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Abstract. Reductions are commonly used in parallel programs to produce a
global result from partial results computed in parallel. Currently, OpenMP only
supports reductions for primitive data types and a limited set of base language
operators. This is a significant limitation for those applications that employ user-
defined data types (e. g., objects). Implementing manual reduction algorithms
makes software development more complex and error-prone. Additionally, an
OpenMP runtime system cannot optimize a manual reduction algorithm in ways
typically applied to reductions on primitive types. In this paper, we propose
new mechanisms to allow the use of most pre-existing binary functions on user-
defined data types as User-Defined Reduction (UDR) operators. Our measure-
ments show that our UDR prototype implementation provides consistently good
performance across a range of thread counts without increasing general runtime
overheads.

1 Introduction

OpenMP [16] is a well-known and widespread programming model for the develop-
ment of parallel applications on shared-memory platforms. It allows parallel and se-
quential implementations to co-exist in a single code base by using directives that tell
the compiler which parts of the code to parallelize. Non-OpenMP compilers safely ig-
nore the parallelization hints and emit an executable for sequential execution. In prac-
tice, OpenMP does not always keep its single-source promise since programmers often
must modify their sequential code to overcome OpenMP’s limitations.

We focus on OpenMP’s lack of support for arbitrary reduction operators on arbi-
trary data types in this paper. Programmers use reductions to produce a global result
from partial results computed in parallel. OpenMP currently only supports reductions
for primitive data types and a limited set of base language operators. If the program
computes a reduction on a user-defined data type or with a more complex operator, the
programmer must implement the reduction algorithm manually. This limitation makes
errors likely and complicates program maintenance by requiring repeated implemen-
tation of this common design pattern. Performance may also suffer since the OpenMP
implementation can no longer adapt the reduction algorithm to the specific aspects of
the execution (e. g., thread count or architecture).
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In this paper, we propose extensions to OpenMP that eliminate this limitation. Our
solution provides an additional OpenMP declarative directive declare reduction
that specifies that a binary function (a UDR function) can be used as a User-defined
Reduction (UDR). We also extend OpenMP’s reduction clause to accept UDR op-
erators in addition to built-in OpenMP operators.

The remainder of the paper is organized as follows. The following section discusses
UDR mechanisms in other parallel programming languages. We then elaborate on the
limitations of the current OpenMP specification in Section 3. Section 4 then details
our proposal for UDR support in OpenMP. Finally, we evaluate performance of our
proposal in Section 5. Overall, we show that our prototype implementation outperforms
many hand-coded UDRs, particularly with large thread counts, without implying other
overheads.

2 Related Work

Parallel programming frequently requires aggregation of local (partial) results into a
global result. While low-level threading APIs such as POSIX threads [7], Windows
Threads [13], Java Threads [15], or C# Threads [12] allow programmers to implement
UDRs manually, other parallel programming languages provide a better, higher level
approach.

Google’s MapReduce API [4] provides a parallelization API that distributes work
and accepts user-supplied reducers. Although MapReduce supports object-oriented lan-
guages, it only processes key-value data. Our OpenMP UDR proposal reflects the phi-
losophy of OpenMP by using compiler directives to define UDRs, which supports all
OpenMP base languages. Further, we directly support the variety of data types available
in those languages.

MPI [14] includes UDR support. While our approach accepts a variety of binary
functions, MPI UDRs are restricted to a special function signature. The programmer
must provide corresponding wrapper functions to reuse existing functions. Additionally,
we use a declarative syntax to define UDRs, whereas MPI requires special allocate and
free function calls to inform the runtime about UDRs.

ZPL [5] relies on overloading for the specification of associative and commutative
UDRs. One signature of the function returns the identity element while a second sig-
nature implements the actual reduction operator. OpenMP/Java [10] extends OpenMP
with a Reducer interface to define UDRs. Similarly to ZPL, the interface requires
separate methods to return the identity and to reduce two values. Cilk++ [6] follows a
similar approach that defines special classes that implement the reduction semantics.
Unlike these UDR approaches, we use explicit clauses of the UDR declaration to spec-
ify the identity element and the reduction operator and, thus, support all OpenMP base
languages.

