
A Proposal of Pattern Space Trajectory
for Gesture Spotting Recognition

Abstract

We propose a new appearance-based feature for real-time gesture

recognition from motion images. The feature is the shape of the trajectory

caused by human gestures, in the "Pattern Space" defined by the inner-product

between patterns on frame images. It has three advantages, 1) it is invariant in

term of the target human's position, size and lie, 2) it allows gesture recognition

without interpreting frame image contents and 3) there is no costly statistical

calculation involved. In this paper, we describe the properties of the gesture

trajectory feature, and some experimental results in order to show its

applicability to gesture recognition.

1     Introduction

We are researching a "gentle human interface" to realize a flexible information processing

system. As one implementation of this, we are developing a CSCW (Computer Supported

Cooperative Work) system with the multimodal interface shown in Fig. 1.  Gesture

recognition technology is very important to achieve this basic human interface.

Time-sequence matching [Takahashi 92, 94] [Darrell 93] is one of the most effec-

tive methods for gesture recognition. This method is very popular in speech recognition

and has the advantage of recognizing gestures easily without interpreting the content of

Fig. 1 CSCW system with Multimodal Interface.
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each frame image. However it does have several constraints. In this method, it is very

important to avoid such constraints in selecting the time-sequence feature derived from

frame images.

The following related research has taken the time difference between continuous

frames [Takahashi 92] , the silhouette of the target human [Yamato 92] [Wilson 95], the

eigenvalue [Turk 91] and the positions of human-body parts extracted by tracking [Bo-

bick 96] into consideration. However these methods have several problems in that: 1)

there are some constraints for the target human, position, size, and brightness, 2) they are

not suitable with frame-wise calculation for real-time recognition and 3) they are unsta-

ble because they have to depend on interpreting the contents of each frame image.

We propose a new feature to resolve these problems together. The feature is in the

shape of a trajectory in "Pattern Space", which is defined with the inner product between

patterns on continuous frame images. It has three advantages: 1) it is shift, rotation and

scale invariant, 2) it does not need to interpret frame image contents, or normalize the

size and position of the target human area and  3) it does not need high cost statistical

calculation. As a result, our system can recognize gestures without decision a human

body area strictly. Furthermore the pattern space trajectory can be calculated frame-wise

and gestures can be spotted without detecting their intervals in frame images. In this

paper, we describe the pattern space trajectory which is a recognition method using this

feature, and the results of examination.

2     Pattern Space Trajectory
2.1     Pattern Space Definition and its Characteristics
Consider the set P of the real-number valued functions that satisfy (1) and are defined on

the bounded region I = { (x, y) | 0≤ x<W, 0≤ y<H } of a two-dimensional surface.

f(x) 2dx
I

<• (1)

[Pattern Functions Definition]

If  f, g Œ P, a are real numbers and f+g and af are defined as f(x)+ g(x),

af(x) respectively, then P becomes a vector space. The image pattern of a frame of

video can be considered to be a point in P  if we make f(x) the brightness of the point at

the frame coordinates defined by x in the W¥H frame image. This means that patterns

can be thought of as vectors. We will therefore refer to P as the "Pattern Space".

[Inner Product-Definition]

We can define the inner product of any two patterns in Pattern Space as

(f, g) = f(x) g(x) dx
I (2)



and the norm of f naturally becomes f = f,f . If we then consider the angle q
between f and g, we can use this definition of the inner product to produce Eq. (3).

cosq=(f,g)

f g (3)

Let us next consider the characteristics of this pattern space for situations in which

the object of recognition does not extend beyond the boundaries of the image frame.

[Invariance for Congruent Transformation]

Motion in which both the shape and size of an object are maintained includes trans-

lation and rotation (including reflection). If we take congruent transformation of this

type xLx’, we can describe it in terms of a translation t and the orthogonal matrix

O, as shown in Eq. (4):

x’ = Ox+ t (4)

In this case, the transformation f’ = L(f) that takes place in pattern space is:

f’(x) = f(x’) = f(Ox+t) (5)

Further, for any real number a, L(f+g) = L(f)+ L(g) becomes L(af) = aL(f),

which shows that L is a linear transformation in pattern space.

For any two patterns f and g, for motion of this type in which the objects do not

move out of the frame, we have:

(f',g')= f(Ox+t)g(Ox+t)dx
I

= f(x')g(x') O–1 dx'
I

=(f,g)

(6)

which shows that the pattern-space inner product is preserved. In other words, this type

of motion in patterns on the frame image corresponds to orthogonal transformations in

pattern space.

