CXF can function in standalone mode or as Java web server modules known

as “Servlets” (Apache Foundation, 2017).

Figure 32 – Interface and Component Diagram for the CXF 3 Case

CWebService

Source: Created by the author

The component diagram for this case is represented in Figure 32. A Java interface is

generated to represent the interface defined by the WSDL file. In comparison to the gSOAP 2

case, where the server inherits the interface, CXF creates a generic and concrete service class

that requires the developer to provide an object instantiated from a concrete class that actually

implements the service interface. This concrete class is commonly referred in this thesis as

“Implementor”, though this name is arbitrary. “Implementor” must be manually written by the

developers to define the behavior of the server upon receiving calls for the defined methods,

namely: “addContact”, “retrieveContact”, “updateContact” and “deleteContact”.

After creating the concrete class that implements the methods, the developers must

import this new class into the skeleton, which is a concrete class generated for the server, named

“CWEBServer”. The server would delegate the calls received via the WS interface to this concrete

class.

On the side of the client, a concrete class is generated for the stub, named as “CWEB-

Service”. This class has complete implementation for invoking the web server for the calls

performed by the client.
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5.6.5 Usage of the Resulting System

By employing any compatible platform, including those presented in the previous sub-

sections (though not limited neither to practical examples nor to their platforms), it is possible to

consider the usage of the resulting system. Clients and servers based on MOWS would maintain

compatibility without being dependent on a specific platform since MOWS systems also comply

to WS standards or recommendations. From the perspective of a user that wishes to use a client,

the behavior of a MOWS system would provide the same transparency as any other WS system

that follows the given standards or recommendation.

From the perspective of a developer that wishes to develop a client to connect to a MOWS

system server, they would perceive the server as a usual WS server. This is possible since the only

actual differences of a MOWS system when compared to a typical WS system are the data-types

and the interface specifications, which would be completely provided to the developers wishing

to create new clients. Once the clients are written to comply with these specifications, they would

also comply to the MOWS system features of model transmission and handling.

In addition to maintaining the development processes of these developers, the usage of

model transmission allows developers to visualize the transmitted data using modeling tools.

The first model editor is the abstract syntax tree editor. For instance, in Figure 33, we provide

an example of the model editor based on Eclipse EMF (Eclipse Foundation, 2015b). Eclipse

Modeling Framework (EMF) is a project for modeling tool development, part of Eclipse IDE

(Integrated Development Environment) project (Eclipse Foundation, 2017).

In this editor, it is possible to create every kind of object according to the metamodel

specification, while following the same structure of the respective XML file.

Besides an abstract syntax, modeling languages can have multiple concrete syntax

instances. In Figure 34, we provide an example of a diagram tool for editing the data handled by

the CWEB system, which also employs tools based on Eclipse EMF. The back canvas of the

diagram represents the contact list, while the rectangles placed on the canvas represent a contact

in the list. Each rectangle contains an icon that represents the contact type and two labels. The

first label presents the name, while the second contains the address.

Among possible concrete syntax examples, in Figure 35 we also provide an example of a

textual representation for the same model handled by the CWEB system, created by using XText,

a language engineering tool-kit (Eclipse Foundation, 2016). In the concrete syntax created for

the CWEB model, the list declaration is initiated by the “contacts” word, then each contact

is declared sequentially in a comma-separated list. The addresses and names must be written

between double-quotes. Each name should follow the “name:” word, while the address should

follow the “address:” word.
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Figure 33 – CWEB Model Editor

Source: Created by the author

Figure 34 – CWEB Diagram Editor

Contact

Palette
Alice

alice@example.com

Bob

bob@example.com

Source: Created by the author

5.7 MOWS Generic Development Method

This section includes suggestion on how a development method could be defined for

MOWS systems. It was created considering that the metamodel is the key artifact of the develop-

ment. According to this process, as shown in Figure 36, in order to develop a MOWS system,

the metamodel must be defined first.

The metamodel is defined by performing a domain analysis in the context of the system

under development. The metamodel is also a model itself, which allows model transformation.

This process involves three model transformations.

The first transformation is defined as “model to model” by taking the metamodel as
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Figure 35 – CWEB Text Model Editor

Source: Created by the author

Figure 36 – Simplified Development Process of a Model-Oriented Web Service

Source: Created by the author

input and outputting an XML schema, which is used to define the format of model files and

intra-modular messages. The second transformation is a code generation used to generate the

system structure, by inputting both the schema and the system design model, which is similar

to many other approaches documented in reviewed studies (GOTTARDI; BRAGA, 2015). The

third and last transformation is the creation of a comprehensive set of data handlers or domain

specific application frameworks to support the development of the system.

The first and second model transformations are generic and can be performed by existing



5.8. MOWS Definition Language 129

tools. However, the third transformation must be defined specifically for MOWS (GOTTARDI;

BRAGA, 2016). Further details on the existing and newly created tools for MOWS development

are presented in Appendix B.

5.8 MOWS Definition Language

This chapter also includes languages and tools to assist developers who wish to implement

MOWS systems. MOWSDL (Model-Oriented Web Service Definition Language) was established

by the author of this thesis as a complete language for specifying data structures and interfaces as

required by MOWS systems. MOWSDL was initially created as a model for replacing the WSDL,

therefore its name was defined as Model-Oriented-WSDL. It provides declarative structures to

allow the developer to create metamodels required by these systems.

During initial attempts to explain MOWS development to our research group, it has

been reported that it was complicated to follow without tools that guide the developer to create

systems as intended. Therefore, new efforts on creating intermediary languages and tools were

performed, despite not being mandatory for proper development. Tool support for the language

was made available and has been evaluated as part of the project presented within this thesis.

This explains why MOWSDL was created. It is used to represent the required definitions

for metamodeling, schema and service interfaces. This avoids the need of manually editing

Ecore, WSDL and XSD files, which are mandatory when developing SOAP implementations of

MOWS. MOWSDL also became a common language to develop REST implementations.

Similarly to WSDL and WADL, MOWSDL has an XML structure. It also follows

modeling principles by complying to the XMI standard. On top of that, an alternate textual

representation (concrete syntax) has been defined, allowing developers to write MOWSDL in a

text without XML idiosyncrasies. This concrete syntax is described herein as the recommended

syntax for defining MOWSDL instances.

MOWSDL can be used to replace WSDL and WADL documents for MOWS systems.

This language can provide a common SOAP and REST document interface. Therefore it is

possible to generate both SOAP and REST systems, without changes. It can also be used to

replace ECore Metamodels and XSD files.

Since MOWSDL is not mandatory for MOWS development, MOWS systems based on

SOAP can be defined by using the traditional WSDL artifact. Despite this, a MOWSDL artifact

can be automatically translated to WSDL and vice-versa, further tools for this workflow are

described in Section 5.9.

MOWSDL is represented as a textual language designed to be edited by human devel-

opers. The file is commonly structured in three blocks, which are exemplified in the following

subsections. The first block indicates the “imports” and “uses” directives (further described in



130 Chapter 5. Model-Oriented Software Systems

Subsection 5.8.2). Its usage is usually implied and is often not present in the provided exam-

ples of MOWSDL. The second block is employed to declare the metamodel, which is also the

data schema for the MOWS system (further described in Subsection 5.8.3). The third block

is composed by the interface declaration, that supposedly employs the data schema for data

transmission (further described in Subsection 5.8.4). All these blocks are completely optional,

which implies that an empty file is also a valid MOWSDL instance. More details about the

three blocks are given in the following subsections. Grammar specification for this language is

provided as part of Appendix B.

5.8.1 Retail System Example

In this section, a retail system is used as an example for developing MOWS systems

using MOWSDL. This system was developed as part of the MOWSDL development manual

used in experimental study (Appendix E).

This system is structured as a MOWS system following a client-server architecture. The

client is responsible to manage the cart of the customer while the server stores the product

information, collects the final cart managed by the client and executes the final checkout, as

illustrated in the use case diagram shown in Figure 37.

Figure 37 – Retail System Use Case Diagram

shop

add item to cart

get product to cart

checkout

customer

cashier

Source: Created by the author

This system differs from the CWEB system described in Section 5.6 for not being simply

focused on data. The MOWS system is used with interfaces provided by the server that allows

clients to query product types, add them to carts and proceed to check-out by using methods

provided by the interface. Both products and carts are modelled as metaclasses as shown in

Subsection 5.8.3. The interface is shown in Subsection 5.8.4.
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5.8.2 Import Declarations

The first declaration is used to import referenced metamodels and XSD files that are used

to define the data types to be employed by the MOWS system, as illustrated in Figure 38.

Figure 38 – MOWSDL Import Example

Source: Created by the author

The import syntax starts either by the “uses” or “import” reserved word. It was planned to

differentiate the XSD and Metamodel imports despite the fact that they are treated as synonyms

in the language. Still, their applications are encouraged for two different scenarios: for the “usage”

scenario, only a XSD “namespace” is provided, which indicates that it is being used by the

metamodel or interface without changing their default location. Attached to the “uses” reserved

word, an internal name to reference the imported file is added, which is then followed by path

specifications inside parenthesis. These paths should point to the target namespace, optional

source XSD file, and optional source metamodel file. For the “import” scenario, the declaration is

used exclusively to provide a XSD “namespace” with full paths to their XSD file and, optionally,

metamodel. Both cases start with a reserved word and then an identifier set by the developer to

register the name of the schema.

Therefore, when specifying a metamodel, its related XSD file must be provided. This is

not a limitation, since XSD generators for metamodels have been provided. The EMF project has

similar tools for this concern, however, they are limited when it is required to refer metamodel

imports. This has led the author to implement new tools to overcome this limitation. Further

details on tools are presented in Section 5.9.

5.8.3 Metamodel Declarations

The metamodel block is declared similarly to the “import” directive, as visible on the

right side of Figure 39, next to a corresponding UML class diagram showing the metaclasses as

classes. While names are optional for the import directives, it is required to write the names of

the new metamodel, as well as its XSD file name. This information is used to output the XSD

and metamodel upon transformation.

The metamodel block also includes a body for declaring metaclasses. A metaclass

can inherit another metaclass (including imported), as well as their features with name and

multiplicity. There are three categories of features: attributes, which take fundamental types

(e.g. String) as features; references, which are simply a reference to a model object within the

same model; and compositions, which indicate objects to be stored inside the current object type.
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Figure 39 – MOWSDL Metamodel Example

metamodel store("http://store/","store.xsd","store.ecore") 
{

metaclass Shop
{

composition carts : Cart[0..*];
composition products : Product[0..*]; 

}

abstract metaclass Tradeable 
{

attribute barcode : ecore::ELong[0..1]; 
}

metaclass Cart 
{

composition items : Item[0..1]; 
}

metaclass Product extends Tradeable 
{

attribute name : ecore::EString[1..1];
attribute price : ecore::ELong[1..1]; 

}

metaclass Item extends Tradeable 
{

attribute quantity : ecore::ELong[1..1]; 
} 

}

metamodel store("http://store/","store.xsd","store.ecore") 
{

metaclass Shop 
{

composition carts : Cart[0..*];
composition products : Product[0..*]; 

}

abstract metaclass Tradeable 
{

attribute barcode : ecore::ELong[0..1]; 
}

metaclass Cart 
{

composition items : Item[0..1]; 
}

metaclass Product extends Tradeable 
{

attribute name : ecore::EString[1..1];
attribute price : ecore::ELong[1..1]; 

}

metaclass Item extends Tradeable 
{

attribute quantity : ecore::ELong[1..1]; 
} 

}

data

Shop

Cart

Product

ELong barcode
EString name
ELong price

Tradeable

ELong barcode

Item

ELong barcode
ELong quantity

carts

0..*

products

0..*

items

0..*

data

Shop

Cart

Product

ELong barcode
EString name
ELong price

Tradeable

ELong barcode

Item

ELong barcode
ELong quantity

carts

0..*

products
0..* items

0..*

Source: Created by the author

Imported types must be referenced by using the scope operator (‘::’) and referring the name used

when registering the imported schema, metamodel or metametamodel.

5.8.4 Interface Declarations

The interface block is similar to the metamodel block. This block is shown on the right

side of Figure 40, next to a corresponding UML class diagram representing the same declared

interface. However, the goal of declaring the interface is to establish the operations and ports of

a MOWS server. One advantage of using MOWSDL for interface modeling instead of WSDL is

that MOWSDL generator can infer web service bindings, whereas WSDL requires them to be

specified verbosely. Another advantage is its ability to detect whether the referenced types are

fundamental inside the message declarations.

Despite these differences, MOWSDL interface declaration still follows the “message”

declaration similarly to WSDL 1.0, and can also be transformed into WSDL 1.1 (CHRISTENSEN

et al., 2001) and WADL (SCHREIER, 2011). This “message” declaration is employed to define

a group of data types used for parameters, which can then be used within zero or more operations

either as input or as output.

The operations are declared within a named “port”, which is the published set of op-

erations to be provided by the server. The generators provided for MOWSDL are capable of

identifying multiplicity of parameters, effectively allowing the developer to use zero or more

input/output parameters.

In the end of the interface block, the name for the service name is provided, which is
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Figure 40 – MOWSDL Interface Example

server

Cashier

void getProduct(ELong Barcode)
void addCart(Cart cart)

server

Cashier

void getProduct(ELong Barcode)
void addCart(Cart cart)

interface storews("http://store/wsdl/","store.wsdl") 
{

port storewsp 
{

operation getProduct(BarcodeMessage):ProductMessage;
operation addCart(CartMessage): ResponseSuccess; 

}

message BarcodeMessage 
{

part barcode1 : xsd::integer; 
}

message ProductMessage 
{

part product : store::Product; 
}

message CartMessage 
{

part cart : store::Cart; 
}

message ResponseSuccess 
{

part response : xsd::boolean; 
}

service StoreService("storewsb","action","http://localhost:9000/");
}

interface storews("http://store/wsdl/","store.wsdl") 
{

port storewsp 
{

operation getProduct(BarcodeMessage):ProductMessage;
operation addCart(CartMessage): ResponseSuccess; 

}

message BarcodeMessage 
{

part barcode1 : xsd::integer; 
}

message ProductMessage 
{

part product : store::Product; 
}

message CartMessage 
{

part cart : store::Cart; 
}

message ResponseSuccess 
{

part response : xsd::boolean; 
}

service StoreService("storewsb","action","http://localhost:9000/");
}

Source: Created by the author

used to generate the server implementation. However, the interface operations would still lack

proper behavior, which must be completed afterwards. Despite this limitation, the MOWSDL

compiler and generation tools are capable of maintaining code blocks edited by the developers,

unlike the tools provided with CXF and gSOAP.

MOWSDL is provided with an editor and compilers developed by the author, as specified

in Section 5.9.

5.9 MOWS Tool-chain

After establishing MOWS systems as a specific case of MOSS, the purpose of this section

is to present tools and intermediary languages available for MOWS development.

Therefore, this section contains a technical view on the tools that can be used to create

MOWS systems. These tools are not mandatory for the development, since these systems follow

requirements for MOSS, which rely on standards for modeling instead of forcing developers to

use specific tools.

Despite avoiding this dependency, tools and languages were defined within this work to

help the developers to create MOWS systems correctly, i.e. the tools would assist the developers

to follow the requirements and to develop a valid system as expected.

In order to explain how these languages collaborate in the development and execution

of MOWS systems, Figure 41 provides an overview on the languages and running system. The

figure is divided into five levels, namely Meta, Automatic, Manual, Execution, and Persistence &
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Transfer. As the figure is composed by blocks, each block position represents a relationship to

neighboring blocks.

Each block in this figure is also colored for categorization. There are six categories:

“Proposed Languages” marks the artifact types that are defined according to a language proposed

within this project. More specifically, in this work it was presented the MOWSDL (Section 5.8).

“Proposed Library” indicates the libraries that were defined within this project to assist developers

when programming code to handle models with cross references. Block marked as “Existing

Standard” represent software artifacts that are based on existing formats or techniques for WS

development. The “Custom Definition” blocks specify which blocks are dependent to each

application, therefore, they cannot be completely generalized. “Application Instance Specific”

are used to point out which data formats are dependent on the platform of the running application,

and they may not be compatible to other instances of the same software. Finally, “Custom model

in XMI Format” specifies the models that are to be handled in the format recommended by OMG

(Object Management Group, 2014). This format is both platform independent and inter-operable,

allowing MOWS systems to work with other MOWS systems and modeling tools regardless of

their platform (e.g. operating system and/or programming language).

When a block is placed above another block, it represents that the upper block may be

used to implement the block below. For example, the meta level artifacts are all used to deal

with metamodeling, schema and interface documentation without any behavioral coding. Among

these artifacts, the MOWSDL language was created to cover the semantics from both WSDL

and Ecore, hence its position above these artifact types.

In a MOWS system, the data schema and configuration are specified as in the meta level,

which justifies this level position above all others. There are several ways to define a metamodel,

as represented inside the meta level. Therefore, this level compromises the artifacts used to

specify metamodels and schema definitions. Ecore is a meta-metamodel language which is part

of the EMF project (Eclipse Foundation, 2015b) and is employed to define metamodels. XSD is

the W3C standard for XML schema, which is employed to specify XML formats (W3C XML

Working Group, 2012). WSDL is the W3C standard for WS definition (W3C Working Group,

2004). WSDL employs the XSD syntax for the data schema while adding more semantics to

allow WS interface specification.

The automatic level involves source code levels that are generated automatically without

requiring any manual intervention. They are divided into the data specification (below XSD)

and the interface specification (below WSDL). The data structure represents the data structure

code that allows developers to handle models as data. Some complex models also take advantage

of helper modules. The Accessor and Referrer are helper codes that help developers to handle

complex modules, as further explained within Subsection 5.9.1. The interface specification is

composed by the server and client (headers), which could still require further implementation,

which would be performed manually.



5.9. MOWS Tool-chain 135

Figure 41 – MOWS Representation Overview

MOWSDL

A
c
e
s
s
o
r

R
e
f
e
r
r
e
r

WSDL
XSD

Ecore

Run-time Application

D
a
t
a

S
t
r
u

c
t
u

r
e

Server Client

Server

Impl�

Client

Impl�

Configuration

Models

Run-time

Models

Data

Models

Legend

Custom model in XMI Format

Custom Definition

Existing Standard

Proposed Library

Application Instance Specific

Proposed Language

Source: Created by the author

Therefore, the manual level is composed by the implementation of the server and client.

The software could also take advantage of configuration models, which are models to input

variables by the software administrators to be used by the software during run-time. Common

examples include the server address and maximum number of connections allowed.

The execution level represents the application at run-time. The models are used as data

at run-time following Models at Run-time principles and managed by the application seamlessly

without conversion.

This seamless usage of models as data allows to persist and transfer data as models

completely compatible to the XMI specification (Object Management Group, 2014). Therefore,

MOWS systems are capable of inter-operating with modeling tools to visualize and edit data.

Namely, there are several artifact types that the developer should be aware when develop-

ing and managing MOWS systems, as presented on Table 23.
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Table 23 – MOWS Artifact List

Name Description

MOWSDL Proposed Format
ECore Existing Format (EMF)

metamodelDiagram Existing Format (EMF)
XSD Existing Format (W3C)

AcRefCode Proposed Format
DataCode Specific Format (example: JAX based)

WSDL Existing Format (W3C)
modelInstance Proposed Format (example: XMI based)
InterfaceCode Existing Format (example: JAX-WS or JAX-RS)

modelObjectDiagram Specific Format
Application Specific Format

5.9.1 Accessor and Referrer Modules

The Accessor and Referrer modules are created specifically for referencing (Referrer) or

dereferencing (Accessor) existing object cross-references found within models. These modules

can be generated for MOSS/MOWS applications automatically.

The XMI specification defines the format of models as data trees, which cannot have

closed loops. Therefore, instead of references that would cause loops, the model is structured

with cross-references.

Figure 42 – Cross-Reference Example
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For instance, in Figure 42 there is a class diagram including three classes. The Root

represents the root of the model, which is composed by two child classes (ChildA and ChildB).

In order to solve this issue, as part of this project, a generator for AcRefCode was provided to

handle the cross-references.
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The referrer is responsible for creating references according to the XMI specification.

For each referrer method, it takes the root of the model tree and the object to be referenced and

returns the reference for the object if it is found in the tree.

The accessor has the opposite behavior, i.e., it allows to dereference the object according

to a reference. Its parameters are the root of the model tree and the reference for an object,

which returns the actual object (or pointer, depending on the implementation) according to the

reference, if it is found.

Two generators for these codes were provided as part of this project. The first was

developed to generate C++ to be included with MOWS systems created with Genivia gSOAP

2, while the second was developed in Java for Apache CXF 3. Generators for other languages

could be developed in an analogous way whenever needed.

The C++ version creates classes with static methods for accessor and referrer. The

accessor is capable of identifying whether the return variable is constant or not at compilation

time and returns the object as a pointer. The Java version complies to objects according to JAX

specification, making it detached from the Apache CXF itself. However, it does not support

constant objects.

5.10 Final Remarks

This chapter concludes a view on how MDSE could be evolved into more than a generic

development method, rather, it includes a specific software category that blends concepts from

Model-Oriented programming with Models at Run-time, as well as adding further requirements.

In this view, this method could become a paradigm by employing models throughout

analysis, design, implementation towards the final application execution. This means that we

are not limiting the models within MDSE as "Models are Code", in this case, models are

software, data structures and the actual data instances. These models are able to store the

state representation of the running software. In our method, both code generation and code

interpretation can be employed for the same final application.

This software category was validated in experimental studies and case studies, which

are presented in Chapter 7 and Appendix C, respectively. A more comprehensive list of tools to

assist MOWS development is presented in Appendix B.
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CHAPTER

6

COMPARATIVE CASE STUDIES

6.1 Initial Remarks

MOWS systems use and transfer data natively as models. While these could be discussed

as benefits for the developers who wish to edit, visualize and transform application data as

models, new questions rose regarding the impact of the data formats and transfer employed

by MOWS systems. Therefore, it is necessary to compare the performance of MOWS systems

against traditional WS systems. This question is deemed important, since the transfer would

impact not only the developers but the users and the performance of running systems.

In this chapter, we describe two comparative studies regarding the differences of a MOWS

system compared to WS systems that are not dependent on modeling specifications. The first

study was conducted to compare the data length (as in byte count) that is transmitted by MOWS

systems against traditional WS systems (Section 6.2). The data length of transmitted messages

affects the transmission time, thus, affecting the system performance. This study is further

extended by employing mathematical analysis, which allows us to identify the implementation

differences algebraically, without depending on a specific data structure. The second study is an

analysis that compares the compatibility of formats among a set of MOWS and traditional WS

systems. (Section 6.2). Finally, in Section 6.4, there are the conclusions for this chapter.

6.2 Data Length Study

6.2.1 Objectives

The objective of this study is to compare and analyze how MOWS features impact

the message size and transmission. This comparison is intended to analyze the data length of

messages exchanged by systems that adhere or not to the MOWS requirements.
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6.2.2 Method

The method is related to the study design defined for this comparison. In order to perform

the intended comparisons, we have selected a context of possible systems and their applications,

varying protocol (or architectural recommendation) and whether or not MOWS is employed.

The systems were compared in pairs (all possible combinations). These systems are then

compared regarding the length of the produced data.

6.2.2.1 Context Selection

For the context selection, we have selected possible data schema specifications for

alternate implementations of the WS systems. For the sake of exemplification, the examples

were based upon the implementations of Section 5.6, i.e., variations of the CWEB sample system

were used to develop these systems.

On Table 24, there are six possible systems that we refer as applications. All the presented

systems were implemented by the author by using Java JAX and/or Apache CXF according to

the design specified in Subsection 5.6.4. All the applications are XML based and we compare

the lengths of generated XML files. Among these, the described MOWS systems are represented

by letters ‘D’ and ‘E’, based on REST recommendation and SOAP (protocol), respectively.

The REST-Style HTTP WS systems were developed without WSDL. This is important

to point out because WSDL imply the schema reference, which affects the data length. In this

study, we have considered that it is not possible to create a SOAP WS without a WSDL and

without a schema. Therefore, on Table 24, there is no SOAP WS without a schema. The letter ‘F’

is only provided to allow comparing the default format exported by a Model Editor Tool.

Table 24 – Alternate Implementations for the CWEB System

System Name Description Application

‘A’ Without Schema REST-Style HTTP WS
‘B’ Based on a Generic Schema REST-Style HTTP WS
‘C’ Based on a Generic Schema SOAP Compliant WS
‘D’ Metamodel based (MOWS) REST-Style HTTP WS
‘E’ Metamodel based (MOWS) SOAP Compliant WS
‘F’ Model Editor Tool Modeling Tool

6.2.3 Operation

The operation of analyzing the data lengths is described within this subsection. Since

XML files are also text files, these files were split into lines of text. The possible lines of all XML

files generated by the studied systems were combined into Table 25. Each line is referred by a

number (first column). Lines are also linked to the system which generates them and their lengths
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Table 25 – Comparison of Exported XML

# XML File System Length Description
A B C D E F

1 <?xml version=“1.0” encoding=“UTF-8”?> P P P P P P 38 XML header with encoding.

2 <pim:ContactList P P P P P P 2+ p+ t Contact list root node.

3 ∙ xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" P P 59 Schema for envelope used by SOAP WS.

4 ∙ xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" P P 59 Schema for encoding used by SOAP WS.

5 ∙ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" P P P P P 54 Schema for XML Schema.

6 ∙ xmlns:xsd="http://www.w3.org/2001/XMLSchema" P P P P 45 Schema for XML Schema.

7 ∙ xmlns:xmi="http://www.omg.org/XMI" P P P 35 Schema for Models.

8 ∙ xmi:version="2.0" P 18 Version of Model Format.

9 ∙ xmlns:pim="http://generic.pim/xsd" P P 10+ p+ x Generic PIM Schema.

10 ∙ xmlns:pimws="http://generic.pim/wsdl" P 10+ s+w Generic PIM Interface.

11 ∙ xmlns:pim="http://model.pim/xsd" P P 10+ p+ x Schema for PIM Metamodel.

12 ∙ xmlns:pimws="http://model.pim/wsdl" P 10+ s+w Interface for PIM using Metamodel.

13 > P P P P P P 1 End of node attribute declaration.

14 <contacts name="Alice" address="alice@example.com"/> P P P P P P m · (3+ l +a · (4+n+ c)) Object data for contact.

15 <contacts name="Bob" address="bob@example.com"/> P P P P P P same as above; included in m Object data for contact.

16 </pim:ContactList> P P P P P P 4+ p+ t End of root node.

in characters.These lines are marked with either ‘P’ (P for Present) or ‘ ’ (blank for absent), to

define if the line is present in the data from a given system. There is also a description for each

line. Thanks to the structure of XML, the declarations do not need to be declared separately

into lines as shown on the table; they are shown like this on the table to ease the visualization.

Therefore, unnecessary line breaks are not counted as part of the length.

The objective of providing the length column on Table 25 is to allow calculating the

affected difference on the file length. There are variables for flexibility: let p be the length of

the data schema prefix (namespace alias); let t be the length of the name of the root node; let

x be the length of the data schema target namespace; let s be the length of the WSDL prefix;

let w be the length of the WSDL target namespace; let m be the amount of objects inside the

root node; let l be the length of list name; let a be the amount of attributes of the object; let n be

the length of attribute name of the object and let c be the length of attribute value of the object.

These variables are all positive integers.

The lengths for the node attributes, including schema references, are incremented by

one to include the required separator between them, e.g. space, which is also considered as one

character and affects the length of the file.

The first line (Line 1) of the XML file is constant for all XML files we have analyzed.

Its length is the result of the count of characters, which is always 38. This happens because

all systems employ standard XML headers. It is important to declare that the encoding is not

important for this study, it simply needs to be the same throughout the analyzed systems.

The other lines may vary depending on the schema structure. For example, Line 2

contains the beginning of root node declaration. Every root node starts with the ‘<’ symbol,

followed by the name of the node type as specified by the schema. The ‘:’ is the separator for the

alias of the namespace, which is declared as part of the xmlns schema declarations. After this

separator, it is followed by the actual root type name. Therefore, we need to count the ‘<’ and
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‘:’ symbols (constant length of 2), plus the namespace alias (p) and plus the root type name (t).

This results into 2+ p+ t, as written on the table.

