A PROPOSED "MIRROR TRANSIT-CIRCLE"


 mators; these telescopes also act as collimators when required. A number of advantages of this method are listed, and also a few disIt is shown that if the rear face of the mirror is roof-shaped, half of it being inclined laterally towards the east by about $15^{\circ}$, and half towards the west,


Equations are developed for the position of the point observed, and the


 factory.
The
The general operation of the instrument is discussed, including the determination of the collimation; the collimation error cannot be represented
in the form $c \sec \delta$, and the necessary expression is derived from the equations


 of obtaining both its pivot errors and the personal equation of the observer.
The mounting of the mirror is discussed, and it is suggested that the final


 with the magnification not much changed from the present figure; that the
telescopes could be very elaborately jacketed; and that if desired some quite different and much more bulky arrangement than a screw could be used for the micrometer drives.

In the course of some recent work at Aberdeen, Maryland, U.S.A., it occurred to me that many of the serious difficulties which still beset the transit-circle ought to be diminished, or even eliminated altogether, if one substituted a moving plane mirror for the moving telescope. The mirror would be mounted with its plane parallel to the existing rotation axis, so that its normal would sweep әчך до әนо чธ̊ other of two fixed telescopes, situated in the meridian; these might very well
 meter eyepieces.

The advantages to be expected from such an arrangement are really very considerable. We may note, in particular, the following:-
I. There will be practically complete freedom from variable flexure (droop) 2I

Vol. 107
R. $d^{\prime}$ E. Atkinson
mirror, if in fact it were to bend perceptibly, could cause no first-order effects
 would be quite inappreciable. It would, of course, have to be very well mounted, and this question is considered below.
2. There will be practically complete freedom from telescope-flexure due to temperature differences. Although such distortions can be determined by repeated collimation and nadir observations, it is very time-consuming to have
 by modern standards, and may also vary rapidly. Fixed telescopes can be shielded to any desired extent, including the use of circulating oil-baths etc. if necessary
3. The weight relations in the micrometer will be constant. There is evidence that the shifting relations inseparable from a moving telescope can cause variable collimation and/or nadir depending on the altitude. With a fixed telescope, the micrometer can be designed with special reference to the one direction in which gravity will act.
4. The observing position will be constant, including that for observations
levels and nadir. This should make the personal equation more constant; moreover, since the position can be made a permanently convenient one, it should
5. It would be easy to arrange the two driven micrometers so that one acted as a personal-equation machine for the other. Observers would thus determine their own personal equation with the actual instrument, and in the actual observing position, which they also used for the observations.
6. Very much shorter piers can be used; they need only be tall enough to accommodate the circles. This will greatly decrease the changes of level caused (e.g. when the wind changes) by changing temperature differences between the piers; it will decrease any azimuth changes that may be caused by one pier


 ponding increase in the magnification. Since the aperture would probably not be increased very much, the lens corrections would be more satisfactory, especially those for spherical aberration, coma, and curvature. In addition,



 the two moving wires; moreover, the wires themselves would appear thinner.

 example, the position of the wire could control a rotating mirror, and a fixed scale could be photographed every second by reflection in the mirror; such an arrangement would practically eliminate backlash.
9. The aperture can also be increased without difficulty, if this is in fact
desired. A very small increase would take care of the loss of light due to the single reflection in the mirror.


## $\stackrel{+}{6}$

telescope. However, these errors are not at present the limiting factor even for the internal consistency, and it appears that the expected improvement in systematic accuracy should hardly be impaired by doubling them.
2. An error in the determination of the pivot errors will have an increased

 in fact be made with more accuracy than that with which the star can be observed, so that here also doubling the uncertainty could perhaps be tolerated.
3. There will be a small reflection-loss of light; but, as already mentioned, this can be taken up by a very slight increase in aperture, since weight is no longer a consideration.
4. There will be a lower limit to the altitudes observable; below this, the cell of the telescope lens will interfere with the incoming beam. The lowest altitude,
$A$, free from interference is given by $\tan A=d / D$, where $d$ is the diameter of the $A$, free from interference is given by $\tan A=d / D$, where $d$ is the diameter of the
objective (more accurately, the mean of the clear lens-diameter and the outside cell-diameter), and $D$ is the distance from the bottom edge of the lens to the



 any general reliability.
5. It is not immediately clear how azimuth-marks can be viewed, since in

> further below.