TBB [17] parallelizes C++ programs through templates to which reductions can
be added as methods. PPL [11] also supports UDRs through combinable objects.
While TBB and PPL provide UDRs, they only cover C++ programs; our approach is
more generic in that it also targets C and Fortran. Our declaration syntax also provides
better separation of concerns as a UDR can be reused in any parallel region, whereas
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1 void example ( double ∗ a r r a y , s i z e t N) {
2 double sum = 0 . 0 ;
3 double prd = 1 . 0 ;
4 #pragma omp parallel f o r reduction ( + : sum ) reduction (∗ : p rd )
5 f o r ( s i z e t i = 0 ; i < N; i ++) {
6 sum += a r r a y [ i ] ;
7 prd ∗= a r r a y [ i ] ;
8 }
9 }

Fig. 1. Simple reduction example with two reduction variables

TBB and PPL programmers must re-implement the reduction method in all functors,
effectively adding redundant code to the application.

3 Costs of the Lack of UDR Support in OpenMP 3.0

OpenMP 3.0 only provides a standard set of reduction operators (e. g., addition) that
operate on built-in primitive data types (e. g., double) of the corresponding base lan-
guage. Fig. 1 shows an example of an OpenMP parallel construct (line 4) that
performs simple sum and product reductions on the variables sum and prd.

In the example, the variables are of the primitive data type double. If we change
them to a user-defined data type such as complex t1 we can no longer use OpenMP
reductions. Instead, we must manually implement the reduction algorithms using one
of the many ways to write a parallel reduction. Fig. 2 presents an efficient reduction
algorithm that has little overhead for small thread counts.

The code in Fig. 2 first determines an upper bound of the possible number of partic-
ipating threads (line 9). We then declare temporary arrays for each reduction variable
to hold the intermediate local results of each thread (lines 11–12)2.

Each thread has a private copy of the reduction variables sum and prd. Since these
private copies are in different stacks, they cannot cause false sharing. Each thread must
initialize its copies with the appropriate identity values (lines 16 and 17). Each thread
then computes a local reduction for the array elements corresponding to its iterations
of the for loop (lines 18–22). After executing the loop, each thread stores its partial
results in the temporary arrays (line 23 and 24). After the parallel region, the master
thread iterates over all partial results in the temporary arrays and produces the final
result of the computation (lines 26–29).

Although this implementation performs well for small thread counts, larger thread
counts might benefit from a tree-based reduction.Tree-based reductions are significantly
more complicated and require a much higher coding effort. Switching between these
implementations would require even more complex code, which must be repeated for
every UDR in the OpenMP application. Although the pattern could be provided by a

1 We use this type for explanatory purposes despite the Complex primitive type in C99.
2 For simplicity, the code shown could allocate more space than necessary since some OpenMP

threads may not participate in the parallel region.
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1 c o m p l e x t complex add ( c o m p l e x t a , c o m p l e x t b ) ;
2 c o m p l e x t complex mul ( c o m p l e x t a , c o m p l e x t b ) ;
3

4 void example ( c o m p l e x t ∗ a r r a y , s i z e t N) {
5 i n t n t h r e a d s ;
6 c o m p l e x t sum = {0 . 0 , 0 . 0} , p rd = {1 . 0 , 0 . 0} ;
7 c o m p l e x t ∗pa r t sum , ∗ p a r t p r d ;
8

9 n t h r e a d s = o m p g e t m a x t h r e a d s ( ) ;
10

11 c o m p l e x t p a r t s u m [ n t h r e a d s ] ;
12 c o m p l e x t p a r t p r d [ n t h r e a d s ] ;
13

14 #pragma omp parallel shared ( pa r t sum , p a r t p r d ) private ( sum , prd )
15 {
16 sum = {0 . 0 , 0 . 0} ;
17 prd = {1 . 0 , 0 . 0} ;
18 #pragma omp f o r
19 f o r ( s i z e t i = 0 ; i < N; i ++) {
20 sum = complex add ( sum , a r r a y [ i ] ) ;
21 prd = complex mul ( prd , a r r a y [ i ] ) ;
22 }
23 p a r t s u m [ o m p g e t t h r e a d n u m ( ) ] = sum ;
24 p a r t p r d [ o m p g e t t h r e a d n u m ( ) ] = prd ;
25 }
26 f o r ( i n t t h r = 0 ; t h r < n t h r e a d s ; t h r ++) {
27 sum = complex add ( sum , p a r t s u m [ t h r ] ) ;
28 prd = complex mul ( prd , p a r t p r d [ t h r ] ) ;
29 }
30 }

Fig. 2. Programming pattern for user-defined reductions in OpenMP 3.0

parametrized library function, direct OpenMP support for UDRs would be less error-
prone and more efficient.

