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A Proposed Framework for Heuristic Approaches to Resource 

Allocation in the Emerging Smart Grid 

Tim Hansen, Robin Roche, Siddharth Suryanarayanan, Howard Jay Siegel, 

Daniel Zimmerle, Peter M. Young, Anthony A. Maciejewski 

Abstract-As smart grids introduce profound changes in the 

operation of the electric power industry, the need for efficient 

and robust resource allocation (RA) algorithms arises, 

especially due to the increasingly stochastic nature of 

availability of highly dispersed resources. A framework for 

solving the smart grid RA (SGRA) problem using a heuristic 

approach such as a genetic algorithm is presented in this paper. 

Similar challenges exist in resource allocation in the realm of 

computing. A comparison is drawn between SGRA and 

computing RA. Its application to a multi-agent-based 

distribution management system, used as an environment 

model, is also proposed. A path forward concludes the paper. 

Keywords - distributed generation, energy storage, genetic 
algorithm, heuristic, multi-agent systems, plug-in electric vehicle, 
resource allocation, smart grid. 

I. INTRODUCTION 

As power systems and information technologies are 

converging to revolutionize the way electricity is generated, 

delivered, managed, and consmned, new challenges arise, 

such as: how to integrate storage efficiently, how to use 

demand-response of residential customers to mitigate peak 

demand, etc. [1]. Succinctly this can be surmised as: how 

should resources be allocated in the emerging smart grid as 

the stochastic nature of the availability of resources 

(generation, storage, and loads) becomes prevalent? 

Contrary to the transmission level, where relatively few 

numbers of assets, albeit rated large, are used, the smart grid 

is expected to revolutionize the distribution side, where a 

multitude of smaller assets will be available for controlled 

deployment. Distributed and intermittent renewable energy 

sources, distributed storage elements such as plug-in hybrid 

vehicles, and the ability to schedule loads require utilities to 

rethink the conventional procedures of scheduling and 

dispatching the resources. 

A similar challenge exists for computer scientists in 

allocating resources for computing. Several similarities can 

be drawn between the challenges in the domains of smart 

grids and computing. In computing, it is beneficial to 

allocate tasks to machines that they perform well on to 
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optimize some system performance measure. Like in the 

emerging smart grid, the availability of the resources may be 

stochastic in nature. For example, this may arise due to the 

uncertainty in task execution times as well as the sharing of 

machine resources [2]. These similarities indicate the 

possibility of adapting some of the approaches used in the 

computing realm to the resource allocation problem in the 

emerging area of smart grids. 

The main contribution of the paper is to propose a 

framework for addressing the large-scale distributed smart 

grid resource allocation problem using heuristics adapted 

from the computing resource allocation world. Specifically, 

a genetic algorithm is used to showcase the framework for 

the heuristic approach. 

Section II describes the environment model, in which a 

multi-agent-based distribution system model is presented. In 

Section III, the resource allocation problem in smart grids is 

described. An example of how heuristics have been used in 

the field of computing is shown in Section IV. Section V 

proposes a framework for a heuristic approach to the 

resource allocation problem in the emerging smart grid. 

Lastly, Section VI indicates a path forward to continue with 

the framework proposed in the paper. 

II. MULTI-AGENT-BASED DISTRIBUTION SYSTEM MODEL 

A. An Overview 
Contrary to wide-area transmission systems that have long 

been largely automated and equipped with smart 

functionalities, most smart grid activities are beginning to 

focus on the automation of end-user distribution systems [3]. 

In such an emerging smart grid, a multitude of assets, 

including local generation sources, distributed energy 

sources, special loads such as plug-in hybrid electric 

vehicles (PHEVs), and other schedulable loads, are available 

for control and deployment. It is imperative to schedule and 

deploy such assets properly, lest there may be additional 

stress on the grid. These activities, usually called unit 

commitment and economic dispatch, are used in 

transmission systems [4][5], but are not suited for large 

distribution systems with thousands of resources. It is in that 

regard that a multi-agent framework for a highly distributed 

distribution system is presented. 

