
Hindawi Publishing Corporation
Advances in Fuzzy Systems
Volume 2013, Article ID 158969, 17 pages
http://dx.doi.org/10.1155/2013/158969

Research Article

A Proposal to Speed up the Computation of the Centroid of
an Interval Type-2 Fuzzy Set

Carlos E. Celemin and Miguel A. Melgarejo

Laboratorio de Automática e Inteligencia Computacional, Universidad Distrital Francisco Jose de Caldas, Carrera 8 No. 40-62,
Piso 7, Bogota, Colombia

Correspondence should be addressed to Miguel A. Melgarejo; migbet@gmail.com

Received 28 August 2012; Accepted 21 October 2012

Academic Editor: M. Onder Efe

Copyright © 2013 C. E. Celemin and M. A. Melgarejo. �is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

�is paper presents two new algorithms that speed up the centroid computation of an interval type-2 fuzzy set. �e algorithms
include precomputation of the main operations and initialization based on the concept of uncertainty bounds. Simulations over
di�erent kinds of footprints of uncertainty reveal that the new algorithms achieve computation time reductions with respect to
the Enhanced-Karnik algorithm, ranging from 40 to 70%. �e results suggest that the initialization used in the new algorithms
e�ectively reduces the number of iterations to compute the extreme points of the interval centroid while precomputation reduces
the computational cost of each iteration.

1. Introduction

Type-2 fuzzy logic systems (T2-FLS) theory and its appli-
cations have grown in recent years [1–3]. One of the main
problems related to the implementation of these systems is
type reduction, which computes the generalized centroid of
a type-2 fuzzy set (T2-FS) [4–6]. �is operation becomes
computationally simpler when performed over a particular
class of T2-FS, namely, interval type-2 fuzzy set (IT2-FS)
[5, 7]. Basically, the centroid of an IT2-FS is an interval
[3, 8]. �erefore, computing this centroid can be considered
as an optimization problem that �nds the extreme points that
de�ne the interval [6].

Fast computation of type reduction for IT2-FSs is an
attractive problem, which is critical since type-reduction
procedures for more general type-2 fuzzy sets (T2-FSs) make
use of interval type-2 fuzzy computations [4, 9–11]. Up-to-
date, several iterative approaches to computing type reduc-
tion for IT2-FSs have been proposed [5, 12–18]. �e Karnik-
Mendel (KM) algorithms are the most popular procedures
used in interval type-2 fuzzy logic systems (IT2-FLS) [17].
It has been demonstrated that the KM algorithms converge
monotonically and superexponentially fast. �ese properties
are highly desirable in iterative algorithms [13]. However,

KM procedures converge in several iterations and demand
a considerable amount of arithmetic and memory look-
up operations [7, 8, 12, 19], for real IT2-FLS implementa-
tions.

In the case of IT2 fuzzy controllers, the computational
cost of type reduction is an important subject [20, 21]. �e
overall complexity of the controller largely depends on the
type-reduction and defuzzi�cation stages. �us developing
strategies for reducing the computational burden and nec-
essary resources for implementing these two stages is highly
convenient. In addition, there are other applications of IT2-
FLS in which the complexity of the hardware and so�ware
platforms should be reduced in order to guarantee the fastest
possible execution of fuzzy inferences [22, 23].

Noniterative type reduction of IT2-FS can be achieved by
means of uncertainty bounds [7]; however, this method is
approximate and involves relatively complex computations.
Other methods for computing the centroid of an IT2-FS have
been proposed, for example, geometric type-reduction [4],
genetically optimized type-reducers [8], interval-analysis-
based type-reduction [24], and sampling defuzzi�cation and
collapsing defuzzi�cation [12]. Although these alternative
methods exhibit interesting properties, they are not as pop-
ular as the KM algorithm.

2 Advances in Fuzzy Systems

An enhanced version of the KM algorithm (EKM) was
presented in [16]. �is version includes a better initializa-
tion and some computational improvements. Experimental
evidence shows that the EKM algorithm saves about two
iterations, which means a reduction in computation time of
more than 39% with respect to the original algorithm. By
the time the EKM algorithm was presented, and the iterative
algorithm with stop condition (IASC) was also introduced
by Melgarejo et al. [14, 15, 19]. �is algorithm deals with
the problem of computing type-reduction for an IT2-FS
by using some properties of the centroid function [13, 19].
Experimental evidence showed that IASC is faster than the
EKM algorithm in some cases.

Recently, IASC has been enhanced by Wu and Nie
[18] leading to a new version called EIASC, which proved
to be the fastest algorithm with respect to the IASC and
EKM algorithms for several type-2 fuzzy logic applications.
�e improvement introduced in EIASC mainly deals with
modifying the iterative procedure for computing the right
point of the interval centroid. Although IASC and EIASC
outperform the EKM algorithm, the initialization of the
IASC-type algorithms is somewhat trivial and does not
provide an appropriate starting point, which can limit the
convergence speed of these algorithms when calculating the
points of the type-reduced set. An extensive and interesting
comparison of several type-reductionmethods is provided by
Wu in [25]. �is study con�rmed the convenience of EIASC
over the EKMA for reducing the computational cost of an
IT2-FLS. �e experiments that were limited to interpreted
language implementations also showed that EIASC and the
enhanced opposite direction searching algorithm (EODS)
exhibited similar performance over di�erent applications;
however, the EODS outperformed EIASC in low-resolution
cases [26].

Regarding the aforementioned problem, this work con-
siders a di�erent initialization perspective for iterative type-
reduction algorithms based on the concept of inner-bound
set for a type-reduced set [13]. �is kind of initialization
has not been tried in type-reduction computing until now.
As it will be analyzed later, the inner-bound initialization
reduces the distance that the algorithms need to cover in
order to �nd the optimal points of the interval centroid.
In addition, bearing in mind the computational burden of
iterative algorithms, this paper also focuses on proposing an
alternative strategy to speed up their computation based on
the concept of precomputing. Precomputation in algorithmic
design is a powerful concept that reduces the necessary
arithmetic operations. Current literature does not report the
use of precomputation in the type-reduction stage in IT2-
FLSs.

Using inner bound sets initialization and precomputa-
tion, Both the IASC and KM algorithms have been restated,
leading to faster algorithms herea�er refered to IASC2 and
KMA2. Our experiments considering two di�erent imple-
mentation perspectives (i.e., interpreted language and com-
piled language) show that IASC2 and KMA2 outperform
EKMA and EIASC. In fact, timing results suggest that
IASC2 may be the best option for implementing IT2-FLSs
in dedicated hardware, whereas EKMA may support the

computation of large-scale simulations of IT2-FLSs over
general purpose processors.