Fig. 3 shows how our proposal simplifies this example. In lines 4 and 5, declaration
pragmas inform the OpenMP compiler about UDR operators on the type complex t
and supply the corresponding identity values. After definition, the reduction clause
can use these UDR operators (line 9), resulting in code almost identical to that for the
double primitive type of Fig. 1.

4 User-defined Reductions for OpenMP

This section explores the design space for user-defined reductions and presents our
declare reduction directive and the modifications to the current reduction
clause. We then discuss extensions that support UDRs on array types and that more
tightly integrate them with object-oriented languages.

4.1 Design rationale

The UDR language extension is subject to several crucial design requirements. First,
it must follow the OpenMP directive-based philosophy. Second, the UDR feature must
blend well with all OpenMP base languages and reflect their specifics while maintaining
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1 c o m p l e x t complex add ( c o m p l e x t a , c o m p l e x t b ) ;
2 c o m p l e x t complex mul ( c o m p l e x t a , c o m p l e x t b ) ;
3

4 #pragma omp declare reduction ( complex add : c o m p l e x t ) identity ({ 0 . 0 , 0 . 0} )
5 #pragma omp declare reduction ( complex mul : c o m p l e x t ) identity ({ 1 . 0 , 0 . 0} )
6

7 void example ( c o m p l e x t ∗ a r r a y , s i z e t N) {
8 c o m p l e x t sum = {0 . 0 , 0 . 0} , p rd = {1 . 0 , 0 . 0} ;
9 #pragma omp parallel f o r reduction ( complex add : sum ) reduction ( complex mul : p rd )

10 f o r ( s i z e t i = 0 ; i < N; i ++) {
11 sum = complex add ( sum , a r r a y [ i ] ) ;
12 prd = complex mul ( prd , a r r a y [ i ] ) ;
13 }
14 }

Fig. 3. Example of Fig. 2 rewritten with user-defined reductions

a common syntax across them. Third, the mechanism must express UDRs without any
unnecessary syntax bloat. Fourth, the definition should allow for efficient implementa-
tions when used with any parallel loop schedule and support common optimizations.

The OpenMP compiler needs two pieces of information to implement a reduction:
the identity element and the implementation of the operator. It needs the operator’s
identity value to initialize temporary variables that hold intermediate results. The imple-
mentation must combine two input values into one output value. The compiler generates
code that invokes the reduction operator whenever the reduction algorithm aggregates
values from different threads. The OpenMP specification provides this information for
the reductions supported in OpenMP 3.0, while programmers must supply it for UDRs.

We could simply extend the existing reduction clause, which would not add any
idioms to OpenMP. However, programmers would have to supply the above information
at every reduction clause that works on a user-defined data type. This unnecessary
repetition would increase the likelihood of errors at the reduction clauses.

Thus, we split the UDR definition into two parts: UDR declaration and UDR us-
age. At the declaration, programmers describe UDRs by specifying the UDR operator
and the identity value. OpenMP-enabled libraries can safely incorporate UDR declara-
tions for their data types in C or C++ header files or Fortran modules. At UDR usage,
programmers supply the declared UDR name in a reduction clause as the operator.

In contrast to designs for UDRs in other programming models, one of our main
design principles is code reuse. We explicitly allow programmers to reuse existing bi-
nary functions without the need for any wrapper mechanisms that adapt existing code
interfaces to UDR requirements. Most OpenMP programs stem from a sequential code
base with a set of operators on user-defined data types. These operators often include
functions with two input values and one output value and that UDRs can reuse. Thus,
our mechanism blends well with OpenMP’s principle of incremental parallelization.

A sequential loop, such as that corresponding to the example in Fig. 1, combines
array elements in the sequential iteration order. If the OpenMP implementation assigns
a single chunk of iterations to each thread, then the reductions performed within each
thread will be subsequences of the sequential iteration order. If the compiler combines
these temporary values in the chunk order, the overall reduction order is simply a reas-
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sociation of the original computation. Thus, we require UDR operator to be associative
so that the implementation can compute the reduction using multiple threads without
sequentializing (e.g., using a critical region).

OpenMP schedules allow different distributions of iterations to threads besides a
single chunk of consecutive iterations. These schedules reorder the operations. The
original OpenMP intrinsic reduction operators are all associative and commutative,3

which allows the implementation to combine iterations into a partial reduction in each
thread and then combine them into the global result in any order, such as the order in
which the threads complete. While we could restrict the loop schedules or require the
use of the ordered clause, we require the UDR operators to be commutative in order
to maximize parallelism and to simplify the implementation of UDRs.