Since we are omitting the length of unnecessary line breaks, we have added a leading

‘∙’ symbol whenever a separator is required before the current declaration. Then, on Lines 3 to

12, it is mandatory to include a separator, e.g. space, that separates the declaration from the one

on previous line. This separator also takes one character in length, and is therefore counted as

part of the constant. For example, on Line 8 there are 17 characters plus one for separating the

previous declaration, resulting in 18.

Following this expression construction, all the other rows start with the number of

constant characters (including the separators and finishing characters). Whenever there are

variable length declarations, they are added to the initial constant in the same order as they appear

on the line.

It is important to mention that the lengths were calculated based on character count, not

the actual data size. To make it simpler, we are considering that every character has the same

data size. This is easily done by restricting to characters that fit into one byte or converting the

‘UTF-8’ encoded files into ‘ASCII’ encoded files (W3C Working Group, 2008) with the exact

same length. This also conforms the same result of our analysis: coincidentally, both encoding

names have the same length in characters.

As the application columns contain ‘P’ (Present) or ‘N’ (Not present) indicating whether

the line is present in the output of the given system, its possible to come up with the resulting

lengths for each system by summing every expression that is marked by a ‘P’. The comparison

of these lengths are presented within the following subsection.

6.2.4 Results

The results for the length comparison are presented within this section. On Table 26 we

compare the lengths of the files. The columns indicate the data lengths which are subtracted

from the data lengths at the rows, therefore, each cell contains the length difference. In order to

calculate the difference, first, we had to consider Table 25 and take the sum of every line that

contains ‘P’ from there. Then, the difference was calculated by taking the sum of the system

referred by the column minus the system referred by the row. The resulting difference was then

written into the cell related to these columns and rows. In other words, let Sc be sum of the

lengths of application referred by the column and let Sr be sum of the lengths of data referred by

the row. Each cell is calculated by the expression Sc −Sr.

For instance, let A be the sum of line lengths of system A, and B the sum of line lengths

of system B. The first length difference is zero, because it is the result of A−A, which is always

zero due to arithmetic property. The second cell on the first row is the result of B−A.
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Table 26 – Length Differences

Negative Positive
+A +B +C +D +E +F

-A 0 109+ x+ p 237+ x+w+ s+ p 144+w+ p 272+ x+w+ s+ p 107

-B −109− x− p 0 128+w+ s 35 163+w+ s 2+ x+ p

-C −237− x−w− s− p −128−w− s 0 −93−w− s 35 −130− x−w− s− p

-D −144− x− p −35 93+w+ s 0 128+w+ s −37− x− p

-E −272− x−w− s− p −163−w− s −35 −128−w− s 0 −165− x−w− s− p

-F −107 −2− x− p 130+ x+w+ s+ p 37+ x+ p 165+ x+w+ s+ p 0

6.2.5 Discussion

Despite providing the differences for every pair of presented applications, there are a few

points to consider when interpreting the resulting expressions.

The primary objective is to identify the differences between using MOWS WS systems

to non MOWS WS systems that use the same XML structure. This means that for the length

comparison, we are disregarding the comparisons using different protocols.

We did not add the SOAP Envelope length, since our objective was not to compare

the overhead of employing SOAP for transmission when compared to raw XML transmission

employed by REST-Style WS systems. Therefore, any other overhead caused by the protocol

would then be eliminated, as we are only considering the differences between the same protocol

usage.

The mathematical analysis was performed to establish a comparison that is not tied to a

specific schema or metamodel. It is also important to report that the extra metadata information

does not affect the content of data, only the header (XML root node).

Following the objective of MOWS comparison, we need to compare the applications

referred as letters D and E to applications that represent non MOWS counterparts that implement

the same protocol. Therefore, we have to compare them to B and C, respectively.

Namely D−B and E −C (both) result in a difference of ‘35’, which is seen on Table 26.

This is a constant difference because the length of the actual data would be the same in both

cases; they only differ on the header, which has a fixed length.

The length comparison was performed by analyzing uncompressed XML. It is important

to mention that the evaluated WS platforms also support data compression, which could make

this overhead even smaller.

Regarding the results, it is confirmed that MOWS have an increased data overhead, which

is due to the meta-metamodel reference declaration. Since only this declaration affects the length,

it can be generalized to any system using a similar data structure. However, this declaration

is redundant, since it can be found recursively inside the metamodel specification. It has been

tested that it is possible to remove this declaration by developing specific metamodel to schema
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transformers.

The removal of meta-metamodel declarations does not break compatibility with the tested

MOWS implementations. Still, its removal might cause trouble on some WS implementations,

specially, in case of model instances that use meta-metamodel data types. MOWS usage is

discouraged for some cases, yet, the constant overhead might be tolerable for many applications.

MOWS systems employ DSL or ontology languages to represent the data and knowledge,

allowing humans and machines to communicate in a common language.

6.2.6 Threats to Validity

The advantage of performing analysis on the data outputs based on the XSD is that it is

possible to prove whenever it matches its specification. This advantage eliminates any threats

related internal validity, since the analyzed data is valid for the actual implementation. The threats

related to measure validity are also eliminated because we have performed a mathematically

exact analysis on the length of the messages. It was possible to identify and count every text

character transmitted in every presented application.

However, there is still a threat to external validity because of a possible difference

between the real world applications and the study applications. It is possible that a real world

application would employ a very different data structure. To mitigate this threat, the algebraic

expressions were defined with the intent of making the names of types abstract, i.e., we compared

the different systems using the same set of paired type names, thus, avoiding subjectivity on the

comparison. Therefore, the performed comparisons were paired between similarly structured

applications that employ different technologies.

6.3 Data Format Compatibility Study

6.3.1 Objectives

The objective of this study is to compare and analyze how different MOWS implemen-

tations impact the data format compatibility. In this manner, it is compared the compatibility

between pairs of these systems with the intent of identifying if they can be employed in conjunc-

tion, i.e., we verify the interoperability of different WS systems that were developed either with

or without MOWS requirements. We also verify their compatibility with modeling tools.

6.3.2 Method

This study was designed similarly to the length comparison study (Section 6.2) The same

possible systems were used and their output data formats were captured.
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These systems have been compared in pairs to verify which system is able to read the data

output from others by analyzing all possible combinations. For the first objective, we compare

the length of the produced data. For the second objective, we compare whenever applications

can read other’s outputs.

6.3.2.1 Context Selection

The selected systems were the same used on Section 6.2.2. Therefore, the systems as

represented on Table 24 are also used and referred with letters from ‘A’ to ‘E’. It is important to

mention that the model editor tool represented by the letter ‘F’ is used to indicate which formats

are compatible to Model Editor Tools.

6.3.3 Operation

The operation of analyzing the data formats is described within this subsection. We have

considered the proposed formats and identified the compatibility of exporting data by using each

system. Besides the fact that they were designed with the objective of following the same XML

structure, they differ on the schema dependencies. Each system was compared in pairs and the

results are presented as a matrix.

6.3.4 Results

Table 27 – Format Compatibility Matrix

Reader Writer
‘A’ ‘B’ ‘C’ ‘D’ ‘E’ ‘F’

‘A’ True True True1 True True1 True

‘B’ False True True1 False True1 False

‘C’ False False True False True1 False

‘D’ False False False True True1 True

‘E’ False False False True True True

‘F’ False False False True True1 True

The columns of Table 27 represent the application that exported the XML file, where

each row indicates the application reading the exported XML. Cells marked as “True” indicate

that the application accepts the written file. “False” indicates that the application reading the

file would refuse to accept it as valid data because of schema mismatch, even though the XML

structures are the same. Since the application ‘A’ ignores the schema, it might accept data from

any application, however, it could wrongly accept data not intended for the system, thus, causing

defects.
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Finally, cells marked as “True1” indicate that the writer system also employs the SOAP

schema for data transmission. The SOAP schema reference itself is not problematic for the

importing application, as long as the data is not inserted into a SOAP Envelope.

6.3.5 Discussion

This comparison study indicates how the different implementations of MOWS handle

the data formats.

Regarding the SOAP envelope, it is important to out that it only affects the case when it

is desired to capture the raw data transmitted between servers and clients using SOAP. In that

instance, it may be required to filter out the SOAP Envelope to be able to use the data with

modeling tools. Still, clients and servers of a SOAP WS system are capable of handling files

without the SOAP envelope. It is important to remind that the compatibility matrix is only used

to compare the data format, i.e., file handling, not how it is transmitted over the web. Therefore,

employing a common protocol is still required for data transmission.

The matrix also reveals an important advantage of MOWS, which is the native and

seamless compatibility to modeling tools. This means that modeling tools can be employed to

edit and visualize data handled by MOWS systems without requiring conversion.

We have also identified that non-MOWS systems can be compatible to MOWS systems,

which indicates that MOWS do not break principles meant for traditional WS systems. This

study also shows that MOWS systems are the only with reciprocal compatibility to modeling

tools.

6.3.6 Threats to Validity

This study included all combinations of MOWS with REST and SOAP. The advantage of

performing the analysis of all combinations eliminates threats related to internal validity, since

the analyzed data is valid for the actual implementations. The threats related to measure validity

are also eliminated because all the possible results for reading the formats are also presented

exhaustively

However, there is still a threat to external validity because of a possible difference

between the real world applications and the study applications. It is possible that a real world

application would require different protocols, encoding standards, and data formats. This threat

was mitigated by following format standards as recommended by W3C (W3C Working Group,

2004) and OMG (Object Management Group, 2014).
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6.4 Final Remarks

In this chapter, two comparative studies were presented to compare the MOWS systems

to traditional WS systems. These systems provide both advantages and disadvantages, but it

is not argued that they should replace all systems. It was possible to show that the increased

length disadvantage (overhead) is constant and may not be significant for many systems. Besides

analyzing the impact of MOWS systems, Chapter 7 contains experiments to evaluate developers,

other than the author of this thesis, to build MOWS systems.
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CHAPTER

7

EXPERIMENTAL STUDIES

7.1 Initial Remarks

In Chapter 5 it has been presented the requirements of MOSS/MOWS. These systems

require programmers to work on metamodels instead of traditional source code, which could be a

complex task for common developers. As these systems rely on metamodel as design, it became

important to evaluate if developers are able to comprehend and create metamodels in software

development with and without proposed tools. As discussed in the empirical studies presented

in Chapter 4, it has been suggested that higher abstraction levels could be more difficult for

developers. Indeed, the surveys discussed by Teppola, Parviainen and Takalo (2009) and Whittle

(2013) also list related challenges faced by MDSE developers.

Therefore, experimental studies have been conducted to evaluate if common developers

would be able to implement required metamodels for MOWS systems by using the proposed tools

or existing frameworks. In this chapter, two separate sets of experimental studies are presented

on this context. It is important to establish that these studies are focused on evaluating MOWS

development and are unrelated to the studies discussed in Chapter 4. The first experiment evalu-

ates a metamodel language created for MOSS/MOWS specification (Section 7.2) and the second

experiment evaluates coding with Java Programming language as required for implementing

MOWS systems in that platform (Section 7.3). Finally, in Section 7.4 there are the conclusions

for this chapter.

7.2 Data Structure Verification Experiment

7.2.1 Objectives

In this section it is presented an experiment which was conducted to evaluate whether

the MOWSDL (language introduced in Section 5.8) was capable of representing metamodels as
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well as Java code.

This was planned to verify the required efforts to define metamodels required by MOWS

development performed by different developers. By evaluating MOWS, we are also evaluating a

specific kind of MOSS. In this manner, this study includes activities to read models and code in

order to identify its semantics.

Throughout the research history of this project, one major concern was whether devel-

opers would be able to define metamodels as required by MOWS systems. Since MOWSDL is

used to define metamodels, the ability of developers to use it would further indicate its feasibility

for real software production. This study was planned to evaluate the ability of developers to

implement MOWS systems.

Therefore, the rationale behind comparing Java and MOWSDL for data schema definition

was beyond simply identifying whenever a design language or a programming language was

preferable for activities; it was intended to verify if programmers could accept MOWSDL as a

roughly equivalent to Java when identifying classes, relationships, properties and overall class

design, since this is required for metamodel definition.

7.2.2 Method

The tasks that the participants were expected to perform involve identifying the semantics

from textual MOWSDL model and Java code, referred herein as study artifacts. Considering that

developers are required to identify the concepts (semantics) that are represented by modeling or

code artifacts, this study was designed with a training session plus four tasks that take the two

kinds of artifacts in pairs. These tasks were planned after what was required to declare when

creating metamodels. The original task plan involved the identification of these concepts: Classes

(very similar in both languages but kept for being the most basic task), Inheritance (removed from

the study for being equal in both languages); Multiplicities (removed because Java does not have

explicit multiplicity, later changed to list identification); Attributes (merged with relationship

task) and Relationships. Besides identifying these concepts using either language, it was also

planned to verify if the participants could find the class diagram that matches each textual

language instance. These artifacts are used to assess which language is more adequate for

identifying the required semantics from languages.

Table 28 – Study Design

Task Description Java Sub-tasks MOWSDL Sub-tasks

Training General Training 1 1
First Class Counting 4 4

Second List Counting 4 4
Third Relationship Counting 4 4
Fourth Diagram Matching 4 4
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Figure 43 – Task Feedback Question

Please tell us about your exercise experience.

Choose one of the following answers

Java was much easier

Java was a bit easier

They seem equivalent

MOWSDL was a bit easier

MOWSDL was much easier

!

Source: Created by the author

This study is composed by a training section followed by the four tasks, as presented on

Table 28. This table is composed by rows (tasks) and four columns: namely, the task ordinal, the

description for each task, the number of Java sub-tasks in the task and the number of MOWSDL

sub-tasks in the task. The training task included text and diagrams to instruct the participants on

how to detect the required semantics during the execution of the tasks.

The first task involves identifying classes in the provided artifacts. The second task

aims at identifying lists, including properties and relationships between classes with multiplicity

higher than ‘1’. For the third task, the participants were asked to identify relationships between

classes (all multiplicities). During the final task, the participants were requested to identify

the UML class model that represented the provided artifact. After each task, the participants

were allowed to answer feedback questions, as in Figure 43. After all tasks were completed the

participants could also enter text as to provide qualitative comments.

The dependent variables are the variables collected by the researchers from the study

execution. Table 29 contains the variables which are used for hypothesis testing. There are two

types of variables: the number of correct answers and the time taken to complete each sub-task.

This table contains five columns. The first column contains the variable name, which is used to

reference this variable throughout the study. The second column contains a textual description

for the variable. The third column is used to indicate the type of the variable. The fourth column

shows the valid range for the variable. The fifth column is specifies the minimum possible value

for the variable, which is used to measure its precision. This single table is composed by variables

for all tasks that have been measured.
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Table 29 – Study Dependent Variables

Name Description Type Range Precision

CCJ Correct Java Count (Ratio) 0 to 4 1 count
CCM Correct MOWSDL Count (Ratio) 0 to 4 1 count
TCJ Time Completion Java Real (Ratio) 0 or greater 1/100 second

TCM Time Completion MOWSDL Real (Ratio) 0 or greater 1/100 second

CLJ Correct Java Count (Ratio) 0 to 4 1 count
CLM Correct MOWSDL Count (Ratio) 0 to 4 1 count
TLJ Time Completion Java Real (Ratio) 0 or greater 1/100 second

TLM Time Completion MOWSDL Real (Ratio) 0 or greater 1/100 second

CRJ Correct Java Count (Ratio) 0 to 4 1 count
CRM Correct MOWSDL Count (Ratio) 0 to 4 1 count
TRJ Time Completion Java Real (Ratio) 0 or greater 1/100 second

TRM Time Completion MOWSDL Real (Ratio) 0 or greater 1/100 second

CDJ Correct Java Count (Ratio) 0 to 4 1 count
CDM Correct MOWSDL Count (Ratio) 0 to 4 1 count
TDJ Time Completion Java Real (Ratio) 0 or greater 1/100 second

TDM Time Completion MOWSDL Real (Ratio) 0 or greater 1/100 second

The hypotheses tables are divided according to the task they are related. These tables

are composed by three columns. The first column contains the name given to the hypothesis.

The second column has the description for the hypothesis. The third column documents the

logic/arithmetic expression used for comparison, which is considered under hypothesis testing,

i.e. they are applicable as null or alternate depending on the statistical test used.

Table 30 contains the hypotheses defined for the possible outcomes for the class identifi-

cation task.

Table 30 – Study Hypotheses (Class Identification)

Name Description Predicate

Class Negative Count Java is more precise for class identification CCM−CCJ < 0
Class Zero Count Languages are equivalent when identifying classes CCM−CCJ ≈ 0
Class Positive Count MOWSDL is more precise for class identification CCM−CCJ > 0

Class Negative Time Java takes more time for class identification TCM−TCJ < 0
Class Zero Time Languages are equivalent when identifying classes TCM−TCJ ≈ 0
Class Positive Time MOWSDL takes more time for class identification TCM−TCJ > 0

Similarly, Table 31 contains the hypotheses defined for the possible outcomes for the list

identification task.

The hypotheses for the relationship identification task are presented on Table 32.

Finally, the possible hypotheses that are considered as outcomes for the diagram matching
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Table 31 – Study Hypotheses (List Identification)

Name Description Predicate

List Negative Count Java is more precise for list identification CLM−CLJ < 0
List Zero Count Languages are equivalent when identifying lists CLM−CLJ ≈ 0
List Positive Count MOWSDL is more precise for list identification CLM−CLJ > 0

List Negative Time Java takes more time for list identification T LM−T LJ < 0
List Zero Time Languages are equivalent when identifying lists T LM−T LJ ≈ 0
List Positive Time MOWSDL takes more time for list identification T LM−T LJ > 0

Table 32 – Study Hypotheses (Relationship Identification)

Name Description Predicate

Relationship Negative Count Java is more precise for relationship
identification

CRM−CRJ < 0

Relationship Zero Count Languages are equivalent when
identifying relationships

CRM−CRJ ≈ 0

Relationship Positive Count MOWSDL is more precise for
relationship identification

CRM−CRJ > 0

Relationship Negative Time Java takes more time for relationship
identification

T RM−T RJ < 0

Relationship Zero Time Languages are equivalent when
identifying relationships

T RM−T RJ ≈ 0

Relationship Positive Time MOWSDL takes more time for
relationship identification

T RM−T RJ > 0

task are presented on Table 33.

7.2.3 Operation

7.2.3.1 Context Selection

The invitations to participate in the experiment were sent via different mail-lists, in-

cluding professionals, undergraduate students and graduate students, effectively reaching 117

participants.

The participants were openly invited, however, their profile was employed for selection.

The basic profile requirement was to select participants with experience on programming. Still,

the participants also had the right to quit at any time, which reduced the number of participants

who completed the study.

The operation was carried by employing online forms that did not reject participants

without the basic selection requirements. This allowed 42 participants to complete the form,

however, 33 were selected after discarding the participants who lacked programming skills.

The list of selected participants are shown on Table 34. The participants were treated as
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Table 33 – Study Hypotheses (Diagram Matching)

Name Description Predicate

Diagram Negative Count Java is more precise for diagram
identification

CDM−CDJ < 0

Diagram Zero Count Languages are equivalent when identifying
diagrams

CDM−CDJ ≈ 0

Diagram Positive Count MOWSDL is more precise for diagram
identification

CDM−CDJ > 0

Diagram Negative Time Java takes more time for diagram
identification

T DM−T DJ < 0

Diagram Zero Time Languages are equivalent when identifying
diagrams

T DM−T DJ ≈ 0

Diagram Positive Time MOWSDL takes more time for diagram
identification

T DM−T DJ > 0

anonymous, the provided participant numbers are just for identifying them inside this chapter.

This table includes columns for the participant number (P), their occupation (Occupation),

programming experience in years (Exp.) and the training material language (Language) which is

available in English (en) and Brazilian Portuguese (pt-BR).

7.2.3.2 Preparation

The participants received training material as part of the preparation.

7.2.3.3 Instrumentation

The participants were required to read the training material, which included all tasks

with preceding examples. The examples illustrated how to identify classes, lists, relationships

and match diagrams for both languages.

The instruction page only included vague description on the study objectives, thus

avoiding the participants expectations from affecting the actual objective of the study.

In this manner, it was described that the study objective was simply to compare both

languages. The following sentences were also added to further divert from these expectations:

“We are not here to push them for adoption, we just want to identify whenever each kind is most

recommended for each activity.” “For the programming language, we are studying the Java

programming language. The declarative language is named MOWSDL. It was created to bridge

a semantic gap between programming languages and design languages.”

The training included examples of the artifacts to be used within the tasks. This included

the diagram in Figure 44, the Java code in Figure 45, and the MOWSDL code in Figure 46.

Huge warnings stating that “this is simply an example” were added since it was reported that
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Table 34 – Participant List and Profile

P Occupation Exp.(years) Language

1 Graduate Student 3 pt-BR
2 Graduate Student 6 pt-BR
3 Graduate Student 4 pt-BR
4 Graduate Student 5 en
5 Graduate Student 5 pt-BR
6 Graduate Student 2 pt-BR
7 Graduate Student 3 pt-BR
8 Graduate Student 10 pt-BR
9 Professional Developer & Systems Analyst 17 pt-BR
10 Undergraduate Student & Professional Developer & Systems

Analyst
4 pt-BR

11 Professional Developer & Systems Analyst 8 pt-BR
12 Professional Developer & Systems Analyst 8 en
13 Tester 4 pt-BR
14 Professor & Professional Developer & Systems Analyst 10 pt-BR
15 Professor 10 pt-BR
16 Software Support 6 pt-BR
17 Professor & Professional Developer 22 pt-BR
18 Software Support & Researcher 2 pt-BR
19 Professor 12 pt-BR
20 Professional Developer & Systems Analyst & Tester 20 pt-BR
21 Professional Developer & Systems Analyst & Software

Support & Researcher
5 en

22 Software Support & Researcher 4 pt-BR
23 Professor 20 pt-BR
24 Professor 10 pt-BR
25 Professor 10 pt-BR
26 Professor 30 pt-BR
27 Professor & Researcher 26 pt-BR
28 Professor & Researcher 10 pt-BR
29 Systems Analyst 8 pt-BR
30 Teacher & Systems Analyst 7 pt-BR
31 Graduate Student 13 pt-BR
32 Professor & Researcher 12 pt-BR
33 Professor 20 pt-BR

some participants during a pilot study tried to answer the example questions. Some of them

complained to the researchers that there were “non-functioning buttons”.

The instructions text included instructions on how to identify the classes, properties and

relationships. The relationships and properties had proper instructions on how to identify each

kind of multiplicity, i.e. [0..1] indicates 0 or 1; [1] indicates always 1; [1..*] indicates at least one

(or more); [0..*] indicates any natural number.
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Figure 44 – UML Example used in training introduction

C

g : long[0..1]

B

f : Date[0..1]

A

d : long[1]

e 0..1

i0..*

h

0..*

j0..*

Source: Created by the author

Following the diagram, a design report presenting the names and count of Classes,

Attributes (Properties), Compositions, References (Association links) and Generalizations (In-

heritance) was presented, as shown on Table 35.

Table 35 – Design report for class diagram used in training

Classes Attributes Compositions References Generalizations

3 { A, B, C } 3 { d, f, g } 2 { i, h } 2 { e, j } 1 { A B }

This is the most important knowledge required to answer the questions of the tasks, since

they are focused on identifying the (design) semantics of the languages. Therefore, language

constructs that are unrelated to the tasks (i.e., classes with attributes, lists and relationships) were

not required during the study and were omitted, since this study only focuses on visible and

common semantics.

All classes, properties and relationships had single letter names and were randomly gen-

erated. These artifacts were generated in triples (UML class diagram, Java code and MOWSDL

text model) to represent the same intended semantics to be identified by participants, however,

their declaration orders (i.e. the order which classes appear on page) were changed, which does

not impact the semantics.

Besides the randomness, they were fixed throughout all participants to avoid inserting

new variables. This change on order and simple letter names were used as planned to make it

harder to the participants to remember the previously used artifacts. Indeed, all participants to
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Figure 45 – Java Example used in training introduction

A.java

package model;

class Aextends B {

B d;

}

B.java

package model;

class B {

Date e;

List<C> f;

}

C.java

package model;

class C {

String g;

char h;

List<B> i;

List<B> j;

}

Source: Created by the author

whom the researchers could talk to after the study did not even identify that the tasks had paired

artifacts.

Besides the description of this instrumentation, the verbatim copy of the questions as

well as the correct answers are provided as part of Appendix D. After concluding the experiment,

it is not open for more participants, yet, the survey address is still provided for historical purposes

(“Declarative Language Study” link is available on the referred page1).

The first three tasks were focused on counting elements from the text languages. As the

first task was focused on class counting, it involved four Java artifacts paired with four MOWSDL

artifacts, however, they were shown in random order to the participants to avoid learning that

they would result into the same answer.

The simplest possible design that includes a class, a property and a relationship is

provided as part of the training. This same design is illustrated in Figure 47 for UML class

1 http://limesurvey.labes.icmc.usp.br
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Figure 46 – MOWSDL Example used for training introduction

model.mowsdl

metamodel model( "http://example.com/model" ,"model.xsd","model.ecore" ) {

class Aextends B {

attribute d: long[ 1];

reference e: C[ 0..1];

}

class B {

attribute f: Date[ 0..1];

}

class C {

attribute g: long[ 0..1];

composition h: B[ 0..*];

composition i: A[ 0..*];

reference j: C[ 0..*];

}

}

Source: Created by the author

diagram, Figure 48 for Java code and Figure 49 for MOWSDL text. The first page of training

examples includes these artifacts. It is important to observe that the highlight was shown on the

figures only for the training, i.e., the actual artifacts used for the tasks did not include them. Also,

all tasks had more complex class structures, ranging from 2 to 9 possible counts. The possible

answer was a single decimal number to be entered, as shown in Figure 50. Null answers were

treated as incorrect.

Figure 47 – Simple UML Example used in training

A
b0..*

Source: Created by the author

Similarly to the class counting task, the second study was carried to measure how the

participants could identify lists. This task followed a similar instrumentation of the previous

task, including the number of artifacts. It included a new set of artifacts generated specifically
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Figure 48 – Simple Java Example used for Class Counting

A.java

package model;

class A {

List<A> b;

}

This is simply an Example.

Answer: How many classes have been declared?

Source: Created by the author

Figure 49 – Simple MOWSDL Example used for Class Counting

model.mowsdl

metamodel model( "http://example.com/model" ,"model.xsd","model.ecore" ) {

class A {

composition b: A[ 0..*];

}

}

This is simply an Example.

Answer: How many classes have been declared?

Source: Created by the author

for the task. The major difference is that this task is focused on identifying lists. In the case of

Java code, the participants had to identify the “List” (a Java Interface) usage on code. In the

case of MOWSDL, the participants had to search for [0..*] and [1..*] multiplicities. The training

examples for Java and MOWSDL artifacts are provided in Figure 51 and Figure 52, respectively,

but the actual study artifacts had more lists to be identified. The possible answer was a single

decimal number to be entered as shown in Figure 50.

The third task was the last one involving counting. Similar to the previous tasks, it

had a specifically generated set of artifacts provided in the same number. In this task, the

participants had to identify the relationships that referred to a class type. In the case of Java,

they had to identify the type name and find it among the classes. In the case of MOWSDL, the

participants could either verify the type name or simply search for the usage of the reserved

words “reference” and “composition”. The training examples for Java and MOWSDL artifacts

are also provided herein as Figure 53 and Figure 54, respectively, but the actual study artifacts
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Figure 50 – Buttons for Decimal Digit Answers

This is simply an Example.

1

4

7

10

2

5

8

0

3

6

9

Try to answer as fast as you can!

If you cannot find the solution, you may skip the question.

!

Source: Created by the author

Figure 51 – Simple Java Example used for List Counting

A.java

package model;

class A {

List<A> b;

}

This is simply an Example.

Answer: How many lists have been declared?

Source: Created by the author

had more relationships to be identified. The possible answer was a single decimal number to be

entered, as shown in Figure 50.

The last task involved comparing a Java or MOWSDL artifact against a UML class

diagram. The participants were provided a single MOWSDL or Java artifact and a list of three

UML diagrams. They were asked to select the matching diagram from the list. The artifacts

for this task were specifically generated by using the same class names, which makes the task

more challenging, since the participants would need to verify all the properties and relationships

instead of simply disregarding a diagram with different class names.