�epaper is organized as follows. Section 2 provides some
background about the centroid of an interval type-2 fuzzy
set. IASC2 and KMA2 are presented in Section 3. Section 4
is devoted to a computational comparative study of itera-
tive type-reduction methods which considers two types of
implementation: compiled-language-based and interpreted-
language-based. Finally, we draw conclusions in Section 5.

2. Background

�e purpose of this section is to provide some basic infor-
mation about the centroid of interval type-2 fuzzy sets. �e
readerwho is not familiarwith this theory is invited to consult
[3, 5, 13] among others.

2.1. Type-2 Fuzzy Sets. According to Mendel [5] a type-2

fuzzy set, denoted �̃, is characterized by a type-2membership
function ��̃(�, �) where � ∈ � and 0 ≤ ��̃(�, �) ≤ 1:

�̃ = {((�, �) , ��̃ (�, �)) | ∀� ∈ �� ⊆ [0, 1]} . (1)

2.2. Interval Type-2 Fuzzy Sets. An IT2-FS is a particular case
of a T2-FS whose values in ��̃(�, �) are equal to one [27].
An IT2-FS is fully described by its footprint of uncertainty
(FOU) [3]. Note that an IT2-FS set can be understood as a
collection of type-1 fuzzy sets (i.e., traditional fuzzy sets).�e
membership functions of these sets are contained within the
FOU; thus, they are called embedded fuzzy sets [5, 13].

2.3. Centroid of an IT2-FS. Let �̃ be an IT2-FS, and its cen-

troid �(�̃) is an interval given by [5]:

c (Ã)= 1[�� (�̃) , �� (�̃)] = 1[��, ��] , (2)

where �� and �� are the solutions to the following optimiza-
tion problems:

�� = min∀�	 ∈ [�	, �] ∑
	=1 �	�	∑
	=1 �	 ,
�� = max∀�	 ∈ [�	, �] ∑
	=1 �	�	∑
	=1 �	 ,

(3)

where the universe of discourse � as well as the upper and
lower membership functions have been discretized in �
points.

A simpler way to understand the centroid of an IT2-FS
is to think about it as a set of centroids that are computed
from all the embedded fuzzy sets [3, 5]. Clearly, in order
to characterize an interval set, it is only necessary to �nd
its minimum and maximum. �e Karnik-Mendel iterative
algorithms [5, 16, 17] are the most popular procedures for
computing these two points.

Advances in Fuzzy Systems 3

2.4. Computing the Centroid of an IT2-FS. It has been demon-
strated that �� and �� can be computed in terms of the
upper and lower membership functions of the footprint of

uncertainty (FOU) of �̃ [3, 5] as follows:

�� = min∀�	 ∈ [�	, �] ∑
	=1 �	�	∑
	=1 �	 = ∑�	=1 �	�	 + ∑
	=�+1 �	�	∑�	=1 �	 + ∑
	=�+1 �	 ,

�� = max∀�	 ∈ [�	, �] ∑
	=1 �	�	∑
	=1 �	 = ∑�	=1 �	�	 + ∑
	=�+1 �	�	∑�	=1 �	 + ∑
	=�+1 �	 ,
(4)

where �	 and �	 are the values of the lower and upper

membership functions, respectively, considering that the
universe of discourse � has been discretized into � points�	. In addition � and � are two switch points that satisfy the
following:

�� ≤ �� ≤ ��+1,
�� ≤ �� ≤ ��+1. (5)

2.5. Uncertainty Bounds of the Type-Reduced Set. �e type-
reduced set of an interval type-2 fuzzy given in (2) can be
approximated by means of two interval sets called inner- and
outer-bound sets [7]. �e end �� and �� points of the type-
reduced set of an interval type-2 fuzzy set are bounded from
below and above by

�� ≤ �� ≤ ��, (6)

�� ≤ �� ≤ ��, (7)

where [��, ��] and [��, ��] are the inner- and outer-bound sets,
respectively. For the purposes of this paper only the inner
bound set is considered, so it is computed as follows:

�� = ∑
	=1 �	�	∑
	=1 �	 ,

�� = ∑
	=1 �	�	∑
	=1 �	 ,
(8)

�� = min (��, ��) ,
�� = max (��, ��) . (9)

2.6. Properties of the Centroid Function. �e de�nition and
corresponding study of the continuous centroid function
are provided by Mendel and Liu in [13]. �eoretical studies
derived from (6) can be legitimated for the discrete cen-
troid function [12]. Regarding this fact, Mendel and Liu
demonstrated several interesting properties of the continuous
centroid function, which are applicable also to the discrete
one. Some of these properties can be summarized saying that
the centroid function decreases or has �at spots to the le� of
its minimum, and it increases or has �at spots to the right of

EIASC EIASC

IASC

IASC

yL yl yR x

µ
(x

)

yr

IASC2 IASC2

Figure 1: Uniform random FOU: �	 (red line) and �	 (blue line).

�e arrows indicates the computation of minimum and maximum.
Orange arrows correspond to IASC2, green to EIASC and blue to
IASC.

this value. Additionally, this function has a global minimum
when � = �. �e right-centroid function �� has similar
properties since this function has a global maximum when� = �. �us, it increases to the le� of the maximum and
decreases to the right.

3. Modified Iterative Algorithms for
Computing the Centroid of an Interval
Type-2 Fuzzy Set

3.1. IASC2. �e IASC-2 algorithm is presented in Table 1.�e
algorithm consists of four stages: sorting, precomputation,
initialization, and recursion. Sorting and precomputation are
the same for computing �� and ��. Precomputation stores
the partial results of computing (8); only two divisions are
required. �ose results will be used along the other stages of
the algorithm.

�e initialization of IACS2 is characterized by its depen-
dence from the inner-bound set. �is feature introduces
a big di�erence with previous algorithms since they use
�xed initialization points (e.g., EKMA, IASC, and EIASC);
however, regarding this particularity, IASC2 is similar to the
KMA, because both algorithms include a FOU-dependent
initialization.

�e IASC2 works with the switch points starting inside
the centroid, iterating similarly as IASC type algorithms but
from the �min toward le� side while the minimum �� is
reached, it is in the opposite sense to IASC and EIASC. �e
procedure for computing the maximum �� begins in �max

and goes to the right side until it is found, and the search
direction is the same of IASC but opposite to the proposed
in EIASC. �e advantage of this initialization for computing
the centroid is that always the switch points start close to the�� and ��; therefore, less iterations are used.

Figure 1 depicts a uniform random FOU with its��, ��, �min, or �� and the �max or ��, and the arrows show

the direction of the search of each procedure from the initial
switch point to the minimum or maximum. Also, in this
example, it is possible to see the space scanned by every

4 Advances in Fuzzy Systems

Table 1: IASC2 algorithm �ow.