. The operation of determining collimation must still include sighting
 so far away from the rotation axis that when it was laid horizontally there was a clear view through, above or below it, and there thus seems no alternative to raising it a few inches every time collimation is taken. However, it would be


 be less readily noticed.

It may well be that there remain other disadvantages which have been over-

 systematic errors and also in respect of several accidental ones, than the existing type, which has in fact suffered practically no fundamental improvement, except the introduction of the impersonal micrometer, for over a century.

We will now consider the operation of the instrument. The process of observing a star will be exactly as with a telescope-transit, except only that the ‘पч!



No. 3, 1947 A Proposed " Mirror Transit-circle" 295







 transit of equal focal length. Difference in level on reversal of the instrument

 the same way as before, i.e. without any factor of two or other correction. Collimation, however, is radically different from collimation with a telescopetransit, and we must study this in detail
We have here in fact an entire additional parameter, beyond those which occur



 are of course readily obtained, the procedure being as follows.
Using a Bohnenberger autocollimating eyepiece, one first obtains for each












 the value of $\beta_{1}$ in seconds of arc is

$$
\frac{{ }^{N} J Z}{{ }^{0} N-{ }^{I} N} \operatorname{Ggzgoz}={ }^{I} \delta
$$

Similarly, the setting of the south collimator which gives an "azimuth" of $\pi$,
i. e. perpendicular to the rotation axis, is $\left(S_{1}+S_{0}\right) / 2$ if $S_{1}$ is the setting of the $S$
$-\beta_{1}=206265 \frac{S_{1}-S_{0}}{2 F_{S}}$
if the $S$ micrometer readings increase as the wire moves west. The two deter-
 the north collimator reads $\left(N_{1}+N_{0}\right) / 2$ and the south one ( $S_{1}+S_{0}$ )/2, they must appear set on each other, whether or not $F_{N}=F_{S}$. horizontal; this can obviously be arranged by comparing nadir readings with autocollimation readings, adjusting the zero of the Z.D. micrometer until the әлеч sлоұвш!! р appear set on each other, as well as the vertical ones.
We may note in passing that these operations, which will in fact form part of the standard routine, give us three independent checks, to which we may add a fourth from the comparison of the level as obtained in both collimators. Of these four, two have their counterparts in similar checks with a telescope-transit (one is used for flexure determinations); but the two independent nadir determinations, and two independent level-determinations, are peculiar to the mirrortransit.
 corrections which must be applied, when $\beta_{1}$ is not zero; in view of the possible application to a mirror with a deliberately tilted rear face, we will develop the

 to the first power of $\beta_{1}$ will be amply accurate; but the tilts required for the back of the mirror may be Io or $I_{5}$ degrees.
We will continue, for the present, to speak of "azimuths" as though the instrument as a whole were correctly oriented, i.e. we shall measure them
from the direction perpendicular to the rotation axis. "North", "west", from the direction perpendicular to the rotation axis. "North", "west",
"meridian", etc., are to be understood in this sense.
Consider now spherical polar coordinates with the poles on the observer's horizon, at the east and west points. Let "latitudes", $\beta$, on this system be





 Fig. $\mathrm{I}, \mathrm{O}$ is the star; $\mathrm{N}, \mathrm{W}, \mathrm{S}$, the north, west, and south points of the horizon;
©
©
®

$$
\begin{aligned}
\cos \lambda_{2} \cos \beta_{2} & =\cos 2 \theta \\
& =2 \cos ^{2} \lambda_{1} \cos ^{2} \beta_{1}-I
\end{aligned}
$$

(9) and $M$ the normal to the mirror. Then from the triangle MWS we have $\cos \theta=\cos \lambda_{1} \cos \beta_{1}$ $g \operatorname{sog}{ }^{\text {I }}$ रUIs $=k \operatorname{sos} \theta^{\text {uIs }}$ where the angles are as marked in the figure.