The training examples for Java and MOWSDL artifacts are also provided herein as

Figure 55 and Figure 56, respectively. There is also the simple example of a UML class diagram

shown in Figure 47. The actual study artifacts had three different diagrams per question with
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Figure 52 – Simple MOWSDL Example used for List Counting

model.mowsdl

metamodel model( "http://example.com/model" ,"model.xsd","model.ecore" ) {

class A {

composition b: A[ 0..*];

}

}

This is simply an Example.

Answer: How many lists have been declared?

Source: Created by the author

Figure 53 – Simple Java Example used for Relationship Counting

A.java

package model;

class A {

List<A> b;

A c;

int d;

}

This is simply an Example.

Answer: How many relationships have been declared?

Source: Created by the author

more classes and relationships.

At the end of each task, the participants were also asked their opinion by using five

ordinals, from first to fifth namely: (A1) “Java was Much Better”, (A2) “Java was a Bit Better”,

(A3) “Seem equivalent”, (A4) “MOWSDL was a Bit Better”, (A5) “MOWSDL was Much

Better”.

After these tasks, the participants were invited to provide qualitative feedback on the

survey, which is further discussed in Subsection 7.2.6.

7.2.3.4 Execution

Initially, the participants had to accept a consent form and then answered a profile charac-

terization form. The characterization form had questions regarding knowledge on programming,
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Figure 54 – Simple MOWSDL Example used for Relationship Counting

model.mowsdl

metamodel model( "http://example.com/model" ,"model.xsd","model.ecore" ) {

class A {

composition b: A[ 0..*];

reference c: A[ 0..1];

attribute d: int[ 1];

}

}

This is simply an Example.

Answer: How many relationships have been declared ?

Source: Created by the author

Figure 55 – Simple Java Example used for Diagram Matching

A.java

package model;

class A {

List<A> b;

}

This is simply an Example.

Answer: Which UML diagram matches the code declarations?

Source: Created by the author

UML diagrams and database development.

After concluding the profile characterization, the participants were led to a general

instruction for the training. Afterwards, each task had their specific training session shown to the

participant.

Each task was carried in sequence, however, the order of the sub-tasks were random,

including the treatment type. This means that the participants knew which was the task yet were

oblivious about which language (Java or MOWSDL) would be used for the next sub-task.

7.2.3.5 Data Validation

The forms filled by the participants have been programmed to restrict the input data to

acceptable values, e.g. number inputs required valid number inputs and range.
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Figure 56 – Simple MOWSDL Example used for Diagram Matching

model.mowsdl

metamodel model( "http://example.com/model" ,"model.xsd","model.ecore" ) {

class A {

composition b: A[ 0..*];

}

}

This is simply an Example.

Answer: Which UML diagram matches the code declarations?

Source: Created by the author

Besides the data type validation, characterization and feedback forms allowed the re-

searchers to cross-examine the answers in order to find contradictions, which would indicate

invalid answers.

7.2.3.6 Data Collection

Since the study was performed via online forms, the data was captured on each page

submit. This included their answers for characterization and tasks, as well as the timings required

to submit each page. The study also included a qualitative feedback form, which is not used for

the quantitative analyses.

7.2.4 Data

The purpose of this subsection is to present the raw data collected from the study

executions. The data was collected from the survey system employed for this study2. Afterwards,

this data was stored on a relational database and exported to spreadsheet and statistical analysis

tools.

As the purpose of this section is to present the data without any assumption, Table 36

contains the raw data used for the analysis. This table has ten columns and specifies the answers

provided by each identified participant (column P). As this task is divided into four sub-tasks, J1

lists the correctness result for the first task using Java while M1 has the result for MOWSDL

instead. The correctness values are treated as Boolean variables where 0 represents incorrect and

1 represents correct. The same rule is applied to the next columns, J for Java, M for MOWSDL

followed by the sub-task number. The participants completed these sub-tasks in random order,

therefore it is not identified which was performed first. This table also includes the final opinion

2 Limesurvey setup at http://limesurvey.labes.icmc.usp.br
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answers by the participants for the task outcome (column O). The possible answers are the

ordinals A1 to A5 explained in Section 7.3.3.

The last two rows contain aggregates for the raw data. C/T states for Correct/Total

(counts). “≈ %” stands for approximate percent for the Correct/Total ratio.

7.2.4.1 Class Identification

Table 36 – Class Counting Answers Data

Task correctness (boolean)
P J1 M1 J2 M2 J3 M3 J4 M4 O

1 1 1 1 1 1 1 1 1 A3
2 1 1 1 1 1 1 1 1 A3
3 1 1 1 1 1 1 1 1 A4
4 1 1 1 1 1 1 1 1 A3
5 1 1 1 1 1 1 1 1 A3
6 1 1 1 1 1 1 1 1 A3
7 1 1 1 1 1 1 1 1 A3
8 1 1 1 1 1 1 1 1 A3
9 1 1 1 1 1 1 1 1 A3

10 1 0 1 1 1 1 1 1 A2
11 1 1 1 1 0 1 1 1 A3
12 1 1 1 0 1 0 1 1 A3
13 1 1 1 1 1 1 1 1 A3
14 1 1 1 1 1 1 1 1 A1
15 1 1 1 1 1 1 1 1 A3
16 1 1 1 1 0 1 1 1 A3
17 1 1 1 1 1 1 1 1 A3
18 1 1 1 0 1 1 1 1 A3
19 1 1 1 1 1 1 1 1 A3
20 1 1 1 1 1 1 1 1 A1
21 1 1 1 1 1 1 1 1 A3
22 1 1 1 1 1 0 1 1 A3
23 1 1 1 1 1 1 1 1 A4
24 1 1 1 1 1 1 1 1 A3
25 1 1 1 1 1 1 1 1 A3
26 1 1 1 1 1 1 0 1 A4
27 1 1 1 1 1 1 1 1 A3
28 1 1 1 1 1 1 1 1 A3
29 1 1 1 1 1 1 1 1 A3
30 1 1 1 1 1 1 1 1 A3
31 1 1 1 1 1 1 1 1 A3
32 1 1 1 1 1 1 1 1 A3
33 1 1 1 1 1 1 1 1 A3

C/T 33/33 32/33 33/33 31/33 31/33 31/33 32/33 33/33 –
≈ % 100.00% 96.97% 100% 93.94% 93.94% 93.94% 96.97% 100% –
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Table 37 contains the raw data for the timings recorded for the participants. It indicates

the number of seconds required to complete each sub-task. The presentation of the columns is

similar to the correctness: P for participant, J for Java, M for MOWSDL. The number suffix

indicate the sub-task number. The final three rows are aggregates for the numbers, “Sum” lists

the sum for the whole column, Avg. shows the average for the columns while Med. shows the

median for the column.

Figure 57 – Plot for Class Counting Task Time
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Source: Created by the author

The timings data is also provided as a plot in Figure 57. The bar sizes represent the

allotted time in seconds. they are also stacked to represent the total time each participant took to

complete the task. All colors/shades that appear on the plots are vertically ordered to ease their

comprehension.

7.2.4.2 List Identification

Answers provided by the participants while taking the list identification task are presented

on Table 38. This table contains ten columns and is structured similarly to the previous tables.

As this task is divided into four sub-tasks, J1 presents the correctness result for the first task

using Java while M1 has the result for MOWSDL instead. The correctness values are treated

as Boolean variables where 0 represents incorrect and 1 represents correct. The same rule is
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Table 37 – Class Counting Task Time

Task Elapsed Time (seconds)
P J1 M1 J2 M2 J3 M3 J4 M4

1 10.55 33.61 14.78 19.42 56.08 32.85 21.14 27.8
2 43.25 24.66 15.35 21.48 22.55 27.13 18.93 15.95
3 15.98 11.42 14.28 22.44 30.25 18.14 16.77 14.46
4 16.29 8.99 18.05 10.5 13.74 51.24 20.76 28.78
5 12.04 13.12 16.71 32.48 32.42 17.97 12.74 26.74
6 11.22 12.71 11.59 15.97 28.51 28.28 13.19 17.44
7 19.91 15.91 18.39 21.57 23.36 20.86 22.27 20.12
8 25.38 28.29 14.25 15.31 13.46 24.61 75.31 20.85
9 16.39 52.98 27.53 13.18 29.07 15.66 25.74 17.89

10 7.69 11.98 14.36 10.85 16.07 24 30.36 13.14
11 9.92 11.85 28.32 14.24 69.47 18.03 24.54 10.86
12 25.31 27.3 17.8 37.1 79.51 252.86 36.69 42.86
13 13.64 14.1 17.79 11.44 15.21 20.08 14.9 14.65
14 16.79 22.08 14.77 19.78 55.58 26.01 22.36 27.17
15 20.59 23.99 11.23 20.98 15.89 14.2 12.28 21.28
16 38.47 19.7 12.92 8.35 63.81 7.41 49.64 12.49
17 14.63 13.25 18.53 18.29 18.45 20.29 16.55 14.59
18 9.04 8.61 10.3 11.6 8.65 17.89 9.52 8.05
19 16.38 11.2 21.63 15.65 35.87 14.45 13.67 14.78
20 8.83 13.63 18.49 12.2 15.27 13.89 14.2 12.8
21 13.29 17.79 39.49 11.1 20.51 18.17 18.72 23.69
22 21.81 37.71 26.26 15.23 18.14 14.66 17.13 20.47
23 14.53 25.71 15.77 12.74 18.23 13.62 14.67 12.85
24 9.11 8.3 16.19 14.5 9.18 11.76 8.77 11.19
25 10.53 8.13 13.31 9.93 14.29 14.18 11.99 13.61
26 13.45 17.02 14.98 14.31 65.23 14.36 41.41 16.09
27 16.03 9.7 14.79 13.55 14.1 19.58 14.1 10.16
28 11.84 10.53 22.22 10.6 11.54 22.42 13.13 16.04
29 16.26 10.28 11.02 14.15 14.04 12.87 13.55 20.03
30 34.22 10.69 10.18 27.28 19.33 16.87 25.88 20.7
31 14.17 10.13 17.15 19.83 12.06 18.94 22.01 9.92
32 16.47 7.24 13.04 10.65 11.63 13.83 16.66 9.13
33 9.47 12.9 10.01 17.83 10.29 9.55 20.32 12.95

Sum 553.480 565.510 561.480 544.530 881.790 866.660 709.900 579.530
Avg. 16.772 17.137 17.015 16.501 26.721 26.262 21.512 17.562
Med. 14.630 13.120 15.350 14.500 18.230 18.030 17.130 15.950

applied to the next columns, J for Java, M for MOWSDL followed by the sub-task number. The

participants completed these sub-tasks in random order, therefore it is not identified which was

performed first. This table also includes the final opinion answers by the participants for the task

outcome (column O). Once again, the last two rows contain aggregates for the raw data.

Table 39 contains the raw timings for the list identification task (number of seconds



7.2. Data Structure Verification Experiment 167

Table 38 – List Counting Answers Data

Task correctness (boolean)
Partici-

pant
J1 M1 J2 M2 J3 M3 J4 M4 Opin-

ion

1 1 0 1 0 1 0 1 0 A2
2 1 0 1 0 1 0 1 0 A3
3 0 1 0 0 0 0 0 0 A2
4 1 0 1 0 1 0 1 0 A3
5 1 1 1 1 1 1 1 1 A3
6 1 0 1 0 1 0 1 0 A1
7 1 1 1 1 1 0 1 0 A3
8 1 1 1 1 1 1 1 1 A2
9 1 0 1 0 1 0 1 0 A3

10 1 0 1 0 1 1 1 0 A1
11 1 0 1 0 1 1 1 0 A2
12 1 1 1 1 1 1 1 1 A3
13 1 1 1 0 1 1 1 1 A1
14 1 1 1 0 1 0 1 0 A1
15 1 0 1 0 1 1 1 0 A2
16 1 1 1 1 1 0 1 0 A3
17 1 1 1 1 1 1 1 1 A2
18 1 0 0 0 1 0 1 0 A2
19 1 1 1 1 1 1 1 1 A2
20 1 0 1 0 1 0 1 0 A3
21 1 0 1 0 1 0 1 0 A1
22 1 1 1 1 1 1 1 1 A2
23 1 1 1 1 1 1 1 1 A2
24 1 0 1 0 1 0 1 0 A2
25 1 0 1 0 1 1 1 0 A2
26 1 0 1 1 1 0 1 0 A3
27 1 0 1 1 1 1 1 1 A2
28 1 1 1 1 1 1 1 1 A2
29 1 0 1 0 1 0 1 0 A3
30 1 0 1 0 1 0 1 0 A3
31 1 1 1 0 1 1 1 1 A3
32 1 0 1 0 1 1 1 0 A3
33 1 1 1 1 1 1 1 1 A3

C/T 32/33 15/33 31/33 13/33 32/33 17/33 32/33 12/33 –
≈ % 96.97% 45.45% 93.94% 39.39% 96.97% 51.52% 96.97% 36.36% –

required to complete each sub-task).

In the same sense, the timings data is also provided as a plot in Figure 58. The bar sizes

represent the allotted time in seconds and are stacked to represent the total time each participant

took to complete the task. All colors/shades that appear on the plots are vertically ordered to ease

their comprehension.
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Table 39 – List Counting Task Time

Task Elapsed Time (seconds)
P J1 M1 J2 M2 J3 M3 J4 M4

1 8.89 16.15 10.83 104.56 14.40 53.06 7.96 103.88
2 8.11 6.56 8.74 8.16 7.62 14.16 7.19 7.55
3 17.66 49.83 26.86 84.23 31.55 31.36 11.87 12.19
4 7.01 9.58 8.31 7.20 6.33 9.46 5.66 4.40
5 20.77 14.21 7.91 8.08 12.26 16.70 14.26 8.46
6 19.09 33.47 8.76 16.70 20.06 29.32 12.98 23.86
7 17.66 53.76 41.70 31.95 36.03 75.04 37.98 12.94
8 11.42 8.53 10.05 12.07 8.91 18.95 15.77 10.30
9 10.00 12.79 9.17 18.07 10.35 18.74 9.24 20.59

10 7.63 12.09 8.61 7.47 11.30 8.51 6.98 7.48
11 10.34 12.11 10.57 10.48 11.67 13.64 8.85 15.01
12 18.41 27.50 12.59 14.29 25.46 13.26 12.58 11.30
13 14.62 11.49 8.85 9.29 10.01 11.06 9.07 7.66
14 12.11 33.22 15.80 10.89 12.93 12.50 19.93 12.28
15 13.31 17.20 10.74 10.36 16.53 10.36 15.63 7.81
16 6.22 6.36 6.34 10.74 12.38 8.23 7.52 13.12
17 13.80 15.52 16.66 13.07 15.59 31.88 10.96 19.56
18 8.70 9.28 8.77 30.29 9.23 8.08 6.43 7.06
19 8.67 11.16 11.42 8.89 8.34 19.81 11.79 9.16
20 8.92 10.91 8.38 9.42 7.88 13.28 7.51 8.39
21 23.38 18.27 13.58 17.55 18.74 34.30 11.79 13.82
22 17.38 38.23 35.25 13.42 45.38 15.81 12.25 10.71
23 11.29 15.05 10.45 9.42 12.12 10.82 61.25 10.79
24 9.29 8.66 7.59 11.08 9.96 23.45 8.70 9.81
25 13.85 22.66 9.20 7.80 13.31 9.38 9.26 9.63
26 9.91 12.35 10.04 19.12 11.00 12.09 9.83 18.99
27 9.11 14.16 16.32 13.79 7.43 10.07 6.45 15.00
28 9.28 9.83 8.57 11.48 10.41 23.02 10.99 8.94
29 12.03 10.43 10.60 11.54 9.73 11.79 10.19 10.44
30 9.82 13.31 20.71 25.71 8.70 12.46 7.49 8.86
31 13.56 12.47 7.44 14.16 8.16 9.10 9.51 14.71
32 8.58 8.69 9.01 7.40 6.94 7.14 9.37 8.01
33 10.90 13.14 7.88 8.79 8.58 11.09 9.66 7.04

Sum 401.720 568.970 417.700 597.470 459.290 607.920 416.900 469.750
Avg. 12.173 17.242 12.658 18.105 13.918 18.422 12.633 14.235
Med. 10.900 12.790 10.040 11.480 11.000 13.260 9.660 10.440

7.2.4.3 Relationship Identification

Table 40 provides the data regarding the relationship identification task. This table is

structured similarly to the previous tables. The participants completed these sub-tasks in random

order, therefore it is not identified which was performed first. This table also includes the final

opinion answers by the participants for the task outcome (column O).
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Figure 58 – Plot for List Counting Task Time
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7.2.4.4 Relationship Identification

Table 41 contains the raw data for the timings recorded for the participants while

answering the relationship identification task.

The plot for the the timings data is provided in Figure 59. The bar sizes represent the

elapsed time in seconds and are stacked to represent the total time each participant took to

complete the task.

The correctness results from the diagram matching task are presented on Table 42.

Similarly to the other tasks, the participants completed these sub-tasks in random order, therefore

it is not identified which was performed first. This table also includes the final opinion answers

by the participants for the task outcome (column O).

7.2.4.5 Diagram Matching

Table 43 contains the raw data for the timings recorded during the diagram matching

task (number of seconds required to complete each sub-task). Similarly to all provided plots,

their colors/shades are vertically ordered to ease their comprehension.

The plot for the the diagram matching timings data is provided in Figure 60. The bar sizes
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Table 40 – Relationship Counting Answers Data

Task correctness (boolean)
P J1 M1 J2 M2 J3 M3 J4 M4 O

1 0 0 0 1 0 1 1 1 A5
2 1 1 0 1 1 1 1 1 A3
3 1 1 1 1 1 1 1 1 A3
4 0 1 0 1 1 1 1 1 A4
5 0 0 0 1 0 0 0 1 A2
6 0 1 0 0 0 1 1 1 A3
7 1 1 1 1 1 1 1 1 A4
8 0 0 0 0 0 0 0 0 A2
9 0 0 0 0 0 0 0 0 A4

10 0 0 0 0 0 0 0 0 A1
11 1 1 1 1 1 1 0 1 A3
12 1 1 1 1 1 1 1 1 A3
13 1 1 1 1 1 1 1 1 A4
14 0 1 0 1 0 1 0 1 A3
15 0 0 0 0 0 0 1 1 A4
16 0 0 0 0 0 0 1 0 A4
17 0 1 0 1 1 1 1 1 A2
18 1 1 1 0 1 0 1 0 A2
19 1 0 1 1 1 1 1 1 A4
20 0 0 0 0 0 0 0 0 A3
21 0 1 0 1 1 1 1 1 A3
22 0 1 0 1 0 1 0 1 A4
23 1 1 1 1 1 1 1 1 A4
24 1 1 1 1 1 1 1 1 A3
25 0 0 0 0 0 0 0 0 A2
26 1 1 1 1 1 1 1 1 A3
27 1 1 0 1 1 1 1 1 A4
28 1 1 0 1 1 1 1 1 A3
29 1 1 1 1 1 1 0 1 A3
30 1 1 1 1 1 1 1 1 A3
31 1 1 1 1 1 1 1 1 A2
32 1 1 1 1 1 1 1 1 A3
33 1 1 1 1 1 1 1 1 A3

C/T 18/33 23/33 15/33 24/33 21/33 24/33 23/33 26/33 –
≈ % 54.55% 69.70% 45.45% 72.73% 63.64% 72.73% 69.70% 78.79% –

represent the time in seconds and are stacked to represent the total time each participant took to

complete the task. The plot colors/shades are also vertically ordered to ease its comprehension.
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Table 41 – Relationship Counting Task Time

Task Elapsed Time (seconds)
P J1 M1 J2 M2 J3 M3 J4 M4

1 7.74 13.84 11.19 10.07 19.33 10.01 11.22 5.76
2 8.92 12.11 11.15 7.27 8.65 9.92 14.90 7.85
3 9.52 11.44 12.28 12.01 14.63 10.63 7.35 8.34
4 7.55 10.39 11.22 9.27 16.22 6.33 6.15 7.02
5 16.03 27.55 18.23 23.59 14.42 29.67 45.91 70.09
6 15.12 14.83 21.23 25.84 15.43 15.12 27.82 25.53
7 32.69 14.27 22.18 24.49 14.44 18.89 19.43 26.21
8 27.28 28.64 12.81 32.16 31.46 19.46 27.41 40.67
9 15.16 9.32 10.37 8.67 10.38 9.73 21.16 10.28

10 162.30 8.37 11.00 3.24 12.69 3.67 18.66 6.10
11 11.33 13.77 12.67 9.06 13.59 10.02 8.35 12.43
12 32.75 16.90 21.97 27.50 22.42 19.36 18.37 26.50
13 15.55 10.29 10.14 20.38 8.13 11.48 9.11 13.37
14 16.29 11.98 15.51 11.57 13.69 10.33 28.37 9.08
15 27.62 35.29 13.27 31.83 22.77 19.42 10.07 10.76
16 8.22 5.44 17.54 5.37 5.93 18.29 11.08 8.66
17 18.49 24.22 46.20 30.43 19.29 20.39 21.24 30.86
18 7.60 13.50 10.63 7.89 8.75 11.56 7.77 15.36
19 11.79 12.65 11.20 17.01 31.24 12.86 12.52 10.24
20 17.42 11.34 12.20 19.59 13.24 18.64 10.94 8.21
21 20.29 10.22 15.51 35.22 33.53 15.53 13.56 14.27
22 37.16 23.11 87.68 63.83 21.78 46.18 22.10 12.05
23 17.71 17.29 17.18 10.35 18.43 10.92 12.22 10.74
24 11.35 6.43 7.17 22.67 8.43 9.11 7.35 6.01
25 17.18 4.31 34.46 6.92 12.40 25.79 10.14 12.03
26 44.58 31.66 13.66 16.24 18.91 11.25 10.85 16.36
27 8.87 11.13 19.45 8.42 6.85 10.43 21.87 7.81
28 23.78 29.31 12.72 17.41 15.36 15.47 12.02 10.61
29 14.45 14.29 12.67 11.55 10.93 9.81 13.63 14.15
30 11.34 16.13 10.12 12.01 10.54 14.40 6.90 10.26
31 13.24 10.71 17.96 14.41 14.17 10.14 8.51 8.07
32 12.09 24.78 12.39 15.23 10.66 20.10 7.14 11.11
33 7.76 6.56 13.35 10.17 9.03 12.30 8.36 7.97

Sum 709.170 512.070 587.310 581.670 507.720 497.210 492.480 494.760
Avg. 21.490 15.517 17.797 17.626 15.385 15.067 14.924 14.993
Med. 15.160 13.500 12.810 14.410 14.170 12.300 12.020 10.740

7.2.5 Results

The results of analysis and hypotheses testing considering the quantitative data gathered

for this study are presented in this section.
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Figure 59 – Plot for Relationship Counting Task Time
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7.2.5.1 Class Identification

The first results consider the data from the class identification task. The input data for

this test are the correct and incorrect answers (presented as ones and zeros, respectively). The

hypotheses were statistically tested by using two paired tests: Sign Test and Exact Wilcoxon

Ranked Sign Test. The calculated values are presented on Table 44. The considered null hypothe-

sis is the “Zero Count” while the considered alternate Hypothesis is the “Negative Count”. The

negative count is the alternate hypothesis since the sum of correct results for Java is greater than

for MOWSDL. The test results indicate that the probability of the Null hypothesis being true is

over 70%. Therefore, it is highly likely that the languages are equivalent for this task, however, it

is not possible to reject any hypothesis.

Table 45 contains the hypothesis testing results for the class identification timings. Since

the estimated mean is negative, the alternate hypothesis is “Negative Time”, which would imply

that Java takes longer for this task. As usual, the null hypothesis is the zero difference, i.e. “Zero

Time”. The calculations for this test applied the paired t-test. The test results suggest that the

probability for the null hypothesis is also high, as the previous comparison for class identification.

The participants answered an opinion form after the task. As shown on Table 46, over

80% believe that the languages were equivalent for the task.
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Table 42 – Diagram Matching Counting Answers Data

Task correctness (boolean)
P J1 M1 J2 M2 J3 M3 J4 M4 O

1 1 1 1 1 1 1 1 1 A5
2 1 0 1 1 1 1 1 1 A3
3 1 1 1 1 1 1 1 1 A4
4 1 0 1 1 1 1 1 1 A2
5 1 1 1 1 1 1 1 1 A2
6 0 0 0 1 1 0 1 1 A3
7 1 1 1 1 1 1 1 1 A3
8 1 1 1 1 1 1 1 1 A3
9 1 0 0 1 1 0 1 1 A4

10 0 0 1 0 0 0 1 0 A1
11 1 1 1 1 1 1 1 1 A3
12 0 1 1 0 0 1 1 0 A5
13 1 1 1 1 1 0 1 1 A2
14 0 0 0 0 0 0 0 0 A3
15 0 1 1 0 0 1 0 0 A4
16 0 0 0 1 1 0 0 1 A3
17 0 0 0 0 0 0 0 0 A3
18 1 0 1 1 1 1 1 1 A3
19 1 1 1 1 1 1 1 1 A4
20 0 0 1 1 0 1 1 1 A4
21 1 1 1 1 1 1 1 1 A5
22 0 1 1 1 1 1 1 1 A5
23 1 1 1 1 1 1 1 1 A3
24 1 1 1 1 0 1 1 1 A3
25 1 1 1 1 1 1 1 1 A3
26 1 1 1 1 1 1 1 1 A4
27 1 1 1 1 1 1 1 1 A4
28 1 1 1 1 1 1 1 1 A3
29 1 1 0 0 1 1 1 0 A3
30 1 1 1 1 1 1 1 1 A3
31 1 1 1 1 1 1 1 1 A3
32 1 1 1 1 1 1 1 1 A3
33 1 1 1 1 1 1 1 1 A3

C/T 24/33 23/33 27/33 27/33 26/33 26/33 29/33 27/33 –
≈ % 72.73% 69.70% 81.82% 81.82% 78.79% 78.79% 87.88% 81.82% –

7.2.5.2 List Identification

Table 47 contains the statistical testing results for the list identification task. It compares

the correct and incorrect answers. The alternate hypothesis is the negative count, since the correct

answers for the Java artifacts were higher. According to both statistical tests presented herein,

(namely, Sign Test and Exact Wilcoxon Ranked Sign Test) it is clear that the probability of the
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Table 43 – Diagram Matching Counting Task Time

Task Elapsed Time (seconds)
P J1 M1 J2 M2 J3 M3 J4 M4

1 17.65 14.92 84.72 40.05 53.00 63.41 35.49 27.08
2 23.84 27.65 40.26 74.84 35.77 32.04 66.51 54.02
3 185.69 109.07 66.11 39.06 68.27 52.72 39.60 28.29
4 65.95 13.36 19.63 7.46 9.63 8.49 11.67 41.83
5 63.07 80.62 105.97 62.95 63.82 52.10 84.03 97.17
6 34.95 101.26 54.78 55.44 30.10 58.27 38.16 81.35
7 104.82 39.93 43.24 52.12 27.36 56.50 51.60 38.31
8 131.49 163.60 190.82 114.62 109.26 160.43 211.21 170.15
9 118.80 121.75 40.98 64.19 28.41 27.06 35.15 18.53

10 39.42 3.80 10.42 3.75 34.94 4.43 4.05 6.18
11 58.73 41.90 30.96 47.33 25.99 24.06 143.28 20.92
12 8.15 82.23 148.34 4.72 8.13 92.04 155.70 4.82
13 28.41 34.00 22.22 60.98 29.45 48.07 21.96 49.08
14 4.54 4.12 3.37 3.63 7.44 5.28 3.87 3.83
15 48.91 44.42 18.66 35.95 50.71 20.26 21.12 33.12
16 27.01 25.84 4.16 24.24 33.19 44.54 38.90 20.11
17 70.08 38.74 11.15 7.56 20.69 75.30 8.50 6.79
18 62.22 51.49 34.95 70.42 36.31 99.36 74.34 63.45
19 23.46 50.62 88.15 23.32 27.86 20.35 20.81 24.46
20 59.71 153.93 113.88 61.14 96.78 130.63 146.33 99.77
21 115.25 144.20 187.39 107.43 94.20 105.21 178.64 84.42
22 221.69 337.11 134.21 95.68 64.19 234.35 106.23 93.45
23 65.64 90.52 69.74 45.91 128.12 50.10 65.36 78.97
24 20.54 32.66 36.01 109.02 20.06 32.29 21.01 16.84
25 54.36 47.63 35.60 83.64 83.26 90.27 84.79 55.20
26 59.38 70.22 35.83 30.28 22.93 68.33 14.22 92.10
27 30.36 77.07 32.25 29.18 24.06 27.32 40.54 41.56
28 55.55 34.23 37.61 53.19 43.75 80.82 46.33 110.94
29 53.36 8.73 11.18 7.72 7.07 37.87 9.97 10.00
30 36.55 44.41 29.19 21.49 22.58 77.33 27.16 42.58
31 21.36 53.80 72.07 27.86 28.20 55.07 37.01 45.60
32 42.87 41.17 30.39 31.89 51.05 34.88 42.67 27.73
33 32.11 26.17 18.61 48.16 24.78 33.36 23.50 32.20

Sum 1985.920 2211.170 1862.850 1545.220 1411.360 2002.540 1909.710 1620.850
Avg. 60.179 67.005 56.450 46.825 42.768 60.683 57.870 49.117
Med. 53.360 44.420 36.010 45.910 30.100 52.100 38.900 41.560

null hypothesis being valid is very low, favoring Java in this comparison.