IASC2

�e minimum extreme point �� of the centroid of an interval

type-2 fuzzy set over �	 with upper membership function �	 and
lower membership function �	 can be computed using the

following procedure:

�e maximum extreme point �� of the centroid of an interval

type-2 fuzzy set over �	 with upper membership function �	 and
lower membership function �	 can be computed by the following

procedure:(1) Sort �	 (� = 1, 2, . . . , �) in ascending order and call the sorted �	 by the same name, but now �1 ≤ �2 ≤ ⋅ ⋅ ⋅ ≤ �
. Match the weights �	
with their respective �	 and renumber them so that their index corresponds to the renumbered �	.(2) Precomputation:

! ["] = �∑
	=1

�	 (15)

["] = �∑
	=1

�	 (16)

$ ["] = �∑
	=1

�	�	 (17)

% ["] = �∑
	=1

�	�	 (18)

with " = 1, 2, . . . �.

�� = $ [�]! [�] (19)

�� = % [�]# [�] (20)

(3) Initialization: Initialization:�
min

= min(��, ��) (21) �
max

= max(��, ��) (32)

Find � 	(1 ≤ � 	 ≤ � − 1) so that Find �	(1 ≤ �	 ≤ � − 1) so that��� ≤ �
min

< ���+1 ��� ≤ �
max

< ���+1&�(�) = $ [�] + (% [�] − % [�]) (22) '�(�) = % [�] + ($ [�] − $ [�]) (33)*�(�) = ! [�] + (- [�] − - [�]) (23) /�(�) = - [�] + (� [�] − � [�]) (34)

�
min

= &��*�� (24) �
max

= '�(�)/�(�) (35)

& = &�(�) (25) ' = '�� (36)* = *�(�) (26) / = /�� (37)� = � 	. (27) � = �	 + 1. (38)(4) Recursion: Recursion:5
 = �
 − �
 (28) 5
 = �
 − �
 (39)& = & − �
5
 (29) ' = ' − �
5
 (40)* = * − 5
 (30) / = / − 5
 (41)

�� = &* . (31) �� = '/ . (42)

(5) If �� ≤ �
min

, then �
min

= ��, � = � − 1 and go to step 4 else�� = �
min

and stop.
If �� ≥ �

max
, then �

max
= �� and � = � + 1 go to step 4 else �� = �

max

and stop.

algorithm, suggesting that this space is proportional to the
amount of iterations required to converge. Note that IASC2
has the shortest arrows, which mean few iterations.

In Table 1 (21), �min corresponds to the minimum of the
inner-bound set; thus according to (6) �min ≥ ��. �erefore
Table 1 (21) provides an initialization point that is always
greater than or equal to the minimum extreme point ��; In
addition, it is possible to �nd an integer � 	 so that �� � ≤�min < �� �+1. It is easy to show that Table 1 (22)–(24) is
computing the le� centroid function with � = � 	, which �xes
the starting point of recursion from the values obtained in the
precomputation stage.

Recursion Table 1 (28)–(31) computes the le� centroid
function with initial point in � = � 	, and each decrement

in � leads to a decrement in ��(�). By doing some algebraic

operations, it is easy to show that ��(�) = (∑
	=1 �	�	 +∑
	=
+1 �	�)/(∑
	=1 �	 + ∑
	=
+1 �) = (&� � − ∑� �	=
+1 �	(�	 −
�))/(*� � − ∑� �	=
+1(�	 − �)). If sums are computed recursively,

it leads to ��(�) = (&
−1 − �
(�
 − �
))/(*
−1 − (�
 − �
)).
Since � ≤ � 	 given that �� ≤ �min in Table 1 (21), iterations

should decrease � from � 	. �us, a decrement of � induces

a decrement in �
 from �
 to �
. In [5], the following was

demonstrated.

Condition 1. If �
 < �(�1 ⋅ ⋅ ⋅ �
), then �(�1 ⋅ ⋅ ⋅ �
) increases
when �
 decreases.

Advances in Fuzzy Systems 5

Table 2: KMA2 algorithm �ow.

KMA2

�e KM algorithm for �nding the minimum extreme point �� of
the centroid of an interval type-2 fuzzy set over �	 with upper

membership function �	 and lower membership function �	 can
be restated as follows:

�e KM algorithm for �nding the maximum extreme point �� of
the centroid of an interval type-2 fuzzy set over xi with upper

membership function �	 and lower membership function �	 can be

reexpressed as follows:(1) Sort �	 (� = 1, 2, . . . , �) in ascending order and call the sorted �	 by the same name, but now �1 ≤ �2 ≤ ⋅ ⋅ ⋅ ≤ �
. Match the weights �	
with their respective �	 and renumber them so that their index corresponds to the renumbered �	.(2) Precomputation:

! ["] = �∑
	=1

�	 (43)

["] = �∑
	=1

�	 (44)

$ ["] = �∑
	=1

�	�	 (45)

% ["] = �∑
	=1

�	�	 (46)

with " = 1, 2, . . . �.

�� = $ [�]! [�] (47)

�� = % [�]# [�] . (48)

(3) Set Set�
min

= min(��, ��) (49) �
max

= max(��, ��) (56)

Find �(1 ≤ � ≤ � − 1) so that Find �(1 ≤ � ≤ � − 1) so that�
 ≤ �
min

< �
+1 �
 ≤ �
max

< �
+1&�(�) = $ [�] + (% [�] − % [�]) (50) '� (�) = % [�] + ($ [�] − $ [�]) (57)*�(�) = ! [�] + (- [�] − - [�]) (51) /� (�) = - [�] + (� [�] − � [�]) (58)

� = &�(�)*�(�) . (52) � = '�(�)/�(�) . (59)

(4) Find �� ∈ [1, � − 1] such that Find �� ∈ [1, � − 1] such that�
� ≤ � < �
�+1. �
� ≤ � < �
�+1.(5) If �� = �, stop and set �� = �, else continue. If �� = �, stop and set �� = �, else continue.(6) Set Set&�(��) = $ [��] + (% [�] − % [��]) (53) '�(��) = % [��] + ($ [�] − $ [��]) (60)*�(��) = ! [��] + (- [�] − - [��]) (54) /�(��) = - [��] + (� [�] − � [��]) (61)

�� = &�(��)*�(��) . (55) �� = '�(��)/�(��) . (62)

(7) Set � = ��, � = �� and go to step 4. Set � = ��, � = �� and go to step 4.

Condition 2. If �
 > �(�1 ⋅ ⋅ ⋅ �
), then �(�1 ⋅ ⋅ ⋅ �
) increases
when �
 increases.