4.2 The declare reduction directive

UDRs must be declared prior to their use in a reduction clause. We use the declare
reduction directive with the following syntax:4

1 #pragma omp declare reduction ( o p e r a t o r− l i s t : type− l i s t ) [ c l a u s e ]

where clause can only be an identity clause.

Basic Syntax The declare reduction directive instructs the compiler that the
operators in the list are valid UDR operators for the types specified in the type-list.
The directive can be specified for any type (primitive types and user-defined data types)
except functions and array types. Reductions on function types do not have any useful
semantics; arrays are handled differently (see Section 4.4).

A valid UDR operator op must exist for each type. As we strive to maximize code
reuse we define a set of minimum requirements for a possible UDR operator to be
valid instead of defining a fixed prototype to which all operators must conform. These
requirements are the following:
• op must be a binary function with both arguments of a type compatible with the

type in the UDR declaration;5

• op must be a commutative function;
• op must be an associative function;
• op must produce a result in its function return value or an argument; if op could

produce multiple results (e. g., both arguments are pointer types) then the leftmost
result is used (i. e., the precedence is return value, left argument, right argument).

For C++, all standard and (correctly implemented) overloaded operators are valid UDR
operators; function members of that type are valid if they have a single argument com-
patible with the type. In any case, the function must be accessible in the scope where
the reduction takes place as well as in the scope where the UDR is declared.

3 Although the subtraction operator is non-commutative, it is mapped to the commutative addi-
tion operator by many OpenMP implementations.

4 We only present the C/C++ syntax and requirements, which are similar to those of Fortran.
5 With T being the type in the UDR declaration, compatible types in C or C++ include T, const

T, T *, T &, const T * and const T &.
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1 s t r u c t T {
2 void a l p h a ( c o n s t T & ) ;
3 c o n s t T & o p e r a t o r + ( c o n s t T & ) ;
4 } ;
5

6 T& a l p h a ( T &, T & ) ;
7 T b e t a ( T ∗ , T ) ;
8 void gamma ( T ∗ , T ) ;
9 void d e l t a ( T ∗ , T ∗ ) ;

10 void e p s i l o n ( T , T ∗ ) ;
11

12 c o n s t T & o p e r a t o r∗ ( c o n s t T & , c o n s t T & ) ;
13

14 #pragma omp declare reduction ( + ,∗ ,T : : a lpha , a lpha , be t a , gamma , d e l t a : T )

Fig. 4. C++ examples of valid UDR operators for data type T

1 #pragma omp declare reduction ( f i x e d m u l : f i x e d t ) identity ( 1 )
2 #pragma omp declare reduction ( complex mul : c o m p l e x t ) identity ({ 1 . 0 , 0 . 0} )
3 #pragma omp declare reduction (∗ : Complex ) identity ( c o n s t r u c t o r ( 1 . 0 , 0 . 0 ) )

Fig. 5. Examples of valid identity clauses

Fig. 3 provided valid UDR declarations for our simple C example used in Section
3. Fig. 4 provides additional examples of valid UDR declarations in C++ for a user-
defined data type T. The operators + and * are overloaded C++ operators for T that
are visible in the scope that contains the UDR declaration. The UDR operator T::alpha
refers to the member function of T; alpha refers to the global function. The functions
gamma and delta are valid UDR operators since they take two input values of type T.
Both gamma and delta must store the reduction result in the left argument since they do
not have return values. Similarly, epsilon must store it in the right argument.

The identity clause By default, we perform zero initialization for non-object types
and invoke the default constructor for object types in C++. The identity clause over-
rides the default with user-defined values. It takes either a constant expression, a brace
initializer, or the special keyword constructor and a list of constant expressions of
the form (expr1,...,exprN). In the first two cases, all temporaries are assigned the iden-
tity value initially. In the last case, the constructor for the specified type is invoked with
the listed arguments. Fig. 5 shows examples of these different cases.