Table 48 contains the statistical testing results for the timings required to complete the

list identification task. The alternate hypothesis is the positive time, since the time required for

the MOWSDL version was higher. The result for the paired t-test suggest a low probability for

the null hypothesis, favoring Java in this study.
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Figure 60 – Plot for Diagram Matching Task Time
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The opinion of the participants after completing this task is presented on Table 49, where

19 out of 33 believe that Java was indeed better.

7.2.5.3 Relationship Identification

Table 50 lists the results for the statistical testing used to verify the hypothesis for the

relationship identification task. The “Positive Count” is the alternate hypothesis, since the correct

rate for the MOWSDL version was higher. Both presented statistical tests (namely, Sign Test

and Exact Wilcoxon Ranked Sign Test) returned a very low probability for the null hypothesis,

which suggests that MOWDL indeed outperformed Java in this comparison.

Table 51 contains the paired t-test results for the timings required to complete the

relationship identification task. The alternate hypothesis is the negative time, since Java version

took longer to complete in average. Despite this result favoring MOWSDL, the probability for

the null hypothesis is not as low, which does not allow hypothesis rejection.

The results for the opinions answered by the participants for the relationship identification

task are shown on Table 52. This table provides a scattered opinion frequency unlike previous

answers. 15 out of 33 of the participants indicated that the languages are equivalent. 11 out of 33

of the participants favored MOWSDL while 7 out of 33 of the participants prefer Java for this

task.
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Table 44 – Hypotheses Testing for Class Task Correct Answers

Property Value

Null Hypothesis Zero Count;
Alternate Hypothesis Negative Count

Variables and Difference
Expression

CCM - CCJ;

Test type Sign Test;
Medians 1;1;

N 8;
Test Statistic 3;

p-value 0.7265625;
confidence percent 95%;

Test type Exact Wilcoxon Ranked Sign
Test;

Test Statistic 13.5;
p-value 0.7265625;

confidence percent 95%;
confidence interval -1 to 1;

difference in location -0.5;

Table 45 – Hypotheses Testing for Class Task Timing

Property Value

Null Hypothesis Zero Time;
Alternate Hypothesis Negative Time

Variables and Difference Expression TCM - TCJ;
Test type Paired T-Test;

Estimated Mean -1.139545;
Degrees of Freedom 131;

t-value -0.6329999;
p-value 0.5278371;

confidence percent 99%;
confidence interval -5.845131 to 3.56604;

7.2.5.4 Diagram Matching

Table 53 contains the hypothesis testing considering the correct/incorrect answers of the

diagram matching task. The alternate hypothesis is the “Negative Count” since the Java version

had a slightly better correct count. The probability for the null hypothesis is extremely high for

this study, which could indicate that the languages are equivalent.

When we consider the timings for the task, the time for identifying the diagram for the

MOWSDL version took slightly longer than Java. Therefore, the alternate hypothesis considered

for the statistical testing shown on Table 54 considers the “Positive Time”. Following the same

conclusion as the previous test, the probability for the null hypothesis is also extremely high,
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Table 46 – Class Task Opinion Frequency Distribution

Answer Code Answer Text Frequency Percent

A1 Java is Much Better 2 06.06%
A2 Java is a Bit Better 1 03.03%
A3 Seem Equivalent 27 81.82%
A4 MOWSDL is a Bit Better 3 09.09%
A5 MOWSDL is Much Better 0 00.00%

Total 33 100.00%

Table 47 – Hypotheses Testing for List Task Correct Answers

Property Value

Null Hypothesis Zero Count;
Alternate Hypothesis Negative Count

Variables and
Difference Expression

CLM - CLJ;

Test type Sign Test;
Medians 0;1;

N 72;
Test Statistic 1;

p-value 3.091670257478174·10−20;
confidence percent 95%;

Test type Wilcoxon Ranked Sign Test with
Continuity Correction;

Test Statistic 36.5;
p-value 1.633055·10−16;

confidence percent not applicable;
confidence interval not attainable;

difference in location not attainable;

which favors the equivalent hypothesis (“Zero Time”).

The opinion answers for the diagram matching task is provided on Table 55. Despite the

Java version attaining a better result for the correct answers, only 4 out of 33 of the participants

voted Java as a better option. Most participants think they are equivalent, however, 11 votes for

MOWSDL as better option repeats the result for the relationship counting.

7.2.6 Discussion

The purpose of this subsection is to discuss the experiment presented in this section. This

experiment was planned to verify if developers could use the MOWSDL language, which was

created to assist programmers while defining metamodels, with the intent of empowering them

to create software to handle models, e.g. MOSS/MOWS.

MOWSDL was never published or made public prior to the experiment, which implies
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Table 48 – Hypotheses Testing for List Task Timing

Property Value

Null Hypothesis Zero Time;
Alternate Hypothesis Positive Time

Variables and Difference Expression TLM - TLJ;
Test type Paired T-Test;

Estimated Mean 4.155303;
Degrees of Freedom 131;

t-value 2.973047;
p-value 0.003510379;

confidence percent 99%;
confidence interval 0.5019925 to 7.808614;

Table 49 – List Task Opinion Frequency Distribution

Answer Code Answer Text Frequency Percent

A1 Java is Much Better 5 15.16%
A2 Java is a Bit Better 14 42.42%
A3 Seem Equivalent 14 42.42%
A4 MOWSDL is a Bit Better 0 00.00%
A5 MOWSDL is Much Better 0 00.00%

Total 33 100.00%

that this was the first contact the participants had with it. Therefore, these results also suggest

that developers could use the language without much training. Indeed, the selected participants

had years of programming experience, they knew the Java Programming language prior to the

study and were able to understand MOWSDL after their first contact with the language.

MOWSDL usage was positive for relationship identification thanks to its visible declara-

tion of relationships and compositions. Following the same logic, the explicit usage of “List” in

Java also made it clear when Java code had lists. This was not clear for other tasks, which had

very high probability for the null hypotheses.

It is completely possible to write MOSS/MOWS systems without MOWSDL. The

MOWSDL language was not created to replace Java or any other language, it was simply defined

as an add-on to the tool-chain presented in Section 5.9, assisting developers to create code that

would otherwise require extensive checking to certify that it is compatible to models as used by

modeling tools.

It is important to mention that proper Java code to handle models as data also requires a

few model annotations which could pollute the code and cause mistakes. This was not required

for this study, which causes further advantages towards the programming language.

Besides these results, the study indicates that developing code for handling models as

data could be a feasible task for common programmers. Another study is provided in this chapter
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Table 50 – Hypotheses Testing for Relationship Task Correct Answers

Property Value

Null Hypothesis Zero Count;
Alternate Hypothesis Positive Count

Variables and Difference
Expression

CRM - CRJ;

Test type Sign Test;
Medians 1;1;

N 30;
Test Statistic 5;

p-value 0.0003249142;
confidence percent 95%;

Test type Exact Wilcoxon Ranked Sign
Test;

Test Statistic 387.5;
p-value 0.0003249142;

confidence percent 95%;
confidence interval 0 to 1;

difference in location 0.5;

Table 51 – Hypotheses Testing for Relationship Task Timing

Property Value

Null Hypothesis Zero Time;
Alternate Hypothesis Negative Time

Variables and Difference Expression TRM - TRJ;
Test type Paired T-Test;

Estimated Mean -1.598258;
Degrees of Freedom 131;

t-value -1.143369;
p-value 0.2549705;

confidence percent 99%;
confidence interval -5.252068 to 2.055553;

to evaluate how programmers use both languages to develop components for MOWS systems

(Section 7.3).

Regarding the feedback provided as qualitative answers by the participants, there were

several participants who praised how the forms were designed and their looks, which could have

encouraged them to complete the form and share it to more participants. A few participants

reported that the quick tasks were engaging and even fun, making them curious for results.

Several participants also wrote criticisms. They have reported that it was very cumber-

some to answer the diagram matching task, which required them to go back and forth several

times to compare the text to diagram. Other participants were contrary to the ones who have
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Table 52 – Relationship Task Opinion Frequency Distribution

Answer Code Answer Text Frequency Percent

A1 Java is Much Better 1 03.03%
A2 Java is a Bit Better 6 18.18%
A3 Seem Equivalent 15 45.46%
A4 MOWSDL is a Bit Better 10 30.30%
A5 MOWSDL is Much Better 1 03.03%

Total 33 100.00%

Table 53 – Hypotheses Testing for Diagram Matching Task Correct Answers

Property Value

Null Hypothesis Zero Count;
Alternate Hypothesis Negative Count

Variables and Difference
Expression

CDM - CDJ;

Test type Sign Test;
Medians 1;1;

N 25;
Test Statistic 11;

p-value 0.690038;
confidence percent 95%;

Test type Exact Wilcoxon Ranked Sign
Test;

Test Statistic 143;
p-value 0.690038;

confidence percent 95%;
confidence interval -1 to 1;

difference in location -0.5;

found it engaging and criticized its length and found it boring and tiring.

It is important to report criticisms by some participants on the apparent objective of

the survey. These participants were led to believe that MOWSDL was just a language to help

developers to write data structures and interfaces while adding some semantics that are lost when

using Java. This is the major point of MOP (FORWARD; BADREDDIN; LETHBRIDGE, 2010).

The argument by these participants that it could be nonsensical to approximate design to code

further confirms assumptions discussed after the systematic mapping presented in this thesis

(Chapter 3).

Programmers might dislike new languages which are often created to solve the same

problems. The proposition of MOP suggests that programmers should use another language

while they might refuse this request. This could be also applied to MDSE tools, which might be

seen as just another tool for the same needs.
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Table 54 – Hypotheses Testing for Diagram Matching Task Timing

Property Value

Null Hypothesis Zero Time;
Alternate Hypothesis Positive Time

Variables and Difference Expression TDM - TDJ;
Test type Paired T-Test;

Estimated Mean 1.590455;
Degrees of Freedom 131;

t-value 0.4151639;
p-value 0.6787011;

confidence percent 99%;
confidence interval -8.42308 to 11.60399;

Table 55 – Diagram Matching Task Opinion Frequency Distribution

Answer Code Answer Text Frequency Percent

A1 Java is Much Better 1 03.03%
A2 Java is a Bit Better 3 09.09%
A3 Seem Equivalent 18 54.55%
A4 MOWSDL is a Bit Better 7 21.21%
A5 MOWSDL is Much Better 4 12.12%

Total 33 100.00%

Indeed, in the case of Java, annotations could be used to keep the required semantics to

generate design models correctly. The annotations are also employed for MOWS coding when

using Java for interface and data structures.

It has been cited that the experience could change the results. This implies that highly

experienced Java programmers could feel more confident while using Java, thus affecting their

answers.

Further qualitative analysis are planned as future works. Data was stored by the survey

system for participant opinion. By analyzing their background and opinion, it could be possible

to identify new variables and explain how specific preferences could impact the usage of the

studied languages. This data could also be validated by cross-examining the feedback according

to their experience and background.

7.2.7 Threats to Validity

This subsection presents the threats to validity for this study. These threats are distributed

into Internal Validity, Validity by Construction, External Validity and Conclusions Validity.



182 Chapter 7. Experimental Studies

7.2.7.1 Internal validity

Experience Level of Participants. The different levels of knowledge of the participants

could have compromised the data. To mitigate this threat, the experiment tasks included a

training session. Also, it was expected that the participants had prior programming experience,

therefore, they were selected according to their profile. As all participants were experienced

Java programmers, there is also a MOWSDL learning factor that could have biased this study.

According to the results, MOWSDL had balanced successes, which indicates that despite this

bias, the created language was successfully understood by the overall participants. This also

suggests that MOWSDL could have in fact been more successful if the participants had more

experience. We claim that these points are not problematic because they balance the researcher’s

bias, which is the bias that could suggest that we intended to make the study partial towards

MOWSDL, which did not happen. It also balances the threat of hypothesis expectations, which

is further described in this subsection.

Facilities used during the study. Different computers, devices, connections and config-

urations could have affected the recorded logs. This threat is mitigated since each participant had

to complete all the tasks without changing their device and connection, allowing the researchers

to capture the control data in proportion to the treatment data.

7.2.7.2 Validity by construction

Hypothesis expectations. the participants’ expectations could have affected the results.

To mitigate this threat, we have collected as much data as possible from the form execution. We

also asked the participants to complete their answers as fast as possible regardless of the task.

The sub-tasks were also performed in random order to avoid the participant from changing their

execution pace. Also, we have concealed the objective of the experiment and their impact on it to

avoid them to actively affect their data towards a specific result. In the forms, it is not specified

that MOWSDL was built specifically for MOWS and MOSS development activities, these forms

were written to make the participants to believe that it was simply a language comparison study.

7.2.7.3 External validity

Interaction between configuration and treatment:. It is possible that the exercises

were not accurate for real world applications. The experimental application had simple require-

ments and random (meta-) model object names. To mitigate this threat, the range of the number

of objects and relations were based on the case studies. Still, the randomness was used to avoid

the memory effect of participants, which would cause another threat to validity.

7.2.7.4 Conclusion validity

Measure reliability. It refers to how precise was the data collection and measurements.

To mitigate this threat, all data was captured automatically as soon as the participants concluded
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each activity in order to allow better precision;

Low statistic power. Since we have a small population, we applied statistical tests to

analyze the experiment data while avoiding issues with low statistic power. Besides that, we are

working on larger scale experiments and applications for the proposed methods, i.e. the study

will remain open for more participants.

7.3 Data Structure Implementation Experiment

7.3.1 Objectives

In this section, an experiment conducted to compare methods in the domain of web

services development is presented. This study allows to compare the efforts of using code-first

(Java code) and model-first (MOWSDL) development methods. The rationale behind this study

is beyond this simple comparison, as it allows the researchers to identify if other developers

would be able to develop MOWS systems based on metamodels while also evaluating the newly

created tools.

In order to develop these systems, a service interface and the shared data structures must

be defined. This definition is common to both server and client parts within the development

effort.

Prior to planning this study, the author interviewed professors involved into web services

development. They have described the effort of developing data structures of distributed servers

and clients as significant during initial implementation and repetitive throughout the maintenance.

Indeed, in the literature, authors compare different web services technologies, discussing that

they affect how the interfaces are defined, while data structuring is required for all technologies

(PAUTASSO; ZIMMERMANN; LEYMANN, 2008; PAUTASSO; WILDE, 2010).

In the scope of MOWS definition, the author has proposed a technique for creating data

structures based on metamodeling and model based transmission. Therefore, this study was

planned to compare the efforts to implement and to maintain the data structures required for the

correct operation of web services systems.

It is also employed to analyze the efforts involved in the data structure definition, which

are treated differently whenever the development method is code-first (Java) or model-first

(MOWSDL).

It is expected that the outcome of this study helps developers and researchers to identify

the proper method when developing software related to this domain.
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7.3.2 Method

In this experiment, the development of portions of service-oriented systems are consid-

ered using different development methods. The experiment was applied in the context ofgraduate

students properly trained in software development activities to perform the role of software

developers. The study was carried out from the perspective of the researchers, however, it was

also intended to cover the expectations from software project managers.

The object of this study is the effort and comprehension of the maintenance of software

artifacts that are employed as part of a service-oriented software system. For the web service

implementation, Apache CXF (Apache Foundation, 2017) was used, which is compliant to

JAX-WS/JAX-RS Java specifications. Therefore, this object is not restricted to the specific case

of CXF, but applicable to other JAX-WS/JAX-RS compliant frameworks.

The object was treated with two different development methods. The first method is the

original development technique as defined by the developers of Apache CXF for web services

software system instantiating in a code-first approach.

Apache CXF (Apache Foundation, 2017) includes a tool-chain for web services devel-

opment in both code-first and model-first (also referred as contract-first in its documentation)

sequences, however, they were not planned for MOWS development. In this project, a new

tool-chain for model-first sequence has been developed specifically for MOWS, as described in

Chapter 5 (Section 5.9).

Table 56 – Study Design

Phase Group 1 Group 2

General Training
Development Training
Cashier Application

1st Execution Code-First Model-First
Development Phase Deliveries Application

2nd Execution Model-First Code-First
Development Phase Flights Application

1st Execution Code-First Model-First
Development Phase Medical Clinic Application

2nd Execution Model-First Code-First
Development Phase Restaurant Application

The complete study design is presented on Table 56. This table is composed by three

columns: the phase indicates the application development task, the other two columns indicate

the treatment used for each group.

The dependent variables that were captured and analyzed in this study are shown on

Table 57. This table includes the name of the variable, description, along with range and collection
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Table 57 – Study Dependent Variables

Name Description Type Range Precision

TCJ Time Completion Java Real (Ratio) 0 or greater 1/1000 second
TCM Time Completion MOWSDL Real (Ratio) 0 or greater 1/1000 second

precision. The first variable captures the time for the Java treatment, while the second variable

captures the time for MOWSDL treatment. Both variables are the time taken to complete the

given task correctly, i.e. the participants had to reach the required implementation, which implies

that all tasks led to the same final quality.

Table 58 – Study Hypotheses

Name Description Predicate

Negative Time Java takes longer for data structure coding T DIM−T DIJ < 0
Zero Time Languages are equivalent for data structure coding T DIM−T DIJ ≈ 0

Positive Time MOWSDL takes longer for data structure coding T DIM−T DIJ > 0

Table 58 contains the hypotheses presented as possible outcomes for the study. The

names of the hypotheses are defined as the resulting difference for each task. Negative Time

(T DIM−T DIJ < 0) suggests that MOWSDL takes less while Java takes longer for data structure

coding (therefore the difference MOWSDL minus Java is negative). Positive Time (T DIM −

T DIJ > 0) suggests that MOWSDL takes longer while Java takes less for data structure coding

(therefore the difference MOWSDL minus Java is positive). If the resulting difference is close to

zero, then they would be approximately equivalent (Zero Time). These hypotheses are taken as

alternate or null, depending on the hypotheses testing, as presented in Subsection 7.3.5.

7.3.3 Operation

7.3.3.1 Participant Selection

Graduate Students with prior programming experience were selected for the study.

Invitations were sent to dozens of students. Eleven qualified students accepted the invitation,

however only five completed the study, because the others used their right to quit at any time.

The participants numbers are the same from Table 34 (Section 7.2), however, only participants

numbers from 1 to 5 have completed this specific study.

7.3.3.2 Preparation

In preparation for the experiment, the participants were trained on web services develop-

ment methods. Besides the instructions on how to implement MOWS servers and clients using

both model-first and code-first sequences with MOWSDL and Java, this activity included the

introduction, data structures, services interfaces and components.
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7.3.3.3 Instrumentation

The participants received a printed instruction booklet on the method required for the

implementation. The participants were also provided with components along with a test case to

be executed after performing their intended activities. The instrumentation documents were all

written in English. Verbatim copy of the documents are provided within Appendix E.

One of the components would be modified by the participants, while the test case was

employed to verify whether they succeeded or not in their activity. The provided components

were created for specific applications, which were all similar in complexity.

Every participant had to modify a component from each application by using only one of

the techniques in equal numbers. The participants were grouped in two groups to permute the

order the methods were executed. At any moment of the experiment, each group was using a

different method than the other group.

Figure 61 – Cashier Application Diagram

Shop

Cart
Product

name : String[1]
price : long[1]

Tradeable

barcode : long[1]

Item

quantity : long[1]

«add»
Client

name : String[1]

carts

0..*

products

0..*

items

0..*

client «add»

1

clients «add»

0..*

Source: Created by the author

The applications were provided according to the study design (refer to Table 56). All

employed applications had the same number of classes and required changes. For instance, the

training application is the Cashier application, which represents a shop management system. Its

class diagram is represented in Figure 61. The study applications are provided as examples of

feasible MOWS systems within Appendix C.

7.3.3.4 Execution

Initially, the participants signed a consent form and then answered a profile characteri-

zation form. The characterization form had questions regarding knowledge about web services

development and XSD edition.
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After concluding the profile characterization forms, participants were trained on how to

implement web services servers and clients by using the code-first (Java) sequence and then the

model-first (MOWSDL) sequence with the tool proposed for model-oriented web services. It is

important to note that every participant already had a basic experience with web services coding

and component modeling.

Following the training, the experiment was executed. The participants were split into two

balanced groups considering the results of the characterization forms. During the experiments,

the participants had to work with two applications composed by the provided components. They

would be asked to start with a different technique for each group. The secondary executions were

replications of the primary executions with another two applications. They were created in order

to avoid the risk of getting unbalanced results during the primary execution.

7.3.3.5 Data Validation

The characterization forms filled by the participants were confirmed with data collected

during the study execution. The participants were observed throughout the executions and the

test cases allowed to verify the conclusion of each activity.

7.3.3.6 Data Collection

The participants had to implement the required definitions and run test cases to identify

whether they have completed the task successfully. Data for this study was collected by instru-

menting these test cases, which allowed the researchers to capture data without transmission

delays and in milliseconds precision. Therefore, the data was recorded before notifying the

participants the result, thus avoiding affecting the data.

7.3.4 Data

Table 59 – Data Structure Implementation Task Time

Task Elapsed Time
P J1 M1 J2 M2 G

1 239.194s (04m59s) 218.779s
(03m39s)

68.123s (01m08s) 33.472s (00m33s) 1

2 1697.891s
(28m18s)

120.1s (02m00s) 1677.143s
(27m57s)

168.105s
(02m48s)

1

3 530.537s (08m51s) 919.077s
(15m19s)

1692.456s
(28m12s)

144.94s (02m25s) 1

4 301.608s (05m02s) 86.097s (01m26s) 133.583s (02m14s) 93.144s (01m33s) 2
5 580.555s (09m41s) 253.383s

(04m13s)
729.155s (12m09s) 195.718s

(03m16s)
2
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The purpose of this subsection is to present the raw data collected from the study

executions. The elapsed time data for completing each implementation task is presented on

Table 59. This table contains six columns: the first column identifies the participant number (P);

the second column includes data from the first task by using Java coding (J1), while the third

presents the data from the same task by using MOWSDL instead (M1).

The following columns (fourth and fifth) present the data for the second task by using

both methods (J2 & M2). Finally, the last column indicates the group of the participant (G).

Therefore, the table allows the viewer to compare the data of Java and MOWS tasks in pairs. It is

also important to remind that all tasks were designed to have the same complexity, however, the

experience gain from participants could help them to complete the second task faster. The rows

of the table represent each participant.

Basic data analysis suggest that only the third participant took longer to implement a

task (the first task) by using MOWSDL.

7.3.5 Results

Table 60 – Hypotheses Testing

Property Value

Null Hypothesis Zero Time;
Alternate Hypothesis Negative Time

Variable and Expression TDIM - TDIJ;
Test type: Paired T-Test;

Estimated Mean -541.743;
Degrees of Freedom 9;

t-value -2.341229;
p-value 0.04393179;

confidence percent 99%;
confidence interval -1293.731 to 210.2449;

Table 60 contains the statistical testing results for the collected data. The considered null

hypothesis is the “Zero Time”, while the considered alternate Hypothesis is the “Negative Time”.

The test was performed by taking pairs of the results and computing their differences. The test

results indicate that the probability of the Null hypothesis being true is below 5%, thus favoring

the Alternate Hypothesis. However, the confidence interval includes the estimated mean, which

suggests that attaining higher confidence level of 99% could require more data.

As the estimated mean is negative, it is suggested that it is highly likely that the alternate

hypothesis is true, stating that it is faster to use MOWSDL for data structure maintenance and

development.
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7.3.6 Discussion

The purpose of this study was to compare the data structure coding effort and evaluating

if participants could develop MOWS systems, which require specific rules for their data structure

code, since they handle models as data. In order to handle models as data, programmers are

required to program according to metamodel definitions.

The first assumption would suggest that MOWSDL could be easier and take less effort,

since it was created for this purpose. However, this study could indicate further conclusions. After

the first definitions of the MOSS/MOWS proposal, the major concern was whether programmers

would be able to work on metamodeling level while coding. As the major concern related to

the MOSS and MOWS development relates to the doubt of whether programmers could be able

to use metamodels as design, the study has suggested that programmers are not only able to

work on MOWS systems but to also develop code to handle metamodels either by using Java or

MOWSDL.

Although confirming the possibility of more programmers developing MOWS systems,

the validity of this study has several threats to discuss, as presented within Subsection 7.3.7.

7.3.7 Threats to Validity

Similarly to the study presented in Section 7.2, this section presents the threats to validity

for this study. They are distributed into the following categories: Internal Validity, Validity by

Construction, External Validity and Conclusions Validity.

7.3.7.1 Internal validity

Experience Level of Participants:. The different levels of knowledge of the participants

could have compromised the data. To mitigate this threat, the participants were throughly trained

before the study tasks.

Facilities used during the study: Different computers and configurations could have

affected the recorded logs. However, participants worked by using the computers with the same

make and model in the same room and at the same time.

7.3.7.2 Validity by construction

Hypothesis expectations: the participants’ expectations could have affected the results.

To mitigate this threat, we have collected as much data as possible and encouraged the participants

to perform as natural as possible. Also, we have concealed the objective of the experiment and

their impact on it to avoid them to actively affect their data towards a specific result.
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7.3.7.3 External validity

Interaction between configuration and treatment:. It is possible that the exercises

were not accurate for real world applications. The experimental application had simple require-

ments. To mitigate this threat, we designed the exercises based on functional case studies based

on real world applications.

7.3.7.4 Conclusion validity

Measure reliability. It refers to how precise was the data collection and measurements.

To mitigate this threat, all data was captured automatically as soon as the participants concluded

each activity in order to allow better precision;

Low statistic power. Since we have a small population, we applied T-Tests to analyze

the experiment data statistically to avoid the issues with low statistic power. Besides that, we are

working on larger scale experiments and applications for the proposed methods.

7.4 Final Remarks

In this chapter, two experimental studies were presented. Their results have indicated that

other developers were able to use the specified language, as well as use an existing programming

language for MOWS development. While some could argue that the experiments were too short

to represent actual systems, in Appendix C there are more examples of possible software systems

that can be implemented according to MOSS principles. All these studies conclude that MOWS

and MOSS are feasible as a proposal for evolving MDSE despite not being a replacement.

Further conclusions are provided in Chapter 8. Further packing including verbatim copies of

the instrumentation are provided as appendixes: Appendix D contains the documents of the data

verification experiment while Appendix E contains the documents of the implementation study.

Related documents and papers besides this thesis are also available3.

3 <http://tiny.cc/gottardi-doc>

http://tiny.cc/gottardi-doc
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CHAPTER

8

CONCLUSIONS

8.1 Initial Remarks

This chapter concludes the main portion of this thesis. Besides the introduction, the

theoretical foundation included a balanced set of topics that were effectively used as part of the

presented research efforts. The general conclusions of the thesis are presented in Section 8.2.

Conclusions drawn specifically from the MDSE challenges and possible evolution are discussed

in Section 8.3. Conclusions from MOSS/MOWS systems are presented in Section 8.4. Future

works are presented in Section 8.5. They also include plans to deal with limitations of this thesis.

Finally, the publications derived from the project presented in this thesis are cited in Section 8.6.