Note that � is greater than � which implies that �
 > ��;
thus, it is guaranteed that �
 > ��(�) satisfying Condition
1. �erefore, it can be concluded that a decrement in �
 will
induce a decrement in ��(�).

Finally, the stop condition is stated from the properties of
the centroid function [13].�ey indicate that the le�-centroid
function has a global minimum in � = �, so it is found when
the functions start to increase.

�e procedure to compute �� is only analyzed in
this section. �e full demonstration of this procedure is
provided in the appendix for the readers who are inter-
ested in following it. �e computation of �� obeys sim-
ilar conceptual principles, and it can be understood by

using the ideas suggested above or those provided in the
appendix.

3.2. KMA2. �e KM2 algorithm is presented in Table 2. �is
algorithm uses the same conceptual principles of KMA for
�nding �� and �� [5]. �e algorithm includes precomputa-
tion, initialization, and searching loop. Precomputation and
initialization of KMA2 are the same for IASC2, having always
the initial switch points near to the extreme points �� and ��.
�e searching loop corresponds to steps 4–7. �e core of the
loop is Table 2 (53)–(55) and (A.2)–(A.4), which can be easily
demonstrated by making � 	 equal to � or ��. �ese equations
calculate��(�) or��(�)with few sums and subtractions taking
advantage of pre-computed values. Finally, the stop condition
is the same for the EKMAalgorithm, whichwas stated in [16].

6 Advances in Fuzzy Systems

x

1
µ(x)

(a)

x

1
µ(x)

(b)

x

1
µ(x)

(c)

x

1
µ(x)

(d)

Figure 2: FOUs cases used in the experiments. (a) Uniform random FOU. (b) Centered uniform random FOU. (c) Right-sided uniform
random FOU. (d) Le�-sided uniform random FOU.

4. Computational Comparison with Existing
Iterative Algorithms: Implementation Based
on Compiled Language

4.1. Simulation Setup. �e purpose of these experiments
is to measure the average computing time that a type-
reduction algorithm takes to compute the interval centroid of
a particular kind of FOUwhen the algorithm is implemented
as a program in a compiled language like C. In addition,
complementary variables like standard deviation of the com-
puting time and the number of iterations required by each
algorithm to converge are also registered. �e algorithms
considered in these experiments are IASC [14], EIASC [18],
and EKMA [16], which are confronted against IASC2 and
KMA2. For the sake of comparison, the EKM algorithm is
regarded as a reference for all the experiments.

Four FOU cases were selected to evaluate the perfor-
mance of the algorithms. All cases corresponded to random
FOUs modi�ed by di�erent envelopes. �e �rst one consid-
ered a constant envelope that simulated the output of a fuzzy
inference engine in which most of the rules are �red at a
similar level. In the second one, a centered envelope was used
to simulate that rules with consequents in the middle region
of the universe of discourse are �red. �e last two cases were
proposed to simulate �ring rules whose consequents are in

the outer regions of the universe of discourse. For the sake of
clarity, several examples of the FOUs considered in this work
are depicted in Figure 2.

�e following experimental procedure was applied to
characterize the performance of the algorithms over each
FOU case described above: we increased� from 0 to 100with
step size of 10, and then�was increased from 100 to 1000with
step size of 100. For each �, 2000 Monte Carlo simulations
were used to compute �� and ��. In order to overcome the
problem of measuring very small times, 100.000 simulations
were computed in each Monte Carlo trial; thus, the time of a
type-reduction computation corresponded to the measured
time divided by 100.000.

�e algorithms were implemented as C programs and
compiled as SCILAB functions.�e experimentswere carried
out over SCILAB 5.3.1 numeric so�ware running over a
platform equipped with an AMD Athlon(tm) 64 × 2 Dual
Core Processor 4000 + 2.10GHz, 2GB RAM, and Windows
XP operating system.

4.1.1. Results: Computation Time. �e results of computation
time for uniform random FOUs are presented in Figure 3.
IASC2 exhibited the best performance of all algorithms for� between 10 and 100. For � greater than 100, KMA2 was
the fastest algorithm followed by IASC2. �e percentage

Advances in Fuzzy Systems 7

10 100 1000

A
ve

ra
ge

 c
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

N

0E+00

2E−06

4E−06

6E−06

8E−06

1E−05

1.2E−05

1.4E−05

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
at

io

10 100 1000

N

(b)

ST
D

 o
f

th
e

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)

10 100 1000

N

EKM

IASC

EIASC

IASC2

KMA2

0E+00

1E−07

2E−07

3E−07

4E−07

5E−07

6E−07

(c)

Figure 3: Uniform random FOU results (compiled language implementation of the algorithms). (a) Average computation time, (b) ratio with
respect to the EKMA, and (c) standard deviation of the computation time.

of computation time reduction (PCTR) with respect to the
EKMA (i.e., PCTR = (;� − ;ekm)/;ekm where ;� and ;� are
the average computation times of a particular algorithm and
EKMA, resp.) of IASC2 was about 30% for � = 10, while
in the case of KMA2, the largest PCTR was about 40% for� = 1000. Note that IASC and EIASC exhibited poorer
performance with respect to EKMA when � grows beyond
100 points; however EIASC was the fastest algorithm for � =10 points.�e standard deviation of the computation time for
IASC2 andKMA2was always smaller than that of the EKMA.

Figure 4 presents the results for centered random FOUs.
IASC2 exhibited the largest PCTR for � smaller than 100
points, about 40%. When �was greater than 100, KMA2 was
the fastest algorithm. �is algorithm provided a maximum
PCTR of about 50% for � = 1000. �e standard deviation
of the computation time for all algorithms was o�en smaller
than that of EKMA.

In the case of le�-sided random FOUs (Figure 5), IASC
was the fastest algorithm for � smaller than 100 points. �is
algorithm provided a PCTR that was between 70% and 50%.

Here again KMA2 was the fastest algorithm for � greater
than 100 points with a PCTR that was about 45% for this
region. In this case, EIASC exhibited the worst performance
and, in general, the standard deviation of the computation
time was similar for all the algorithms.

�e results concerning right-sided randomFOUs are pre-
sented in Figure 6. IASC2was the algorithm that provided the
largest PCTR for � smaller than 100 points. �is percentage
was between 55% and 60%. KMA2 accounted for the largest
PCTR for � greater than 100 points. �e reduction achieved
by this algorithm was between 50% and 60%. IASC exhibited
the worst performance in this case. �e standard deviation
of the computation time was similar in all algorithms for �
smaller than 100; however, a big di�erence with respect to
EKMA was observed for � greater than 100 points.