B. Multi-agent modeling 
Distribution systems connect the transmission system to 

end-users and, therefore, include a large number of 
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customers with various profiles that are spread over the 

entire distribution network. Traditional power system 

modeling tools usually focus on transmission and aggregate 

data from distribution. However, as customers are expected 

to play an increasingly important role in smart grids, new 

tools that take into account the diversity and stochasticity 

associated with the end-user must be developed to 

comprehensively quantify and analyze the operation of the 

smart grid. 

Multi-agent systems offer a solution to study such large 

systems by creating a model for each element of the system 

(agent) and interconnecting them to create a multi-agent 

system (MAS). A MAS is thus a group of agents interacting 

with each other and their environment [6]. This approach 

also enables modeling each element separately and not just 

the aggregated or lumped static versions of the load. 

At the same time, MASs help defme the interactions 

between the individual elements (agents) of the system. This 

facilitates estimating the required communication 

infrastructure, enabling faster real-scale deployment, and is 

particularly relevant as smart grids rely on a highly dispersed 

and efficient communication. 

C. Multi-agent distribution system architecture 
A multi-agent model of a distribution system is thus 

proposed and serves as an environment model for the 

resource allocation (M) problem. In this model, each 

market player of the system is modeled as an agent. The 

independent system operator (ISO) is a non-profit entity that 

maintains the balance between supply (generation) and 

demand (system load) at the transmission level. Distribution 

system operators (OSOs) are connected to the ISO, and are 

responsible for distributing power to their customers. Each 

DSO has several physical assets, such as substations and 

feeders, that help transfer electric energy to the end user 

(residential, commercial, or industrial). Each of these 

customers has traditional loads, and may also have 

specialized assets such as PHEVs, and local distributed 

generators (OG) such as photovoltaic panels. 

Every asset in the distribution system is expected to be 

under the control of an agent. A typical smart distribution 

system can be represented by the hierarchical structure of 

communication flow shown in Figure I. Aggregators can act 

as interfaces between end-users and DSOs, notably for 

PHEVs charge-recharge scheduling and for provision of 

certain ancillary services [7]. Additionally, large OGs and 

storage units may also be connected directly to substations. 

Each agent is in charge of controlling the actuators of the 

asset associated with it, using inputs from other agents and 

from local measurements, and subscribing to local goals. A 

local goal for an agent may include maximization of the 

availability of the associated asset for demand response 

events. Inputs from other agents may include set point 

requests from a central controller; upon receipt, the agent 

can decide to implement certain actions based on local 

objectives. Although this approach might seem contrary to 

traditional MAS concepts, it enables the developed system to 

account for communication aspects that are an essential 

topic in smart grids. Based on the environment model shown 

in Figure 1, algorithms to allocate resources (generation, 

storage, loads) efficiently need to be developed. 

}agents with market 
and technical roles 

agents with 
sensors and 
actuators 

Figure 1: Architecture of the agent-based distribution system model. 
Dashed lines indicate connections with more agents of the same kind [8] . 

III. RESOURCE ALLOCATION IN SMART GRIDS 

A. Resource allocation in present day power grids 
Resource allocation methods such as unit commitment 

(i.e., scheduling the use or non-use of generators a day in 

advance) and economic dispatch (i.e., optimizing the 

scheduled generator outputs) have been used for decades in 

electric grids at the transmission level for centralized assets 

[4]. As present day power grids evolve to include highly 

dispersed assets at the end-user domain available for control 

and deployment, the RA problem may require some 

departures from the traditional techniques of optimization, 

such as heuristic optimization methods like genetic 

algorithms [9-12] and particle swarm optimization [13], for 

solving unit commitment and economic dispatch. 

B. Smart grid resource allocation problem complexity 
The RA problem in smart grids is more complex than in 

traditional grids for the following reasons: I) the number of 

schedulable assets in the decentralized distribution system is 

exceptionally large compared to the traditional centralized 

model of the grid; and 2) the stochastic nature of loads, 

generation, and storage. Load (demand) varies in real-time 

with customers' activity, but can be forecast using well­

known artificial intelligence techniques that have been used 

by utilities for decades [14]. However, the capacity to 

manage demand through various mechanisms introduces yet 

another degree of uncertainty, as demand can be influenced, 

for example, through a utility contract such as time-of-use 

(ToU) billing [1]. The increase of distributed renewable 

energy sources (RES) in the electric grid, especially those 

with intermittent inputs as wind and solar, introduces a shift 

from the status quo, where a smaller number of high-rated 

centralized generators are dispatched concomitantly with 

greater certainty in output than RES. 