8.2 General Conclusions

This thesis involved different research efforts focused on studying and extending the

MDSE as a method. The research efforts were distributed into different types, the idea was to

include exploratory, descriptive and explanatory types of research regarding MDSE. Therefore,

it was intended to conduct literature surveys and reviews to explain and describe the research

context, as well as presenting an overview of the state of art on MDSE research.

This thesis also included empirical studies (Chapter 4) that served as basis for proposing

a plausible software category that was evolved from concepts present in MDSE, MOP and MRT.

This software can be built starting from metamodel specification. This was also referred as a top

down method, according to a method engineering exercise.

Therefore, among contributions presented within this thesis it is possible to highlight the

usage of process analysis, which led to a method engineering exercise with the intent to create a

new software category evolved from MDSE. The proposed evolution is composed by a software

category referred as Model-Oriented Software System, along with its web services application,
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Model-Oriented Web Services. We claim that they foster a step forward on how MDSE tools

could be employed outside MDSE methods, allowing to use Domain Specific Languages (DSL)

for data handling and communication. Thanks to the usage of a concrete syntax, these languages

can assume alternate representations, allowing humans to use a common language with the

software besides code-level, including data visualization.

The analysis techniques that were used for method engineering were based on process dis-

covery techniques (Chapter 4). This thesis includes an algorithm formalization and a metric with

analytic and experimental validation. While this algorithm was beneficial for the development of

the proposal of MOSS, it was later identified that it was not mandatory.

The proposed software category (MOSS) was applied to web services construction

(MOWS), consolidating this category as concrete and feasible for the development of specific

kinds of applications (Chapter 5). Sample applications were provided as case studies that include

their design and purpose. A set of tools and a design language were created for assisting its

development, though they are not mandatory. Studies on the development of MOSS were

conducted. They are categorized into comparative (Chapter 6) and experimental (Chapter 7).

The comparative studies involved formalism to provide a sound mathematical evalua-

tion of the context. The experimental studies involved professional developers, graduate and

undergraduate students. These studies allowed to verify if other developers would be able to

implement these systems.

8.3 MDSE Challenges and Evolution Study Conclusions

The MDSE challenges were studied by conducting a secondary study, referred as a

systematic mapping (Chapter 3). This conduction involved the review of 4859 studies, in which

3727 were unique. This review allowed the author to identify the most common application and

technological domains where MDSE has been employed. Besides these domains, this secondary

study fostered discussions related to challenges developers face while attempting to apply MDSE

to projects dealing with uncommon or too specific domains.

As part of results summarizing, we have identified that, as reported by academic publica-

tions, the MDSE success domains are clustered into application and technological domains. This

data was presented quantitatively considering the success cases that were not only used as case

studies. The success cases indicate that MDSE has reached production levels for specific domains.

In this manner, it is suggested that MDSE is recommended for specific domains, involving both

academia and software industry.

During our searches, we could not find a report on a failure case, still, we identified

challenges and presented these qualitatively in a discussion section (Section 3.4).

There are 17 identified studies which are related to MDSE. This discussion involved
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challenges related to software maintenance and methodology issues. The studies have also been

categorized and summarized.

This secondary study presented the review of studies from 1985 to 2018. Besides that,

we could find no evidences that the proposed solutions were in fact used. Considering the

maintenance problems, we argue that these issues could rise in any project and they should be

mitigated since its beginning.

8.4 MOSS and MOWS Conclusions

As a major contribution of this thesis, it has been delineated a view on how to push

MDSE and WS development beyond models to generate software, hoping to define paradigm

that is perceived by developers and end-users thanks to the creation of model-oriented or model

aware software that goes beyond the definition of model-oriented programming.

While MOSS is hypothetical, MOWS is a concrete example, including a development

method. Both MOSS and MOWS require a specific metamodel structure that is robust enough to

allow partial transmission, while still maintaining security for protected information. Since the

metamodels that follow this pattern would share many similarities, it would be possible to reuse

code generators.

It is important to remind that the usage of DSLs in the context of MOSS would allow

software and humans to communicate using a single language that represents data. In this view,

this paradigm is achieved by employing models throughout analysis, design, implementation

towards the final application execution. This means that we are not limiting the models within

MDSE as "Models are Code", in this case, models are software, data structures, the data itself

along with the state representation of the running software. In our method, metamodels and

models can be used in code generation. Models can be also interpreted at run-time to store,

transfer and represent data. Therefore, both code generation and code interpretation are employed

for the same final application.

Because of the application of these MDSE properties since earlier development phases,

along with MOWS definitions and its development method, models are not only used for design,

implementation or deployment. Models are used throughout the complete development life-cycle

and during the execution, being visible to the end-users. This justifies our argument that MOSS

represents the specification of this new category based on MDSE, as well as defining it as a new

paradigm. In this manner, models are not only the code, they are also the data and can represent

the configuration, settings and state of the running application.

It is also possible to increase flexibility for MOWS systems that require adaptability for

different settings, while maintaining a state of the system, all defined within models (GOTTARDI;

BRAGA, 2016). It is expected that the flexibility of MOWS systems would be evaluated in future
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studies.

8.5 Future Works

As future work, it is planned to work on the limitations of this thesis and carry out more

in depth validations. It is also intended to apply the propositions presented herein into other

contexts and report the results. Since this thesis involves several topics, the future works are

distributed into subsections.

8.5.1 Process Discovery Algorithm

This thesis is involved in a project that involves studying process tool support that

includes process discovery and recommendation. The process discovery support must be flexible

enough to allow developers to extend the discovered models to better suit their needs. This

flexibility is important because we intend to apply updated model-driven development methods

by using model transformations on the discovered process models and devise new studies on

their flexibility, adaptability and reuse.

8.5.2 Process Comparison Metric

As future works, we intend to cope with the limitation regarding the proof on the scope of

processes. The current proof is valid when focusing on the input matrices. Still, similar matrices

would indicate processes that have different number of interactions, which could be categorized

into the same original expected process.

The presented threats to validity also encourage future works, since the experiment was

too small to assure whether the proposed system is accurate for larger software projects.

This work is part of a research group focused on studying tool support for software reuse

and we intend to create tool support for this metric system, as well as experimenting with several

software projects.

8.5.3 MOSS and MOWS

Future works are required in order to deal with limitations of MOSS and MOWS.

These limitations include lack of more adequate and more formal case studies. The presented

comparative, experimental and case studies might not be sufficient to cover every advantage and

disadvantage of the software category. Therefore, more validation could be used to confirm when

the suggested advantages overcome disadvantages.

In case of a more trustworthy confirmation of the advantages and disadvantages, we also

identify the need of a set of guidelines to guide project managers when they have to decide to
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use the MOSS/MOWS requirements for their software application developments.

It is also planned to provide continuous support to the development teams that accepted

to apply the defined methodology in order to help them to reach a stable version of their software

systems, which is going to be available to the public to use. It is worth mentioning that this thesis

is related to a research project to study system of systems development and reuse, which inspired

the development of MOWS systems for this domain. Further details on the development projects

are provided as part of the Appendix C. There could be more advantages and disadvantages

related to the development efforts that could be studied, and they can go beyond data structure

specification.

Documenting reusable valid metamodel designs to assist developers when defining

metamodels for MOSS/MOWS is another future work. A preliminary proposition for a pattern

was published (GOTTARDI; BRAGA, 2016), however, further validation is required to accept it

as pattern.

More tools for MOWS development are also being built. Besides supporting design and

coding, it has been suggested to create tools for MOWS testing. Preliminary results indicate that

it is possible to create test cases based on models.

The MOSS and MOWS principles could be employed to create services without the

explicit usage of WS. Therefore, we also intend to study and validate if these services could be

used (and possible advantages) for software architecture specifications that employ services, e.g.

service-oriented architectures and micro-services.

8.6 Published Works

The purpose of this section is to cite posters, papers and articles that are derivatives of

the project presented in this thesis. This section is divided into subsections according to the topic

of the publication.

8.6.1 Secondary Studies

The systematic mapping presented in Chapter 3 has been published as a conference paper

(GOTTARDI; BRAGA, 2015). As it was published in 2015, it was a previous version that lacks

the most recent updates.

8.6.2 Process Discovery and Metric

The process discovery algorithm was initially published as a poster for a workshop on

statistics (GOTTARDI; BRAGA, 2014). Afterwards, the metric was published in another poster

for a more recent workshop on statistics (GOTTARDI; BRAGA, 2017a).
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An extended version was submitted as an article to “Journal of Software: Evolution and

Process”, acceptance information is pending.

8.6.3 MOSS and MOWS

The initial proposition of MOWS systems has been published as a conference paper

including a few case studies as validation (GOTTARDI; BRAGA, 2016). The comparative studies

were published one year after as another conference paper (GOTTARDI; BRAGA, 2017b). An

overview on MOWS and MOSS including how they were defined by using method engineering

was presented as a poster (GOTTARDI; BRAGA, 2017c).

8.7 Final Remarks

This chapter concludes the main chapters of this thesis. Besides these main chapters, there

is a reference section followed by four chapters. In Appendix A contains a systematic review on

software process discovery, which was conducted prior to creating the algorithm and analyses

presented in Chapter 4. In Appendix B there is a report on the tools created for MOSS/MOWS

development. In Appendix C there are feasibility case studies that indicate how MOWS systems

could be used in real world applications. The verbatim copies of the documents used during the

experimental studies described in Chapter 7 are available as appendixes: Appendix D contains

the documents of the data verification experiment while Appendix E contains the documents of

the implementation study. Besides these appendixes, the author of this thesis would also like to

invite the reader to refer to related documents and papers that are available outside this thesis1.

1 <http://tiny.cc/gottardi-doc>

http://tiny.cc/gottardi-doc
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APPENDIX

A

SYSTEMATIC REVIEW ON SOFTWARE

PROCESS DISCOVERY

A.1 Initial Remarks

Some software development projects are successful without a preliminary definition of

the employed process. The development team may be capable to create an adequate process while

the project is being executed. To allow reproducibility of these processes, several authors devised

techniques for process discovery. There is a numerous set of approaches suited for several process

model types. It is important to identify the most adequate approaches for software development

process models. Therefore, we have conducted a systematic review aimed to identify different

software process discovery approaches and their suitability to become integrated into project

support tools. We have identified the most common process models and discuss about their

suitability. As result analysis, we could categorize approaches according to their attributes.

Another contribution is providing an overview of the state of the art related to this context,

encouraging prospections of trends in software development processes.

A.2 Systematic Review Definition

Software Processes are the foundation of Software Engineering. Processes allow the

rational and systematic development of software products, which are beneficial to their quality

and effective delivery (PRESSMAN; MAXIM, 2015).

Software development processes can exist without being planned before the start of the

life cycle or without proper documentation. Software engineers working on similar projects

would be interested on the documentation in order to make this process repeatable. Therefore, it

is important to gather enough information about the non documented process execution in order

to discover the process model and generate its documentation (AALST et al., 2012).
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The main goal of this appendix chapter is to present a cohesive secondary study high-

lighting the studies that contain adequate algorithms for process mining and their expected output

process model formats. We are specifically interested in software development processes in which

supporting tools were used and can be a source for discovering the corresponding processes.

During this process, we identified primary studies related to process mining or discovery, as well

as surveys and algorithm comparisons (AALST et al., 2012; LAKSHMANAN; KHALAF, 2013;

AKMAN; DEMIRöRS, 2009).

Process discovery can be also performed while the development is being executed. In

this study, we call these approaches “active process discovery”. By applying mining algorithms

while the development is under way, the intent is to guide the developers to follow specific paths

and to design the possible outcomes by using statistical models. These and other factors are

reviewed and summarized in this study.

It is possible to highlight main contributions: (i) to provide an overview of existing

process discovery approaches; (ii) to identify the most common process models output formats

and if they are appropriate; and (iii) to provide software engineers a way to easily identify the

present state of the art of process discovery, as well as related secondary studies.

A.3 Systematic Review Method

This study has been undertaken as a systematic review based on the guidelines proposed

by Kitchenham and Charters (KITCHENHAM; CHARTERS, 2007). According to them, in

order to conduct a systematic review, it is advisable to follow three main phases: (i) planning

the review, (ii) conducting the review and (iii) reporting the review. Each phase produces an

intermediate outcome, as can be seen in Figure 62. More details about each main phase are

described in the following sections.

A.3.1 Planning the Systematic Review

During the planning phase, the ‘Protocol’ is defined, which contains: the Research

Questions (RQs), the search strategy, the inclusion and exclusion criteria.

RQs must embody the review study purpose. Moreover, these questions reflect the general

scope of the review study. The scope is comprised of population (i.e., population group observed

by the intervention), intervention (i.e., what is going to be observed in the context of the planned

review study), and outcomes of relevance (i.e., the results of the intervention). Furthermore,

during the conduction of this step, it was necessary to establish the scope of the review study.

According to the systematic review process (KITCHENHAM; CHARTERS, 2007), the scope

has to be established using the PICO criteria (Population, Intervention, Comparison, Outcomes).

Thus, herein our Population is published scientific literature reporting on some Software Process

Discovery approaches. The Intervention is published scientific literature regarding existing



A.3. Systematic Review Method 213

Figure 62 – Adopted Review Process Model Diagram
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algorithms and implementation studies that should be analyzed. The Comparison is made by

comparing extracted data as established by a planned extraction form. Finally, the Outcomes of

relevance is an overview of the studies that have been conducted in the field of algorithms and

automated tools for software process discovery, emphasizing primary studies that report on the

techniques used in the research area. From observing such an aggregated data set, we also intend

to provide insights into the frequencies of publication over time to inspect trends.

The planning also involves the ‘Data Extraction Plan’, which includes a form definition

for extracting data from each primary study. In the ‘Quality Criteria Definition’, the researchers

define the expected attributes of the studies to be considered as high quality and trustworthy.

An excerpt of the protocol definition is visible on Table 61. The two columns of the table

are arranged into field name and value pairs that include the objective, questions, intervention,

control, population, comparison outcomes, application, keywords, source selection criteria, study

language, search engines and study selection criteria. Among these fields, the questions and study

selection criteria are frequently referenced during the conduction phase presented in Section A.4.

The most important item of the protocol is its objective, in which we intended to identify



214 APPENDIX A. Systematic Review on Software Process Discovery

studies that present algorithms that would be adequate for a software process reuse project. From

this objective we derived two RQs, which are also listed within the protocol (namely, Primary

Question and Secondary Question).

A.3.2 Conducting the Systematic Review

Afterwards, an exhaustive search for papers was carried out to answer these RQs. First of

all, the keywords that are also part of the protocol were selected for the search. As this selection

was known to be relevant for the quality of results, general terms were used with the aim of

confirming that most of the research papers were included in the study.

After a pilot testing phase using the keywords shown on Table 62 we could create the

search string. As can be seen on this table, for each row, the conjunction operation (represented

by “∧”) is applied while the disjunction operation (represented by “∨”) is applied to each cell

where there are synonyms of each keyword. Therefore, the final search string is (( A1 ) ∨ ( A2 )

∨ ( A3 ) ∨ ( A4 )) ∧ ((B1 ∨ B2)) ∧ ((C1 ∨ C2)).

Then, the search was carried out through the following search engines: ACM Digital

Library, IEEE Xplore, Google Scholar and Elsevier Scopus. Throughout this study we have

used a tool called StArt (State of the Art through Systematic Review). It aims to help the

researcher, giving support to the application of systematic review (FABBRI et al., 2012). During

the extraction process, the data of each primary study was independently gathered by three

reviewers. The review was performed in the first semester of 2014 and then updated during early

2015 by two Ph.D. students and an expert in software engineering; the achieved results were

crossed and then validated. All the results of the search process are documented in the web

material1. Therefore, it is clear to others how thorough the search was, and how they can find the

same documents.

During the review phases, every paper/study was evaluated considering the inclusion

and exclusion criteria. As defined in the protocol, there are five inclusion criteria and six

exclusion criteria, defined as In and Nm, respectively, as seen on Table 61. The first inclusion

criterion is applied to studies that show a process discovery algorithm, whereas the second

is applied to studies that present development approaches that allow process discovery while

the development cycles are still being executed. The third criterion is applied to studies that

present tool implementation of the algorithm; the fourth is used on studies that present analysis

of the application of process discovery on real projects. Finally, the last criterion is mapped to

any studies that involve recommender systems for process models. Recommender Systems are

software tools that employ statistical operations in order to identify the most similar objects to

recommend them to interested users (ADOMAVICIUS; TUZHILIN, 2005).

The exclusion criteria are applied to studies that cannot pass to the extraction or sum-

1 <http://tiny.cc/gottardi-doc>

http://tiny.cc/gottardi-doc
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Table 61 – Protocol Definition

Protocol Item

Item Description

Objective

Identify the most adequate process discovery algorithm for a process reuse project.

Primary Question

What are the existing software process discovery approaches?

Secondary Question

What is the most adequate process discovery approach for project support integration?

Intervention

The existing algorithms and implementation studies must be analysed.

The search results must involve a list of studies related to the questions that are known by the researchers. This list includes
articles by Selby, Porter, Cook, Wolf, Akman and Demirörs.

Population

Software Process discovery approaches

Comparison

The studies must be compared and evaluated according to their presented algorithm and or presented study related to
application of process discovery

Outcome

A comprehensive list of algorithms and automated tools for software process discovery

Application

This secondary study is provided as support to research regarding process discovery.

Keywords:

process discovery; process; software.

Source selection criteria:

Source must index studies on Computer Science, Mathematics or Engineering. Source must allow Boolean operators.
Source must be accessible by the researchers.

Study Language:

at least title and abstract must be in English.

Search Engines:

ACM Digital Library; IEEE Xplore; Google Scholar; Elsevier Scopus

Selection Criteria:

Inclusion:

∙ I1 - Presents Process Discovery Algorithm;

∙ I2 - Presents Active Participation on Process Discovery;

∙ I3 - Presents Automated Tool for Process Discovery;

∙ I4 - Presents Study Related to Application of Process Discovery;

∙ I5 - Presents Process Recommender System;

Exclusion:

∙ E1 - Not a primary study;

∙ E2 - Does not fit any inclusion criteria;

∙ E3 - Unrelated to Software and Business Process;

∙ E4 - Unrelated to Software Engineering;

∙ E5 - Inaccessible;

∙ E6 - Not related to Process Discovery.
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Table 62 – Search String Definition

Identifier Keyword Synonyms and Related

A Process Discovery

1. empirical guided process;

2. empirically guided process;

3. process discovery;

4. process mining

B Software

1. software;

2. software system;

C Process

1. process;

2. process model;

marizing phases. The first planned exclusion criterion is applied to results that are not primary

studies. The second is applied to studies that do not apply to any considered inclusion criteria.

The third and forth are applied to studies that deal with process models unrelated to this review.

The last two exclusion criteria were only used during extraction phase, they are used to identify

studies that could not be accessed or that did not present information related to process discovery,

despite being selected during ‘Selection’ phase.

The data extraction form contains fields that must be filled during the ‘Extraction’ phase.

The planned form contains ten fields: (X1) Uses Markov Models; (X2) Uses Bayesian Models;

(X3) Uses Petri-Nets; (X4) Related to Software Process; (X5) Related to Business Process;

(X6) Process Discovery Participation Type; (X7) Adaptative Process Discovery; (X8) Interactive

Process Discovery; (X9) Incremental Process Discovery; (X10) Identified Algorithm Description.

The valid values for each of the enumerated fields are presented on Table 63. These valid

values are defined either as text or as sets of nominals, i.e., groups of enumerated and named

items that represent categories important to our study.

Through the first to the fifth field and the seventh to the ninth, we have specified boolean

fields that are used to establish whether the reviewed study is related to the usage of Markov

Models, Petri-nets, Bayesian Models, Software Process Models, Business Process Models,

Interactive, Incremental, and Adaptative process discoveries. The sixth field is used to categorize
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Table 63 – Valid Values for Data Extraction Fields

Number Field Name Field Type Nominal Set

X1 Uses Markov Models Boolean
True
False

X2 Uses Petri-Nets Boolean
True
False

X3 Uses Bayesian Models Boolean
True
False

X4
Related to

Boolean
True

Software Models False

X5
Related to

Boolean
True

Business Models False

X6
Process Discovery

Enumeration
Active

Participation Type Passive

X7
Adaptative Process

Boolean
True

Discovery False

X8
Interactive Process

Boolean
True

Discovery False

X9
Incremental Process

Boolean
True

Discovery False

X10 Identified Algorithm
Text Free Text

Description

the discovery approach into active or passive. Finally, the last field of the extraction form was

planned to allow the researchers to describe the identified algorithms.

After ensuring that there were no duplicated studies, the review was conducted by

analyzing studies returned by each search engine. The search engine priority was set by reviewing

first the engine that returned the least number of studies. In this manner, the selected order was,

from first to last: Google Scholar, IEEE Explore, ACM Digital Library and Elsevier Scopus.

Study Quality Criteria are a set of rules that are planned in order to define which articles

are carried into extraction and comparison. It has been established that the studies need to be

accepted on at least an inclusion criterion and without any exclusion criterion in order to be

carried to the summarizing (or reporting) phase. It was also expected that high quality studies

would actually present an algorithm and/or a study related to the application of process discovery.
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Figure 63 – Studies Reviewed During Each Phase
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A.3.3 Reporting the Systematic Review

The ‘Reporting’ is the last main phase. It is composed by a statistical analysis on the

results, which is then summarized. This summarizing is then presented in this appendix chapter

(Section A.4) and documented in the packing. These results are then discussed in ‘Discussion’

(presented in Section A.5) and finally, the ‘Conclusions’ are reported (Section A.7).

A.4 Systematic Review Results

This section contains the results gathered during the review conduction. It includes the

search results and the extraction results.

Our planned search string was executed and returned 108, 81, 3 and 162 from ACM

Digital Library, IEEE Xplore, Google Scholar and Elsevier Scopus, respectively.

There is a bar plot in Figure 63 that allows quick visualization of the quantity of studies

reviewed during each phase and how many have been selected, rejected or marked as duplicated.
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Figure 64 – Selected Studies by Inclusion Criterion
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It is important to mention that the studies selected during the selection phase are exactly the

same as the total reviewed during extraction. The studies selected during extraction are the ones

presented in summarizing, which are referenced as ESS (Extraction-Selected Studies).

Figure 64 contains a plot showing ESS distributed according to the inclusion criteria. It

is important to mention that the sum of these categories surpasses the total number of studies

because many of them fit into more than one category.

Figure 65 contains a plot which represents the quantity of studies selected during selection

and extraction phases distributed according to the each search engine. This plot was not created

considering the duplicated studies.

The plot in Figure 66 represents the distribution of studies and their acceptance or

rejection according to each review phase. Since the extraction phase follows the selection phase,

the studies accepted for selection are distributed between rejected for extraction and accepted for

extraction. The plot also includes the amount of studies rejected for selection.

The ESS are listed on Table 64. This table contains three columns which contain data of

published year, reference number and the extracted algorithm description for every one of the

39 ESS. This description was extracted as the last field of the extraction form.

The complete results of relating the studies to the inclusion criteria and the extraction

fields numbered from one to nine are presented on Table 65. It is important to establish that these

inclusion criterion were defined on Table 61 while the extraction fields were defined on Table 6.

The boolean values are represented as “T” for “True”, “F” for “False”, “P” for “Passive” and “A”

for “Active”. It is important to remind that the specification of each inclusion and field definition

can be found in Section A.3. As the last row of this table, we also present the total number of

True and Active values.
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Table 64 – Studies Elected for Extraction

Year Ref. Description

2007 Bahsoon and Emmerich
(2007)

Algorithm that focuses on financial factors.

2007 Duan and Babu (2007) Presents an algorithm based on Bayesian networks. If involves node graph sequence inference by calculating the predicted
numerical values.

2011 Jin and Yang (2011) Algorithm that allows similarity detection among parts of a process graph.

2012 Buijs, Dongen and Aalst
(2012b)

Presents a genetic algorithm for process mining employing Petri-nets which avoids deadlock. Displays quality criteria with
four dimensions for process discovery.

2011 Maggi, Mooij and Aalst
(2011)

Configurable language to perform a data/process mining.

2012 Schonig, Zeising and
Jablonski (2012)

Algorithm to identify collaboration of people in business processes.

2013 Lakshmanan and Khalaf
(2013)

Presents different types of algorithms and a decision tree to choose which is best for each case.

2012 Kim (2012) Describes an algorithm for finding a validated workflow. Use of formal language. Conducts mining workflow system and
unifies the process.

2012 Aalst (2012) Describes a generic method to conduct process mining.

2012 Aalst et al. (2012) Basic literature of process mining.

2012 Buijs, Dongen and Aalst
(2012a)

Evaluates algorithms of process discovery. There is no definition of a particular algorithm.

2011 Lemos et al. (2011) Presents a study of running mining process on real data implementing software process. Shows the use of tool and reliability.

2011 Pérez-Castillo et al.

(2011)
Provides a statistical algorithm to identify the most suitable process for context.

2011 Wang et al. (2011) Describes an algorithm for mining of business processes based on event types. Generates Petri nets. Seems applicable to
software process despite not being officially described. Presents incremental operations model to optimize the result.

2011 Poncin, Serebrenik and
Brand (2011a)

Shows the application of the discovery process in software projects of undergraduates. Offers a simple and usual metamodel
for discovery.

2011 Aalst (2011) Shows a distributed process discovery algorithm that takes execution log data captured from several subsystems distributed in
the cloud.

2011 Walicki and Ferreira
(2011)

Shows an algorithm that allows to detect whether specific untagged records are related to a process execution instance. This
generic approach is applicable to several process model types.

2011 Duan and Shen (2011) Displays discovery process from SVN code repository logs. Shows examples of using the tool for Java, C and C + +. Does
not show the algorithm itself.

2011 Burattin and Vigo (2011) Definition of an generic algorithm for process discovery. Supports exploiting preliminary known context data.

2011 Claes and Poels (2011) Algorithm to merge logs to facilitate mining.

2011 Poncin, Serebrenik and
Brand (2011b)

Describes process mining tool for source code repositories. Includes conceptual model and metamodel.

2011 Samalikova et al. (2011) Shows studies on the application discovery process of real software systems.

2010 Kim et al. (2010) Shows a process usage detection algorithm in a comprehensive manner.

2009 Akman and Demirörs
(2009)

Evaluates four different algorithms in the context of software process. Related to RNet, Ktail, Markov (COOK; WOLF, 1998)
and open repositories (JENSEN; SCACCHI, 2007) SCM (Aalst)

2009 Shang et al. (2009) Shows the implementation of a distributed system for distributed mining of source code repositories system.

2008 Hassan (2008) Displays various items to be searched in the mining of software repositories.

2007 Rubin et al. (2007) Describes process mining from repository logs.

2007 Ferreira et al. (2007) Describes the process of discovery algorithms that have been identified in bioinformatics and can be applied to various
contexts.

2007 Li, Liu and Yang (2007) Comparison of nodes to identify the same tasks.

2007 Ghose, Koliadis and
Chueng (2007)

Displays mining business process specifically directed to the production of information systems algorithm. With validation
and use of MDD/MDA.

2007 Jensen and Scacchi
(2007)

Describes process models that are best discovered with the aid of a reference process model.

2007 Medeiros, Weijters and
Aalst (2007)

Describes genetic mining algorithm, inputs are based on business process logs. Their definitions can be generic enough for
other processes.

2006 Schofield et al. (2006) Describes and compares four cases discovery code refactoring activities. It has as input the code repositories.

2006 Huo, Zhang and Jeffery
(2006)

Shows a representation of a pattern of a process using Petri-nets. Statistical evaluation with Cohen’s Kappa.

2006 Kindler, Rubin and
Schäfer (2006)

Describes an algorithm for incremental discovery workflow that is applied from the first event record.

2006 Jensen and Scacchi
(2006)

Evaluates discovering in various software processes open but only shows example in Netbeans. Shows use of PML to
describe the process.