4.1.2. Results: Iterations. �e amount of iterations required
by each algorithm to �nd �� was recorded in all the
experiments. In Figures 7–10, results for the mean of the

8 Advances in Fuzzy Systems

10 100 1000

N

A
ve

ra
ge

 c
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

0E+00

2E−06

4E−06

6E−06

8E−06

1E−05

1.2E−05

1.4E−05

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
at

io

10 100 1000

N

(b)

10 100 1000

N

EKM

IASC

EIASC

IASC2

KMA2

ST
D

 o
f

th
e

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)

0E+00

3.5E−07

3E−07

2.5E−07

2E−07

1.5E−07

1E−07

5E−08

(c)

Figure 4: Centered random FOU results (compiled language implementation of the algorithms). (a) Average computation time, (b) ratio
with respect to the EKMA, and (c) standard deviation of the computation time.

number of iterations regarding each FOU case are presented.
A comparison of the IASC-type algorithms and also of the
KM-type algorithms are provided for discussion.

In the case of a uniform random FOU (Figure 7),
IASC2 reduced considerably the number of iterations when
compared to the IASC and EIASC algorithms.�e percentage
reductionwas about 75% for� = 1000with respect to EIASC.
On the other hand, no improvement was observed for KMA2
over the EKMA in this case; however, the computation time
was smaller for KMA2 as presented in previous subsection.

In the case of a centered random FOU, the IASC2
provided a signi�cant reduction in the number of iterations
compared to the IASC and EIASC algorithms, as shown
in Figure 8. �e percentage reduction was about 88% for� = 1000 with respect to EIASC. Regarding the KM-type
algorithms, the KMA2 reduced the number of iterations with
respect to the EKMA for � smaller than 50 points. However,
the performance of KMA2 is quite similar to that of EKMA
for � greater than 100 points.

Regarding the results from the le�-sided random FOU
case (Figure 9), an interesting reduction in the number of
iterations was achieved by IASC2 compared to the IASC and
EIASC algorithms. �e reduction percentage is around 90%
for � = 1000 with respect to EIASC. KMA2 displayed a
reduction percentage ranging from 30% for � = 1000 to 83%
for � = 10 with respect to EKMA.

�e IASC2 algorithm outperformed the other two IASC-
type algorithms for a right-sided random FOU (Figure 10),
as observed in the previous cases. Considering the KM-
type algorithms, KMA2 provided the largest reduction in the
number of iterations with respect to EKMA for � = 10
points. �e reduction percentage was about 80% in this case.
KMA2 also outperformed EKMA for greater resolutions.

4.2. Discussion. We believe that the four experiments
reported in this section provide enough data to claim that
IASC2 andKMA2 are faster than existing iterative algorithms
like EKMA, IASC, and EIASC as long as the algorithms are

Advances in Fuzzy Systems 9

10 100 1000

A
ve

ra
ge

 c
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

N

0E+00

2E−06

4E−06

6E−06

8E−06

1E−05

1.2E−05

1.4E−05

(a)

0.2

0

0.4

0.6

0.8

1

1.2

1.6

1.4

R
at

io

10 100 1000

N

(b)

10 100 1000

N

EKM

IASC

EIASC

IASC2

KMA2

ST
D

 o
f

th
e

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)

0E+00

3E−07

2.5E−07

2E−07

1.5E−07

1E−07

5E−08

(c)

Figure 5: Le�-sided random FOU results (compiled language implementation of the algorithms). (a) Average computation time, (b) ratio
with respect to the EKMA, and (c) standard deviation of the computation time.

coded as compiled language programs. �e experiments are
not only limited to one type of FOU, instead, typical FOU
cases that are expected to be obtained at the aggregated output
of an IT2-FLS were used. IASC2 may be regarded as the
best solution for computing type-reduction in an IT2-FLS
when the discretization of the output universe of discourse
is smaller than 100 points. On the other hand, KMA2 might
be the fastest solution when discretization is bigger than
100 points. �us we believe that IASC2 should be used in
real-time applications while KMA2 should be reserved for
intensive applications.

Initialization based on the uncertainty bounds proved to
be more e�ective than previous initialization schemes. �is
is evident from the reduction achieved in the number of
iterations when �nding �� (similar results were obtained in
the case of ��). We argue that the inner-bound set is an
initial point that adapts itself to the shape of the FOU. �is
is clearly di�erent from the �xed initial points that pertain
to EIASC and EKMA, where the uncertainty involved in the

IT2-FS is not considered. In addition, a simple analysis of
the uncertainty bounds in [7] shows that the inner-bound set
largely contributes to the computation of the outer-bound set,
which is used to estimate the interval centroid.

5. Computational Comparison with Existing
Iterative Algorithms: Implementation Based
on Interpreted Language

5.1. Simulation Setup. �e same four FOU cases of the
previous section were used to characterize the algorithms
implemented as interpreted programs. Since an interpreted
implementation of an algorithm is slower than a compiled
implementation, the experimental setup was modi�ed. In
this case, 2000 Monte Carlo trials were performed for each
FOU case; however only 100 simulations were computed for
each trial, so the time for executing a type-reduction is the
measured time divided by 100.

10 Advances in Fuzzy Systems

10 100 1000

A
ve

ra
ge

 c
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

N

0E+00

2E−06

4E−06

6E−06

8E−06

1E−05

1.2E−05

1.4E−05

1.6E−05

1.8E−05

(a)

0.2

0

0.4

0.6

0.8

1

1.2

R
at

io

10 100 1000

N

(b)

10 100 1000

N

EKM

IASC

EIASC

IASC2

KMA2

ST
D

 o
f

th
e

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)

0E+00

1E−06

9E−07

8E−07

7E−07

6E−07

5E−07

4E−07

3E−07

2E−07

1E−07

(c)

Figure 6: Right-sided random FOU results (compiled language implementation of the algorithms). (a) Average computation time, (b) ratio
with respect to the EKMA, and (c) standard deviation of the computation time.

�e algorithms were implemented as SCILAB programs.
�e experiments were carried out over SCILAB 5.3.1 numeric
so�ware running over a platform equipped with an AMD
Athlon(tm) 64 × 2 Dual Core Processor 4000 + 2.10GHz,
2GB RAM, and Windows XP operating system.

5.2. Results: Execution Time. �e results of computation time
for uniform random FOUs are presented in Figure 11. KMA2
achieved the best performance among all algorithms with a
PCTR of around 60%, and the IASC2 PCTR was close to
50%. �e standard deviation of the computation time for the
IASC2 and KMA2 was always smaller than that of EKMA.
�us, considering an implementation using an interpreted
language, KMA2 should be the most appropriated solution
for type-reduction in an IT2-FLS.