The deployment of storage in the grid - from PHEVs to 

large utility-scale storage - enables new energy management 

possibilities. However, maintaining the state-of-charge 

(SOC) of battery energy storage system (BESS) units 

introduces a time-dependence; e.g., to be able to provide 

power during a demand peak, a unit has to charge as much 

as possible several hours in advance. In the case of PHEV s, 

the need for maintaining a certain SOC for enabling the 

primary function (transportation) of the asset introduces yet 

another constraint in the energy management scheme. Only 

PHEVs will be considered for storage in this paper, due to 

their distributed nature and relatively lower capital cost for 

the end-user arising from the dual use of this asset compared 

to dedicated energy storage devices. 

While the end-user sector of the grid is undergoing 

unprecedented transformation through the "Smart Grid 

Initiative" [15], the transmission sector, which forms the 

backbone of the interconnected grid, is seeing reduced 

investments. Concomitantly, projected demand for 

electricity is expected to grow. This dichotomy is expected 

to result in reduced available transmission capacity (ATC) in 

the electrical grid [\6] which may impact the system in the 

following ways: 1) inflated prices of electricity; and 2) 

reduced reliability and security of supply to the end-users. 

One of the ancillary services that the PHEV fleet could 

provide when functioning in the vehicle-to-grid (V2G) mode 

is the ability to locally supply the demand, thus alleviating 

the congestion scenario; however, this ancillary service to be 

achieved for the purpose of congestion relief relies on 

several things: 1) high penetration of the PHEV fleet; 2) the 

willingness of end-user to engage in demand response (DR) 

actions; 3) an infrastructure built on information exchange 

via control and communication; and 4) the evolution of a 

fully deregulated retail electricity market that recognizes this 

ancillary service. DR refers to programs that provide 

incentives to consumers for deferring or curtailing the local 

demand during peak system periods [17]. This is usually 

triggered by the service provider (i.e., the utility) based on 

information related to system reliability or market 

conditions. As a consequence of this evolution in the 

operation of emerging smart grids, newer algorithms for unit 

commitment and economic dispatch must be explored. 

IV. HEURISTIC BASED ApPROACHES TO RESOURCE 

ALLOCATION IN COMPUTING 

In a heterogeneous computing environment, a collection 

of machines that have different computational capabilities 

are utilized to execute tasks that have diverse computational 

requirements [\8]. Because the environment is 

heterogeneous, each task will perform differently on each of 

the different machines. It is beneficial to allocate tasks to 

machines that they perform well on to optimize some system 

performance. In general, the problem of optimally 

allocating tasks to machines in a heterogeneous environment 

is known to be NP-Complete [19-21], which leads to the use 

of heuristics. 

The characteristics of each task, such as execution time, 

on each machine can be modeled either deterministically or 

stochastically. In the deterministic model, each task 

characteristic on each machine is given as a discrete value. 

In the stochastic model, the characteristics are represented as 

a probability mass function (PM F) [22]. In both models the 

information for each task on each machine is assumed to be 

known beforehand. 

Using the information about each task, the scheduling 

heuristics are used to optimize some system performance 

metric, such as minimize energy consumed or minimize 

system completion time. In the stochastic model, the 

resulting optimization would be a probability based on the 

PMFs of each task. Like in the unit commitment problem, 

both genetic algorithms [18], [23] and particle swarm 

optimizations [23] have been used. In addition, many other 

heuristics have been used such as Tabu [18], [23], simulated 

annealing [18], and k-percent best [24], [25]. 