1998 Cook and Wolf (1998) Mining Software processes from logs and employs Markov’s model.

1995 Cook and Wolf (1995) Mining Software processes from logs and employs Markov’s model.

1991 Selby et al. (1991b) Tree categorization. Script to capture events for calculation of metrics on demand.
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Table 65 – Extraction Results

Year Ref. I1 I2 I3 I4 I5 X1 X2 X3 X4 X5 X6 X7 X8 X9

2007 Bahsoon and Emmerich (2007) T F F F F F F F F T P T F F

2007 Duan and Babu (2007) T T F F F F T F F F A T T T

2011 Jin and Yang (2011) T F F F F F F F F F P F F F

2012 Buijs, Dongen and Aalst (2012b) T F F F F F F T F F A T F T

2011 Maggi, Mooij and Aalst (2011) T F T F F F F F F F P F F F

2012 Schonig, Zeising and Jablonski
(2012)

T F F F F F F F F T A F F T

2013 Lakshmanan and Khalaf (2013) F F F T F F F F F F P T T T

2012 Kim (2012) T F F F F F F F F T P T T T

2012 Aalst (2012) F F F T F F F F F F P F F F

2012 Aalst et al. (2012) F F F T F F F F F T P F F F

2012 Buijs, Dongen and Aalst (2012a) T F T F F F F F F F P T F F

2011 Lemos et al. (2011) F F F T F F F F T F P F F F

2011 Pérez-Castillo et al. (2011) T F F T F F F F F F P F F F

2011 Wang et al. (2011) T F F F F F F T F T P T F T

2011 Poncin, Serebrenik and Brand
(2011a)

T F F F F F F F T F P T F F

2011 Aalst (2011) T F F F F F F F F T P T T T

2011 Walicki and Ferreira (2011) T F T F F F F F F F P T F F

2011 Duan and Shen (2011) T F F F F F F F T F P F F F

2011 Burattin and Vigo (2011) T F T F F F F F F F P F F F

2011 Claes and Poels (2011) T F F F F F F F F F P F F F

2011 Poncin, Serebrenik and Brand
(2011b)

T F T F F F F F T F P T T T

2011 Samalikova et al. (2011) T T F T F F F F T F P T F F

2010 Kim et al. (2010) T F F F F F F F F T P F F T

2009 Akman and Demirörs (2009) T F F T F F F F T F A T T T

2009 Shang et al. (2009) T F F F F F F F T F P F F F

2008 Hassan (2008) F F F T F F F F T F P F F F

2007 Rubin et al. (2007) T F F T F F F F T F A T T T

2007 Ferreira et al. (2007) T F F T F F F F F F P T F F

2007 Li, Liu and Yang (2007) T F F F F F F F F F P F F F

2007 Ghose, Koliadis and Chueng
(2007)

T F F F F F F F F T A F F T

2007 Jensen and Scacchi (2007) T F F F F F F F F F P F F F

2007 Medeiros, Weijters and Aalst
(2007)

T F T F F F F F F T P F F F

2006 Schofield et al. (2006) F F F T F F F F T F P T T F

2006 Huo, Zhang and Jeffery (2006) T F F T F F F T F F A F F T

2006 Kindler, Rubin and Schäfer (2006) T T F F F F F F F T A T T T

2006 Jensen and Scacchi (2006) F F F T F F F F T F P F F F

1998 Cook and Wolf (1998) T F T F F T F F T F A T T T

1995 Cook and Wolf (1995) T F T F F T F F T F A T T T

1991 Selby et al. (1991b) T T T F F F F F T F A T T T

Total 32 4 9 13 0 2 1 3 14 10 11 20 12 17
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Figure 65 – Sources for the Selected Studies
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A.5 Discussion

Despite originally planned, we do not present an in depth analysis of each identified

algorithm, however, it was possible to identify the most common models and their challenges.

Besides that, there were identified studies that provided the expected outcome (LAKSHMANAN;

KHALAF, 2013; AKMAN; DEMIRöRS, 2009).

A.5.1 Identified Algorithms

During our searches, we have gathered different types of algorithms. For example, in

the work by Akman and Demirörs four process discovery algorithms are described (AKMAN;

DEMIRöRS, 2009), namely Markov Method, Heuristic Mining, Fuzzy Mining and Genetic

Process Mining.

Besides these four categories, it was possible to identify algorithms based on RNets,

K-Tail, Petri-Nets. Related approaches were also cited by Akman and Demirörs (AKMAN;

DEMIRöRS, 2009), except for the usage of and other Bayesian Models that are not based on
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Figure 66 – Studies Selected During each Phase According to Inclusion Criterion
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Markov Method, as well as tools generating higher abstraction models.

Therefore we advocate that a small update on their work would be beneficial, since they

already provide the most important approaches that are still current according to our systematic

review.

A.5.2 Adequate Implementations

ProM (VERBEEK et al., 2010) is the most cited tool for process discovery. ProM is a

toolkit for process mining that is highly configurable and extensible, allowing more algorithms

to be plugged in.

However, according to our searches, there was no selected case of active discovery

that employs ProM. This could be an evidence that this toolkit may not be optimized for this

application. Besides that, more research is needed in order to provide conclusive evidences.

A.5.3 Active Process Discovery

Selby and Porter authored the first study that compromised a active discovery approach

(SELBY et al., 1991b). They have advocated that this would support the execution of an

“empirical-based process”.

“Empirical-Based Process” would allow developers to learn from successes and failures



224 APPENDIX A. Systematic Review on Software Process Discovery

while guiding the process execution. Similarly a more recent work authored by Selby (SELBY,

2005), the idea is to collect project data in real-time while allowing the software engineers to

constantly improve the process model.

Akman and Demirörs (AKMAN; DEMIRöRS, 2009) have identified the hypothesis that

process discovery could help software industry to attain maturity levels that require process

optimization, yet only 11 studies out of 39 are related to this specific case, which could indicate

further research opportunities.

A.5.4 Adaptative Process Discovery

In the paper presenting ProM 6 (VERBEEK et al., 2010), the authors advocate the

adaptability of the toolkit. In 20 out of 39 studies, authors have discussed the benefits of

adaptability. Different data sources and projects may require to be adapted in order to be

successfully mined, which have become a constant concern of these authors in order to provide

accurate outputs throughout projects.

A.5.5 Interactive and Incremental Process Discovery

Interactive process discoveries are approaches that allow the users conducting the discov-

ery process to input configurations to better suit their needs. This characteristic was found in

12 out of 39 studies. Incremental process discoveries allow to continue an ongoing discovery

process, accumulating more information to the output models, a characteristic found in 17 out of

39. These numbers were higher our expectations, which could require a more in depth validation

of the analyzed studies in order to verify this categorization.

A.5.6 Model Category and Dichotomy

Several process discovery implementations are based on sequence graphs and formal

methods, while others are based on higher level process model specifications, e.g., SPEM

(Software & Systems Process Engineering Metamodel) (Object Management Group, 2008a).

Despite languages like SPEM also define graphs, a common concern that appears when

discovering process is identifying when parts of the graph are isomorphic. Higher level modeling

languages may have ambiguities that cause problems while trying to employ the isomorphism

evaluation, making impossible the task of proving whether the process parts were repeated, which

is desirable for creating a flexible process model (AKMAN; DEMIRöRS, 2009; BAHSOON;

EMMERICH, 2007; JIN; YANG, 2011). subsectionsection
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A.6 Works Related to this Systematic Review

We have not identified systematic reviews on the same topic of this one. Nevertheless, it

is still worth mentioning related surveys and other secondary studies.

The work by Akman and Demirörs which describes the application of four process

discovery algorithms (AKMAN; DEMIRöRS, 2009), namely Markov Method, Heuristic Mining,

Fuzzy Mining and Genetic Process Mining.

Der Aalst et al., as well as Lakshmanan and Khalaf, have written two studies that

contain a secondary study focus, by presenting a set of different algorithms and their advantages

(AALST et al., 2012; LAKSHMANAN; KHALAF, 2013). These studies were considered by

us as recommended literature for any software engineer to understand the basics of process

discovery.

We believe that providing a systematic review including statistical analysis of the context

could provide a more in depth secondary study for characterizing the state of art of the literature

than non systematic surveys.

As a related systematic review, García-Borgoñon et al. have also written a work worth

mentioning which presented a systematic review on software process modeling languages

(GARCÍA-BORGOÑÓN et al., 2014). Their work was considered related to ours since it

compares different process model formats. These formats may be more or less suited when

employing discovery algorithms, as discussed in Section A.5 and Chapter 4.

A.7 Conclusions and Final Remarks

In this appendix chapter, we have presented a systematic literature review on studies

that present algorithms to discover software process models, presented the planned protocol,

results per phases and discussion. The main contributions are: an overview of existing process

discovery approaches, to identify the most common process models output formats and if they

are appropriate and to provide software engineers a way to easily identify the present state of the

art of process discovery, as well as related secondary studies.

We have also suggested updating the most adequate secondary studies that discuss

process mining techniques and approaches after providing an state of art overview of this context.

As future work, we intend to work on the limitations of this study and carry out a more in

depth analysis of each identified algorithm as well as employing it onto case studies. This work

was created inside a project that is related to studying process tool support that includes process

discovery and recommendation. The process discovery support must be flexible enough to allow

developers to extend the discovered models to better suit their needs. Therefore, this explains

our constant concern on making possible isomorphism detection. This is important because we
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intend to apply updated model-driven development methods by using model transformations on

the discovered process models and devise new studies on their flexibility, adaptability and reuse.

Further packing documents related to this secondary study are available2.

2 <http://tiny.cc/gottardi-doc>

http://tiny.cc/gottardi-doc
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APPENDIX

B

MOWS TOOLS REFERENCE

B.1 MOWS Tool-Chain

A set of cooperating tools have been developed for assisting developers who wish to

build MOWS systems. These tools are referred as a tool-chain, since their usage is linked to each

other and in sequential order.

A general overview of the tool-chain is shown in Figure 67. This figure contains a graph

where arrows point from the input format towards output. The nodes are shaped differently

depending on format Ellipses represent formats that are generic (not created for MOWS de-

velopment). Rectangles represent formats created for MOWS development. Arrows are drawn

differently to indicate whether the generator or dependency was created as part of this project. The

letters over circles are used to refer to the description shown on Table 66 and Subsection B.1.1.

All referenced tools are available. Proposed tools have been implemented as part of this

project and are functional.

B.1.1 Tool-Chain Graph Edge List

Further description for the transformers are written as paragraphs within this subsection.

A: MOWSDL to Ecore; Complete Metaclass Generation, ECore does not contain Inter-

face Information.

B: Ecore to MOWSDL; Generates MOWSDL instance from ECore. Since ECore does

not support interface information, the interface/port is added as a comment to assist the developer.

The generator also saves existing interface data if the file already exists.

C: MOWSDL to XSD; Generates the XSD for the datatypes specified within the

MOWSDL. Excludes method and interface declarations.

D: MOWSDL to WSDL; Generates a WSDL for the interface with port specified from
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Figure 67 – Transformation Tool-chain

Source: Created by the author

the WSDL. Indirectly invokes the MOWSDL to XSD generator (C) for the datatypes when

required.

E: MOWSDL to Interface Code; Generates interface code to be used by the clients and

servers.

F: ECore to Metamodel Diagram; Generates a diagram model to allow developers to

visualize the metamodel graphically. Part of EMF tools and depends on the Eclipse platform.

G: ECore to Metamodel Diagram; Generates a diagram model to allow developers to

visualize the metamodel graphically. Provided by the author to export independent portable

graphics.

H: Metamodel Diagram to ECore; Generates ecore metamodel from diagram specifica-

tion. Part of EMF tools. Requires manual adaptation and compiling.

I: ECore to XSD; Generates XSD for the datatypes based on ECore. Opposite of J.
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Table 66 – List of Edges of Tool-Chain Graph

Ref. Input Output Origin

A MOWSDL ECore Proposed Tool
B ECore MOWSDL Proposed Tool
C MOWSDL XSD Proposed Tool
D MOWSDL WSDL Proposed Tool
E MOWSDL Interface Code Proposed Tool
F ECore Metamodel Diagram Part of EMF Tools
G ECore Metamodel Diagram Proposed Tool
H Metamodel Diagram ECore Part of EMF Tools
I ECore XSD Part of EMF Tools
J XSD ECore Part of EMF Tools
K ECore AcRefCode Proposed Tool
L ECore DataCode Proposed Tool
M XSD DataCode Part of CXF Tools
N DataCode XSD Part of CXF Tools
O WSDL XSD Part of CXF Tools
P XSD WSDL Part of CXF Tools
Q DataCode modelInstance Proposed Tool
R InterfaceCode WSDL Part of CXF Tools
S WSDL InterfaceCode Part of CXF Tools
T modelInstance modelObjectDiagram Proposed Tool
U modelInstance modelObjectDiagram Part of EMF Tools
V modelObjectDiagram modelInstance Part of EMF Tools
W Application modelInstance Proposed Tool
X AcRefCode Application Proposed Module Dependence
Y DataCode Application Proposed Module Dependence
Z InterfaceCode Application Proposed Module Dependence

J: XSD to ECore; Generates Ecore metamodel based on XSD, subject to compatibility

verification. Opposite of I.

K: ECore to AcRefCode; Generates a code component that allows programmers to

directly access model cross-references.

L: ECore to DataCode; Generates a code component that allows programmers to manip-

ulate model objects as classes.

M: XSD to DataCode; Generates a code component that allows programmers to manipu-

late model objects as classes.

N: DataCode to XSD; Extracts data structures from annotated code to generate the

representative XSD.

O: WSDL to XSD; Extracts the datatypes declarations inside the WSDL and exports

them as an XSD.
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P: XSD to WSDL; Creates an WSDL with the datatypes but without specific interface

definition, since it is not covered by XSD.

Q: DataCode to modelInstance; Allows programmatic instantiation of models from the

datacode.

R: InterfaceCode to WSDL; Extracts the interface from annotated code to export the

representative WSDL. Opposite of S.

S: WSDL to InterfaceCode; Generates interface code for the specified WSDL. Opposite

of R.

T: modelInstance to modelObjectDiagram; Generates an object diagram from an instance

model that is generated by applications or editors. Part of EMF tools, requires manual adaptation

and compiling for each type of metamodel.

U: modelInstance to modelObjectDiagram; Generates an object diagram from an instance

model that is generated by applications or editors. Created by author to support dynamic detection

of metamodel.

V: modelObjectDiagram and modelInstance; Diagram editor which generates model

instances.

W: AcRefCode and Application; Proposed dependency. Handles references and derefer-

encing in case of models with cross-references.

X: DataCode and Application; Proposed dependency. Data structures to represent models

at run-time for the application.

Z: InterfaceCode and Application; Proposed dependency. Header/interface code to im-

plement the services provided by the web services system.

B.1.2 Proposed MOWSDL Tools

There are four tools that take MOWSDL as input, as represented by letters A, C, D and E

on Table 66. These are compilers that take MOWSDL code as input and generate other artifacts.

All versions use the Xtext grammar parser generator (Eclipse Foundation, 2016) (which also

employs Antlr internally (PARR, 2013)).

B.1.2.1 MOWSDL to ECore

There are two editions of the ECore generator (Tool A), the first edition employs ATL

(Eclipse Foundation, 2009) making it a declarative model to model transformation. The second

edition employs Acceleo (Eclipse Foundation, 2015a) and generates the ECore XML via model

to text transformation. Both versions are equivalent, however, the latter version is preferred as it

was proven to be more stable when dealing with cross references (i.e., variable type usage). It is
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also intended to be integrated in an all-in-one MOWSDL compiler by generating all the resulting

artifacts.

The resulting ECore artifact is created to represent the metamodel specified by the

MOWSDL code. This metamodel is intended to be used as the data type and schema definition

of MOWS systems (and also generic MOSS implementations). It is eventually converted to data

structures in programming language and XSD to represent the XML structure managed by the

MOSS.

B.1.2.2 MOWSDL to XSD

The MOWDSL to XSD (Tool C) tool is capable of generating XSD from a MOWSDL

instance without using ECore as intermediate language. This generator was implemented using

Acceleo (Eclipse Foundation, 2015a) and generates XSD in a model-to-text transformation.

The main advantage of using this generator is to avoid data type constraints and Eclipse

Platform dependencies found in the existing ECore to XSD generator provided as part of EMF

tools (Eclipse Foundation, 2015b).

The data type constraints are related to how the XSD generator exports the used data

types. The EMF generator causes more dependency on the ECore data types, which could cause

an overhead on decoding and does not allow the meta-metamodel to be omitted (this impact is

discussed in Chapter 6).

The Eclipse Platform dependency is related to the file addressing rule used inside the

platform. It is used to refer to files inside the development tool workspace and is not compatible

to WS systems as required by MOWS.

B.1.2.3 MOWSDL to WSDL

The MOWSDL to WSDL generator (Tool D) transforms MOWSDL into standard WSDL

(CHRISTENSEN et al., 2001). This generator was implemented using Acceleo (Eclipse Founda-

tion, 2015a) and generates WSDL via model-to-text transformation.

WSDL is used by SOAP compliant web service servers to represent their interface (ports).

The generated WSDL depends on a XSD generated from the same MOWSDL, which can be

done directly (via generator C) or through ECore metamodel instance. In this thesis, generated

WSDL has been used to generate data structure code for Java (using Apache CXF tools (Apache

Foundation, 2017)) or C++ (gSOAP tools (ENGELEN; GALLIVAN et al., 2002)).

B.1.2.4 MOWSDL to Interface Code

The MOWSDL to Interface Code generator (Tool E) generates data structure code in

Java. It is meant to inter-operate with Apache CXF code (Apache Foundation, 2017).
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This generator was implemented using Acceleo (Eclipse Foundation, 2015a) and gener-

ates Java code via model-to-text transformation.

Initially, Apache CXF tools (Tool S) (Apache Foundation, 2017) were used to generate

Java code from WSDL (CHRISTENSEN et al., 2001). However, it has been noticed that

this generation tool was not optimized for use with MOWS, generating data-types that were

cumbersome to developers, i.e., heavy dependency on ECore and XSD classes, which was

unnatural for them to code. The proposed generator, however, includes implicit conversion to

fundamental Java types, allowing experienced Java developers to use the code without needing

to learn ECore and XSD data types. This generator supports SOAP and REST-style interfaces:

it was intended to provide interface support according to REST architectural recommendation

besides SOAP, whereas the Apache CXF WSDL tool is focused on SOAP.

B.1.3 Proposed ECore Tools

There are four tools, as represented by letters B, G, K and L on Table 66. These tools

take an ECore metamodel as input ECore is a meta-metamodel, i.e., allows to create metamodels.

This metamodeling language is supported by the EMF tools, which were used to decode the

metamodels for generating other artifacts.

B.1.3.1 ECore to MOWSDL

The ECore to MOWSDL Code generator (Tool B) generates MOWSDL code with the

metamodel semantics from the metamodel in ECore language.

This tool was implemented by using Acceleo (Eclipse Foundation, 2015a) and generates

MOWSDL concrete syntax text format in a model-to-text transformation.

Besides generating MOWSDL from metamodel, this tool suggests a basic interface for

easy specification by the developers. In case of existing MOWSDL code used as output, this

tool also attempts to save the existing definitions. As this tool is the opposite case from another

proposed tool (Tool A) it allows a round-trip development strategy.

B.1.3.2 ECore to Metamodel Diagram

ECore to Metamodel Diagram generate class diagrams from the metaclasses. Create to

support development whenever the EMF tool version cannot be used (Tool F).

It was implemented using a custom Java code that invokes Acceleo (Eclipse Foundation,

2015a) model-to-text transformation and transparently executes PlantUML (ROQUES, 2017)

using the same Java Virtual Machine to output diagrams as image files.

This tool can also be used in conjunction with the round-trip strategy of metamodel

creation using both ECore and MOWSDL (Tool A and Tool B) allowing quick visualization of
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the metamodel.

B.1.3.3 ECore to AcRefCode

ECore to AcRefCode (Tool K) generates Accessor and Referrer code pairs. This tool

was provided in two versions, both implemented in Acceleo (Eclipse Foundation, 2015a), which

generates code from models: The first version generates C++ code to be used with gSOAP2

(ENGELEN; GALLIVAN et al., 2002); The second version generates Java code to be used with

Java JAX and Apache CXF (Apache Foundation, 2017).

Accessor and Referrer code pairs are used in the context of the executing MOSS/MOWS

application to access and create references to model objects that use cross-references.

B.1.3.4 ECore to Data Code

ECore to Data Code (Tool L) generates Data code in Java to be compatible with Apache

CXF and Java JAX implementations (Apache Foundation, 2017).

It was implemented by using Acceleo (Eclipse Foundation, 2015a), which generates Java

code from ECore models in a model-to-text transformation.

This tool is capable of generating data structures with methods that make the resulting

application capable of reading and writing models, which is a basic requirement of MOSS (and

MOWS) systems.

B.1.4 Other Proposed Tools

B.1.4.1 Data Code to Model Instance

The Data Code to Model Instance (Tool Q) is a tool that is actually generated by the

ECore to Data Code (Tool L). Upon execution of the MOSS/MOWS application, the data can be

written as models by using methods generated by the data code generation tool.

B.1.4.2 Model Instance to Model Object Diagram

Model Instance to Model Object Diagram (Tool T) is an advanced tool capable of

dynamically decoding the metamodel at run-time and use model interpretation to read the model

instance to generate a model object diagram.

This tool was entirely implemented in Java without EMF tool dependency. It reads the

metamodels as XML and loads all definitions into memory to seek the metaclasses and their

relationships that are referenced by the model instance dynamically. This was necessary to

provide a tool that is completely metamodel independent, i.e., it can generate model object

diagrams from any metamodel. This tool uses PlantUML (ROQUES, 2017) in the same virtual

machine by sharing the run-time memory to output the object diagram into image files.
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The objective of this tool is to allow developers and users to visualize the object model

including their relationships and attribute values of any running MOSS/MOWS application.

B.1.4.3 Application to Model Instance

The Application to Model Instance (Tool W) depends on the Data Code to Model Instance

(Tool Q). These tools are actually generated by the ECore to Data Code (Tool L). Upon execution

of the MOSS/MOWS application, the data can be written as models by using methods generated

by the data code generation tool.

B.1.5 Other Tools for MOWS

More tools for supporting MOWS development cycles are under construction. It is worth

citing recent efforts on tools for MOWS testing. Since MOWS employ data as models and design

as metamodels, it is possible to create test case generators that verify the design and compare

inputs and outputs based on models. The test cases created for the experimental study presented

in Chapter 7 (Section 7.3) employed an initial version of this tool, which is expected to be

extended and released.

It is planned to update this list for the final version with new developments.

B.2 MOWSDL Grammar Specification

The reference for the MOWSDL grammar is also provided as part of this appendix.

MOWSDL is available in XText grammar (Eclipse Foundation, 2016). It was necessary to break

the grammar into two pages due to its length. These pages are shown as Figures 68 and 69,

respectively.
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Figure 68 – MOWSDL Grammar – Part 1

Source: Created by the author
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Figure 69 – MOWSDL Grammar – Part 2

Source: Created by the author
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APPENDIX

C

FEASIBILITY CASE STUDIES

C.1 Initial Remarks

We have developed Model-Oriented Web Service systems that we present as case studies

within this section. We believe that they provide evidences about MOWS feasibility. At the same

time, the simplest case study also serves as a concrete example of our proposals.

C.2 Simple Systems

The first case study shown in this appendix chapter is a simple Personal Information

Management system named CWEB (Contact Web). CWEB contains contact list information.

Therefore, there are entities, e.g., persons, and owned values associated to them, e.g., e-mail

address.

C.2.1 Extended CWEB System

This is the extended version of the example provided in Chapter 5, including a more

complex metamodel to allow flexibility when defining the data stored in the server. The idea of

the CWEB web service is to provide access and allow users to store and retrieve this contact list

information. This case study should be simple enough to provide a clear view on how a MOWS

is developed and how it behaves, providing evidences on the feasibility of the method as well as

some advantages and disadvantages that should be considered upon deciding whether to use the

method.

C.2.1.1 Metamodel Definition

The metamodel is the first artefact to be produced according to the established process.

The metamodel for the CWEB MOWS system is shown in Figure 70. This metamodel employs
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Figure 70 – Extended Metamodel for the CWEB DSL

Source: Created by the author

the three branches as root variation of CSCS (GOTTARDI; BRAGA, 2016), allowing a single

branch to be transferred per WS message.

The Configuration metaclass aggregates the configuration elements named OwnerType

and ValueType. OwnerType represents the type of an entity that owns values. ValueType represents

the type of a value that contains an attribute important to the system and/or users. ValueType

also allows to define the name of the value type. Since these metaclasses are under the con-

figuration branch, they cannot be changed by the software during run-time, which means that

the types and the value type names are fixed when the application is started. These Configura-

tion Elements are referenced by using metaclasses with the suffix “Ref” (serving the role of

ConfigurationElementID).

In turn, the Setting metaclass aggregates the setting elements named OwnerSetting and

ValueSetting. The setting elements are used to enable referenced configuration elements. They

can be also used to define specific settings that can be changed at run-time. In this example,

OwnerSetting has the title property. Then, the title of value owners can be changed at any time

by the server or by a client that has enough permission. Following the pattern, there are also “Ref”
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to allow branch cross-referencing.

For the CurrentSetting metaclass, there are the current setting elements named OwnerIn-

stance and ValueInstance. These metaclasses are used to create the actual instance objects at the

model level. They must reference OwnerSetting and ValueSetting, respectively, to receive the

definitions specified both in setting and configuration levels. A concrete example is discussed

within the following subsubsections.

C.2.1.2 Run-Time Model Instance

Considering a model instance of the PIM metamodel that is used to store persons

with their names and e-mail addresses, a model is defined containing the following objects:

Configuration branch: A OwnerType that is referenced by index 1. A ValueType that is referenced

by index 2 and has name “e-mail”. Setting branch: A OwnerSetting that is referenced by index 1

and has title “Person”. A ValueSetting that is referenced by index 2.

Then, Current State branch would have the usual data of the PIM system: The first

OwnerInstance has name “Alice” and contains an object ValueInstance which has value “al-

ice@example.com”. The second OwnerInstance has name “Bob” and contains an object Value-

Instance which has value “bob@example.com”.

Please note that the indexes do not clash even if they have the same number in this

example. This is because the index is checked against each specific metaclass when referencing

objects.

C.2.1.3 Model and Diagram Editor

First of all, since the MOWS transfers models serialized as XML, they also follow the

XMI specification for standardization. For completeness, we also provide the full XMI/XML

of the model in Figure 71. That is the actual payload in case a MOWS server transferred the

complete model, which can be opened by model editors.

As part of the end-user visible characteristics of MOWS, modelling tools, including the

the Eclipse Modelling Framework (EMF) (Eclipse Foundation, 2015b) originally designed for

MDSE can be employed to visualize and edit models of state and data of the running system.

Models can be visualized as abstract syntax trees or as a concrete syntax representation

(BRAMBILLA; CABOT; WIMMER, 2012). The abstract syntax allows to view the complete

structure of the model as a tree. Concrete syntax may vary according to their objective, for

instance, there could be partial graphical views as well as human readable textual representations.

The described model abstract syntax tree editor is shown in Figure 72. The editor was made

using the Graphical Modeling Framework for EMF (Eclipse Foundation, 2015b).

It is possible to visualize every object in the abstract syntax tree, which includes every

branch, OwnerTypes, ValueTypes, OwnerSettings, ValueSettings, OwnerInstances and Value-
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Figure 71 – CWEB Model as an XMI/XML

<?xml version=“1.0" encoding=“UTF-8"?>
<cweb:CommonRoot xmi:version=“2.0"

xmlns:xmi=“http://www.omg.org/XMI"
xmlns:cweb=“http://example/cweb">
<configuration>
<ownerType id=“1"/>
<valueType id=“2" name=“e-mail"/>
</configuration>
<setting>
<ownerSetting id=“1" title=“Person"
value=“//@setting/@valueSetting.0"/>
<valueSetting id=“2"/>
</setting>
<currentState>
<ownerInstance name=“Alice">
<setting id=“1"/>
<ownedValue value=“alice@example.com">
<setting id=“2"/>
</ownedValue>
</ownerInstance>
<ownerInstance name=“Bob">
<setting id=“1"/>
<ownedValue value=“bob@example.com">
<setting id=“2"/>
</ownedValue>
</ownerInstance>
</currentState>
</cweb:CommonRoot>

Source: Created by the author

Figure 72 – CWEB Model in EMF model edit tool

Source: Created by the author
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Instances. The editor also shows the first property of the object, the rest of the properties are

accessed by a specific panel.

Figure 73 – CWEB Diagram Editor using GMF

Source: Created by the author

An example of a graphical concrete syntax representation of the same model is presented

in Figure 73. In this diagram editor, it is possible to view and edit the current state branch

graphically. Please note that this figure contains a new entry for the InstanceOwner “Carlos”,

which was added by using the graphical editor.