## From the triangle OWS we have

$$
\begin{aligned}
\sin \beta_{2} & =\sin 2 \theta \sin \psi \\
\sin \lambda_{2} \cos \beta_{2} & =\sin 2 \theta \cos \psi
\end{aligned}
$$




ঞ

> $\sin \delta_{1}=\sin ^{2} \beta_{1} \cos \phi+\cos ^{2} \beta_{I}$态 maximum naturally less than unity unless either $\beta_{1}=0$ or $\phi=0$. Since at the and (16) by $\lambda_{1}=\sin \frac{1}{2} \theta$, the corresponding hour angle $H_{1}$ is given from (15)

$\cot H_{1}=-\tan \beta_{1} \cos \frac{1}{2} \theta$.
When $\beta_{1}$ differs considerably from zero, the stars will in general transit When $\beta_{1}$ differs considerably from zero, the stars will in general transit
obliquely. If the true azimuth and level of the instrument are both reasonably close to zero, the apparent direction of transit may be obtained as follows. The angle $\psi$ is the angle between the vertical plane through the collimator axis and the plane through the mirror-normal and the collimator axis; if the normal, i.e. the

 a reflected ray still moving along this arc at the $S$ point; i. e. this direction of motion
No. 3, I947 Proposed "Mirror Transit-circle""
in the sky gives an apparent direction of motion at the angle $\psi$ in the telescope.
Relative directions around O in the sky are reproduced without distortion in
the telescope field, and in particular, as appears from Fig. 3, the image of the
hour circle through O appears as a line at the angle $\eta$ from the $\psi$ direction, where
is equal to POS. Thus the image of the small circle of constant declination
through O makes an angle $\eta+\psi+\pi / 2$ with the vertical, or $\eta+\psi$ with the
horizontal. Now from the triangle $\operatorname{POS}$ we have

From (4) and (5) we have
(2I)
and from (I9) and (20) $\cot \psi=\sin \lambda_{1} \cot \beta_{1}$
廿о!ีu!
 horizontal. Now from the triangle POS we have
and
and from (19) and (20) $\cot \psi=\sin \lambda_{1} \cot \beta_{1}$

$$
\frac{\cos \phi+\sin \delta \cos 2 \theta}{\sin \phi \sin H}
$$

$\square$汸 $\phi$ from which, using (I4), (8) and (I5), we obtain after some tedious reductions


Thus $\eta+\psi$, the angle from the horizontal at which a star appears to transit, can be tabulated in terms of $\lambda_{1}$, for any given values of $\phi$ and $\beta_{1}$.

An alternative formula for the tilt may be obtained by using one of the standard expressions for spherical excess. Since, in the triangle POS,
$\qquad$ if $E$ is the spherical excess, and since we can just as well consider either $\pi-(\eta+\psi)$ or $\eta+\psi$ to be the tilt, we may say that the tilt is $H-E$. We have then $\cos \frac{1}{2}\left(\pi-\phi+\frac{\pi}{2}-\delta\right)$

$=\frac{H}{(H-H)^{\frac{Z}{T}} \mathbb{U R}^{2}}$
$\tan \frac{1}{2} H$

$$
\tan \frac{1}{2}(H-E)=\frac{\sin \frac{1}{2}\left(\phi+\delta-\frac{\pi}{2}\right)}{\sin \frac{1}{2}\left(\phi-\delta+\frac{\pi}{2}\right)} \tan \frac{1}{2} H .
$$

The equivalence of the expressions (23) and (26) appears a little cumbrous to demonstrate trigonometrically; it can of course be verified arithmetically for particular cases without difficulty, and this provides, in fact, a useful check on
It is evident from (23) that $\eta+\psi$ will be zero (or $\pi$ ), i. e. the star will after all transit horizontally, if $\lambda_{1}=\pi / 2-\phi$; in this case, the normal to the mirror points towards the equator, whatever the tilt $\beta_{1}$ may be. It is then easily verified also that $\delta=\pi / 2-\phi=\lambda_{1}$, and $H=2 \beta_{1}$, whatever the value of $\beta_{1}$; provided, of course, that $\delta$ does not exceed the limit given by (I7), in which case no horizontal
 suitable stars for azimuth determinations by this method.
The following table, calculated for latitude $50^{\circ} 52^{\prime} 20^{\prime \prime}$, shows for various $\beta_{1}$ the tilt $T$, hour angle $H$, and declination $\delta$, corresponding to various circle-



 and $\delta$ changes by roughly twice the change in $\lambda_{1}$, in this same range.

 this micrometer's readings at the instants when the star passes various fixed








 as it can in the front, and with equal accuracy.