Figure 12 is similar to Figure 13. �ese �gures present
the results for centered random FOUs and le�-sided random
FOUs, respectively. KMA2was the fastest algorithm, followed
by IASC2, EIASC, IASC, and EKMA as the slowest. �e

IASC2 PCTR was almost similar to the KMA2 PCTR for� greater than 20, which was about 60%. When � = 10,
the IASC2 PCTR was about 46%. �e standard deviation of
computation timewas similar for all algorithms for� smaller
than 300 although it was signi�cantly di�erent with respect to
the EKMA for � greater than 300 points.

�e results with right-sided random FOUs in Figure 14
show that KMA2 was the fastest algorithm in all the cases,
followed by IASC2 with a similar performance.�e PCTR for� greater than 30 was about 76% with KMA2, while, with
IASC2, it was about 74% over the EKMA computation time.
For the other cases the reduction was around 70% and 64%,
respectively. �e standard deviation of the computation time
for all algorithms was o�en smaller than that of EKMA.

6. Conclusions

Two new algorithms for computing the centroid of an IT2-
FS have been presented, namely, IASC2 and KMA2. IASC2
follows the conceptual line of algorithms like IASC [14]

Advances in Fuzzy Systems 11

0

100

200

300

400

500

600

700

M
ea

n
 o

f
th

e
n

u
m

b
er

 o
f

it
er

at
io

n
s

10 100 1000

N

IASC

EIASC
IASC2

(a)

0

0.5

1

1.5

2

2.5

M
ea

n
 o

f
th

e
n

u
m

b
er

 o
f

it
er

at
io

n
s

EKM

KMA2

10 100 1000

N

(b)

Figure 7: Uniform random FOU, iterations, (a) IASC-type algo-
rithms and (b) KM-type algorithms.

and EIASC [18]. KMA2 is inspired in the KM and EKM
algorithms [16]. �e new algorithms include an initialization
that is based on the concept of inner-bound set [7], which
reduces the number of iterations to �nd the centroid of an
IT2-FS. Moreover, precomputation is considered in order to
reduce the computational burden of each iteration.

�ese features have led to motivating results over dif-
ferent kinds of FOUs. �e new algorithms achieved inter-
esting computation time reductions with respect to the
EKM algorithm. In the case of a compiled-language-based
implementation, IASC2 exhibited the best reduction for
resolutions smaller than 100 points between 40% and 70%.
On the other hand, KMA2 exhibited the best performance for
resolutions greater than 100 points, resulting in a reduction

0

100

200

300

400

500

600

M
ea

n
 o

f
th

e
n

u
m

b
er

 o
f

it
er

at
io

n
s

IASC

EIASC

IASC2

10 100 1000

N

(a)

0

0.5

1

1.5

2

2.5

10 100 1000

M
ea

n
 o

f
th

e
n

u
m

b
er

 o
f

it
er

at
io

n
s

EKM

KMA2

N

(b)

Figure 8: Centered random FOU, iterations: (a) IASC-type algo-
rithms and (b) KM-type algorithms.

ranging from 45% to 60%. In the case of an interpreted-
language-based implementation, KMA2 was the fastest algo-
rithm, exhibiting a computation time reduction of around
60%.

�e implementation of IT2-FLSs can take advantage of
the algorithms presented in this work. Since IASC2 reported
the best results for low resolutions, we consider that this
algorithm should be applied in real-time applications of IT2-
FLSs. Conversely, KMA2 can be considered for intensive
applications that demand high resolutions. �e following
step in this paper will be focused to compare the new
algorithms IASC2 and KMA2 with the EODS algorithm,
since it demonstrated to outperformEIASC in low-resolution
applications [25].

12 Advances in Fuzzy Systems

0

100

200

300

400

500

600

700

800

M
ea

n
 o

f
th

e
n

u
m

b
er

 o
f

it
er

at
io

n
s

10 100 1000

N

IASC

EIASC

IASC2

(a)

0

0.5

1

1.5

2

2.5

3

3.5

M
ea

n
 o

f
th

e
n

u
m

b
er

 o
f

it
er

at
io

n
s

EKM

KMA2

10 100 1000

N

(b)

Figure 9: Le�-sided random FOU, iterations, (a) IASC-type algo-
rithms and (b) KM-type algorithms.

Appendix

�e proof of the algorithm IASC-2 for computing �� is
divided in four parts.

(a) It will be stated that Table 1 (21) �xes a valid initializa-
tion point.

(b) It will be demonstrated that Table 1 (22)–(24) com-
putes the le� centroid function with � = � 	.

(c) It will be demonstrated that recursion of step 4
computes the le� centroid function with initial point
in � = � 	, and each decrement in � leads to a
decrement in ��(�).

(d) �e validity of the stop condition will be stated.

0

100

200

300

400

500

600

700

800

900

M
ea

n
 o

f
th

e
n

u
m

b
er

 o
f

it
er

at
io

n
s

IASC
EIASC

IASC2

10 100 1000

N

(a)

0

0.5

1

1.5

2

2.5

3

M
ea

n
 o

f
th

e
n

u
m

b
er

 o
f

it
er

at
io

n
s

EKM

KMA2

10 100 1000

N

(b)

Figure 10: Right-sided random FOU, iterations, (a) IASC-type
algorithms and (b) KM-type algorithms.

Proof. (a) From Table 1 (15)–(21), it follows that

�� = $ [�]! [�] = ∑
	=1 �	�	∑
	=1 �	 , (A.1)

�� = % [�]# [�] = ∑
	=1 �	�	∑
	=1 �	 , (A.2)

�min = min(∑
	=1 �	�	∑
	=1 �	 , ∑
	=1 �	�	∑
	=1 �) , (A.3)

�min = ��. (A.4)

Advances in Fuzzy Systems 13

0

2

4

6

8

10

12

14

A
ve

ra
ge

 c
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

10 100 1000

N

(a)

0

0.2

0.4

0.6

0.8

1

1.2

R
at

io

10 100 1000

N

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ST
D

 o
f

th
e

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)

10 100 1000

N

EKM

IASC

EIASC

IASC2

KMA2

(c)

Figure 11: Uniform random FOU results (interpreted language
implementation of the algorithms). (a) Average computation time,
(b) ratio with respect to the EKMA, and (c) standard deviation of
computation time.

0

2

4

6

8

10

12

14

16

A
ve

ra
ge

 c
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

10 100 1000

N

(a)

0

0.2

0.4

0.6

0.8

1

1.2

R
at

io

10 100 1000

N

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ST
D

 o
f

th
e

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)

10 100 1000

N

EKM

IASC

EIASC

IASC2

KMA2

(c)

Figure 12: Centered random FOU results (interpreted language
implementation of the algorithms). (a) Average computation time,
(b) ratio with respect to the EKMA, and (c) standard deviation of
computation time.