C.2.1.4 Statistics Generation

Figure 74 – Code for Spreadsheet Generator

[module generate(’http://example/pim’)]

[template public generateReport( aCommonRoot : CommonRoot )]

[comment @main/]

[file (’sheet.csv’,false,’UTF-8’)]

State Object Type;Count;

OwnerInstance;[aCommonRoot.currentstate.ownerInstance->size()/];

ValueInstance;[aCommonRoot.currentstate.valueInstance->size()/];

;;

Detected Problems;(ignore if empty);

[for (ownerRef : OwnerSettingRef |

OwnerSettingRef.allInstances()->select( r : OwnerSettingRef |

OwnerSetting.allInstances()->exists( o : OwnerSetting | o.id = r.id

)

)

)]

Unmatched Owner Setting Reference; id=[ownerRef.id/];

[/for]

;;

[/file]

[/template]

Source: Created by the author

Apart from model editors, model transformation can also be employed to extract infor-

mation from the models. If the models contain data of the application configuration and state,

it is possible to extract numbers from the models in order to allow statistical analysis. Code

generators and code validators can also be used to validate the model. For instance, in the exam-

ple present in Figure 74, there is a code of model-to-text transformation in MTL (MOFM2T)

(Object Management Group, 2008b) that allows to extract a spreadsheet from the model. In
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Table 67 – Generated Spreadsheet for Statistics

State Object Type Count

OwnerInstance 3
ValueInstance 3

Detected Problems (ignore if empty)

the spreadsheet, there are instance counts per type and it is also checked if a provided object

reference is correctly matched. The results of this code generator are provided on Table 67.

C.3 Experimental Systems

This section contains the systems that were built according to MOWS requirements.

They are functional and were used for the experiment described in Chapter 7 (Section 7.3.

They are instances of sales systems which follow the same requirements and present

the same complexity. These systems are based on client-server architecture where the server

aggregates the sales history and available products for sale. The client has freedom to create its

own shopping list before submitting it to the server, which processes the transaction in case of

acceptance.

C.3.1 Shop Management System

Shop Management System is a MOWS system used during the training for the experimen-

tal study presented in Chapter 7 (Section 7.3). More details on the training instrumentation are

provided within Appendix E. Its design is shown in Figure 75. The marked class and relationships

represent the requested maintenance carried during the experiment. The server component has a

pair of methods specified as shown in Figure 76. The client design is shown in Figure 77.

C.3.2 Clinic Management System

Clinic Management System is a MOWS system used in the experimental study presented

in Chapter 7 (Section 7.3). Its design is shown in Figure 78. The marked class and relationships

represent the requested maintenance carried during the experiment. This system is a derivative

of the Shop Management System.

C.3.3 Delivery Tracking System

Delivery Tracking System is a MOWS system used in the experimental study presented

in Chapter 7 (Section 7.3). Its design is shown in Figure 79. The marked class and relationships
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Figure 75 – Class Diagram for Shop Management System
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Source: Created by the author

Figure 76 – Class Diagram for Server Component

server
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void getProduct(ELong Barcode)
void addCart(Cart cart)

Source: Created by the author

Figure 77 – Class Diagram for Client Component
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Source: Created by the author

represent the requested maintenance carried during the experiment. This system is a derivative

of the Shop Management System.

C.3.4 Flight Booking System

Flight Booking System is a MOWS system used in the experimental study presented in

Chapter 7 (Section 7.3). Its design is shown in Figure 80. The marked class and relationships
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Figure 78 – Class Diagram for Clinic Management System
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Figure 79 – Class Diagram for Flight Booking System
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Source: Created by the author

represent the requested maintenance carried during the experiment. This system is a derivative

of the Shop Management System.
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Figure 80 – Class Diagram for Flight Booking System

AirlineCompany

FlightBooking

Flight

number : short[1]

Passenger

name : String[1]

«add»
CrewMember

name : String[1]

bookings

0..*

flights

0..*

passengers

0..*

flight

1

crewMember «add»

1

crewMembers «add»

0..*

Source: Created by the author

C.3.5 Restaurant Orders System

Restaurant Orders System is a MOWS system used in the experimental study presented

in Chapter 7 (Section 7.3). Its design is shown in Figure 81. The marked class and relationships

represent the requested maintenance carried during the experiment. This system is a derivative

of the Shop Management System.

C.4 Advanced Systems

C.4.1 Related Real World Project: Software Reuse Tool

The author of this thesis is involved in a software engineering tool project which is a

software itself, intended to help developers to find components to be reused. This project, albeit

in early development, is targeted for production state, being used freely by real world users.

This tool is basically a smart distributed repository for reusable artifacts. It is smart

because of recommendation capabilities and distributed because there can be more than one

server. The combination of these servers allows the execution of cascaded queries.

In this project, the flexible metamodel pattern is not applied, because there are metamod-

els specifically for each concern, that is, the configuration is not performed by creating models

of the same metamodel. However, the state of the server is still represented as a model. This

multiple metamodel definition is also used to increase modularity. Each module only needs to

decode models related to their concern, which can be smaller than a flexible metamodel.
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Figure 81 – Class Diagram for Restaurant Orders System
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As part of this definition, the tool uses models to represent reusable artefact definition

and indexing. Therefore, the state of the server would be a model that contains every indexed

element within its database. Since this model could become too large for transmission, the

indexing model allows partial loading of models while the cascaded queries allow the models to

be merged to provide a single all-inclusive response.

In this manner, a request to search for a specific artifact may return a model with no index

reference or a selection of indexes that match the request of the clients, that could be present in

any of the connected servers requested for the cascaded query.

The clients are also allowed to send requests to change the state of the server if they have

enough permission. This is done by an append request. The client sends a model that contains

a new element to be appended while providing a set of credentials. The server must validate

the credentials to confirm the permission of the client, then, validate if the model can be in fact

appended to the state of the server.

In summary, we must highlight the following features of this project that are related to

the Model-Oriented Web Service method:

∙ Software Engineering Application;

∙ Partial model transmission;

∙ Model merging for cascaded queries;
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∙ Planned model processing for statistics, which are necessary for recommendation;

∙ High modularity design.

C.4.2 Related Real World Project: Turn Based Strategy Computer

Game

A multi-player strategy computer game under development employs the Model-Oriented

Web Service method while adhering completely to the CSCS pattern (GOTTARDI; BRAGA,

2016).

It is a territorial conquest turn-based game, which is also the largest case study that

employs this pattern. The configuration branch is employed for game modifications, while the

setting branch contains fixed situation definitions that do not change throughout the course of the

turns, e.g as the maximum number of players and the fixed parts of the world in which the game

is set on.

Despite the flexible configuration advantages, the most significant drawback of using

flexibility adherence for this large project is that the metamodel is the most complex among the

projects presented herein. The current state branch is used to define the current turn situation.

The history branch variation was employed in this project to allow accumulating the previous

states as well, which serve as a history for what happens inside the game situation.

According to the client-server architecture, the server hosts a game for a number of

clients that represent the players. The clients send requests containing the actions that the players

wish to be carried for the turn to be ended. The server processes the actions for ending the turns

and responds to the clients with the new states after the turn has been changed.

The server has to validate the permission of the clients for the action requests as well as

hiding the data from opponent players. This data hiding is also a specific case of partial model

transmission.

Therefore, for this project, we must highlight the following Model-Oriented Web Service

method related features:

∙ Partial model transmission;

∙ Call synchronisation;

∙ Planned model processing for statistics, which are necessary for recommendation;

∙ Full CSCS adherence.



248 APPENDIX C. Feasibility Case Studies

C.5 Planned Systems

New proposals for MOWS systems have been suggested. The ability of quickly building

systems that allows asynchronous transmission of partial models are being studied in order to

develop software for education, traffic control and smart homes.

Partial model transmission allows the clients to manage a branch of the model and then

re-synchronize the model at the server. This is beneficial in cases of network interruption, since

the client would still keep a partial copy of the model in order to maintain its functionality

without the server.
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APPENDIX

D

DATA STRUCTURE VERIFICATION

EXPERIMENT

This section contains the verbatim copy of the tasks performed by the participants of the

experimental study presented in Section 7.2 (Chapter 7). This section follows the same structure

as the survey used for the study: Consent Agreement Form, Profile Characterization Form, Class

Identification Task, List Identification Task, Relationship Identification Task, Diagram Matching

Task, and final feedback form.

D.1 Consent Agreement Form

Prior to starting the experiment, the participants had to answer a consent form, which was

only valid if they were 18 years old or older, as visible in Figure 82. Therefore, the form asked

the participants to confirm their age and to answer the consent agreement whether they wished

to participate. They also had freedom to quit at anytime, as specified in the consent agreement.

This agreement was only shown to participants who answered “yes” to the age question, which

implies they can only accept it if their age is 18 or older. A verbatim copy of the agreement is

shown in Figure 83. Answering “no” to any of these questions would forward the participant to

the last page of the survey, without effectively participating on any task.

D.2 Profile Characterization Form

The profile characterization was planned to verify the experience of participants. This

profile was asked to any participant who accepted the consent agreement. The first question was

related to the school attendance level of the participants, as present in Figure 84.

After answering the school attendance question, if the participants answered they were

undergraduate students or completed graduation, a new question on the graduation course would
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Figure 82 – Participant Age Confirmation


You are required to be 18 years old or older to accept the consent agreement.

Are you 18 years old or older ?

Yes No

Source: Created by the author

Figure 83 – Consent Agreement


We kindly ask for your participation, however, you reserve the right to quit at any time.

Study Definition

This study is conducted by Thiago Gottardi, a PhD candidate atUniversity of São Paulo, and Prof.

Dr. Rosana Teresinha Vaccare Braga,an associate professor at University of São Paulo.

This study is proposed to evaluate readability of languages during specific development activities.

We must not oblige anyone to participate, therefore, if you really want to participate, you must

accept these terms.

Terms
The participant must volunteer spontaneously.

The participant may quit at any time.

Participants are considered anonymous.

The participants are not evaluated, but the studied techniques.

The participant must not disclose confidential unpublished information.

The current study must not cause suffering to any participant.

The participant may acquire useful knowledge by participating.

Do you spontaneously accept these terms?

Yes No

Source: Created by the author

appear, as visible in Figure 85.

Regardless of the graduation of the participant, the form would also include a question

on their occupation, as shown in Figure 86. Past occupation experiences are also asked to be

included.

Afterwards, the programming experience level is asked to the participants as present in

Figure 87. This question is very important to the study and has been used to select the participants,

as defined in Section 7.2.2 (Chapter 7).

The experience on Java programming language is also required since it was the program-

ming language used in the study. This question form is shown in Figure 88.

Experience on UML class and object diagrams is also asked, as visible in Figure 89, but

it was not required for selection. Class diagrams are used during the diagram matching task in
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Figure 84 – School Attendance Question

What is your instruction level?

Check all that apply

No High School

Complete High School

Undergraduate Student

Graduate

Master's Student

Master's Degree

PhD Candidate

PhD Complete

Other:

Source: Created by the author

Figure 85 – Graduation Question

What is the graduate degree you completed or are studying for?

Choose one of the following answers

If you choose 'Other:' please also specify your choice in the accompanying text field.

Computer Sciences

Information Systems

Computer Engineering

Electrical Engineering

Software Engineering

System Analysis

Informatics

Applied/Computational Mathematics

(Theoretical) Mathematics

Statistics

Mathematics Licensing

Other:

Source: Created by the author

the experiment, therefore, their experience could affect its results.

The source code present in the tasks throughout the study were generated using the code

syntax highlight from Eclipse IDE, i.e. colors and text format. Therefore, it was also asked if the

participants had experience on Eclipse IDE, which is shown in Figure 90, since it could affect

their ability to read the code.
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Figure 86 – Current and Past Occupation Question

What is your (current and past) occupation?

Check all that apply

Student

Teacher

Professor

Developer/programmer

Designer or systems analyst

Tester

Project manager

Researcher

Other:

 You should include past occupations since they count as experience.

Source: Created by the author

Figure 87 – Programming Experience Question

Years experience in programming, any language.

Only numbers may be entered in this field.

Your answer must be at least 0

 For how long do you program?

Source: Created by the author

Figure 88 – Java Experience Question

Experience on Java Programming Language.

Choose one of the following answers

never heard of

never used

used only once

used rarely

used frequently

uses often or works with it

Source: Created by the author

AS the MOWSDL language was created for metamodeling, a question on metamodeling

experience was also included in the characterization form, as shown in Figure 91.

There was a concern that ontology experience would also affect the metamodeling tasks,
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Figure 89 – UML Experience Question

Experience on UML.

Choose one of the following answers

never heard of

never used

used once

used rarely

used frequently

uses often or works with it

 Specifically class and object diagrams.

Source: Created by the author

Figure 90 – Eclipse IDE Experience Question

Experience on Eclipse IDE Platform.

Choose one of the following answers

never heard of

never used

used once

used rarely

used frequently

uses often or works with it

Source: Created by the author

Figure 91 – Metamodeling Experience Question

Experience on metamodels.

Choose one of the following answers

never heard of

never used

used once

used rarely

used frequently

uses often or works with it

Source: Created by the author

due to similarity on concept modeling. Therefore, question on metamodeling experience was

also added, as visible in Figure 92.

Another concern that was considered during study planning was that experience on code
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Figure 92 – Ontology Experience Question

Experience on ontology models.

Choose one of the following answers

never heard of

never used

used once

used rarely

used frequently

uses often or works with it

Source: Created by the author

generation and compilers would also affect the usage of MOWSDL as it could be linked to

language creation tasks that are present in projects that involve code generation or compilers.

For this reason, this question on experience was added as shown in Figure 93.

Figure 93 – Experience on Developing Code Generation and Compilers Question

Experience on developing Compilers or Code Generators.

Choose one of the following answers

never heard of

never done

done once

done rarely

done frequently

does often or works with it

 Excludes compiler usage.

Source: Created by the author

The usage of Java and MOWSDL to declare data structures could also be related to the

efforts of design database schemas. Therefore, a question on database design experience was

added, as visible in Figure 94.

D.3 Class Identification

Class identification is presented as the first task of the study. Prior to this task, a specific

training session is presented, as described in Section 7.2.3 (Chapter 7).

This task is divided into subtasks. Each subtask asks the participant to count classes

using either MOWSDL or Java code. The order of subtasks is completely random, therefore, the

participants only know that there are 4 Java subtasks and 4 MOWSDL subtasks, i.e. 8 subtasks.
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Figure 94 – Database Design Experience Question

Experience on designing Data Structures (Schema).

Choose one of the following answers

never heard of

never done

done once

done rarely

done frequently

does often or works with it

 Includes database design.

Source: Created by the author

Each one of the 8 subtasks may appear in any order, therefore, it is not possible to know which

language is going to be used before the subtask appears. The subtasks were also paired but the

declaration order of classes was changed. Participants who completed the experiment said they

were not able to identify that there were paired subtasks. The language and valid answers for

the subtasks are represented on Table 68. This table is composed by four columns: The first

column represents the paired number of the subtask, i.e. there are two subtasks with each number;

The second column indicates which is the language used for the subtask; The third column

indicates the valid answers that the participants could enter, they could be null for “no answer”

or a decimal number from 0 to 10; The fourth column indicates the expected answer for this

subtask to be considered correct, i.e., it must be equal to the correct answer. Null answers were

also considered incorrect.

Table 68 – Class Identification Subtasks and Answers

Subtask Number Language Valid Answers Correct Answer

1 Java Null or 0 to 10 5
1 MOWSDL Null or 0 to 10 5
2 Java Null or 0 to 10 6
2 MOWSDL Null or 0 to 10 6
3 Java Null or 0 to 10 9
3 MOWSDL Null or 0 to 10 9
4 Java Null or 0 to 10 8
4 MOWSDL Null or 0 to 10 8

The questions showing the code for the participants to identify the number of lists are

visible in Figures 95 to 102. As the questions from the first three tasks were answered by counting

keywords on text, a detail that is hidden inside the questions is a random set of keywords, e.g.

“class”. These keywords were hidden inside these questions to incapacitate the participants from

using automatic tools (e.g., web browser search function) from counting these keywords.
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Figure 95 – Class Counting Subtask 1 Java

Consider the following Java Code:

m101;101;5;5;3;2;2;1 class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class
extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl

N.java

package model;

class N extends Q {

List<J> s;

}

Q.java

package model;

class Q {

Date x;

}

V.java

package model;

class V {

char z;

List<Q> r;

}

I.java

package model;

class I {

}

J.java

package model;

class J {

long u;

List<N> p;

List<V> f;

}
class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference
composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl

Answer: How many classes have been declared?

Source: Created by the author

It is important to remind that after this task was finished, the participants had access to an

opinion form on which language was preferred for the given task, as described in Section 7.2.3

(Chapter 7).

D.4 List Identification

The list identification task follows the same planning as the class identification task.

The major difference is the task type, which is focused on counting lists instead of classes. The

answers table, presented on Table 69, follows the same structure as the previous table. It is

important to remind that prior to the execution of this task, there is a training session as described

in Section 7.2.3 (Chapter 7).

The questions showing the code for the participants to identify the number of lists are

visible in Figures 103 to 110.

It is important to remind that after this task was finished, the participants had access to an

opinion form on which language was preferred for the given task, as described in Section 7.2.3

(Chapter 7).
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Figure 96 – Class Counting Subtask 1 MOWSDL

Consider the following MOWSDL Code:

m101;101;5;5;3;2;2;1 class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class
extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl

m101.mowsdl

metamodel model( "http://m101/","m101.xsd","m101.ecore") {

class J {

attribute u: long[ 0..1];

composition p: N[ 0..*];

reference f: V[ 0..*];

}

class I {

}

class V {

attribute z: char[ 0..1];

reference r: Q[ 0..*];

}

class Q {

attribute x: Date[ 1];

}

class N extends Q {

composition s: J[ 0..*];

}

}
class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference
composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl

Answer: How many classes have been declared?

Source: Created by the author

Table 69 – List Identification Subtasks and Answers

Subtask Number Language Valid Answers Correct Answer

1 Java Null or 0 to 10 6
1 MOWSDL Null or 0 to 10 6
2 Java Null or 0 to 10 5
2 MOWSDL Null or 0 to 10 5
3 Java Null or 0 to 10 3
3 MOWSDL Null or 0 to 10 3
4 Java Null or 0 to 10 4
4 MOWSDL Null or 0 to 10 4

D.5 Relationship Identification

The relationship identification task follows the same planning as the class and list

identification task. The major difference is the task type, which is focused on counting lists

instead of lists. The answers table, presented on Table 70, follows the same structure as the

previous table. It is important to remind that prior to the execution of this task, there is a training

session as described in Section 7.2.3 (Chapter 7).

The questions showing the code for the participants to identify the number of relationships

are visible in Figures 111 to 118.

It is important to remind that after this task was finished, the participants had access to an
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Figure 97 – Class Counting Subtask 2 Java

Consider the following Java Code:

m102;102;5;6;3;2;2;1 class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class
extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl

W.java

package model;

class W extends E {

List<U> q;

}

E.java

package model;

class E {

Date m;

byte d;

}

U.java

package model;

class U {

}

B.java

package model;

class B {

}

L.java

package model;

class L {

B g;

}

P.java

package model;

class P {

String o;

List<L> n;

B v;

}
class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference
composition List java mowsdl class extends attribute reference composition List java mowsdl

Answer: How many classes have been declared?

Source: Created by the author

Table 70 – Relationship Identification Subtasks and Answers

Subtask Number Language Valid Answers Correct Answer

1 Java Null or 0 to 10 5
1 MOWSDL Null or 0 to 10 5
2 Java Null or 0 to 10 6
2 MOWSDL Null or 0 to 10 6
3 Java Null or 0 to 10 4
3 MOWSDL Null or 0 to 10 4
4 Java Null or 0 to 10 3
4 MOWSDL Null or 0 to 10 3

opinion form on which language was preferred for the given task, as described in Section 7.2.3

(Chapter 7).
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Figure 98 – Class Counting Subtask 2 MOWSDL

Consider the following MOWSDL Code:

m102;102;5;6;3;2;2;1 class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl

m102.mowsdl

metamodel model( "http://m102/","m102.xsd","m102.ecore") {

class P {

attribute o: String[ 1];

composition n: L[ 0..*];

reference v: B[ 0..1];

}

class L {

reference g: B[ 0..1];

}

class B {

}

class U {

}

class E {

attribute m: Date[ 0..1];

attribute d: byte[ 1];

}

class W extends E {

composition q: U[ 0..*];

}

}
class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl

Answer: How many classes have been declared?

Source: Created by the author

D.6 Diagram matching

Diagram matching task is also composed by 4 pairs of subtasks, i.e., 4 Java subtasks and

4 MOWSDL subtasks. Instead of accepting a 0 to 10 decimal number, this task was composed

by a three diagrams per question. Only one diagram matched the presented code. The order of

subtasks and the order of diagrams presented to the participant are completely random.

There are eight possible diagrams. Their names are based on their numeric seed used

to generate random diagrams. Diagram A17 is shown in Figure 119; Diagram A26 is shown

in Figure 120; Diagram A20 is shown in Figure 121; Diagram A34 is shown in Figure 122;

Diagram A23 is shown in Figure 123; Diagram A47 is shown in Figure 124; Diagram A4 is

shown in Figure 125; Diagram A29 is shown in Figure 126.

The valid answers are presented on Table 71. This table follows the same structure of

previous answers tables. While the correct answers shown on table are always the first option,

it is important to remind that the answer options are shown as diagrams in random order to

the participants, i.e., the correct answer position varies. Also, the names of diagrams was not

visible to the participants. The MOWSDL version indeed did show the seed number as part of

the metamodel name, but it was not possible to match it to any other information. It is important

to remind that prior to the execution of this task, there is a training session as described in
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Figure 99 – Class Counting Subtask 3 Java

Consider the following Java Code:

m103;103;5;9;3;2;2;1 class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class
extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl

Z.java

package model;

class Z extends T {

long r;

List<T> m;

Q h;

}

T.java

package model;

class T {

int b;

}

S.java

package model;

class S {

}

K.java

package model;

class K {

}

W.java

package model;

class W {

}

Q.java

package model;

class Q {

}

N.java

package model;

class N {

}

V.java

package model;

class V {

}

X.java

package model;

class X {

Date y;

List<W> a;

List<T> i;

}
class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference
composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl

Answer: How many classes have been declared?

Source: Created by the author

Section 7.2.3 (Chapter 7).

The questions showing the code for the participants to find the matching diagram are

visible in Figures 127 to 134.

It is important to remind that after this task was finished, the participants had access to an

opinion form on which language was preferred for the given task, as described in Section 7.2.3

(Chapter 7).
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Figure 100 – Class Counting Subtask 3 MOWSDL

Consider the following MOWSDL Code:

m103;103;5;9;3;2;2;1 class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl

m103.mowsdl

metamodel model( "http://m103/","m103.xsd","m103.ecore") {

class X {

attribute y: Date[ 1];

composition a: W[ 0..*];

reference i: T[ 0..*];

}

class V {

}

class N {

}

class Q {

}

class W {

}

class K {

}

class S {

}

class T {

attribute b: int[ 1];

}

class Z extends T {

attribute r: long[ 0..1];

composition m: T[ 0..*];

reference h: Q[ 0..1];

}

}
class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference
composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl

Answer: How many classes have been declared?

Source: Created by the author

Table 71 – Diagram Matching Subtasks and Answers

Subtask Number Language Valid Answers Correct Answer

1 Java Null, A17, A26 or A20 A17
1 MOWSDL Null, A17, A26 or A20 A17
2 Java Null, A26, A34 or A23 A26
2 MOWSDL Null, A26, A34 or A23 A26
3 Java Null, A34, A4 or A47 A34
3 MOWSDL Null, A34, A4 or A47 A34
4 Java Null, A4, A17 or A29 A4
4 MOWSDL Null, A4, A17 or A29 A4

D.7 Feedback Form

After the task was finished, the participants had access to a feedback form. This page is

completely optional. The first feedback question was a range of -2,-1,0,+1,+2 answers labelled

as “Not at All”, “No”, “So-So”, “Yes”, “A lot”, respectively, for several attributes, which are
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Figure 101 – Class Counting Subtask 4 Java

Consider the following Java Code:

m105;105;5;8;3;2;2;1 class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class
extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl

X.java

package model;

class X extends P {

List<K> q;

}

P.java

package model;

class P {

byte h;

String o;

}

T.java

package model;

class T {

List<X> v;

}

J.java

package model;

class J {

}

K.java

package model;

class K {

}

L.java

package model;

class L {

}

U.java

package model;

class U {

}

F.java

package model;

class F {

String b;

List<L> y;

List<J> m;

}
class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference
composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl

Answer: How many classes have been declared?

Source: Created by the author

presented on Table 72. This table is composed by four columns: The first column represents

the number of the attribute; The second column indicates the attribute text; The third column

indicates the valid answers that the participants could enter, they could be null for “no answer”

or an integer number from -2 to +2; The fourth column indicates the expected answer for this

subtask to be considered correct, i.e., any answer is valid since this is an opinion form.

It is important to clarify that any answer is considered correct since this is an opinion

form. The addition of contradictory attributes was planned to cross-examine the answers for

contradictions.

This form also included free text feedback and allowed the participants to provide contact
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Figure 102 – Class Counting Subtask 4 MOWSDL

Consider the following MOWSDL Code:

m105;105;5;8;3;2;2;1 class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl

m105.mowsdl

metamodel model( "http://m105/","m105.xsd","m105.ecore") {

class F {

attribute b: String[ 1];

composition y: L[ 0..*];

reference m: J[ 0..*];

}

class U {

}

class L {

}

class K {

}

class J {

}

class T {

composition v: X[ 0..*];

}

class P {

attribute h: byte[ 1];

attribute o: String[ 0..1];

}

class X extends P {

reference q: K[ 0..*];

}

}
class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference composition List java mowsdl class extends attribute reference
composition List java mowsdl

Answer: How many classes have been declared?

Source: Created by the author

if they really wished to. Due to possible identifying information in this section of the form, this

information will not be published since we intended to keep the participants anonymous.
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Figure 103 – List Counting Subtask 1 Java

Consider the following Java Code:

m12;12;3;3;3;3;3;0;0 class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

O.java

package model;

class O {

byte i;

Date u;

long k;

List<J> h;

List<J> v;

List<O> x;

List<J> e;

List<B> p;

}

B.java

package model;

class B {

}

J.java

package model;

class J {

List<O> g;

}
class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute
reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: How many Lists have been declared?

Source: Created by the author

Figure 104 – List Counting Subtask 1 MOWSDL

Consider the following MOWSDL Code:

m12;12;3;3;3;3;3;0;0 class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

m12.mowsdl

metamodel model( "http://m12/","m12.xsd","m12.ecore") {

class J {

composition g: O[ 0..*];

}

class B {

}

class O {

attribute i: byte[ 1];

attribute u: Date[ 0..1];

attribute k: long[ 1];

composition h: J[ 0..*];

composition v: J[ 0..*];

reference x: O[ 0..*];

reference e: J[ 0..*];

reference p: B[ 0..*];

}

}
class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute
reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: How many Lists have been declared?

Source: Created by the author
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Figure 105 – List Counting Subtask 2 Java

Consider the following Java Code:

m13;13;3;3;3;3;3;0;0 class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class
extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

J.java

package model;

class J {

char o;

List<Q> x;

List<W> b;

}

Q.java

package model;

class Q {

int f;

List<J> c;

List<W> m;

}

W.java

package model;

class W {

int z;

List<W> y;

Q s;

}
class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute
reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: How many Lists have been declared?

Source: Created by the author

Figure 106 – List Counting Subtask 2 MOWSDL

Consider the following MOWSDL Code:

m13;13;3;3;3;3;3;0;0 class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class
extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

m13.mowsdl

metamodel model( "http://m13/","m13.xsd","m13.ecore") {

class W {

attribute z: int[ 1];

reference y: W[ 0..*];

reference s: Q[ 0..1];

}

class Q {

attribute f: int[ 0..1];

composition c: J[ 0..*];

reference m: W[ 0..*];

}

class J {

attribute o: char[ 1];

composition x: Q[ 0..*];

composition b: W[ 0..*];

}

}
class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute
reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: How many Lists have been declared?