4.3 Extensions to the reduction clause

Our UDR proposal does not change the well-known syntax of the reduction clause.
We only require that it accepts declared UDR operators as well as the built-in reduction
operators (and intrinsic functions in Fortran). When a UDR operator is specified in a
reduction clause, the OpenMP compiler must determine the UDR declaration that
applies to the scope of that particular reduction clause. It then uses the information
from the UDR declaration to implement the reduction. First, the compiler initializes
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1 #pragma omp declare reduction ( m a t r i x a d d : i n t [ ] [ ] )
2

3 void example ( ) {
4 i n t M[ n ] [ n ] ;
5

6 #pragma omp f o r reduction ( m a t r i x a d d :M)
7 f o r ( . . . ) { . . . }
8 }

Fig. 6. Example of a UDR on a two-dimensional array

1 #pragma omp declare reduction ( v e c t o r a d d : i n t [ ] )
2

3 void example ( i n t ∗a , i n t n ) {
4 i n t (∗v ) [ n ] = ( i n t (∗ ) [ n ] ) a ;
5

6 #pragma omp f o r reduction ( v e c t o r a d d : v )
7 f o r ( . . . ) { . . . }
8 }

Fig. 7. Example of UDR for arrays with pointer reshaping

any temporaries with the identity value. Second, it replaces occurrences of the original
variable with the corresponding private temporary variable. Finally, it uses the UDR
operator in its reduction algorithm to combine the temporaries into the overall result.
As all necessary information is specified at the UDR declaration, the compiler can im-
plement more sophisticated reduction approaches as well.

4.4 Array reductions

OpenMP 3.0 supports array reductions on primitive types for Fortran but not for C or
C++ because the number of dimensions (and their size) may not be available to the
compiler at the reduction clause in those languages.

If the reduction variable is strictly an array, the compiler could infer the number of
dimensions and the size from the reduction variable. But, we require the programmer to
add square brackets to the data type in the UDR declaration to specify that the operator
will work for array types. This allows the compiler to check at the UDR declaration that
the operator is valid for the type. The actual size of the dimensions, which are needed
to create the correct private variables, is deduced by the compiler from the type of the
variable of the reduction clause.

Fig. 6 declares a UDR on a two-dimensional matrix of int values by specifying
int[][] as the UDR’s data type. A compiler allocates private arrays of n×n elements
(see line 4) and initializes each element with the identity value (i. e., in this case as no
identity clause is specified, with the value 0) for the UDR usage in line 6.

While this works well for variables that are strictly arrays, an issue in C and C++
is that arrays are implicitly converted to pointers across call boundaries [8, 9]. To im-
prove the support of UDRs for arrays, our proposal considers pointers to arrays as if
they were arrays for the purpose of finding the corresponding UDR. As Fig. 7 shows,
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1 #pragma omp declare reduction ( t emplate <typename T > + : s t d : : v e c t o r<T >)

Fig. 8. UDR for adding std::vector objects

1 namespace A { c l a s s T ; }
2 namespace B { c l a s s S ; }
3

4 / / dec lares UDRs A : : T : : foo , B : : S : : foo , A : : T : : bar , and B : : S : : bar
5 / / w i th the same i d e n t i t y
6 #pragma omp declare reduction ( . foo , . b a r : A : : T , B : : S )
7

8 . . .
9

10 A : : T t ;
11 B : : S s ;
12

13 / / Uses UDR A : : T : : foo f o r t and B : : S : : foo f o r s
14 #pragma omp parallel f o r reduction ( . foo : t , s )
15 . . .

Fig. 9. Example of the dot syntax to shorten UDR declarations of qualified identifiers

programmers must often convert pointer to types to pointers to arrays that contain the
needed dimensionality information. Although this solution requires some modifications
to the sequential code, the sequential code remains valid and we avoid more extensive
shaping expression support for the UDR.

4.5 C++-specific extensions

Although our UDR design provides a common syntax for C, C++, and Fortran, we
extend the UDR syntax to make UDR declarations more concise and easier to use in
C++. The first extension targets C++ templates (i. e., partially instantiated types):

1 #pragma omp declare reduction ( template<template−header> op− l i s t : type− l i s t ) [ c l a u s e ]

After specifying a template-header, the different template parameters defined in the
header may appear in the operator-list, type-list, or the identity clause.

Template support is crucial for C++ to define UDRs for template types in a generic
way. For instance, the template std::vector<T_> of Fig. 8 defines reductions on
any possible vector. Otherwise, possible instantiations (e. g., std::vector<int>,
std::vector<float>) would require separate UDR declarations.

In addition to template support, we use dot syntax to omit class qualifiers in both
the declare reduction directive and the reduction clause. Fig. 9 shows how
it simplifies the use of qualified C++ identifiers in UDRs. Qualifiers for identifiers can
be omitted if a dot prefixes UDR operator names. The compiler then automatically qual-
ifies the operator with the type(s) being declared (in UDR declaration directives) or of
variables of reduction clauses. This syntax can greatly simplify the declaration and
usage of UDR operators that have the same name on unrelated types but that implement
the same kind of reduction.
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5 Evaluation

Although our proposed extensions to OpenMP simplify reduction operations for non-
basic types it remains to be seen if they can be implemented as efficiently as hand-made
reductions.