 apparent declination. We may study the question as though the mirror had





 increasing hour angle we readily obtain from Fig. 4

 $\stackrel{\mathrm{O}}{\mathrm{O}}$


$$
d \delta=a \sin z \sin Q,
$$

$\cos \delta . d H=a \sin z \cos Q$,
where $Q$ is the parallactic angle. We have
$\sin z \sin Q=\sin H \cos \phi$,
$\sin z \cos Q=\sin \phi \cos \delta-\cos \phi \sin$
so that
$\sin z \cos Q=\sin \phi \cos \delta-\cos \phi \sin \delta \cos H$,

$$
d H=a \sec \delta[\sin (\phi-\delta)+\cos \phi \sin \delta(\mathrm{I}-\cos H)] .
$$

If we pick a value of $\beta_{\mathbf{t}}$ that makes $H$ about 2 hours, we have, for $\phi \approx 50^{\circ}$

## $d \delta \approx a / 3$.

 with half of it tilted east and half west. The apparent difference in declination if the same star were observed in both extra-meridian positions, i. e. two hours before and two hours after meridian passage, would then be $2 a / 3$ approximately, so that each star observed in this way would give a fundamental azimuth with an accuracy approaching quite reasonably close to that with which the difference : of the two closely-equal "declinations" could be determined. Refraction,
 II!

 question and taking $H=2$ hours (i.e. $\beta_{1}=15^{\circ}$ ), the angle of tilt, in the neigh-


 i.e. a ten-degree wide belt. This will clearly contain ample stars; however, әq әо!̣юел u! pinoo ұ!
 past, but perhaps not quite with the accuracy we are now demanding.

A Proposed " Mirror Transit-circle" 1947 " 303
We may also enquire as to the declination at which the stars transit nearly
We may also enquire as to the declination at which the stars transit nearly
vertically, since the R.A. micrometer might be used on these in a similar manner. From (23), the condition for vertical transit is
or

## (33)

For the value of $\phi$ in question, $\lambda_{1}$ lies between $60^{\circ}$ and $70^{\circ}$, as is also clear from Table I ; this gives rather a large angle of incidence. From equation (I6) we now

$$
\cos H \cos \delta=-2 \sin ^{2} \beta_{1} \sin \phi
$$

## (34)

 rapid (if we use both tilts of the mirror-back) than the conventional one. However, it might perhaps still be valuable for comparison and check; it is clear from
 interval, provided the large angle of incidence can be accepted.

















 $\cos \delta . d_{2} \delta=2 \cos ^{2} \beta_{1} \sin \left(2 \lambda_{1}+\phi\right) d \lambda_{1}$

$$
d_{2} \delta=\sin 2 \beta_{1} \sec \delta \cdot \gamma \cos \beta_{1} \sin \left(2 \lambda_{1}+\phi\right)
$$



$$
d_{1} \delta=\sin 2 \beta_{1} \sec \delta \cdot a \cos \lambda_{1} \cos \phi
$$ observed over a wide range of $\lambda_{1}$ the two effects are separable. Indeed they are in principle separable even with a single star, provided it can be observed in both



Vol. 107
and two stars, or two collimators and one star, will in general involve considerably






 from sub-pole right ascensions observed in the front face of the mirror.

It is clear that the mounting of the mirror must be such as to prevent any change in $\gamma$; however, if the method of pivot-testing already proposed is adopted, any change either in $\beta_{1}$ or $\gamma$ will in fact be immediately observable.

Naturally, the pivot errors must be applied to these measurements. We may note in passing that pivot errors are sometimes tabulated in terms of their horizontal and vertical components, but only the component parallel to the altitude of the telescope is relevant in the case of a telescope-transit; the component perpendicular to this merely rotates the field (quite imperceptibly, of course).
 perpendicular to the mirror-normal merely rotates the mirror, and is thus without effect even in principle. If, however, we are working off the meridian, both
 changes $\beta_{1}$, and the other one, when multiplied by $\sin \beta_{1}$, is directly a correction to $\lambda_{1}$, just as if the mirror actually rotated in its cell
 observations of declination is of course a large one, and we shall not pursue it further at present, though we may note that, obviously, the extra-meridian formulae for level and for diurnal aberration would have to be employed. The



 now on to the case when $\beta_{1}$ is very small.

