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Abstract. OpenMP has evolved recently towards expressing unstruc-
tured parallelism, targeting the parallelization of a broader range of
applications in the current multicore era. Homogeneous multicore ar-
chitectures from major vendors have become mainstream, but with clear
indications that a better performance/power ratio can be achieved us-
ing more specialized hardware (accelerators), such as SSE-based units
or GPUs, clearly deviating from the easy-to-understand shared-memory
homogeneous architectures. This paper investigates if OpenMP could
still survive in this new scenario and proposes a possible way to extend
the current specification to reasonably integrate heterogeneity while pre-
serving simplicity and portability. The paper leverages on a previous
proposal that extended tasking with dependencies. The runtime is in
charge of data movement, tasks scheduling based on these data depen-
dencies and the appropriate selection of the target accelerator depending
on system configuration and resource availability.

1 Introduction and Motivation

Computer architecture is under a revolution. The gigahertz race has stopped
due to power dissipation problems. Fortunately, extra transistors continue be-
ing available in new chip generations, thanks to the technological reduction in
transistor area. So new solutions are needed to use the extra transistors, and get
lower power consumption at the same time. As a nice alternative to the gigahertz
race, and instead of going for more complex pipelined and superscalar processors,
the new transistors are used to incorporate functionalities that were external to
the processor, into a single chip. For instance, GPUs, which are currently being
used for general purpose computing, are becoming part of the processing chip
[1,2]. Other approaches, like the Cell/B.E. processor [3] are targeting physics,
encryption, and encoding. The purpose is to accelerate specific algorithms, so
that applications can take advantage of the extra performance.

Future supercomputers will be equipped with heterogeneous hardware, includ-
ing Cell processors, GPUs and even FPGAs. This hardware can provide dramatic
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performance advantages for high-performance computing applications, specially
for applications featuring data-parallelism. In this scenario, programmers will
have to deal with architectures composed by a mix of regular multicore CPUs
and accelerators, possibly several types of accelerators, each one with its own
programming environment and libraries, and possibly its own memory address
space.

In order to overcome the programming challenges introduced by accelerator-
based architectures, programming models need to evolve including features that
allow to migrate applications to heterogenous architectures in a simple and
portable way. If current application developers are still having a hard time trying
to extract reasonable performance from homogeneous multicore architectures,
the situation is about to get even worse with the emergence of heterogeneous
multicore architectures.

The majority of proposals today assume a host-directed programming and ex-
ecution model with attached accelerator devices. The bulk of a user application
executes on the host while user-specified code regions are offloaded to the acceler-
ator. In general, the specifics of the different accelerator architectures makes pro-
gramming extremely difficult if one plans to use the vendor-provided SDKs (libspe
for Cell, CUDA for Nvidia GPUs [4], ...). It would be desirable to retain most of
the advantages of using these SDKs but in a much more accessible way, avoiding
the mix of hardware specific code (for task offloading, data movement, ...) with
application code.

In order to motivate the paper and show the complexities in using vendor-
provided SDKs, we consider a simple matrix multiplication example in
Figure 1. In this code, the programmer defines that each element of matrices
A, B and C is a pointer to a block of BS*BS elements, which are allocated from
inside the main function.

This simple example would require very different accelerator-dependent code
in order to offload the execution, transfer data and synchronize host and acceler-
ator(s). For example, to program an Nvidia GPU using CUDA, the programmer
has to write the host and device codes. Figure 2 shows the code executed on the
host, in which the programmer first needs to allocate memory on the GPU for
the blocks of A, B and C (since the GPU executes from its own separate mem-
ory). Then the host copies matrices from host memory to GPU memory. The
arguments give the destination pointer, the source pointer, the two dimension
sizes, and copy direction. Then the host specifies the execution parameters and
instantiates the kernel itself. Finally the host waits for the kernel to finish, moves
results back from the GPU to the host and deallocates memory on the GPU.