Source: Created by the author
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Figure 107 – List Counting Subtask 3 Java

Consider the following Java Code:

m14;14;3;3;3;3;3;0;0 class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class
extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

A.java

package model;

class A {

char o;

byte v;

List<A> f;

I k;

D z;

D j;

}

I.java

package model;

class I {

byte p;

List<A> e;

List<I> x;

}

D.java

package model;

class D {

}
class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute
reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: How many Lists have been declared?

Source: Created by the author

Figure 108 – List Counting Subtask 3 MOWSDL

Consider the following MOWSDL Code:

m14;14;3;3;3;3;3;0;0 class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class
extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference
composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

m14.mowsdl

metamodel model( "http://m14/","m14.xsd","m14.ecore") {

class D {

}

class I {

attribute p: byte[ 0..1];

composition e: A[ 0..*];

composition x: I[ 0..*];

}

class A {

attribute o: char[ 0..1];

attribute v: byte[ 1];

composition f: A[ 0..*];

reference k: I[ 0..1];

reference z: D[ 0..1];

reference j: D[ 0..1];

}

}
class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: How many Lists have been declared?

Source: Created by the author
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Figure 109 – List Counting Subtask 4 Java

Consider the following Java Code:

m15;15;3;3;0;3;2;0;0 class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class
extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

S.java

package model;

class S {

List<S> i;

List<Y> c;

List<F> e;

}

F.java

package model;

class F {

List<S> p;

F z;

}

Y.java

package model;

class Y {

}
class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: How many Lists have been declared?

Source: Created by the author

Figure 110 – List Counting Subtask 4 MOWSDL

Consider the following MOWSDL Code:

m15;15;3;3;0;3;2;0;0 class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class
extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

m15.mowsdl

metamodel model( "http://m15/","m15.xsd","m15.ecore") {

class Y {

}

class F {

composition p: S[ 0..*];

reference z: F[ 0..1];

}

class S {

composition i: S[ 0..*];

composition c: Y[ 0..*];

reference e: F[ 0..*];

}

}
class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute
reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: How many Lists have been declared?

Source: Created by the author
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Figure 111 – Relationship Counting Subtask 1 Java

Consider the following Java Code:

m0;0;3;3;3;3;2;0;0 class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class
extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

S.java

package model;

class S {

char z;

int b;

int l;

List<S> g;

F e;

S t;

}

F.java

package model;

class F {

List<N> w;

List<S> h;

}

N.java

package model;

class N {

}
class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute
reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: How many Relationships have been declared?

Source: Created by the author

Figure 112 – Relationship Counting Subtask 1 MOWSDL

Consider the following MOWSDL Code:

m0;0;3;3;3;3;2;0;0 class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class
extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference
composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

m0.mowsdl

metamodel model( "http://m0/","m0.xsd","m0.ecore" ) {

class N {

}

class F {

composition w: N[ 0..*];

composition h: S[ 0..*];

}

class S {

attribute z: char[ 1];

attribute b: int[ 1];

attribute l: int[ 1];

composition g: S[ 0..*];

reference e: F[ 0..1];

reference t: S[ 0..1];

}

}
class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute
reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: How many Relationships have been declared?

Source: Created by the author
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Figure 113 – Relationship Counting Subtask 2 Java

Consider the following Java Code:

m2;2;3;3;3;3;3;0;0 class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class
extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference
composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Z.java

package model;

class Z {

byte l;

long c;

Date h;

List<S> a;

List<K> j;

Z n;

}

S.java

package model;

class S {

List<S> d;

List<S> o;

}

K.java

package model;

class K {

List<S> m;

}
class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute
reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition
List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: How many Relationships have been declared?

Source: Created by the author

Figure 114 – Relationship Counting Subtask 2 MOWSDL

Consider the following MOWSDL Code:

m2;2;3;3;3;3;3;0;0 class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

m2.mowsdl

metamodel model( "http://m2/","m2.xsd","m2.ecore" ) {

class K {

composition m: S[ 0..*];

}

class S {

composition d: S[ 0..*];

reference o: S[ 0..*];

}

class Z {

attribute l: byte[ 1];

attribute c: long[ 1];

attribute h: Date[ 0..1];

composition a: S[ 0..*];

reference j: K[ 0..*];

reference n: Z[ 0..1];

}

}
class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: How many Relationships have been declared?

Source: Created by the author
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Figure 115 – Relationship Counting Subtask 3 Java

Consider the following Java Code:

m8;8;3;3;3;3;1;0;0 class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

N.java

package model;

class N {

char y;

long l;

char e;

List<N> k;

List<S> b;

List<N> u;

}

Q.java

package model;

class Q {

N x;

}

S.java

package model;

class S {

}
class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: How many Relationships have been declared?

Source: Created by the author

Figure 116 – Relationship Counting Subtask 3 MOWSDL

Consider the following MOWSDL Code:

m8;8;3;3;3;3;1;0;0 class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class
extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference
composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

m8.mowsdl

metamodel model( "http://m8/","m8.xsd","m8.ecore" ) {

class S {

}

class Q {

reference x: N[ 0..1];

}

class N {

attribute y: char[ 0..1];

attribute l: long[ 0..1];

attribute e: char[ 1];

composition k: N[ 0..*];

composition b: S[ 0..*];

composition u: N[ 0..*];

}

}
class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute
reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: How many Relationships have been declared?

Source: Created by the author
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Figure 117 – Relationship Counting Subtask 4 Java

Consider the following Java Code:

m11;11;3;3;3;2;1;0;0 class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

H.java

package model;

class H {

byte b;

long n;

int w;

List<Q> v;

List<Q> c;

List<Q> u;

}

Q.java

package model;

class Q {

}

D.java

package model;

class D {

}
class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: How many Relationships have been declared?

Source: Created by the author

Figure 118 – Relationship Counting Subtask 4 MOWSDL

Consider the following MOWSDL Code:

m11;11;3;3;3;2;1;0;0 class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class
extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

m11.mowsdl

metamodel model( "http://m11/","m11.xsd","m11.ecore") {

class D {

}

class Q {

}

class H {

attribute b: byte[ 1];

attribute n: long[ 1];

attribute w: int[ 0..1];

composition v: Q[ 0..*];

composition c: Q[ 0..*];

reference u: Q[ 0..*];

}

}
class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute
reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List<> java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: How many Relationships have been declared?

Source: Created by the author
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Figure 119 – A17 Class Diagram

E

j : byte[0..1]

D

i : char[1]

C
B

h : Date[1]

A f 0..*

g

0..1

k

0..*

l0..1

Source: Created by the author

Figure 120 – A26 Class Diagram

E

j : byte[0..1]

D

C

i : Date[0..1]

B

A

f : Date[1]

g 0..*

h0..*

k

0..*

l

0..1

Source: Created by the author

Figure 121 – A20 Class Diagram

E

j : byte[0..1]

D
C

g : long[1]
h : String[1]

B

A

f 0..*

i
0..1

k 0..*

l
0..1

Source: Created by the author
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Figure 122 – A34 Class Diagram

D

h : Date[0..1]

C

B

A

e : long[1]
f : char[1]

g

0..*

i

0..*

k

0..*

j 0..*

Source: Created by the author

Figure 123 – A23 Class Diagram

F

k : int[1]

ED

C

i : byte[1]

B

A

g : char[0..1]

h 0..*

l

0..* j 0..*

m

0..1

Source: Created by the author

Figure 124 – A47 Class Diagram

F

k : long[0..1]

E D
C

j : String[1]

B

A

g : int[1]

h

0..1

m

0..*

i 0..*

l0..*

Source: Created by the author
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Figure 125 – A4 Class Diagram

F

k : byte[1]

E

D

CB

A

g : String[1]
h : int[1]

i

0..1

j 0..*

l 0..*

m

0..*

Source: Created by the author

Figure 126 – A29 Class Diagram

D

h : byte[1]

C

f : String[1]
g : byte[1]

B

A

e0..*

i 0..*

j

0..*

k

0..*

Source: Created by the author
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Figure 127 – Diagram Matching Subtask 1 Java

Consider the following Java Code:

m17;17;2;5;3;2;2;1;1 class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List
java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

A.java

package model;

class Aextends B {

List<D> f;

E g;

}

B.java

package model;

class B {

Date h;

}

C.java

package model;

class C {

}

D.java

package model;

class D {

char i;

}

E.java

package model;

class E {

byte j;

List<B> k;

E l;

}
class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: Which UML diagram matches the code declarations?

Source: Created by the author

Figure 128 – Diagram Matching Subtask 1 MOWSDL

Consider the following MOWSDL Code:

m17;17;2;5;3;2;2;1;1 class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List
java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition
List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

model.mowsdl

metamodel model( "http://model/" ,"model.xsd","model.ecore" ) {

class E {

attribute j: byte[ 0..1];

composition k: B[ 0..*];

reference l: E[ 0..1];

}

class D {

attribute i: char[ 1];

}

class C {

}

class B {

attribute h: Date[ 1];

}

class Aextends B {

composition f: D[ 0..*];

reference g: E[ 0..1];

}

}
class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1]
[0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1]
[1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: Which UML diagram matches the code declarations?

Source: Created by the author
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Figure 129 – Diagram Matching Subtask 2 Java

Consider the following Java Code:

m26;26;2;5;3;2;2;1;1 class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List
java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

A.java

package model;

class Aextends B {

Date f;

List<E> g;

}

B.java

package model;

class B {

List<B> h;

}

C.java

package model;

class C {

Date i;

}

D.java

package model;

class D {

}

E.java

package model;

class E {

byte j;

List<B> k;

D l;

}
class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1]
[0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1]
[1..1] [0..1] [1..*]

Answer: Which UML diagram matches the code declarations?

Source: Created by the author

Figure 130 – Diagram Matching Subtask 2 MOWSDL

Consider the following MOWSDL Code:

m26;26;2;5;3;2;2;1;1 class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List
java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

model.mowsdl

metamodel model( "http://model/" ,"model.xsd","model.ecore" ) {

class E {

attribute j: byte[ 0..1];

composition k: B[ 0..*];

reference l: D[ 0..1];

}

class D {

}

class C {

attribute i: Date[ 0..1];

}

class B {

reference h: B[ 0..*];

}

class Aextends B {

attribute f: Date[ 1];

composition g: E[ 0..*];

}

}
class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1]
[0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: Which UML diagram matches the code declarations?

Source: Created by the author
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Figure 131 – Diagram Matching Subtask 3 Java

Consider the following Java Code:

m34;34;2;4;3;2;2;1;1 class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List
java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

A.java

package model;

class Aextends B {

long e;

char f;

List<D> g;

}

B.java

package model;

class B {

}

C.java

package model;

class C {

}

D.java

package model;

class D {

Date h;

List<B> i;

List<C> j;

List<B> k;

}
class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1]
[0..1] [1..*]

Answer: Which UML diagram matches the code declarations?

Source: Created by the author

Figure 132 – Diagram Matching Subtask 3 MOWSDL

Consider the following MOWSDL Code:

m34;34;2;4;3;2;2;1;1 class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List
java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

model.mowsdl

metamodel model( "http://model/" ,"model.xsd","model.ecore" ) {

class D {

attribute h: Date[ 0..1];

composition i: B[ 0..*];

composition j: C[ 0..*];

reference k: B[ 0..*];

}

class C {

}

class B {

}

class Aextends B {

attribute e: long[ 1];

attribute f: char[ 1];

reference g: D[ 0..*];

}

}
class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1]
[0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: Which UML diagram matches the code declarations?

Source: Created by the author
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Figure 133 – Diagram Matching Subtask 4 Java

Consider the following Java Code:

m4;4;2;6;3;2;2;1;1 class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java
mowsdl [0..*] [1] [1..1] [0..1] [1..*]

A.java

package model;

class Aextends B {

String g;

int h;

F i;

}

B.java

package model;

class B {

List<C> j;

}

C.java

package model;

class C {

}

D.java

package model;

class D {

}

E.java

package model;

class E {

}

F.java

package model;

class F {

byte k;

List<D> l;

List<E> m;

}
class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: Which UML diagram matches the code declarations?

Source: Created by the author

Figure 134 – Diagram Matching Subtask 4 MOWSDL

Consider the following MOWSDL Code:

m4;4;2;6;3;2;2;1;1 class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java
mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List
java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

model.mowsdl

metamodel model( "http://model/" ,"model.xsd","model.ecore" ) {

class F {

attribute k: byte[ 1];

composition l: D[ 0..*];

reference m: E[ 0..*];

}

class E {

}

class D {

}

class C {

}

class B {

composition j: C[ 0..*];

}

class Aextends B {

attribute g: String[ 1];

attribute h: int[ 1];

reference i: F[ 0..1];

}

}
class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1]
[0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*] class extends attribute reference composition List java mowsdl [0..*] [1] [1..1] [0..1] [1..*]

Answer: Which UML diagram matches the code declarations?

Source: Created by the author
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Table 72 – Feedback Attribute List and Possible Answers

Attribute Number Attribute Text Answer Range Correct Answer

1 I like MOWSDL Null or -2 to +2 Any
2 I like Java Null or -2 to +2 Any
3 it was too long Null or -2 to +2 Any
4 the survey looks good Null or -2 to +2 Any
5 it was hard Null or -2 to +2 Any
6 it was boring Null or -2 to +2 Any
7 Let’s collaborate on research! Null or -2 to +2 Any
8 I like your survey Null or -2 to +2 Any
9 It made me sleepy Null or -2 to +2 Any
10 it was easy Null or -2 to +2 Any
11 the survey is ugly Null or -2 to +2 Any
12 it was inspiring Null or -2 to +2 Any
13 I like UML Null or -2 to +2 Any
14 it was useful for me Null or -2 to +2 Any
15 it was short Null or -2 to +2 Any
16 it was fun Null or -2 to +2 Any
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APPENDIX

E

IMPLEMENTATION STUDY

INSTRUMENTATION DOCUMENTS

E.1 Initial Remarks

This appendix chapter includes the manuals used by participants during training and

operation of the Data Structure Implementation Experiment presented in Chapter 7 (Section 7.3).

This chapter is divided into two manuals, the first manual is used for MOWSDL (Sec-

tion E.3) while the second is used for Java (JAX) implementation (Section E.4).

E.2 Retail System Example

Throughout this manual, a shop sales software system is used as an example. This

software is structured as in a client-server architecture. The client is responsible to manage

the cart of the customer while the server stores the product information, collects the final cart

managed by the client and executes the final checkout, as illustrated in the use case diagram

shown in Figure 135.

E.3 MOWSDL Data Structure Declaration Manual

E.3.1 Manual Introduction

MOWSDL (Model-Oriented Web Service Definition Language) is a language defined

within this project. The objective of this language is to provide a language definition similar to

WSDL for describing MOWS systems.

Similarly to WSDL and WADL, MOWSDL has an XML structure. It also follows

modeling principles by complying to the XMI standard. On top of that, an alternate textual
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Figure 135 – Shop System Use Case Diagram

shop

add item to cart

get product to cart

checkout

customer

cashier

Source: Created by the author

representation (concrete syntax) has been defined, allowing developers to write MOWSDL in a

text without XML idiosyncrasies. This concrete syntax is described herein as the recommended

syntax for defining MOWSDL instances.

MOWSDL can be used to replace WSDL and WADL documents for MOWS systems

while using SOAP as well as providing a common SOAP and REST document interface since it

can also be used to generate REST WS systems without changes.

Figure 136 – Designed Data Classes (MOWSDL Manual)

Shop

Cart
Product

name : ecore::EString[1]
price : ecore::ELong[1]

Tradeable

barcode : ecore::ELong[1]

Item

quantity : ecore::ELong[1]

carts0..*

products0..*

items0..*

Source: Created by the author
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The data class diagram is visible in Figure 136. The data classes are divided into Shop

(which stores the cart data and product data); Carts (which stores the items selected by customers,

declaration present in Figure 146); Products (which are the registry of products sold by the shop);

and Items (which are the quantifier objects of products, present in Figure 147). Tradeable is the

generalization for the “barcode” attribute.

The server and client operations are also designed, however, their implementation is out

of the scope of this manual.

E.3.2 MOWSDL Declarations

As MOWDL is a declarative language, each document is structured as declarations. A

document may have up to 3 (three) kinds of declarations, which are completely optional. This

implies that an empty document is also valid, however, this represents a system which has no

interfaces or data types for communication.

The first declaration is used to import referenced metamodels and XSD files that are used

to define the data types to be employed by the MOWS system.

E.3.3 Imports

The import syntax of MOWSDL is illustrated in Figure 137. Its import syntax starts

either by the “uses” or “import” reserved word. This was planned to differentiate the XSD

and Metamodel imports, however, they are treated as synonyms in the language. following the

reserved word, an internal name to reference the imported file is added, which is then followed by

path specifications inside parenthesis. These paths should declare the target namespace, optional

source XSD file and optional source metamodel file. The optional paths are to be provided in

order.

Therefore, when specifying a metamodel, its related XSD file must be provided. This is

not a limitation since XSD generators for metamodels have been provided, both the author and

the EMF project have equally adequate tools for this concern.

Figure 137 – Imports Declaration

using xsd(“http://www.w3.org/2001/XMLSchema”);

using xmi(“http://www.omg.org/XMI”);

import ecore(“http://www.eclipse.org/emf/2002/Ecore”,“Ecore.ecore”,“Ecore.xsd”);

Source: Created by the author
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E.3.4 Metamodel

The second declaration is used to declare the main metamodel to be employed by the

system. It is illustrated by Figure 138. This metamodel can be either imported or completely

declared within the document, including metapackages, metaenumerations, metainterfaces and

metaclasses. Metaclasses may have generalizations directed towards other metaclasses. Meta-

classes may also have attributes and relationships, both with multiplicity support.

Relationships are data types declared in external metamodels or inside the same MOWSDL

document. These are defined as one of two categories: associations (object references) and com-

positions (objects are part of the owner). Attributes are declared similarly to compositions,

however, they are only used when declaring a fundamental data type which must be specified by

an external XSD, e.g. Strings and Integers.

E.3.4.1 Interface

The last declaration is used to define the MOWS system interfaces. An example is present

in Figure 139. The interface declaration represents the port to connect clients to servers of a

MOWS system. This part of MOWSDL is not evaluated in this study.

Within the interface declaration, the developer should define message types, which

represent sets of parameters. These message types are then used as input and/or outputs for the

operations (which represent interface methods).

The MOWSDL is provided with an editor and compilers developed by the author.

E.3.5 Classes and Inheritance

Classes are declared as metaclasses in MOWSDL since they are compiled as part of a

metamodel. The metaclass declaration syntax is similar to Java programming language, but by

using a metaclass reserved word, an example is provided in Figure 140.

Metaclasses may be abstract by prepending an “abstract” reserved word prior to the

metaclass. Metaclasses may extend other metaclasses. Multiple inheritance is supported by using

a comma separated list.

E.3.6 Class Owned Elements

MOWSDL was also designed to support metaoperations. These metaoperations allows

the developer to declare method signatures that are added to the data structure objects of a

MOWS system.

MetaInterfaces can only include metaoperations. MetaEnumerations are lists of literals

that can be used as types.
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Figure 138 – Metamodel Declaration

metamodel store(“Store”,“http://store/”,“store.xsd”)

{

metaclass Shop

{

composition carts : Cart[*];

composition products : Product[*];

}

abstract metaclass Tradeable

{

attribute barcode : ecore::ELong[1];

}

metaclass Cart

{

composition items : Item[1];

}

metaclass Product extendsTradeable

{

attribute name : ecore::EString[1];

attribute price : ecore::ELong[1];

}

metaclass Item extends Tradeable

{

attribute quantity : ecore::ELong[1];

reference items1 : Item[0..*];

composition items2 : Item[0..*];

}

}

Source: Created by the author
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Figure 139 – MOWSDL Interface Declaration

interface storews( “http://store/wsdl/” )

{

// implied import store(“Store”,“http://store/”,“store.xsd”);

message BarcodeMessage

{

part barcode : xsd::integer;

}

message ProductMessage

{

part product : store::product;

}

message CartMessage

{

part cart : store::cart;

}

message ResponseSuccess

{

part response : xsd::string;

}

port storewsp

{

operation getProduct(BarcodeMessage):ProductMessage;

operation addCart(CartMessage):ResponseSuccess;

}

service StoreService( “store_bind” , “action” , “http://localhost:9000/” );

}
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Figure 140 – MOWSDL Class Declaration

Tradeable

barcode : ecore::ELong[1]

Item

Tradeable

Source: Created by the author

E.3.7 Class Attributes

As illustrated in Figure 141, class attributes are declared in MOWSDL similarly to

UML notation, except that it requires the reserved word “attribute” followed by the name of the

attribute, a colon, the name of the package of the data type, a pair of colons, the name of the data

type itself and the multiplicity between braces.

The valid multiplicities are: [0..1]; [0..*] or [*]; [1..1] or [1]; [1..*].

Figure 141 – MOWSDL Class Attributes

Item

quantity : ecore::ELong[1]

Source: Created by the author
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E.3.7.1 Class Associations

As visible in Figure 142, class compositions are declared similarly to references, however

the reserved word is “reference”. The associations must refer to classes, i.e. fundamental data

types are not valid.

Figure 142 – MOWSDL Class References

Cart

Item

items 0..*

Source: Created by the author

E.3.8 Class Compositions

Class compositions are declared similarly to associations, however the reserved word is

“composition”. This is illustrated in Figure 143.

E.3.9 Other Features

MOWSDL was also designed to support inline method declaration for classes and

interfaces. An editor and a set of compilers is also available. The editor supports automatic

syntax validation and code completion. Compilers are available for round-trip engineering when

using XSD, metamodels and CXF source code. The compilers are also capable of saving the

manual modifications performed by the developer during round-trip engineering.

E.3.10 Compiling MOWSDL

In order to complile MOWSDL to metamodels and CXF code, compilers have been

provided. During the experiment, compilers can be accessed by using the menu visible in

Figure 144. They include validation and data-type matching to optimize the output without

forcing the programmers to deal with unnecessary data formats libraries, e.g. it is not required to

import XSD data types into source code.
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Figure 143 – MOWSDL Class Composition

Cart

Item

items 0..*

Source: Created by the author

Figure 144 – Compiler Access

Source: Created by the author

E.3.11 Testing the Result

The compilers used throughout the study include test case support to verify whether the

generated code complies to the requirements.

E.3.12 MOWSDL Execution Workflow

It is recommended to follow this execution while working on the provided exercises.

1. Run “Record starting time”;
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2. Run exercise test case (halt if test case succeeds);

3. Edit MOWSDL code according to diagram;

4. Run MOWSDLT (parser);

5. Run JAX Code Generator;

6. Return to item 2.

E.4 JAX Data Structure Declaration Manual

E.4.1 Manual Introduction

JAX (Java API for XML) is an application programming interface specified by Oracle

Corporation (2017). It is composed by annotations to bound Java classes and their owned fields

(properties) to XML and JSON formats.

JAX allows the developers to specify XML data structures without relying on XSD

(XML Schema Definition) to define the format.

This API can be employed for XML and JSON, supporting generation and parsing. It

can be used for transferring the formatted data in web services. For instance, it can be employed

by both SOAP and REST protocols/architectures without modifying the data structure classes.

Figure 145 – Designed Data Classes (JAX Manual)

Shop

Cart
Product

name : String[1]
price : long[1]

Tradeable

barcode : long[1]

Item

quantity : long[1]

carts0..*

products0..*

items0..*

Source: Created by the author

The data class diagram is visible in Figure 145. The data classes are divided into Shop

(which stores the cart data and product data); Carts (which stores the items selected by customers,
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declaration present in Figure 146); Products (which are the registry of products sold by the shop);

and Items (which are the quantifier objects of products, present in Figure 147). Tradeable is the

generalization for the “barcode” attribute.

The server and client operations are also designed, however, their implementation is out

of the scope of this manual.

Figure 146 – Cart JAX Class Declaration

package store;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlRootElement;

import javax.xml.bind.annotation.XmlType;

@ XmlRootElement

@ XmlAccessorType (XmlAccessType. FIELD )

@ XmlType (name = “Cart” , propOrder = { “items” })

public class Cart {

protected Item items ;

/**

* field getters and setters

*/

public Item getItems() {

return this . items ;

}

public void setItems(Item element) {

this . items = element;

}

}

Source: Created by the author
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Figure 147 – Item JAX Class Declaration

package store;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlType;

@ XmlAccessorType (XmlAccessType. FIELD )

@ XmlType (name = “Item” , propOrder = { “quantity” })

public class Item extends Tradeable {

protected long quantity ;

/**

* field getters and setters

*/

public long getQuantity() {

return this . quantity ;

}

public void setQuantity( long element) {

this . quantity = element;

}

}

Source: Created by the author

E.4.2 Classes and Inheritance

In JAX, Java classes are declared with annotations that bind the class to XML structures,

for example, as shown in Figure 148.

A Java class must be declared for each data class. They must be annotated with “@Xml-

Type”. It is recommended to also provide their name in XML and property order to avoid

compatibility problems.

The “@XmlAccessorType” is used to specify how to bind the class attributes to XML

node attributes. In this study, the recommended setting is “XmlAccessType.FIELD”.
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Besides these annotations, XmlRootElement is used to annotate an XmlType that can

be used as the root of the XML file, i.e. the first node that is composed by every other inner

node. Every XML instance is a tree with exactly one root, regardless if it is written to file or

transferred by a WS. Therefore, it is required to have at least one possible root element type per

XML specification. In most cases, it is possible to simply add this setting to every XmlType.

Figure 148 – JAX Class Declaration

Tradeable

Product

name : String[1]
price : long[1]

Tradeable

Source: Created by the author

E.4.3 Class Owned Elements

E.4.3.1 Class Attributes

JAX was based on Java Beans specifications. An example of attribute declaration is

visible in Figure 149. The attributes are actually managed by getter and setter methods. The

properties/fields actual must be accessed by these methods.

Therefore, getters and setters are mandatory and they must affect the data of the intended

field.

For multiplicities 0..1 and 1..1, the field must match the counterpart java type presented

in the design diagram.
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The getter method must start with "get" concatenated to the name of the field with its

first letter capitalized. The getter must have no input parameters and must return the exact same

type of the intended field.

The setter method must start with “set” concatenated to the name of the field with its first

letter capitalized. The getter must have one input parameter with the same type of the intended

field. It must be a void method.

Figure 149 – JAX Class Attributes (zero or one)

Item

quantity : long[1]

Source: Created by the author

For multiplicities 0..* and 1..*, the field must match be a java list, an example of list

declaration is present in Figure 150.

The getter method must start with "get" concatenated to the name of the field with its

first letter capitalized. The getter must have no input parameters and must return the list.

The setter method must start with “set” concatenated to the name of the field with its

first letter capitalized. The getter must have one input list parameter of the intended field. It must

be a void method.

It is also recommended to add list management operations, however they are optional.

E.4.3.2 Class Associations

Classes associations are declared exactly as attributes, it is important to identify the

notation correctly to find the names, multiplicity and types.

Similarly to class attributes, they must follow the multiplicity rule (whether to use lists

or not). Examples of class associations are visible in Figure 151.
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Figure 150 – JAX Class Attributes (Lists)

Cart

items: Item[0..*]

Source: Created by the author

E.4.3.3 Class Compositions

Examples of class compositions are shown in Figure 152 In Java, there is no significant

difference in declaring compositions and associations.

During this study diamond representing the composition may be considered irrelevant

and the developer should simply follow the instruction for associations.

E.4.4 Other Features

JAX is implemented by different frameworks. In the case of CXF, JAX classes can be used

to completely generate the associated XSD specification. Compilers capable of generating JAX

classes from XSD is also available, allowing the developers to perform a round-trip engineering

process.

E.4.5 Testing the Result

The compilers used throughout the study include test case support to verify whether the

generated code complies to the requirements.

E.4.6 JAX Execution Workflow

It is recommended to follow this execution while working on the provided exercises.
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Figure 151 – JAX Class Associations

Cart

Item

items0..*

Cart

Item

item0..1

Source: Created by the author

1. Run “Record starting time”;

2. Run exercise test case (halt if test case succeeds);

3. Edit Java code according to diagram;

4. Return to item 2.
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Figure 152 – JAX Class Compositions

Cart

Item

items0..*

Cart

Item

item0..1

Source: Created by the author
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