Given the similarities between resource allocation in the 

realms of heterogeneous computing and the smart grid 

(which also involves heterogeneous resources), it makes 

sense to adopt similar heuristics to the emerging smart grid 

problem. The large, distributed nature of the smart grid 

matches well with the high complexity of previously solved 

heterogeneous computing resource allocation problems. The 

stochasticity of resources in heterogeneous computing has 

been modeled as well [22] and could be adapted to the 

stochastic nature of resource availability in the smart grid. 

V. PROPOSED HEURISTIC FRAMEWORK FOR 

USE IN SMART GRIDS 

A. Problem formulation 
The smart grid resource allocation (SGRA) problem can 

be summarized as an optimization problem with the 

following objectives and constraints. The main objective is 

usually to minimize costs for design (for planning 

applications) and/or operations and maintenance (for 

demand-response applications). In the latter case, these costs 

usually only include fuel costs, which do not apply for RES. 

Additional objectives can include any subset of the 

following: \) maximizing the share of RES; 2) minimizing 

the total greenhouse gases emissions; 3) optimizing 

customer preferences; 4) maximizing the reliability of the 

system. The system reliability may also be used as a 

constraint to meet, and can be considered as a robustness 

metric for the system [26]. Let Ctot and Etot be the total 

cost and total emissions for the system, respectively, ci (P;) 
and ei(P;) be the cost and the emissions, respectively, for 

the (h asset producing an electrical power output of Pi> and n 

be the total number of assets where an asset is either a 

conventional generator, a storage unit in the form of a 

PHEV, a renewable energy source, or a schedulable load. 

Equation 1 describes an example with two such objectives: 

minimizing Ctot and Etot. 



(1) 

These additional objectives can be handled either using a 

multi-objective Pareto-optimality based approach, in which 

each objective is a dimension of the Pareto front [27], or as a 

single-objective problem in which the additional objectives 

are transformed into constraints (e.g., by setting emissions or 

stability limits). 

Several constraints need to be met for the system to 

operate properly: 

• Let Pg, Ps' Pis, Pit, Pres, and Pcongbe the asset power for 

conventional generators, PHEVs, schedulable loads, fixed 

loads, renewable energy sources, and congestion needs, 

respectively. Similarly, let ng, ns, nls, nit, and nres be 

the number of conventional generators, PHEVs, 

schedulable loads, fixed loads, and renewable energy 

sources, respectively. A balance between generation 

(supply) and the load (demand) has to be maintained at all 

times, as shown in Equation 2. 

Lng Pg + Lns Ps - LnlS Pis = 

Lnlr Pit - Lnres Pres + Pcong (2) 

• Let Pg,max, Ps,max, and P1s,max be the maximum power 

output of the conventional generators, PREYs, and 

schedulable loads. Spinning reserve requirements should 

be met, as shown in Equation 3. 

Lng Pg,max + Lns Ps,max - LnlS P1s,max ;:::: 
Lnlr Pit - Lnres Pres + Pcong (3) 

• Let Pi,min and Pi,max be the minimum and maximum 

output for asset i. The minimum and maximum operation 

range for each asset must be respected, as shown in 

Equation 4 [5]. 

Pi,min � Pi � Pi,max (4) 

• Let R di and RUi be the ramp up and ramp down rates 

for asset i. Let 
dPi be the current ramp rate for asset i. 
dt 

The ramp rates of all conventional generators and PREYs 

must be respected, as shown in Equation 5 [5]. 

dP' Rd· < -' <Ru· , - dt - , (5) 

• Let TUi and Tdi be the current up and down times for 

conventional generator i, respectively. Let TUi,min and 

T di.min be the minimum up and down times for generator 

i, respectively. The minimum up and down times for each 

generator must be met, as shown in Equations 6 and 7, 

respectively [5]. 

TUi ;:::: TUi,min 

Tdi ;:::: Tdi,min 

(6) 

(7) 

• For the energy storage elements considered here, i.e., 

the PREY s, in addition to the power operation and ramp 

ranges, as shown in Equations 4 and 5, they also have a 

few additional constraints. Let SOC be the usable state-of­

charge, N c be the number of daily battery cycles, and T be 

the charging target (i.e., the PREY should be charged 

when the customer wants to use it, at time T). The 

constraints on SOC bounds, battery cycling, and charging 

are shown in Equations 8-10, respectively. 