For the Cell/B.E. the programmer would have to write two codes: one for the
PPE (Figure 3) and one for the SPE (Figure 4). The PPE code handles thread
allocation and resource management among the SPEs. In the example, the PPE
code is creating a thread context, loading program, creates the thread and gets
thread control for each of the SPEs. Then PPE code leaves the SPEs to perform
the computation and afterwards waits for the SPE threads to finish. The SPE
code iterates while there are matrix blocks to calculate. The function next block
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1 void matmul ( f loat ∗A, f loat ∗B, f loat ∗C ) {
2 for ( int i =0; i < BS ; i++)
3 for ( int j =0; j < BS ; j++)
4 for ( int k=0; k < BS ; k++)
5 C[ i ∗BS+j ] += A[ i ∗BS+k ] ∗ B[ k∗BS+j ] ;
6 }
7

8 f loat ∗A[NB] [NB] , ∗B[NB] [NB] , ∗C[NB] [NB] ;
9

10 int main ( void ){
11 int i , j , k ;
12

13 for ( i = 0 ; i < NB; i++)
14 for ( j = 0 ; j < NB; j++) {
15 A[ i ] [ j ] = ( f loat ∗ ) mal loc (BS∗BS∗ s izeof ( f loat ) ) ;
16 B[ i ] [ j ] = ( f loat ∗ ) mal loc (BS∗BS∗ s izeof ( f loat ) ) ;
17 C[ i ] [ j ] = ( f loat ∗ ) mal loc (BS∗BS∗ s izeof ( f loat ) ) ;
18 }
19

20 for ( i = 0 ; i < NB; i++)
21 for ( j = 0 ; j < NB; j++)
22 for ( k = 0 ; k < NB; k++)
23 matmul ( A[ i ] [ k ] , B[ k ] [ j ] , C[ i ] [ j ] ) ;
24 }

Fig. 1. Matrix multiplication example to motivate the extension of OpenMP for het-
erogeneous architectures

1 g l o b a l void matmul kerne l ( f loat ∗A, f loat ∗B, f loat ∗C ) ;
2

3#define THREADS PER BLOCK 16
4

5 void matmul ( f loat ∗A, f loat ∗B, f loat ∗C ) {
6 . . .
7 // a l l o c a t e d e v i c e memory
8 f loat ∗d A , ∗d B , ∗d C ;
9 cudaMalloc ( ( void∗∗) &d A , BS∗BS∗ s izeof ( f loat ) ) ;

10 cudaMalloc ( ( void∗∗) &d B , BS∗BS∗ s izeof ( f loat ) ) ;
11 cudaMalloc ( ( void∗∗) &d C , BS∗BS∗ s izeof ( f loat ) ) ;
12

13 // copy h o s t memory t o d e v i c e
14 cudaMemcpy (d A , A, BS∗BS∗ s izeof ( f loat ) , cudaMemcpyHostToDevice ) ;
15 cudaMemcpy (d B , B, BS∗BS∗ s izeof ( f loat ) , cudaMemcpyHostToDevice ) ;
16

17 // s e t u p e x e c u t i o n p a r a m e t e r s
18 dim3 threads (THREADS PER BLOCK, THREADS PER BLOCK) ;
19 dim3 gr i d (BS/ threads . x , BS/ threads . y ) ;
20

21 // e x e c u t e t h e k e r n e l
22 matmul kernel<<< grid , threads >>>(d A , d B , d C ) ;
23

24 // copy r e s u l t f r om d e v i c e t o h o s t
25 cudaMemcpy (C, d C , BS∗BS∗ s izeof ( f loat ) , cudaMemcpyDeviceToHost ) ;
26

27 // c l e a n up memory
28 cudaFree (d A ) ;
29 cudaFree ( d B ) ;
30 cudaFree ( d C ) ;
31 }

Fig. 2. Matrix multiplication example (non optimized) targeting CUDA
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1 void matmul spe ( f loat ∗A, f loat ∗B, f loat ∗C ) ;
2

3 void matmul ( f loat ∗A, f loat ∗B, f loat ∗C ) {
4 for ( i =0; i<num spus ; i++) {
5 // I n i t i a l i z e t h e t h r e a d s t r u c t u r e and i t s p a r a m e t e r s
6 . . .
7 // C r e a t e c o n t e x t
8 threads [ i ] . id = sp e con t ex t c r e a t e (SPE MAP PS, NULL) ;
9 // Load p rog ram