To this purpose we implemented a prototype of our proposal for user-defined reduc-
tions in the Mercurium source-to-source compiler [2]. The code generated for standard
OpenMP reductions and UDRs is the same except that it uses the identity and operator
that the UDR declaration specifies.

We have implemented five kinds of reductions that capture typical OpenMP reduc-
tion scenarios:
• Our standard reduction tests the existing reduction support with an int sum;
• Our manual critical version stores partial values of each thread in a temporary vari-

able, which it sums into a shared variable in a critical region at the end of the
parallel region;

• Our manual atomic variant is identical to our manual critical version except that it
performs the sum in an atomic construct, which generic UDRs cannot use—we
evaluated this reduction strategy for completeness;

• Our manual shared arrays test uses the reduction algorithm that Fig. 2 shows;
• Our UDR version uses a UDR operator that adds two int variables and returns the

result as the return value.
We use the statistical analysis of the EPCC OpenMP benchmark suite [1] but de-

termine the overhead of reductions directly. Specifically, we profile the time that each
thread spends in the reduction operation rather than indirectly measuring the overhead
by subtracting the overhead of a parallel region from the overhead of a parallel
region with a reduction clause. The indirect method has high variance since the
reduction overhead is relatively small compared to that of any parallel region.

We measure reduction execution times with the Itanium interval timer facilities [3]
of an SGI Altix 4700 (1.67 GHz). We vary the thread count from one to 64 and compute
the average of 2,000 overhead measurements for each kind of reduction. The maximum
deviation of the time measured is around 2%, which indicates that our methodology
provides a consistent measurement. Fig. 10 summarizes our microbenchmark results.

The manual critical test incurs higher reduction overheads with increasing thread
counts. As the thread count increases, more threads compete for the central lock that
protects the computation of the global result. With two threads, the overhead to enter
and to exit the critical region already exceeds the time spent within it. As the
threads reach the critical region at about the same time, the overhead increases
linearly with the thread count.

The manual atomic variant improves performance over the manual critical version
by roughly 50% but we still observe linear increases in overhead with thread count. The
manual atomic variant incurs smaller overhead since atomic uses atomic instructions
instead of acquiring and releasing a lock. The machine’s memory subsystem ensures
mutual exclusion for accesses to the global result, which still incurs increasing overhead
as the thread count increases. Each step of the reduction also incurs a cache fault.

The standard reduction, manual shared array, and UDR tests exhibit roughly the
same overhead. Mercurium implements standard OpenMP reductions with private tem-
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Fig. 10. Performance comparison of reduction patterns and UDRs

porary variables on each threads’ stack. A for loop then retrieves each thread’s pri-
vate variable and adds them to the global result at the end of the parallel region.
Our manual shared arrays implementation uses the same approach except that it stores
the private variables in a shared array. Our UDR implementation extends Mercurium’s
standard reduction algorithm such that it invokes the UDR function when computing
the global result. The native compiler inlines the UDR function so it incurs almost no
additional overhead compared to the standard reduction and manual shared array tests.

In summary, our performance evaluation shows that the UDR implementation of
our prototype exhibits the same level of performance as standard reductions and the
efficient manual UDR implementation of Fig. 2. Thus, we demonstrate that OpenMP
can remove the burden of error-prone and cumbersome manual idioms for reductions
of user-defined types from the programmer while providing high performance through
our UDR mechanism.

6 Conclusions and Future Work

OpenMP applications, like their sequential counterparts, often employ user-defined data
types. Typically, programmers must overcome OpenMP’s lack of support for reductions
on these types. Our new mechanism overcomes this limitation by concisely specifying
user-defined reductions in OpenMP programs. Our solution uses a declarative directive
that is consistent with existing OpenMP syntax and allows existing binary functions on
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user-defined data types to serve as UDRs. UDRs support all OpenMP base languages
and blend well with potential future OpenMP base languages.

Our UDR mechanism allows the OpenMP runtime system to choose the most effi-
cient reduction algorithm for a parallel region. For example, the runtime can adapt the
reduction algorithm to the thread count, which would otherwise require complex user
programming. Our measurements have shown that our proposal introduces no addi-
tional overhead compared to manually implemented reductions (or regular OpenMP re-
ductions) while avoiding copy-and-paste duplication of reduction algorithms and hard-
to-find errors that stem from user-level reduction implementations.
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