We will now generalize on the discussion so far, and expand our motion to include

affine transformations. In place of the orthogonal matrix O, we will use the nonzero
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Fig. 2 Definition and character of pattern space.



determinant two-dimensional matrix A, for which x’ = Ax + t In this case, the inner

product becomes that shown in Eq. (7), and is generally not preserved.

(f',g') = f(x')g(x') A–1 dx'
I

=
(f,g)

A                                (7)

The angle q’ between f' and g’ becomes that shown in Eq. (8), however, and the

angle q between f and g is preserved.

       cos q'=
(f',g')

f' g'
=

(f,g)

f g
= cos q   (8)

In other words, for transformations that are similar on the frame images, the angle

formed by the two patterns in pattern space is preserved (Fig. 2).

2.2     Trajectory in Pattern Space
[Trajectory of Motion Image]

Let us now consider what happens when changes occur over time, as in full-motion

video. We will define f(x, t) as the brightness at frame position x at time t. If t is held

constant, brightness becomes a function of x, and what we have can be thought of as the

angle point in pattern space. Based on this, we can define f(t) as the pattern at time t.

If the actual world is filmed with a sufficiently short time-resolution Dt, f(x, t) can

be thought of as being temporally and spatially continuous. This means that, for a small

positive value e, we can be sure that ¿f(x, t+Dt) - f(x, t)¿ < e. Thus, if e is sufficiently

small, the norm of f(t+Dt) - f(t) in pattern space approaches zero:

f(t+Dt) –f(t) = f(x, t+Dt) –f(x, t )
2
dx

I

£ e WH
                              (9)

In this way, temporal transitions in patterns can be treated as continuous trajectories

traced in pattern space.

 Consider a pattern (Fig. 3) that changes P¯fiQ¯fiR. Let us define the angle that is

formed in pattern space by PQ, QR as q
PQR.
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Fig. 6  Pattern Space Trajectory of "Side extensions"  projected on 3D space.
(By using  principal-component analysis. The sum of proportions for eigenvectors e1, e2, e3 are 0.853.)

When a pattern undergoes a linear transformation within the frame, a similar transformation

occurs in the corresponding pattern space, so the angle q’
PQR

 is equal to q
PQR

.

Supposing that the object of recognition does not extend beyond the boundaries of

the image frame, the angle q between f and g is preserved for any congruent transformation

[Nagaya 95]. In other words, for transformations that are similar on the frame images, the

angle formed by the two patterns in pattern space is preserved.

[Pattern Space Trajectory by Human Gesture]

 As shown in Fig. 4, if a sequence of temporal changes within the frame is due to a
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Fig. 5  Human action "Side Extensions"



gesture by a single human subject, the corresponding path are traced in pattern space. To

preserve the angle formed by the two patterns, the trajectory in pattern space should be

invariant across changes in that subject's position or apparent size and should have a

shape that is characteristic of that particular type of gesture.

The human action "Side Extensions" is shown in Fig. 5, and the three-dimensional

projection of the resulting pattern space trajectory is shown in Fig. 6. The projection was

passed through principal-component analysis. Fig. 6 shows that the trajectories for re-

peated gesture almost agree regardless of minute variations in action.

3     Gesture Recognition Method
3.1     Variations in Single Gesture

Figure 6 also shows, minute variations are produced each time the gesture is repeat-

ed, causing slight corresponding changes in the trajectories. To absorb these real varia-

tions, we used polygonal approximations of the trajectory curves consisting of represen-

tative points to characterize the trajectory shape. These representative points are deter-

mined whether the curvature of the trajectory was local minimum or local maximum.

[Curvature of Pattern Space trajectory]

Let f(s) be a trajectory in pattern space, where s is the length of the trajectory as

measured from a specified base-point on that trajectory, and f(s) is a function of time

(i.e. t). The unit vector in a direction tangential to the trajectory's direction t, then becomes:

        t =
df(s)

ds
(10)

If  we then rewrite this with K as the curvature, r(≥ 0) as the radius of curvature, and

u as the unit vector in a direction normal to the trajectory, we arrive at

       Kn = 1
rn = dt

ds
=

d2f(s)

ds2
(11)

The linear transformation A on the two-dimensional image then becomes a similar

transformation in the pattern space, having a curvature K’ of

  
K ' =

d2f(s / A )

ds2
= K

A (12)

which is proportional to the original curvature.