10 rc = spe program load ( threads [ i ] . id , &matmul spe ) ) != 0 ;
11 // C r e a t e t h r e a d
12 rc = pth r e ad c r e a t e (&threads [ i ] . pthread , NULL,
13 &ppu pthread funct ion , &threads [ i ] . id ) ;
14 // Get t h r e a d c o n t r o l
15 threads [ i ] . c t l a r e a = ( sp e s pu co n t r o l a r e a t ∗)
16 s p e p s a r e a g e t ( threads [ i ] . id , SPE CONTROL AREA) ;
17 }
18 // S t a r t SPUs
19 for ( i =0; i<spus ; i++) send mai l ( i , 1 ) ;
20 // Wai t f o r t h e SPUs t o c omp l e t e
21 for ( i =0; i<spus ; i++)
22 rc = pth r e ad j o i n ( threads [ i ] . pthread , NULL) ;
23 }

Fig. 3. Matrix multiplication example (non optimized and omitting conditional state-
ments to control error codes) for Cell/B.E. using IBM’s SDK: PPE side

1 void matmul spe ( f loat ∗A, f loat ∗B, f loat ∗C )
2 {
3 . . .
4 while ( b l o c k s t o p r o c e s s ( ) ){
5 next b lock ( i , j , k ) ;
6 ca l c u l a t e add r e s s ( baseA , A, i , k ) ;
7 ca l c u l a t e add r e s s ( baseB , B, k , j ) ;
8 ca l c u l a t e add r e s s ( baseC , C, i , j ) ;
9 mfc get ( localA , baseA , s izeof ( f loat )∗BS∗BS , i n tag s , 0 , 0 ) ;

10 mfc get ( localB , baseB , s izeof ( f loat )∗BS∗BS , i n tag s , 0 , 0 ) ;
11 mfc get ( localC , baseC , s izeof ( f loat )∗BS∗BS , i n tag s , 0 , 0 ) ;
12 mfc wr i te tag mask ((1<<( i n t a g s ) ) ) ;
13 mf c r e ad t a g s t a t u s a l l ( ) ; /∗ Wait f o r i n p u t d a t a
14 f o r ( i i =0; i i < BS ; i i ++)
15 f o r ( j j =0; j j < BS ; j j ++)
16 f o r ( kk =0; kk < BS ; kk++)
17 l o c a l C [ i ] [ j ]+= l o c a l A [ i ] [ k ]∗ l o c a l B [ k ] [ j ] ;
18 mfc pu t ( l o c a l C , baseC , s i z e o f ( f l o a t )∗BS∗BS , o u t t a g s , 0 , 0 ) ;
19 m f c w r i t e t a g m a s k ((1<<( o u t t a g s ) ) ) ;
20 m f c r e a d t a g s t a t u s a l l ( ) ; /∗ Wait f o r o u t p u t d a t a
21 }
22 . . .
23 }

Fig. 4. Matrix multiplication example for Cell/B.E. (non optimized) using IBM’s SDK:
SPE side

performs atomic counter increments between all SPEs. The SPE code performs
three DMA read operations (for blocks from matrices A, B and C) and blocks
until the transfers have finished. The block matrix operation is then performed
locally and finally a DMA write operation is performed for the block from matrix
C. This code is quite naive, since for example no double buffering nor SIMDization
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1 void matmul ( f loat ∗A, f loat ∗B, f loat ∗C ) {
2 // c o n f i g u r e d e v i c e
3 int a l d e s c = r a s c l i b a l g o r i t hm op en ( " matrixmult " ) ;
4

5 // qu eu e s up command to s end i n p u t s
6 r e s = ra s c l i b a l g o r i t hm send ( a l d e s c , "a" , A, BS∗BS∗ s izeof ( f loat ) ) ;
7 r e s = ra s c l i b a l g o r i t hm send ( a l d e s c , "b" , B, BS∗BS∗ s izeof ( f loat ) ) ;
8 r e s = ra s c l i b a l g o r i t hm send ( a l d e s c , "c" , C, BS∗BS∗ s izeof ( f loat ) ) ;
9