SOCmin � SOC � SOCmax 

SOCt=T = 100% 

(8) 

(9) 

(10) 

• Let l-j be the voltage magnitude on bus j. Let Vmin and 

Vmax be the minimum and maximum bounds on the bus 

voltage magnitudes. The proper operation of the system 

with regard to the bounded bus voltage magnitudes must 

be respected, as shown in Equation I I. 

(11) 

• Let [ be the frequency of the system. Let [min and 

[max be the minimum and maximum system frequencies. 

The proper operation of the system with regard to the bus 

frequency must be respected, as shown in Equation 12. 

[min � [ � [max (12) 

• Let Sk be the power flow on cable k. Let Smax be the 

maximum power flow. The proper operation of the system 

with regard to the maximum power flow on cables, as 

shown in Equation 13, must be met. 

(13) 

• The constraints resulting from the preferences set by 

customers for their assets, such as: the time for enabling 

demand-response (DR) and the set of loads available of 

scheduling should be met. 

• The impact of DR on the customer should be as low as 

possible, i.e., it should ideally be as transparent as 

possible. 

The problem at hand is thus non-linear, and the solution 

space may potentially reach unmanageable sizes for 

distribution systems [26]. Heuristics, such as genetic 

algorithms, are well suited for this kind of problem. 



B. Genetic algorithm approach to smart grid resource 
allocation 
To show how a heuristic approach to solving the resource 

allocation and scheduling problem in the smart grid could be 

used, a possible setup for a genetic algorithm is presented. 

As shown in Sections lILA and IV, a genetic algorithm has 

already been shown to solve both the unit commitment 

problem and the heterogeneous resource allocation and 

scheduling problem for computing. As such, the genetic 

algorithm is thought to be an apt choice to showcase the 

framework for a heuristic approach to resource allocation in 

the smart grid. 

To properly utilize a genetic algorithm in different 

domains, the encoding mechanism of the genetic algorithm 

must be created to represent the optimization problem's 

variables. In the case of the smart grid, the variables in 

question are the on/off states of each of the assets, as well as 

their power output. The assets that we are modeling as 

controllable in this problem are the conventional generators, 

the PHEVs, and the schedulable loads. These represent the 

left hand side of Equations 2 and 3. The values that we are 

assuming are fixed are the fixed loads, the renewable energy 

sources, and the congestion needs as requested by the ISO. 

The reason we are assuming the renewable energy sources 

cannot be controlled is because we are making the 

assumption that they do not have a storage unit associated. 

The three fixed values represent the right hand side of the 

same equations. 

At the lowest level in the genetic algorithm exists the 

gene. To model the SGRA problem, each gene represents an 

asset that is controllable, i.e. the values on the left hand side 

of Equations 2 and 3. Let Ui be a vector whose /h element 

is a binary value representing the on/off value of asset i at 

hour j * 0.25 (i.e., the vector elements represent a 15 minute 

block of time). Let 0i be a vector whose /h element is a 

real value representing the discrete output power of asset i at 

hour j * 0.25. The gene of each asset is then comprised of a 

96 x 2 matrix, [u 0 ], representing the on/off state and the 

output values for an asset over a 24 hour period. 

Additionally, each asset has a fixed availability vector, ab 

associated with it whose /h element is a binary value 

representing whether or not a given asset is available at hour 

j * 0.25. The availability vector is separate from the asset 

gene and is assumed to be provided by the consumer for 

each asset. Thus, the power output for asset i at time j is 

given by Equation 14. 

(14) 

One entire solution to the SGRA problem is represented 

in a chromosome. The chromosome is made up of ng + 

ns + nls genes, each representing one asset of the system. 

Let Gi be the gene for a conventional generator i, Si be the 

gene for PHEV i, and LSi be the gene for schedulable load i. 

One chromosome, or solution, is shown in Figure 2. 

[G1 ... G S1··· S LS1··· LS ] ng ns nls 

Figure 2: Chromosome representation for a solution in the SGRA 
problem. 