Equation (12) indicates that for any gesture, regardless of the size of the subject on

the frame image, the maximum and minimum curvatures will occur at the same positions

on the trajectory curve. We have used these local maximums and local minimums as the

bases to segment our trajectory.



[Trajectory Segmentation Algorithm]

The algorithm used to segment pattern space trajectories follows. To determine cur-

vature, second-order differences must be calculated. However, simply taking the differ-

ences between subsequent frame images produces results easily affected by noise, so

instead we adopted a policy of waiting until the inter-frame difference reached a certain

unit of length S
th
.

First, we read in the latest frame image INow, and calculate its path length from

the base image I
B
. If S

In
>S

th
, we update the base image (I

B
 ‹ I

Now 
) , and calculate the

curvature K. Next, we determine the times in the history of the K time-series at which it

reached its highest and lowest values, and store the frame images for those instants as

motion elements (N
now

‹ I
now

). Finally, we calculate the angle q that the last three motion

elements define in pattern space, and go back to repeat the entire procedure.

Via this process, gestures can be broken up into time sequences that have motion

elements (specific poses) as their elements. This can be thought of as the operation of

segmenting single gestures into  multiple components. In this paper, we will refer to this

operation of using the polygonal approximation of the trajectories in order to break them

up into their component elements as "segmentation."

3.2     Applying Continuous Dynamic Programming
In order to recognize human gestures, we have to judge the shapes of the polygonally

approximated trajectories using CDP (Continuous Dynamic Programming) - whether the

input frame image sequence matches the models formerly created or not.

We define the local distance between the model and the input image as follows:

     dlocal = lmcos qm – licos q i

2
+ lmsin qm – lisin q i

2

                            (13).

Here  l is the ratio of the lengths of the two vectors linking three consecutive motion

elements. Figure 7 plots the definition of the local distance d
local

. For both the models and

the input, the ratio of the Euclidean distances between the three most recent representa-

tive points and the angle formed by those points has been used to obtain two points in a

polar coordinate system. The Euclidean distance between these two points is then calcu-
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(li cos qi,li sin qi)
Pi 
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qm
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Fig. 7  Definition of local distance for CDP.
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Fig. 8 Segmentation result of gesture "Bye"
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Fig. 9 Curvature sequence at gesture "Bye".

lated. Using this local distance, CDP calculates the total distance for every model and

decide the nearest model for the input pattern space trajectory.

4     Experiments

We conducted recognition experiments for the gesture recognition method using the

pattern space trajectory. We also analyzed the results using a motion image of the "Bye"

gesture (waving good-bye) shown in Fig. 8. It also shows the results of polygonal

approximations for the pattern space trajectory as a frame image when the frame-number

was the vertex of polygonal approximations. Figure 9 shows the results of expressing the

curvature of the gesture trajectory as a time series.

Local-minimums and local-maximums correspond to the frame numbers in Fig. 8

and Fig. 10. Also local-minimums and local-maximums correspond to the split second

stop and the quickest point of human action. Namely, the curvature of a pattern space

trajectory caused by human action indicates its speed.

Figures10 (a)(b)(c) show the projection of pattern space trajectory onto the local

distance plane in Fig. 5. The vortex in Fig. 10 (a) was drawn by repetitive clockwise

plotting, regarding the previous OP
i 
as the Y-axis. The CDP process of our recognition

method could be regarded as searching for the nearest vortex shape corresponding to the



particular gesture from input vortex. Figures10 (b)(c) show the search results. This pen-

tagonoid shape expresses the sequence for "Bye". We found that the two sequence imag-

es #021-#035 and #053-#070 in Fig. 7 corresponding to Fig. 10 (b) and Fig. 10 (c) are

almost the same as human gestures, and that each frame image of the vertices agreed with

the other one. From these result, we consider that the pattern space trajectory is effective

for human gesture recognition.

5     Conclusion

 We described the pattern space trajectory as a new feature for gesture recognition. It has

three characteristics: 1) it is invariant for position, lie and size of the target human in the

frame images, 2) it allows gesture recognition without interpreting frame image contents,

or normalizing the size and position of the target human area and 3) no costly statistical

calculation is required. Also we showed its effectiveness in gesture recognition using the

results of several experiments.

 As a future work, we plan to make recognition tests for large volumes of actual

video data, and to evaluate the respective advantages and disadvantages. We also plan to

give further consideration to the applications of gesture segmentation functions.
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