10 // qu eu e s up command to e x e c u t e b i t s t r e a m
11 r a s c l i b a l g o r i t hm go ( a l d e s c ) ;
12

13 // qu eu e s up command to r e c e i v e r e s u l t s
14 r e s = r a s c l i b a l g o r i t hm r e c e i v e ( a l d e s c , "c" , C, BS∗BS∗ s izeof ( f loat ) ) ;
15

16 // w a i t f o r t e r m i n a t i o n
17 r a s c l i b a l go r i thm commi t t ( a l d e s c , NULL) ;
18 r a s c l i b a l g o r i t hm wa i t ( a l d e s c ) ;
19 }

Fig. 5. Matrix multiplication example (non optimized and omitting conditional state-
ments to control error codes) targeting a RASC Altix blade

are used to optimize the code. The samplematrix multiply code from the IBM SDK
hasmore than 600 lines for thePPEcode andmore than 1300 lines for theSPEcode.

For a system like the SGI Altix with a Reconfigurable Application Specific
Computing (RASC) FPGA blade, the code in Figure 5 using calls to the RASClib
library would be used (in addition to generate the bitstream matrixmult with
the FPGA compiler). The code assumes that the application has already re-
served and configured the FPGA device. The rasclib algorithm open allo-
cates all necessary internal data structures for a logical algorithm. The three
rasclib algorithm send calls pull data down to the input data areas on the
device. The rasclib algorithm go starts execution. The rasclib algorithm
receive call pushes the result back out to host memory. The rasclib
algorithm commit causes all of the commands that have been queued up by
the previous calls to be sent to the device. The rasclib algorithm wait blocks
until all the command thatwere sent to all of the devices are complete, then returns.

There have been substantial efforts to propose and develop programming mod-
els for hybrid architectures that abstract the target architecture. These differ in
the objects they manipulate, in general arrays or matrices. For example both
RapidMind [5] and PeakStream are stream languages that operate on streams
(vectors of arbitrary length) of data embedded in C or C++ and they are ori-
ented to GPGPUs. For the ClearSpeed floating-point accelerator, the Cn pro-
gramming language adds new datatypes (mono and poly) to indicate if there is
only one instance of the data or all functional units have a portion of the data.
Others (e.g. PGI) propose directives to delineate accelerator regions and extract
parallelism in loops or follow a task parallelism model, and offer architecture
independent abstractions for offloadable functions (e.g. Sequoia [6], Merge [7],
CellSs [8], HMPP [9]). A growing number of OpenMP compiler frameworks are
also intended to offer support for heterogeneous architectures (e.g. Octopiler [10]
for Cell or PGI [11] and [12] for CUDA).
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Most of the proposals and environments available target a single type of accel-
erator at a time. In order to have the same code prepared to compile for several
target accelerators, the programmer needs to use conditional compilation to iso-
late declaration of variables and calls to different APIs for the different target
devices.

2 Proposed OpenMP Extensions

In this section we propose a set of extensions to OpenMP 3.0 to express the
execution of tasks on a hardware accelerator. This extension leverages on a
previous proposal to allow the specification of dependencies between tasks [13],
although it can be considered totally independent.

Tasks are the most important new feature of OpenMP 3.0. A programmer can
define deferrable units of work, called tasks, and later ensure that all the tasks
defined up to some point have finished.

#pragma omp task [clause-list]
structured-block

Valid clauses are shared, private, firstprivate and untied. The first three
are used for setting data sharing attributes of variables in the task body; the
last one specifies that the task can be resumed by a different thread after a
possible task switching point. The proposal in [13] extended the task construct
with some additional clauses that are used to derive dependencies among tasks
at runtime: input, output and inout. Although in some cases the compiler can
analyze the code and determine the input and output data sets, we provided
these additional clauses to modify or augment the compiler analysis.