Each solution has a fitness value, or values, associated 

with it. These values are used to evaluate the chromosome 

in the dimensions that are trying to be optimized. For 

example, if trying to optimize for the values in Equation I 
there would be a fitness value associated with both the Ctot 
and Etot objectives (if using a multi-objective Pareto­

optimality based approach). As stated before, the multi­

objective optimization problem can be turned into a single 

objective optimization problem by optimizing over one 

objective and placing constraints on the others. Another 

way to accomplish this is to place weights on each of the 

objectives and combine them into a single fitness value. 

To accommodate for the constraints in the SGRA 

problem, penalty functions will be used. If a constraint is 

violated, a penalty will be included in the chromosome's 

fitness value. The penalty value is a function of the 

magnitude of violation and the current generation of the 

genetic algorithm. The reason that the penalty is a function 

of the generation is because at earlier generations it is 

beneficial to keep a variety of genetic material. Even if a 

chromosome violates a constraint, it might have a partial 

solution that performs well with respect to the objectives. 

We keep a chromosome in the population even though it 

may violate a constraint because it might be able to produce 

a child that performs well and fixes the constraint violation 

as it evolves. As the number of generations increases, 

however, the genetic algorithm is less likely to keep a 

chromosome that violates any of the constraints. In the final 

Pareto front (if multi-objective), none of the solutions should 

contain any constraint violations. 

Let Fa (x) be the fitness function associated with objective 

a for chromosome x, Fd (x, t) be the fitness function, 

including penalty weights, associated with objective a for 

chromosome x in generation t, nc be the number of 

constraints, Vb be a binary value representing whether or not 

constraint b is violated, mb be the magnitude that constraint 

b is violated, and Pb (t) be the penalty weight associated 

with constraint b in generation t. The fitness value being 

optimized with the genetic algorithm is shown in Equation 

15. Note that Fd(x, t) = Fa(x) if no constraints are violated 

(i.e., Vb = 0 '<I b = 1, ... , nc) . 

(15) 

In the initial population, it is usually beneficial to have 

some type of genetic preconditioning in the form of seeding. 

This seeding uses some number of solutions in the initial 

population that are not generated at random. This can be 

done by running less computationally intensive heuristics to 

generate some initial seeds. In the case of the SGRA, it 



might be beneficial to precondition the population with some 

initial seeds that do not violate any constraints. 

There are many different ways to perform crossover 

selection (such as tournament selection [28] or linear bias 

[29]), crossover, and mutation. For the purpose of the 

framework, these will be left as generic genetic operators in 

the scope of this paper. It is important to note that the 

crossover and mutation operators should take into account 

the change in power outputs from the changed assets to meet 

the power balance constraint in Equation 2. It should be 

noted that this would most likely not be a trivial matter to 

produce crossover and mutation operators that will respect 

the power balance constraint. 

A genetic algorithm is a valid heuristic approach to 

solving large-scale optimization problems and as such was 

used as an example. In addition to the ability to find near­

optimal solutions, in one run of the genetic algorithm many 

solutions are found (equal to the population size) with 

different characteristics. In the SGRA problem, solutions 

might have similar fitness values, but one might have, for 

example, a much larger spinning reserve that might be 

beneficial to the system in question. 

VI. PATH FORWARD 

Going forward there are many aspects of the proposed 

framework to be explored. Perhaps, the most obvious one is 

to implement the proposed genetic algorithm and obtain 

results. In this light, other heuristics will be implemented as 

comparisons to the genetic algorithm. For practical purposes 

as a day-ahead scheduler, the performance of the different 

heuristics should be explored as well as how their execution 

time scales with the size of the problem. It would also be 

interesting to explore the temporal and spatial stochasticity 

of the renewable energy sources, PREVs, schedulable loads, 

and conventional generators. With this added stochasticity, 

metrics of robustness (as defmed in [22]) would be useful 

for characterizing the system. 

As the applicability of any RA algorithm to the smart grid 

domain has to be tested using power systems analysis 

software, a co-simulation framework introduced in [8] may 

be used. Such a unique test bed enables coordinated 

simulation of communication, control, and power system 

aspects of energy management systems. 
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