14 Advances in Fuzzy Systems

0

2

4

6

8

10

12

14

A
ve

ra
ge

 c
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

10 100 1000

N

(a)

0

0.2

0.4

0.6

0.8

1

1.2

R
at

io

10 100 1000

N

(b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ST
D

 o
f

th
e

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)

10 100 1000

N

EKM

IASC

EIASC

IASC2

KMA2

(c)

Figure 13: Le�-sided random FOU results (interpreted language
implementation of the algorithms). (a) Average computation time,
(b) ratio with respect to the EKMA, and (c) standard deviation of
computation time.

0

5

10

15

20

25

A
ve

ra
ge

 c
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

10 100 1000

N

(a)

0

0.2

0.4

0.6

0.8

1

1.2

R
at

io

10 100 1000

N

(b)

0

0.5

1

1.5

2

2.5

3

ST
D

 o
f

th
e

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)

10 100 1000

N

EKM

IASC

EIASC

IASC2

KMA2

(c)

Figure 14: Right-sided random FOU results (interpreted language
implementation of the algorithms). (a) Average computation time,
(b) ratio with respect to the EKMA, and (c) standard deviation of
computation time.

Advances in Fuzzy Systems 15

It is clear that �min in Table 1 (21) corresponds to the
minimum of the inner-bound set [7], so according to (6)�min ≥ ��. �us Table 1 (21) provides an initialization point
that is always greater than or equal to the minimum extreme
point ��. In addition, It is possible to �nd an integer � 	 so that�� � ≤ �min < �� �+1.

(b) From Table 1 (22), it follows that

&� (�) = $ [�] + (% [�] − % [�]) ,
&� � = &� (�) = � �∑

	=1
�	�	 + (
∑

	=1
�	�	 − � �∑

	=1
�	�) ,

&� � = &� (�) = � �∑
	=1

�	�	 +
∑
	=� �+1

�	�	.
(A.5)

From Table 1 (23), it follows that

*� (�) = ! [�] + (- [�] − - [�]) ,
*� � = *� (�) = � �∑

	=1
�	 + (
∑

	=1
�	 − � �∑
	=1

�) ,

*� � = *� (�) = � �∑
	=1

�	 +
∑
	=� �+1

�	.
(A.6)

�erefore from Table 1 (24)

�min = &� �*� � = ∑� �	=1 �	�	 + (∑
	=1 �	�	 − ∑� �	=1 �	�)∑� �	=1 �	 + (∑
	=1 �	 − ∑� �	=1 �) ,

�min = ∑� �	=1 �	�	 + ∑� �	=1 �	�	 + ∑
	=� �+1 �	�	 − ∑� �	=1 �	�	∑� �	=1 �	 + ∑� �	=1 �	 + ∑
	=� �+1 �	 − ∑� �	=1 �	 ,

�min = ∑� �	=1 �	�	 + ∑
	=� �+1 �	�	∑� �	=1 �	 + ∑
	=� �+1 �	 .
(A.7)

(c) First we show that recursion computes the le� centroid
function with initial point � 	 and decreasing �. Considering

�� (�) = ∑
	=1 �	�	 + ∑
	=
+1 �	�	
∑
	=1 �	 + ∑
	=
+1 �	 . (A.8)

Expanding it without altering the proportion

�� (�) = (
∑
	=1

�	�	 +
∑
	=
+1

�	�	 + � �∑
	=
+1

�	�	 − � �∑
	=
+1

�	�	
+ � �∑
	=
+1

�	�	 − � �∑
	=
+1

�	�)

× (
∑
	=1

�	 +
∑
	=
+1

�	 + � �∑
	=
+1

�	 − � �∑
	=
+1

�		 + � �∑
	=
+1

�	
− � �∑
	=
+1

�)
−1,

�� (�) = ∑� �	=1 �	�	 + ∑
	=� �+1 �	�	 + ∑� �	=
+1 �	�	 − ∑� �	=
+1 �	�	∑� �	=1 �	 + ∑
	=� �+1 �	 + ∑� �	=
+1 �	 − ∑� �	=
+1 �	 ,

�� (�) = ∑� �	=1 �	�	 + ∑
	=� �+1 �	�	 − ∑� �	=
+1 �	 (�	 − �)
∑� �	=1 �	 + ∑
	=� �+1 �	 − ∑� �	=
+1 (�	 − �) ,

�� (�) = &� � − ∑� �	=
+1 �	 (�	 − �)
*� � − ∑� �	=
+1 (�	 − �) ,

(A.9)

�� (�) = &� � − ∑� �	=
+1 �	 (�	 − �)
*� � − ∑� �	=
+1 (�	 − �) . (A.10)

It can be observed that (A.10) is a proportion composed by
initial values&� � and*� � and two terms that can be computed
by recursion &(�) and *(�), so

�� (�) = &� � − & (�)*� � − * (�) ,
& (�) = � �∑

	=
+1
�	 (�	 − �) ,

* (�) = � �∑
	=
+1

(�	 − �) .
(A.11)

Sums are computed by recursion as

&
−1 = &
 − �
 (�
 − �
) , (A.12)

*
−1 = *
 − (�
 − �
) , (A.13)

�� (� − 1) = &
−1*
−1 = &
 − �
 (�
 − �
)
*
 − (�
 − �
) . (A.14)

Since � ≤ � 	 given that �� ≤ �min in Table 1 (21), iterations
decrease � from � 	 according to (A.10).

It has been demonstrated that (A.14) is the same (A.8)
computed recursively from initial point � 	. So, by performing

16 Advances in Fuzzy Systems

a decrement of � in step 5, a decrement is introduced in �	;
that is,

� = (�1, . . . , �
) = (�1, . . . �
−1, �
, �
+1, . . . �
) ,
� = (�1, . . . , �
) = (�1, . . . �
−1, �
, �
+1, . . . �
) .

(A.15)

In [5], it is demonstrated that

if �
 < � (�1, . . . , �
) , then � (�1, . . . , �
) increases

when �
 decreases.
(A.16)

If �
 > � (�1, . . . , �
) , then � (�1, . . . , �
) increases

when �
 increases.
(A.17)

Note that � is greater than � which implies that �
 > ��; thus
from the centroid function properties, it is guaranteed that�
 > ��(�), satisfying (A.17). �erefore, it can be concluded
that a decrement in �
 as (A.15) will induce a decrement in��(�).