OpenMP allows the specification of any structured block inside the task con-
struct. This motivates the presentation of our proposal in two parts. The first
part of our proposal just allows the specification of target devices for the exe-
cution of a task. In the second part, we consider a subset of the possible tasks
than can be expressed in OpenMP: tasks composed of a function call. In this
case, the programmer will be able to specify alternative implementations for dif-
ferent target devices. For the general case we have not found a portable way to
specify alternative implementations (each one targeting an accelerator device)
for structured blocks of code.

2.1 Specifying Target Devices

Our proposal consists of a new pragma that may precede an existing pragma
task:

#pragma omp target device(device-name-list) [clause-list]

The target construct specifies that the execution of the task could be offloaded
on any of the devices specified in device-name-list (and as such its code must
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be handled by the proper compiler backends). If the task is not preceded by a
target directive, then the default device-name, which is smp and corresponds
to a homogeneous shared-memory multicore architecture, will be used. Other
device-names are vendor specific (we will use along this paper three possible
examples: cell, cuda and fpga). When a task is ready for execution (i.e. it has
no dependencies with other previously generated tasks) the runtime can choose
among the different available targets to decide in which device to execute the
task. This decision is implementation-dependent but it will ideally be tailored to
resource availability. If no resource is available, the runtime will stall that task
until one becomes available.

Some restrictions may apply to tasks that target a specific device (for example,
they may not contain any other OpenMP directives, do any input/output, ...).
In addition, tasks offloaded in some specific devices should be tied or they should
execute in the same type of device if thread switching is allowed.

Some additional clauses can be used with this pragma device:

– copy_in(data-reference-list)

– copy_out(data-reference-list)

These two clauses, which are ignored for the smp device, specify data move-
ment for shared variables used inside the task. Copy in will move variables in
data-reference-list from host to device memory. Copy out will move vari-
able in data-reference-list back from device to host memory. Once the task
is ready for execution, the runtime system will move variables in the copy in
list. Once the task finishes execution, the runtime will move variables in the
copy out list, if necessary.

A data-reference in a data-reference-list can contain a variable identifier or
a reference to subobjects. References to subobjects include array element ref-
erences (like a[4]), array sections (like a[3:6]), field references (like a.b) and
shaping expressions (like [10][20] p). Since C does not have any way to express
ranges of an array, we have borrowed the array-section syntax from Fortran 90.
These array sections, with syntax a[e1:e2], designate all elements from a[e1]
to a[e2] (both ends are included and e1 shall yield a lower or equal value than
e2). Multidimensional arrays are eligible for multidimensional array sections (like
a[1:2][3:4]). While not technically naming a subobject, non-multidimensional
array section syntax can also be applied to pointers (i.e.: pA[1:2] is valid
for int *pA, but note that pB[1:2][3:4] is invalid for int **pB, also note
that pC[1:2][3:4] is valid for int *a[N] and so it is pD[1:2][3:4][5:6]
for int *a[N][M]). For syntactic economy a[:x] is the same as a[0:x] and,
only for arrays where the upper bound is known, a[x:] and a[:] mean respec-
tively a[x:N] and a[0:N]. Designating an array (i.e.: a) in a data reference
list, with no array section nor array subscript, is equivalent to the whole array-
section (i.e.: a[:]). Shaping expressions are a sequence of dimensions, enclosed
in square brackets, and a data reference, that should refer to a pointer type (like
[10][20] p). These shaping expressions are aimed at those scenarios where an
array-like structure has been allocated but only a pointer to its initial element



A Proposal to Extend the OpenMP Tasking Model 161

is available. The goal of shaping expressions is to provide to the compiler such
unavailable structural information.

Other vendor-specific clauses in the target construct for each particular
device-name are possible.

2.2 Taskifying Functions

Our second proposal applies to those tasks that are just composed of a function
call

#pragma omp task [clause-list]
function-call

In this paper we also consider another way to specify tasks in OpenMP, which
we have found very convenient to taskify functions that are always executed as
tasks:

#pragma omp task [clause-list]
{function-header|function-definition}

Whenever the program calls a function annotated in this way, the runtime will
create an explicit task.