The scale of the chronograph record will evidently vary in just the same
 correction, due to the fact that when the micrometer is in the position of the "standard contact" the line of collimation is not perpendicular to the rotation
axis, is of the form $c \sec \delta$ just as before, $c$ being the difference between the micrometer reading for the "standard contact" and the zero obtained as on p. 295 (both in seconds of arc). In addition, there is now the correction due to the fact that $\beta_{1}$ is not zero; from (15) we have

$$
d H=\cos \lambda_{1} \sin 2 \beta_{1} \sec \delta
$$

Since now for small $\beta_{1}$, (I4) becomes

$$
\sin \delta \approx-\cos \left(2 \lambda_{1}+\phi\right)
$$

$$
(8 \varepsilon)
$$

as is of course also geometrically obvious. Thus this correction is also expressible
for any given $\beta_{1}$ purely as a function of $\delta$, though it does not, of course, vary simply
No. 3, $1947 \quad$ A Proposed" Mirror Transit-circle", 305
as sec $\delta$. Accordingly, it is only necessary to replace the usual correction table, as $\sec \delta$. Accordingly, it is only necessary to replace the usual correction table,
which gives $c \sec \delta$, by one table for $c \sec \delta$ and a second one for $2 \beta_{1} \cos \lambda_{1} \sec \delta$, which gives $c \sec \delta$, by one table for $c \sec \delta$ and a second one for $2 \beta_{1} \cos \lambda_{1} \sec \delta$,
and the complete collimation is allowed for essentially as before.
One undeniable drawback to the mirror-transit is that the telescope, and still more the observer himself, tends to obstruct the line of sight to any possible azimuth mark. It is true that one might in principle arrange a mark at $6^{\circ}$ depression; if the observer could be so placed that not only was there still a clear


 so shielded from the heat of the Sun. However, unless the telescopes themselves are broken, a clear optical path would not be easy to arrange.
An alternative would be to provide a second pair of Y's on the main piers
but about a foot higher than the mirror's pair, and somewhat further apart. If an axle (either rectangular or round) were laid in these, it could support a rightangle prism above the mirror in the manner sketched in Fig. 5, and azimuth marks could be observed by reflection in one or the other face of this prism. It seems probable that the two sets of $Y$ 's would change their azimuth together, Azimuth $Y$ 's Prism

 the other it would have a larger effect on the azimuth Y's than on the main ones. Each collimator could observe, at the same time, one azimuth mark with the upper half of its aperture and the other with the lower; but it does not appear that this

 and prism when it is desired to observe near-zenith stars.
Of course, if it is in fact practicable to keep a running check on fundamental
 disappears. They do, however, in favourable cases also provide a check on the

 to have them if possible. of the telescopes, or break the beams even before we come to the telescopes; the line of sight to the azimuth mark, though it would still have to be depressed

 of broken telescopes.
If, namely, the telescopes are both broken towards the same side, say east, and both by slightly more than a right angle, it becomes possible to bring both observing positions close together. Modern methods of recording (for example on the $6^{\prime \prime}$ transit circle at Washington) provide for all circle- and micrometerreadings to be taken by photography, so that one observer can do what previously needed two; but if the two collimator lenses are separated by 15 feet, and if the


 the positions close together, especially if the circle-settings were also made by a
motor. One might, indeed, mount a long-focus pivot-telescope permanently between the other two, and take pivot-errors regularly after collimation, if desired; a few stars well observed are undoubtedly better than many poor ones. It should,
 "breaking" mirror to act like a pair of crossed Nicols; if the mirrors were both unsilvered, there would in fact be serious extinction beyond the zenith. With silvered surfaces the effect is of course relatively much smaller, but the loss will still be larger than if polarization could be neglected.
In conclusion, we may note a few points in connection with the mounting of the mirror. We have seen that if it either rotates about its normal or tips
 sұиәшәлои әsәч! әтви!̣!




 the front and the back of the mirror, only the marginal regions of these faces could be used for positioning; however, with a reasonably thick mirror this


 with no slap or idle range at all, going over smoothly from pull to push as the




 counterpoises are properly designed.
The six points themselves would probably be three on the front of the mirror
near its edges, two on one of the side faces perpendicular to the axis (if the mirror
No. 3, I 947 Proposed " Mirror Transit-circle"
is rectangular) and one on one side face parallel to the axis. If in fact the mirror
were round, it would be necessary to form special steps on its sides.
In any case, each of the six "points" should be so shaped (very nearly flat
to the glass) that the area in contact, due to the elastic deformation of glass and
"point", is as large as possible at the pressures used.