(d)�e stop condition is stated from the properties of the
centroid function. Since the centroid function has a global
minimum in �, once recursion has reached � = �, ��(�) will
increase in the next decrement of � because (A.17) is no longer
valid. So by detecting the increment in��(�), it can be said that
the minimum has been found in the previous iteration.

Conflict of Interests

�e authors hereby declare that they do not have any direct
�nancial relation with the commercial identities mentioned
in this paper.

References

[1] J. M. Mendel, “Advances in type-2 fuzzy sets and systems,”
Information Sciences, vol. 177, no. 1, pp. 84–110, 2007.

[2] R. John and S. Coupland, “Type-2 fuzzy logic: a historical view,”
IEEE Computational Intelligence Magazine, vol. 2, no. 1, pp. 57–
62, 2007.

[3] J. M. Mendel, “Type-2 fuzzy sets and systems: an overview,”
IEEE Computational Intelligence Magazine, vol. 2, no. 1, pp. 20–
29, 2007.

[4] S. Coupland and R. John, “Geometric type-1 and type-2 fuzzy
logic systems,” IEEE Transactions on Fuzzy Systems, vol. 15, no.
1, pp. 3–15, 2007.

[5] J. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduc-
tion and New Directions, Prentice Hall, Upper Saddle River, NJ,
USA, 2001.

[6] J. M. Mendel, “On a 50% savings in the computation of the
centroid of a symmetrical interval type-2 fuzzy set,” Information
Sciences, vol. 172, no. 3-4, pp. 417–430, 2005.

[7] H. Wu and J. M. Mendel, “Uncertainty bounds and their use
in the design of interval type-2 fuzzy logic systems,” IEEE
Transactions on Fuzzy Systems, vol. 10, no. 5, pp. 622–639, 2002.

[8] D. Wu and W. W. Tan, “Computationally e�cient type-
reduction strategies for a type-2 fuzzy logic controller,” in
Proceedings of the IEEE International Conference on Fuzzy
Systems, pp. 353–358, May 2005.

[9] C. Y. Yeh, W. H. R. Jeng, and S. J. Lee, “An enhanced type-
reduction algorithm for type-2 fuzzy sets,” IEEE Transactions
on Fuzzy Systems, vol. 19, no. 2, pp. 227–240, 2011.

[10] C. Wagner and H. Hagras, “Toward general type-2 fuzzy logic
systems based on zSlices,” IEEE Transactions on Fuzzy Systems,
vol. 18, no. 4, pp. 637–660, 2010.

[11] J. M. Mendel, F. Liu, and D. Zhai, “5-Plane representation for
type-2 fuzzy sets: theory and applications,” IEEE Transactions
on Fuzzy Systems, vol. 17, no. 5, pp. 1189–1207, 2009.

[12] S. Coupland and R. John, “An investigation into alternative
methods for the defuzzi�cation of an interval type-2 fuzzy set,”
in Proceedings of the IEEE International Conference on Fuzzy
Systems, pp. 1425–1432, July 2006.

[13] J. M. Mendel and F. Liu, “Super-exponential convergence of the
Karnik-Mendel algorithms for computing the centroid of an
interval type-2 fuzzy set,” IEEE Transactions on Fuzzy Systems,
vol. 15, no. 2, pp. 309–320, 2007.

[14] K. Duran, H. Bernal, and M. Melgarejo, “Improved iterative
algorithm for computing the generalized centroid of an interval
type-2 fuzzy set,” in Proceedings of the Annual Meeting of the
North American Fuzzy Information Processing Society (NAFIPS
’08), New York, NY, USA, May 2008.

[15] K. Duran, H. Bernal, and M. Melgarejo, “A comparative study
between two algorithms for computing the generalized centroid
of an interval Type-2 Fuzzy Set,” in Proceedings of the IEEE
International Conference on Fuzzy Systems, pp. 954–959, Hong
Kong, China, June 2008.

[16] D. Wu and J. M. Mendel, “Enhanced Karnik-Mendel algo-
rithms,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp.
923–934, 2009.

[17] X. Liu, J. M. Mendel, and D. Wu, “Study on enhanced Karnik-
Mendel algorithms: Initialization explanations and computa-
tion improvements,” Information Sciences, vol. 184, no. 1, pp. 75–
91, 2012.

[18] D. Wu and M. Nie, “Comparison and practical implementation
of type-reduction algorithms for type-2 fuzzy sets and systems,”
in Proceedings of the IEEE International Conference on Fuzzy
Systems, pp. 2131–2138, June 2011.

[19] M. Melgarejo, “A fast recursive method to compute the gener-
alized centroid of an interval type-2 fuzzy set,” in Proceedings
of the Annual Meeting of the North American Fuzzy Information
Processing Society (NAFIPS ’07), pp. 190–194, June 2007.

[20] R. Sepúlveda, O.Montiel, O. Castillo, and P.Melin, “Embedding
a high speed interval type-2 fuzzy controller for a real plant into
an FPGA,” Applied So� Computing, vol. 12, no. 3, pp. 988–998,
2012.

[21] R. Sepúlveda, O. Montiel, O. Castillo, and P. Melin, “Modelling
and simulation of the defuzzi�cation stage of a type-2 fuzzy
controller using VHDL code,” Control and Intelligent Systems,
vol. 39, no. 1, pp. 33–40, 2011.

[22] O. Montiel, R. Sepúlveda, Y. Maldonado, and O. Castillo,
“Design and simulation of the type-2 fuzzi�cation stage: using
active membership functions,” Studies in Computational Intelli-
gence, vol. 257, pp. 273–293, 2009.

[23] Y.Maldonado, O. Castillo, and P.Melin, “Optimization ofmem-
bership functions for an incremental fuzzy PD control based on
genetic algorithms,” Studies in Computational Intelligence, vol.
318, pp. 195–211, 2010.

Advances in Fuzzy Systems 17

[24] C. Li, J. Yi, and D. Zhao, “A novel type-reduction method
for interval type-2 fuzzy logic systems,” in Proceedings of the
5th International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD ’08), pp. 157–161, October 2008.

[25] D. Wu, “Approaches for reducing the computational cost of
logic systems: overview and comparisons,” IEEE Transactions
on Fuzzy Systems, vol. 21, no. 1, pp. 80–90, 2013.

[26] H. Hu, Y.Wang, and Y. Cai, “Advantages of the enhanced oppo-
site direction searching algorithm for computing the centroid
of an interval type-2 fuzzy set,” Asian Journal of Control, vol. 14,
no. 6, pp. 1–9, 2012.

[27] J. M. Mendel, R. I. John, and F. Liu, “Interval type-2 fuzzy logic
systems made simple,” IEEE Transactions on Fuzzy Systems, vol.
14, no. 6, pp. 808–821, 2006.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