In this case, the pragma proposed in the previous subsection applies to a
function header or definition:

#pragma omp target device(device-name-list) [clause-list]
{function-header|function-definition}

The target construct specifies that the function contains code prepared for its
execution on all devices specified in device-name-list. If a function is not
preceded by a target directive, then the default smp device is used. In addition
to the possible clauses specified in the previous section, we allow in this case the
following one:

– implements(function-name)

This clause implements is used to specify an alternative implementation for a
function. For example:

#pragma omp task
void matmul( float *A, float *B, float *C );
...
#pragma omp target device(cell) implements(matmul)
void matmul_cell( float *A, float *B, float *C ) {
... // optimized version for target device
}

or directly in the header of a routine in an optimized library:
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#pragma omp task
void matmul( float *A, float *B, float *C );
...
#pragma omp target device(cell) implements(matmul)
void matmul_spe( float *A, float *B, float *C );

The programmer is specifying that the alternative function (matmul cell or
matmul spe) should be used instead of function matmul when offloading the
task to one of the Cell SPE units. If the device cell is not available, then the
runtime will launch the execution of the original matmul function on the default
smp device. Different names are used for the different implementations in order
to avoid duplicated symbols.

If the original implementation is appropriate for one of the accelerator types,
then the programmer should precede the definition of the task with the specifi-
cation of the target device

#pragma omp target device(smp,cell)
#pragma omp task
void matmul ( float *A, float *B, float *C ) {
... // original sequential code
}

In this case, the compiler would generate two versions for the same function,
one going through the native optimizer for the default device and another going
through the accelerator-specific compiler.

2.3 A Couple of Examples

Figure 6 shows the same matrix multiplication example used in section 1. The
programmer specifies in the code example that the task could be offloaded into
one of the Cell SPEs. The code to be offloaded should be generated by the native
compiler for Cell using the function definition in matmul. Note that the inout
clause [13] is used in the definition of the task to express the data dependence
that exists among tasks computing the same block of C.

Several target accelerator devices can be specified in the application. For ex-
ample in Figure 7 the programmer is specifying three possible options to execute
function matmul. The first one is using the original definition of function matmul
for the default target architecture. Two alternatives specified by the user are
the implementation specified in matmul cuda for an Nvidia GPU or the library
implementation named matmul spe for the IBM Cell. For all the devices, the
runtime is in charge of moving data before and after the execution of the task.

2.4 Changing Memory Association for Data

In some kind of accelerators, as for instance in the Cell SPUs or in GPUs, it may
be necessary to change the memory association for the data in memory prior to
the execution on the device. Our proposal based on alternative implementations
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1#pragma omp t a r g e t device (smp , c e l l ) copy_in (A[BS ] [ BS ] , B[BS ] [ BS ] , C[BS ] [ BS ] )
2 copy_out (C[BS ] [ BS ] )
3#pragma omp task inout (C[BS ] [ BS ] )
4 void matmul ( f loat ∗A, f loat ∗B, f loat ∗C ) {
5 // o r i g i n a l s e q u e n t i a l c ode i n F i g u r e 1
6 }
7

8 f loat ∗A[NB] [NB] , ∗B[NB] [NB] , ∗C[NB] [NB] ;
9

10 int main ( void ){
11 for ( int i = 0 ; i < NB; i++)
12 for ( int j = 0 ; j < NB; j++)
13 for ( int k = 0 ; k < NB; k++)
14 matmul ( A[ i ] [ k ] , B[ k ] [ j ] , C[ i ] [ j ] ) ;
15 }

Fig. 6. Example specifying the execution on a device

1#pragma omp task inout (C[BS ] [ BS ] )
2 void matmul( f loat ∗A, f loat ∗B, f loat ∗C) {
3 // o r i g i n a l s e q u e n t i a l code i n F i g u r e 1
4 }
5

6#pragma omp t a rge t device ( cuda ) implements (matmul)
7 copy_in (A[BS ] [ BS ] , B[BS ] [ BS ] , C[BS ] [ BS ] ) copy_out (C[BS ] [ BS ] )
8 void matmul cuda ( f loat ∗A, f loat ∗B, f loat ∗C) {
9 // o p t i m i z e d k e r n e l f o r cuda

10 }
11

12#pragma omp t a rge t device ( c e l l ) implements (matmul)
13 copy_in (A[BS ] [ BS ] , B[BS ] [ BS ] , C[BS ] [ BS ] ) copy_out (C[BS ] [ BS ] )
14 void matmul spe ( f loat ∗A, f loat ∗B, f loat ∗C) ;
15

16 f loat ∗A[NB] [NB] , ∗B[NB] [NB] , ∗C[NB] [NB] ;
17

18 int main ( void ){
19 for ( int i = 0 ; i < NB; i++)
20 for ( int j = 0 ; j < NB; j++)
21 for ( int k = 0 ; k < NB; k++)
22 matmul (A[ i ] [ k ] , B[ k ] [ j ] , C[ i ] [ j ] ) ;
23 }

Fig. 7. Example with the specification of alternative implementations for several target
devices

could allow a runtime to change of memory association by specifying different
headers for the implemented functions.

For example consider the code in Figure 8 that uses contiguous storage for
matrices A, B and C. Notice that matmul defines the arguments as [N][N] and
only accesses blocks of size [BS][BS] while matmul block defines the arguments
as [BS][BS]. The compiler can recognize this and instruct the runtime system
to do the data movement to the local memory of the Cell SPE in a blocked way.

The extensions proposed in this paper are orthogonal to other possible exten-
sions to generate efficient code by a compiler (e.g., vectorization width, number
of threads running on accelerators, code transformations, ...) could be neces-
sary for the compiler to generate good code for the target device. Proposals
commented in the next section address some of these issues.
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1#pragma omp task inout (C[BS ] [ BS ] )
2 void matmul ( f loat A[N ] [N] , f loat B[N ] [N] , f loat C[N ] [N] ) {
3 // o r i g i n a l s e q u e n t i a l c ode i n F i g u r e 1
4 }
5

6#pragma omp t a r g e t device ( c e l l ) implements (matmul ) copy_in (A, B, C) copy_out (C)
7 void matmul block ( f loat A[BS ] [ BS ] , f loat B[BS ] [ BS ] , f loat C[BS ] [ BS ] ) {
8 // o r i g i n a l s e q u e n t i a l c ode i n F i g u r e 1
9 }

10

11 f loat A[N ] [N] , B[N ] [N] , C[N ] [N ] ;
12

13 int main ( void ){
14 for ( int i = 0 ; i < N; i=i+BS)
15 for ( int j = 0 ; j < N; j=j+BS)
16 for ( int k = 0 ; k < N; k=k+BS)
17 matmul ( &A[ i ] [ k ] , &B[ k ] [ j ] , &C[ i ] [ j ] ) ;
18 }

Fig. 8. Example with the specification of an implementations with change of memory
association

3 Related Work

In this section we focuss on two approaches more closely related to our proposal
(HMPP [9] and PGI [11]). We summarize both proposals in terms of specification
of code regions to be executed on accelerator devices and how/when they decide
to offload the execution.

3.1 CAPS Hybrid Multi-core Parallel Programming (HMPP)

HMPP [9] is designed to simplify the use of accelerators while keeping the ap-
plication code portable (a sequential binary version can be built using a tra-
ditional compiler). The HMPP approach is to declare, by means of directives,
functions (named codelets) suitable for hardware acceleration and callsites to
them. Codelets are pure functions (i.e. functions that always evaluate the same
result value given the same argument value(s), and have no side effects and no
I/O). The accelerator functions are written in the own accelerator language in
a specific file while keeping the original computation in the main source; then
the developer uses the accelerator specific provided tools (compiler, library, ...)
to generate the function binary.

The general syntax of the HMPP pragmas

#pragma hmpp <label> <directive-type> [, <directive-parameter>]*

The main directive-types are codelet (allows the declaration of a function as
a codelet) and callsite (allows the call of a codelet). label is a unique identi-
fier for a couple (codelet, callsite). The directive-parameters also specify the
accelerator target (e.g. target=cuda:sse), conditional execution of the codelets
(e.g. cond=expr("n==1024"), their desired synchronous or asynchronous prop-
erties and the data transfers (input, output and inout followed by the name
of a function argument). In order to support these data transfers, there are con-
straints on how the codelet arguments are specified (the argument coding rules
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have to permit to compute the amount of data to transfer runtime). For example,
for n-dimensional data structures, the argument is followed by a one-dimensional
array argument whose n elements give the size of each dimension.

The synchronize directive types allow to wait for the termination of a
codelet. Other directive types are for decoupling the data transfers from the
computations. By preloading (advanceload) data and downloading the results
(delegatedstore) whenever they are required in the main application, the pro-
grammer can optimize the use of the memory bandwidth. Programmer can use
the asynchronous directive parameter to interlace data transfers and codelet
execution or the const directive parameter to preload data only once.

At execution, the HMPP runtime takes care of discovering the attached ac-
celerators and their availability. When a codelet is indicated to be run on an
accelerator, if the device is available and if the shared library corresponding
codelet is present, HMPP loads it just as a software plug-in. Otherwise the na-
tive version is run on the host CPU or in a worker thread. The use of dynamic
linking in HMPP allows to add improved codelet versions or add codelets for
new hardware accelerators, without recompiling the overall application source.

The HMPP approach is quite similar to the proposal in this paper, since it
also annotates functions to be offloaded in the accelerators that are specified in
the target clause. We think that our approach has a better potential to express
multiple implementations of functions, it is better integrated in the OpenMP
specification and makes programming easier by delegating intelligence to the
runtime system.

3.2 PGI Directives and Intrinsic Functions

The directives and programming model defined by PGI [11] allow programmers
to specify the regions of a host program to be targeted for offloading to an
accelerator device (mainly GPUs), without the need to explicitly initialize the
accelerator and manage data or program transfers between the host and acceler-
ator. Rather, all of these details are implicit in the programming model and are
managed by their accelerator compilers. The bulk of a user’s program are exe-
cuted on the host. Their current version does not support multiple accelerators
of the same type or different types.

The proposed directives are used to: 1) delineate accelerator regions and 2)
augment information available to the compiler for scheduling of loops. #pragma
acc region defines the region of the program in which loops will be compiled
into accelerator kernels. It accepts clauses to specify data that needs to be copied
from the host memory to the accelerator memory (copyin) and result data that
needs to be copied back (copyout). The local clause is used to declare that the
data needs to be allocated in the accelerator memory. The programmer can use
the if(condition) clause to instruct the compiler to generate two copies of the
region, one copy to execute on the accelerator and one copy to execute on the
host, and decide which one to execute based on the evaluation of condition.
The accelerator loop mapping directive #pragma acc for applies to loops. It can
describe what type of parallelism to use to execute the loop (host [(width)],
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parallel [(width)], seq [(width)] and vector [(width)]). If more than
one scheduling clause appears on the loop directive, the compiler will strip-mine
the loop to get at least that many nested loops, applying one loop scheduling
clause to each level. The pragma also allows to declare loop private and cache
variables, arrays and subarrays.

In summary, the main differences with our proposal is that PGI is based on
compiler technology to optimize the offloading of loops in accelerators. Also the
data movement between the memories is managed by the compiler, not by the
runtime system.

4 Conclusions and Future Work

This paper proposes an extension to the OpenMP 3.0 tasking model to rea-
sonably integrate heterogeneity while preserving simplicity and portability. Our
proposal allows the programmer to easily specify the target devices for the ex-
ecution of a task as well as, for a subset of the tasks that can be expressed in
OpenMP, alternative implementations of the task for different target devices.
We have shown how with this proposal the programmer could extend a simple
matrix multiply to specify the execution in an heterogenous environment.

An implementation of this proposal is currently undergoing. We are currently
trying accommodate in our extension other proposals targeting streaming ar-
chitectures, such as the one proposed in [14], in which tasks become stream
filters and copy in and copy out clauses are used to indicate input and out-
put streams. Finally, we are also investigating new pragmas to direct program
transformation (for instance to specify loop blocking) and their interaction with
OpenMP constructs and our proposed extensions.
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